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Abstract

We consider the problem of estimating the density of buyers and vendors in a
nonlinear parabolic price formationmodel using measurements of the price and
the transaction rate. Our approach is based on a work by Puel (Puel J-P 2002
C. R. Acad. Sci., Paris 335 (2) 161–166), and results in an optimal control
problem. We analyze this problems and provide stability estimates for the con-
trols as well as the unknown density in the presence of measurement errors. Our
analytic �ndings are supported with numerical experiments.

Keywords: price formation, data assimilation and inverse problems,
dual optimal control

1. Introduction

In this paper we use techniques developed in the �eld of data assimilation to predict the dynam-
ics of a nonlinear parabolic free boundary price formation model proposed by Lasry & Lions
in [16]. The Lasry–Lions (LL) model describes the price evolution of a single good traded
between a large group of buyers and a large group of vendors. The price enters as a free
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boundary, at which trading takes place. After the realisation of a transaction, buyers and ven-
dors immediately sell or rebuy the good at a shifted price. The shift in the price is due to the
previously paid constant transaction costs. The situation detailed above can be described by
the following nonlinear parabolic partial differential equation

∂t f −
σ2

2
∂xx f = Λ(t)(δp(t)−a − δp(t)+a), x ∈ Ω, t > 0, (1.1a)

Λ(t) = −σ
2

2
∂x f (p(t), t), f (p(t), t) = 0, (1.1b)

f (x, 0) = f0(x), p(0) = p0. (1.1c)

The positive part f+ = max( f, 0) of the function f = f(x, t) corresponds to the distribution of
buyers over the price x ∈ Ω, the negative part f− = min( f, 0) to the is the vendor distribution
over the price. The free boundary p = p(t) corresponds to the price where f(·, t) = 0, the func-
tion Λ to the total number of transactions executed at that price. The immediate placement
and execution of new bids and orders after the trading event are modeled by the Delta Diracs
at the shifted prices p(t)+ a and p(t)− a, where a ∈ R

+ denotes the transaction costs. Ran-
dom changes in the buyer and vendor distribution are included by a Laplacian with constant
diffusivity σ ∈ R

+. We assume that the initial distribution f0 satis�es:

f0(p0) = 0, f0(x) > 0 for x < p0 and f0(x) < 0 for x > p0, a.e. in Ω (1.2)

and set σ2

2 = 1. System (1.1) can be posed on the positive real line Ω = R
+ or a bounded

interval Ω = [0, xmax], where xmax denotes the maximum price. We will consider (1.1) on the
bounded interval only and impose homogeneous Neumann boundary conditions

∂x f = 0 on ∂Ω (1.3)

to ensure that the total number of buyers and vendors is constant in time.
For convenience, we assume the initial price p0 is normalized to 0 and only consider

its relative change. Hence we work on the shifted domain [−L, L], where L = xmax
2 . Alto-

gether we will consider (1.1) with boundary condition (1.3) on Ω = [−L, L] throughout this
manuscript.

The LL model (1.1) was analyzed in a series of papers, cf [4, 5, 8, 11, 19]. Most available
results are based on a nonlinear transformation of (1.1), which transforms the problem to the
heat equation with nonlinear boundary conditions. This connection provides the main analyti-
cal ingredients to study existence and long time behavior of solutions to (1.1). Lasry and Lions
introduced the model on the macroscopic level only, a more detailed microscopic interpreta-
tion of the trading process and the respective limit as the number of buyers and vendors tend
to in�nity was missing. This connection was established by Burger et al, who proved that the
original LL model can be derived from a Boltzmann type model as the number of transac-
tions tends to in�nity, see [2]. In their approach trading events between buyers and vendors are
modeled by ‘collisions’, which can also be used to describe price dynamics in case of more
general trading rules. The connection between the Boltzmann-type price formation model and
the LL model (1.1) was further investigated in different asymptotic limits in [3]. The LL and
Boltzmann-type price formation models are appealing in many respects, especially in terms
of analytical tractability. However the resulting price process is deterministic and does not
give any insights into connections between transactions rates, order �ows or price volatility.
Markowich et al, [18] considered a stochastic extensions of the original LL model. However
this extension did not give realistic price dynamics either. Very recently Cont andMueller [10]
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proposed a stochastic partial differential equation with multiplicative noise, which reproduces
statistical properties of real price dynamics.

In this paper we focus on the inverse problem of determining the buyer–vendor distribution
given measurements of the price and the transaction rate on a time interval [0, T]. This distri-
bution can then be used as an initial value and thus allows us to predict price and transaction
rate for t > T. More speci�cally we will investigate the question

Problem I. Given measurements of the price p(t) and the transaction rate Λ(t) in some time
interval [0, T], is it possible to predict the price for times t > T?

Our approach is based on an optimal control approach proposed by Puel, see [20, 21]. It
is based on a duality argument, which allows to reconstruct the distribution f at the �nal time
T. This is in contrast to standard data assimilation where one tries to recover the initial datum
f0(x). We adopt the strategy of Puel and use duality estimates to compute linear functionals of
f(T, x). These functionals involve the solution of optimal boundary control problems with PDE
constraints. Optimal boundary control problems are well studied in the literature, see e.g. [13,
17, 22]. We will make use of an exact null controllability result for parabolic boundary control
problems shown in [7]. Its proof is based on Carleman estimates, a technique commonly used
to derive exact controllability results (and also uniqueness for inverse problems), see [14, 23]
for details. A possible numerical realisation of Puel’s strategy was presented in [9].

Our contributions to the subject of optimal control for parabolic free boundary problems
and data assimilation in price formation models are the following:

• We present the �rst approach to reconstruct the buyer- and vendor distribution from
measurements of price and transaction rate (to the author’s knowledge).

• We generalise the data assimilation approach of Puel, see [20], to free boundary value
problems and evolving domains.

• We provide stability estimates, which give novel insights into the in�uence of measure-
ment errors on the price dynamics.

• We propose a computational strategy to implement the developed framework numerically.

This paper is organized as follows: the proposed framework is based on several analytic results,
which will be presented in section 2. The data assimilation problem itself is discussed in
section 3. Section 4 is devoted to stability in the presence of measurement errors and we
conclude by presenting numerical experiments in section 5.

2. Preliminary results

In this section we provide analytic tools and results of the forward problem and de�ne the
respective adjoint problem, which will be used in the optimal control approach.

The presented results rely on the following assumptions:

(A1) f0(p0) = 0, f0(x) > 0 for x < p0 and f0(x) < 0 for x > p0.

(A2) For every t ∈ [0, T], there exists a constant p > a such that −L+ p ≤ p(t) ≤ L− p .

Assumption (A1) is the necessary compatibility condition for the initial datum f0 (which we
already stated in (1.2)), while (A2) ensures that the price stays suf�ciently far away from the
interval boundaries. Note that the restriction on p(t) is not severe in the context of inverse
problems: Since we will assume later on that we know measurements of p(t) in some time
interval [0, T], we can always chose the domain size L (within realistic bounds) such that the
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condition p(t) ∈ (−L+ a, L− a) is satis�ed. As p(t) is continuous, we also know it will stay
in (−L+ a, L− a) for some time so that it is safe to predict for t > T.

2.1. Nonlinear transformation of the model

We start by discussing the nonlinear transformation which converts (1.1) to a linear heat
equation. This connection was exploited in almost all analytic results as well as computational
methods. It is based on the fact that the second derivative of the buyer vendor distribution f at
the price p(t)± a behaves like Λ(t)δp(t)±a. Thus shifting the function by multiples of ±a and
adding them up ‘eliminates’ the singularity on the right-hand side. More precisely, forΩ = R,
we de�ne

F(x, t) =







∑∞
n=0 f

+(x+ na, t), x < p(t)

−∑∞
n=0 f

−(x− na, t), x > p(t).
(2.1)

Then the function F = F(x, t) satis�es the heat equation

∂tF(x, t)− ∂xxF(x, t) = 0, x ∈ R, t > 0, (2.2a)

F(x, 0) = F0(x), x ∈ R, (2.2b)

with the transformed initial datum

F0(x) =







∑∞
n=0 f

+
0 (x+ na), x < p0

−∑∞
n=0 f

−
0 (x− na), x > p0.

Since we consider (1.1) with homogeneous Neumann boundary conditions on the interval
(−L, L), the sum in (2.1) is �nite. If we assume that the initial price is a multiple of a, then the
transformed initial condition is given by

F0(x, t) =







∑kL
n=0 f

+
0 (x+ na), x < p0

−∑kR
n=0 f

−
0 (x− na), x > p0.

(2.3)

with

kL = (p0 + L)/a and kR = (L− p0)/a.

We recall that the solution of the original LL model (1.1) can be computed by

f (x, t) = F(x, t)− F+(x+ a, t)+ F−(x− a, t).

This back-transformation allows us to deduce the corresponding transformedNeumann bound-
ary conditions

∂xF(−L, t) = ∂xF(−L+ a, t), (2.4a)

∂xF(L, t) = ∂xF(L− a, t), (2.4b)

4
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Remark 2.1. As explained above the non-linear transformation is tailored speci�cally to
(1.1), i.e. the fact that �rst derivates of solutions to (1.1) at x = p(t) are of the form ±λδp(t)±a
and thus when summing up shifted solutions the terms on the right-hand side vanish. As soon
as the structure of the equation is changed, e.g. by adding new non-linear terms or constraints
[that act away from x = p(t)], the transformation will no longer work.

2.2. Existence and regularity of the price

In the following we provide additional existence and regularity results for the direct problem.
Note that these results are not optimal in terms of regularity. However, they are suf�cient to
de�ne all quantities that we shall need in the sequel.

Theorem 2.2. [Existence of f, p(t)]. Let f0 ∈ L2(−L, L) and p0 ∈ (−L+ a, L− a) satisfy
(A1). Then the BVP (1.1) has a global solution conserving the total mass of buyers and vendors
if the zero level set p = p(t) of the solution of (2.2)–(2.4) satis�es p(t) ∈ (−L+ a, L− a) for
all t > 0. Then the free boundary p(t) converges to the stationary price p∞ ∈ (−L+ a, L− a).

Proof. The proof is mainly based on the de�nition of the transformation (2.1), see [5] for
details. �

Note that the stationary price is determined by the initial mass of buyers and vendors as well
as the transaction rate a. In particular

p∞ =
2MlL− a(Ml −Mr)

2(Ml +Mr)
− L

2
(2.5)

where Ml =
∫

−L
p0 f0(x)dx and Mr =

∫ L

p0
f0(x)dx. The presented analysis of the adjoint and

assimilation problem relies on the following regularity result for the price p = p(t).

Lemma 2.3. [Regularity ofp(t)]. Let f0 ∈ L2(−L, L) and p0 ∈ (−L+ a, L− a) satisfy (A1).
Then p(t) ∈ C1([ε, T]) for ε > 0.

Proof. The results is a direct consequence of the fact that F(x, t) is smooth in space and time
for all t > 0 and of the boundedness of Λ. Indeed, differentiating the relation F(p(t), t) = 0
yields

p′(t) =
∂tF(p(t), t)

Λ(t)
=
∂xxF(p(t), t)

Λ(t)
, (2.6)

and therefore

sup
t∈[ε,T]

p′(t) ≤ ‖∂xxF‖C([−L,L]×[ε,T])

Λ
,

where the parabolic version of Hopf’s lemma applied at x = p(t) ensures that Λ = mint∈[ε,T]
Λ(t) > 0. �

Remark 2.4. The regularity of the price p as well as the buyer–vendor density f at the initial
time is crucial to de�ne the transformation between the time-dependent domains [−L, p(t)]
and [L, p(t)] and the reference domain [0, 1] (see subsection 2.3). It is also important for the
exact controllability results of theorem 3.3. Thereforewe will work the temporal domain [ε, T]
instead of [0, T] for some �xed ε > 0 in the following only.
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p(t)+L and ζ =
p(ε)−p(t)
p(t)+L for all−L ≤ x ≤ p(t) and ε ≤ t ≤ T. The function φt is obvi-

ously continuous and reduces to the identity at t = ε. It is also a homeomorphism as its inverse

φ−tu(x) = u(κ−1x+ ζ−1L) for − L ≤ x ≤ p(ε) and ε ≤ t ≤ T,

is continuous as well. This allows us to introduce the evolving Bochner spaces (as in [1,
de�nition 2.7])

L2
H1
⊳

= {u : [ε, T]→
⋃

H1
⊳(t)× {t}, t 7→ (ū(t), t) |φ−(·)ū(·) ∈ L2

(
ε, T ;H1

⊳ (ε)
)
}, (2.7)

L2
(H1
⊳ )∗

=

{

g : [ε, T]→
⋃

(H1
⊳)

∗(t)× {t}, t 7→ (ḡ(t), t) |φ∗(·)ḡ(·) ∈ L2
(
ε, T ; (H1

⊳(ε))
∗)
}

, (2.8)

and, following again [1], make the identi�cation of u(t) = (ū(t), t) with ū(t) for u ∈ L2
H1
⊳

(and

likewise in L2
(H1
⊳ )∗
). The space of continuously differentiable functions on evolving Bochner

spaces is given by

6
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Ck

H1
⊳

=

{

ξ ∈ L2
H1
⊳

|φ−(·)ξ(·) ∈ Ck
(
[ε, T] ;H1

⊳ (ε)
)}

for k ∈ {0, 1, . . .}.

Thus we can, as in [1, de�nition 2.20], to give a notion of time (material) derivative as

ξ̇(t) :=φt

(
d

dt
(φ−tξ(t))

)

∈ C0

H1
⊳

,

for any ξ ∈ C1

H1
⊳

. Then we can �nally de�ne the space used for the notion of weak solutions,

namely

W
(
H1
⊳ , (H

1
⊳)

∗)
=

{

u ∈ L2
H1
⊳

| u̇ ∈ L2
(H1
⊳ )∗

}

. (2.9)

The de�nitions of the respective quantities L2
H1
⊲

, L2
(H1
⊲ )∗
, Ck

H1
⊲

, and W
(
H1
⊲ , (H

1
⊲)

∗) are

analogous.
While the previous de�nitions allow us to directly work in a noncylindrical domain, it is

sometimes also useful consider the transformation to the �xed domain Q = [0, 1]× [ε, T].
Hence we introduce transformations which map Q⊳ and Q⊲ to Q:

T⊳ :Q⊳ → Q, T⊲ :Q⊲ → Q, (2.10a)

(x, t) 7→
(

x+ L

L+ p(t)
, t

)

, (x, t) 7→
( −L+ x

−L+ p(t)
, t

)

. (2.10b)

Note that due to assumption (A1), T⊳ and T⊲ are well-de�ned and that T⊲ actually �ips the
domain, i.e. it swaps left and right boundary points.

2.4. Adjoint equations

The next ingredient will be two adjoint equations, posed on the domains Q⊳ and Q⊲,
respectively.

Definition 2.5 (Adjoint equations). For any ε > 0, ψ⊳ ∈ L2(−L, p(T)), ψ⊲ ∈ L2(p(T), L),
u⊳, u⊲ ∈ L2(ε, T) and T > 0, we introduce the backward in time adjoint equations

−∂tΦ⊳(x, t)− ∂xxΦ⊳(x, t) = 0, inQ⊳ (2.11a)

∂xΦ⊳(−L, t) = 0, for t ∈ [T, ε] (2.11b)

Φ⊳(p(t), t) = u⊳(t), for t ∈ [T, ε] (2.11c)

Φ⊳(x, T) = Ψ⊳(x), for x ∈ Ω⊳. (2.11d)

and

−∂tΦ⊲(x, t)− ∂xxΦ⊲(x, t) = 0, inQ⊲ (2.12a)

∂xΦ⊲(L, t) = 0, for t ∈ [T, ε] (2.12b)

Φ⊲(p(t), t) = u⊲(t), for t ∈ [T, ε] (2.12c)

Φ⊲(x, T) = Ψ⊲(x), for x ∈ Ω⊲. (2.12d)

7
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Applying the existence theory of, e.g. [1], for equations on evolving domains, we obtain the
following theorem.

Theorem 2.6. Let p ∈ C1([ε, T]) be given. Then, for every Ψ⊳ ∈ L2(Ω⊳), u⊳ ∈ L2(ε, T)
and every Ψ⊲ ∈ L2(Ω⊲), u⊲ ∈ L2(ε, T) there exist unique solutions Φ⊳ and Φ⊲ to (2.11) and
(2.12), respectively. Furthermore, we have

Φ⊳ ∈ W
(
H1
⊳ , (H

1
⊳)

∗) , (2.13)

Φ⊲ ∈ W
(
H1
⊲ , (H

1
⊲)

∗) . (2.14)

With the help of the transformations T⊳ and T⊲, equations (2.11) and (2.12) can be
transformed into a generic problem of the form

−∂tΦ− a(t)∂yyΦ+ b(t)y∂yΦ = 0, for (y, t)inQ (2.15a)

∂yΦ(0, t) = 0, for t ∈ [T, ε] (2.15b)

Φ(1, t) = u(t), for t ∈ [T, ε] (2.15c)

Φ(y, T) = Ψ(y), y ∈ (0, 1). (2.15d)

For (2.11) we de�ne (y, t) = T⊳(x, t) and compute

a(t) =
1

(p(t)+ L)2
, b(t) =

p′(t)

(p(t)+ L)
, u(t) = u⊳(t) andΨ(y) = Ψ⊳((p(T)+ L)y− L), (2.16)

while for (2.12) and (y, t) = T⊲ we obtain

a(t) =
1

(p(t)− L)2
, b(t) =

p′(t)

(p(t)− L)
, u(t) = u⊲(t) andΨ(y) = Ψ⊲((p(T)− L)y+ L). (2.17)

Note that in view of lemma 2.3 and assumption (A1), the coef�cients a and b are (in both
cases) continuous and uniformly bounded by

1

(2L− p )2
< a(t) ≤ 1

p 2
and 0 ≤ b(t) ≤ ‖p‖C1([0,T])

p 2
, (2.18)

as there may be points with p′(t) = 0. Thus, standard existence and regularity results for linear
diffusion–convection equations on �xed domains, such as [15, theorem 5.2], can be used to
ensure the solvability of (2.15).

3. Data assimilation problem

We now turn to the main part of this paper—the inverse or data assimilation problem I. In
classic data assimilation approaches one would use the measurements of p = p(t) andΛ = Λ(t)
on [0, T] to reconstruct the initial datum f0(x) of (1.1). Here we follow an alternative approach
proposed by Puel, see [20, 21], and estimate the buyer–vendor distribution at the �nal time,
that is f(x, T) instead. This requires the solution of additional optimal control problems, which
are, however, well posed if an appropriate regularisation (penalty) is added.

To use Puel’s strategy in our setting, we will estimate the densities of buyers and of vendors
separately (that is on the right and left of the free boundary). The reconstruction is based on
the following two duality estimates:

8
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Theorem 3.1. Let f0 ∈ L2(Ω) satisfying assumption (A1) and let f ∈ L2(0, T ;H1(Ω)) be
a solution to (1.1) with corresponding price, p ∈ C1([ε, T]) satisfying (A2). Furthermore,
let

Φ⊳ ∈ W
(
H1
⊳ , (H

1
⊳)

∗) , Φ⊲ ∈ W
(
H1
⊲ , (H

1
⊲)

∗) (3.1)

satisfy (2.11) and (2.12), respectively. Then, the following duality identities

∫ p(T)

−L
f (x, T)Ψ⊳(x) dx =

∫ p(ε)

−L
f (x, ε)Φ⊳(x, ε) dx+

∫ T

ε

Λ(t)(Φ⊳(p(t)− a)− u⊳(t)) dt, (3.2a)

∫ L

p(T)
f (x, T)Ψ⊲(x) dx =

∫ L

p(ε)
f (x, ε)Φ⊲(x, ε) dx+

∫ T

ε

Λ(t)(u⊲(t)− Φ⊲(p(t)+ a)) dt, (3.2b)

hold for arbitrary functions u⊳, u⊲ ∈ L2(0, T) and every ε > 0.

Proof. We prove the �rst estimate only, since the argument for (3.2b) is the same. We have

∫ p(T)

−L
f (x, T)Ψ⊳(x) dx−

∫ p(ε)

−L
f (x, ε)Φ⊳(x, ε) dx =

∫ T

ε

∫ p(t)

−L
∂t( f (x, t)Φ⊳(x, t)) dxdt

=

∫ T

ε

∫ p(t)

−L
[∂xx f (x, t)+ λ(t)δp(t)−a]Φ⊳(x, t)− f (x, t)∂xxΦ⊳(x, t) dxdt

=

∫ T

ε

(∂x fΦ⊳)|x=p(t)x=−L −( f∂xΦ⊳)|x=p(t)x=−L dt +

∫ T

ε

Λ(t)Φ⊳(p(t)− a, t) dt

=

∫ T

ε

Λ(t)(u⊳(t)+Φ⊳(p(t)− a, t)) dt.

where we have used the boundary condition (1.3), f(p(t), t) = 0 and the de�nition of Λ. �

Now we will use (3.2a) and (3.2b) to determine f(x, T). Since the choice of Ψ⊳ and Ψ⊲ in
(3.2a) and (3.2b) is arbitrary and the last term on the right-hand side contains only known
(i.e. computed or measured) quantities, we could obtain a linear functional of f(x, T). The
only unknowns are the �rst terms on the respective right hand sides. But since we are free
to choose arbitrary boundary data u⊳ and u⊲, this leads to the null-controllability problems for
(2.11)–(2.12). Indeed, if we can chose u⊳ and u⊲ such that Φ⊳(x, ε) = 0 and Φ⊲(x, ε) = 0,
the unknown terms in both orthogonality relations drop out and we can reconstruct f(x, T).

3.1. Optimal control problem

To conduct the strategy outlined above, we have to solve the optimal control problems

min
u⊳∈L2(ε,T)

1

2

∫ p(ε)

−L
Φ⊳(x, ε)

2dx subject to (2. 11), (3.3)

min
u⊲∈L2(ε,T)

1

2

∫ L

p(ε)
Φ⊲(x, ε)

2dx subject to (2. 12). (3.4)

9



Inverse Problems 36 (2020) 064003 M Burger et al

Since the structure of both problems is the same, we will only discuss the �rst one. To increase
readability, we will drop the subscript ⊳ and write u, φ, . . . instead of u⊳, φ⊳ from now on.
The next result states that the optimal control problem is indeed exactly null-controllable in
the sense of the following de�nition.

Definition 3.2. We say that problem (3.3) is exactly null-controllable, if for every initial
datum Ψ ∈ L2(Ω⊳) to (2.11) there exists ū ∈ L2(ε, T) such that the solution Φ to (3.3) with
control u = ū satis�es Φ(x, ε) = 0.

The following exact boundary controllability result is based on [7, theorem 2.3], slightly
extended and adapted to our situation. The theorem reads as follows.

Theorem 3.3 (Exact null-controllability). For every Ψ ∈ L2(Ω⊳), there exists at least
one control u ∈ L2(ε, T) such that the solutions Φ of (2.11) satis�es Φ(x, ε) = 0 on Ω⊳.

Furthermore, there exists a constant C which depends on p(t), L and T such that

‖ū‖L2(ε,T) ≤ C‖Ψ‖L2(Ω⊳) (3.5)

holds with ū being the control of minimum L2-norm.

Proof. The regularity of the price p allows us to transform the problem to a �xed
domain using T⊳ de�ned in (2.10). Hence we only consider equations of type (2.15). First
we observe that for any positive δ > 0, any solution Φ to (2.15) with initial datum Ψ

is, by standard parabolic regularity [12, chapter 7.1], in L2(ε+ δ, T) ;H1(0, 1)
)
with the

estimate

‖Φ‖L2(ε+δ,H1(0,1)) ≤ C‖Ψ‖L2(0,1). (3.6)

Thus, we can assume that already Ψ ∈ H1(0, 1) holds. Since by lemma 2.3, p ∈ C1([ε, T])
[and thus the coef�cients a and b in (2.15) are continuous] we can apply [7, theorem 2.3] to
conclude the requested boundary controllability. The continuity estimate (3.5) then follows
by combining (3.6), the respective estimate from [7, theorem 2.1] for the distributed control
problem and a standard trace inequality. �

In order to be able to numerically solve the optimal control problem, we introduce the
following regularized version

min
u∈L2(ε,T)

1

2

∫ p(ε)

−L
Φ(x, ε)2dx+

α

2

∫ T

ε

u(t)2 dt subject to (2. 11) (3.7)

Standard arguments guarantee the existence of a unique minimizer, see e.g. [22, section 3.5].
Calculating the derivatives of the corresponding Lagrange functional

L =
1

2

∫ p(ε)

−L
Φ(x, ε)2dx+

α

2

∫ T

ε

u(t)2 dt (3.8)

+

∫ T

ε

∫ p(t)

−L
G(x, t) [−∂tΦ(x, t)− ∂xxΦ(x, t)] dxdt,

we obtain the �rst order optimality system

10



Inverse Problems 36 (2020) 064003 M Burger et al

∂tG(x, t)− ∂xxG(x, t) = 0, inQ⊳ (3.9a)

∂xG(−L, t) = 0, for t > ε (3.9b)

G(p(t), t) = 0, for t > ε (3.9c)

G(x, ε) = −Φ(x, ε), inΩ, (3.9d)

where Φ satis�es the adjoint equation (2.11) and the coupling

αu(t)+ ∂xG(p(t), t) = 0, for t > ε. (3.10)

The following results examine the convergence of u as α→ 0. The proofs are using the same
techniques as in [21], yet adapted to our boundary control problem.

Theorem 3.4. For everyα > 0, denote by (uα,φα) the corresponding solution to (3.7). Then
we have

uα → ū in L2(ε, T) asα→ 0, (3.11)

Φα → Φ̄ inC([ε, T] ;H1(Ω⊳)) asα→ 0, (3.12)

where ū is the solution to the optimal control problem (3.3) having minimal L2-norm and Φα

and Φ̄ are the solutions to (2.11) with boundary data uα and ū, respectively.

Proof. By theorem 3.3, we know that there exists at least one function solving the exact null
controllability problem. Thus, the set of all these controls in L2(ε, T) is nonempty. As it is also
convex and closed, there exists a unique ū having minimal L2-norm. Since uα minimizes the
functional (3.7) among all function in L2(ε, T) we have

1

2

∫ p(ε)

−L
Φα(x, ε)

2dx+
α

2

∫ T

ε

uα(t)
2 dt ≤ α

2

∫ T

ε

ū(t)2 dt (3.13)

which implies the (uniform in α) bound

1

2

∫ T

ε

uα(t)
2 dt ≤ C. (3.14)

Thus, we can extract a subsequence, again labeled uα that converges weakly to some ũ in
L2(ε, T). Using the weak formulation of (2.11) and an Aubin–Lions argument, we see that this
is suf�cient to obtain the convergence

Φα → Φ̃ inC([ε, T] ;H1(−L, p(t))), asα→ 0

and (3.13) implies Φ̃(ε, x) = 0. Thus, arguing as in the proof of [21, theorem 2.12], we can
use the fact that ū has minimal norm as well as the lower semicontinuity of the norm w.r.t.
weak convergence to obtain that ũ = ū. This argument also implies norm convergence and the
uniqueness of the limit then �nally yields

11
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uα → ū inL2(ε, T).

This also implies Φ̃ = Φ which completes the proof. �

Remark 3.5. Understanding the optimal control problem (3.3) [or (3.4)] as Tikhonov regu-
larisation, one could ask for convergence rates of uα to ū as α→∞. Indeed, such rates could
be expected under appropriate source conditions on ū. The interesting point now is to under-
stand the in�uence of p(t) in the de�nition of the forward operator in the characterisation of
such conditions and also how perturbation in p would in�uence them. We leave this question
for future research.

4. Stability in the presence of measurement errors

Assume we have measurements of two different prices p1 and p2 as well as two different trans-
action rates Λ1(t) and Λ2(t). Can we control the difference in the reconstructions f1(x, T) and
f2(x, T) as well as the future predicted prices p1(t) and p2(t) for t > T in terms of these differ-
ences? In this section we will give a positive answer to this question based on the following
strategy

(a) Estimate the error in the optimal controls u1 and u2 in terms of the error in p1 and p2
(lemma 4.2).

(b) Estimate the error in the respective reconstructions f1(x, T) and f2(x, T) in terms of errors
in price and transaction rate (lemma 4.3).

(c) Use these results to predict errors in the future price (lemma 4.7).

Note however that for the last point we need to make additional regularity assumptions on
the reconstructed �nal data that do not directly follow from our analysis (see remark 4.5 for
details). We start by assuming

(A3) ‖p1 − p2‖C1([ε,T]) ≤ δp and ‖Λ1 − Λ2‖L2((ε,T)) ≤ δλ.

W.l.o.g. we only consider the optimality system related to (3.3), i.e. the left part
Ω⊳ = [−L, p(t)] and again drop the subscript ⊳. Moreover, we transform all equations to the
unit interval [0, 1], so that the optimality system reads as

−∂tΦ− a(t)∂yyΦ+ b(t)y∂yΦ = 0, inQ (4.1a)

∂yΦ(0, t) = 0, for t > ε (4.1b)

Φ(1, t) = u(t), for t > ε (4.1c)

Φ(y, T) = Ψ(y), for all 0 ≤ y ≤ 1. (4.1d)

∂tG− a(t)∂yyG− b(t)y∂yG = 0, inQ (4.1e)

∂yG(0, t) = 0, for t > ε (4.1f)

G(1, t) = 0, for t > ε (4.1g)

G(y, ε) = −Φ(y, ε), for all 0 ≤ y ≤ 1. (4.1h)

and the coupling condition

12
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αu(t)+
1

(p(t)+ L)
∂yG(1, t) = 0, for t > ε, (4.1i)

with a(t) and b(t) as de�ned in (2.16). Note that the transformed primal and dual equations are
still adjoint to one another, yet now with respect to the scalar product

(u, v) :=

∫ T

ε

∫ 1

0
(p(t)+ L)uv dxdt. (4.2)

Lemma 4.1. Let Φ and G be the solutions to (4.1a) and (4.1e), respectively. Then we have

‖Φ‖L∞((T,ε) ;L2(0,1)) + ‖
√
aΦ‖L2((T,ε) ;H1(0,1)) ≤ C1

(
1+ ‖Ψ‖L2((0,1))

)
,

‖G‖L∞((ε,T) ;L2(0,1)) + ‖
√
aG‖L2((ε,T) ;H1(0,1)) ≤ C2‖Φ(·, ε)‖L2((0,1)),

with C1 = C1(α, p , L, T) and C2 = C2(p , L, T).

Proof. These are standard estimates obtained choosingΦ andG as test functions in the weak
formulation of (4.1a) and (4.1e), respectively. For the �rst estimate, we additionally used the
L2-bound (3.14) on the boundary control, which introduced the α-dependence in C1. �

Now we are able to prove stability of the optimal control problem in terms of measurement
errors in the price.

Lemma 4.2 (Stability of u). Consider two different prices p1(t) and p2(t) such that

p1(ε) = p2(ε) and ‖p1 − p2‖C1([ε,T]) ≤ δp. Denote by Φ1 and Φ2 and G1 and G2 the solutions

to (4.1a) and (4.1e) with p = p1 and p = p2, respectively. Then the following stability estimate

for the controls u1 and u2 holds:

∫ 1

0
(Φ1(x, ε)− Φ2(x, ε))

2 dx+
α

2

∫ T

ε

(u1(t)− u2(t))
2 dt ≤ C3(α, p , L, T,Ψ)δ2p .

Proof. For each pi (and corresponding ai, bi), we denote by Gi, Φi and ui the corresponding
solutions to the optimality system (4.1a)–(4.1i) and furthermore

Φ̄ = Φ1 − Φ2, Ḡ = G1 − G2.

Then, Φ̄ and Ḡ satisfy, in the weak sense, the equations

−∂tΦ̄− a1(t)∂yyΦ̄ + b1(t)y∂yΦ̄ = −(a1 − a2)∂yyΦ2 + (b1 − b2)y∂yΦ2, inQ (4.3a)

∂yΦ̄(0, t) = 0, for t > ε (4.3b)

Φ̄(1, t) = u1(t)− u2(t), for t > ε (4.3c)

Φ̄(y, T) = 0, 0 ≤ y ≤ 1. (4.3d)

and

∂tḠ− a1(t)∂yyḠ− b1(t)y∂yḠ = −(a1 − a2)∂yyG2 − (b1 − b2)y∂yG2, inQ (4.3e)

∂yG(0, t) = 0, for t > ε (4.3f)

G(1, t) = 0, for t > ε (4.3g)

G(y, ε) = −Φ̄(y), 0 ≤ y ≤ 1. (4.3h)

13



Inverse Problems 36 (2020) 064003 M Burger et al

Note that the following calculations are formal since for now we only know existence of weak
solutions and therefore some of the integrals are not de�ned. In the end we arrive, however,
at an estimate which is again well de�ned and could can be obtained rigorously by directly
working with weak solutions. We chose this way of presentation as we believe it to be easier to
follow. Thus (formally) taking equation (4.3a) and testing it with Ḡ [with respect to the scalar
product (4.2)] yields

∫

Q

(p(t)+ L)Ḡ[−∂tΦ̄− a1(t)∂yyΦ̄ + b1(t)y∂yΦ̄] dxdt

=

∫

Q

(p(t)+ L)Ḡ
[
−(a1 − a2)∂yyΦ2 + (b1 − b2)y∂yΦ2

]
dxdt

Integrating by parts on the left hand side, using (4.3e) and the boundary conditions
results in

(p(t)+ L)

∫ 1

0
Φ̄(x, ε)2 dx+ α

∫ T

ε

a1(t)(u1(t)− u2(t))
2(p(t)+ L) dt

=

∫

Q

(p(t)+ L)
{[
−(a1 − a2)[∂yyΦ2Ḡ− ∂yyG2Φ̄]

+ (b1 − b2)y[∂yΦ2Ḡ− ∂yG2Φ̄]
}
dxdt.

A �nal integration by parts to remove the second derivatives on the right-hand side gives

(p(t)+ L)

∫ 1

0
Φ̄(x, ε)2 dx+ α

∫ T

ε

a1(t)(u1(t)− u2(t))
2(p(t)+ L) dt

=

∫

Q

(p(t)+ L)
{[
−(a1 − a2)[−∂yΦ2∂yG1 + ∂yG2∂yΦ1]

+ (b1 − b2)y[∂yΦ2Ḡ− ∂yG2Φ̄]
}
dxdt

+ α

∫ T

ε

(a1 − a2)(u1 − u2)u2(p(t)+ L) dt.

Using the estimates of lemma 4.1, the boundedness of u in L2 [see (3.14)] and Cauchy’s
inequality applied to the last term on the right hand side, we have

∫ 1

0
Φ̄(x, ε)2 dx+

α

2

∫ T

ε

(u1(t)− u2(t))
2 dt

≤ C4(p , L,Ψ,α)(‖a1 − a2‖2L∞(ε,T) + ‖b1 − b2‖2L∞(ε,T)),

where we also used the lower bounds (2.18) on a and assumption (A3) to estimate the
expression (p(t)+ L) from below by p and above by L− p . Using again (2.18) yields

‖a1 − a2‖L∞((ε,T)) ≤ C4(p , L)δp, and ‖b1 − b2‖L∞((ε,T)) ≤ C5(p , L)δp.

Combining this with the previous estimate yields the assertion. �
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For the second step of our strategy, we return to the orthogonality relation (3.2a) which,
transformed to [0, 1], reads as

(p(T)+ L)

∫ 1

0
f (x, T)Ψ(x) dx = (p(ε)+ L)

∫ 1

0
f (x, ε)Φ(x, ε) dx

+

∫ T

ε

Λ(t)(Φ(p(t)− a)− u(t)) dt.

(4.4)

In the presence of errors in p andΛwe obtain two different relations and the following stability
result. Note that the above results on the adjoint equations imply solvability forΦwith continu-
ous dependence on the initial value for anyΨ ∈ L2([0, 1]). Hence, the duality relation uniquely
de�nes f(·, T) ∈ L2([0, 1]) when given f(·, ǫ) ∈ L2([0, 1]). There is further stable dependence of
f(·, T) on the errors in the price and transaction rates, which we make precise by the following
result:

Lemma 4.3 (Stability of f(x, T)). Let p1, p2 and Λ1,Λ2 be given functions which satisfy

assumption (A3) and denote by f1(x, T) and f2(x, T) the corresponding reconstructed prices
calculated using (4.4). Then we have

∫ 1

0
( f1(x, T)− f2(x, T))

2 dx ≤ C6(p , f (·, ε),Ψ,α, L, T)(δp + δλ).

Proof. Subtracting (4.4) for (p1,λ1, u1) and (p2,λ2, u2) yields

(p1(T)+ L)

∫ 1

0
( f1(x, T)− f2(x, T))Ψ(x) dx

= (p1(ε)+ L)

∫ 1

0
f (x, ε)(Φ1(x, ε)− Φ2(x, ε)) dx+ (p1(ε)− p2(ε))

∫ 1

0
f (x, ε)Φ2(x, ε) dt

︸ ︷︷ ︸

=:(I)

+

∫ T

ε

Λ1(t)[Φ1(p1(t)− a)− u1(t))− Φ2(p2(t)− a)−u2(t))] dt
︸ ︷︷ ︸

=:(II)

+

∫ T

ε

[Λ1(t)−Λ2(t)](Φ2(p1(t)− a)− u2(t)) dt
︸ ︷︷ ︸

=:(III)

− (p1(T)− p2(T))

∫ 1

0
f2(x, T)Ψ(x) dx

︸ ︷︷ ︸

=:(IV)

We estimate each term of the right-hand side separately

(I) ≤ (L− p )‖ f (·, ε)‖L2((0,1))‖Φ1(·, ε)− Φ2(·, ε)‖L2(0,1)
+ ‖p1 − p1‖L∞(ε,T)‖ f (·, ε)‖L2((0,1))‖Φ2(·, ε)‖L2((0,1))

≤ C7(p , f ,Ψ,α, L, T)δp,

where we used lemmas 4.1 and 4.2. Next we have
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(II) ≤ ‖λ1‖L2(ε,T)‖u1 − u2‖L2(ε,T)

+

∫ T

ε

Λ1 [φ1(p1(t)− a)− φ1(p2(t)− a)+ φ1(p2(t)− a) − φ2(p2(t)− a)] dt

≤ C8‖p1(t)− p2(t)‖L∞(ε,T) + C9‖Φ1 − Φ2‖L2((0,1)) ≤ C10δp

using that for positive times t ≥ ε (and away from the boundary) φ1 is Lipschitz continuous.
Next we have

(III) ≤ C11‖Λ1 − Λ2‖L2(ε,T) ≤ C11δλ.

and �nally

(IV) ≤ C12‖p1 − p2‖C1(ε,T) ≤ C12δp.

Combining all estimates and taking the supremum over all Ψ ∈ L2((0, 1)) with
‖Ψ‖L2((0,1)) = 1, we �nally obtain

‖ f1(x, T)− f2(x, T)‖L2((0,1)) ≤ C13δp + C11δλ (4.5)

Taking C6 = max(C13,C11) yields the assertion. �

Remark 4.4. The estimates of lemmas 4.2 and 4.3 show that, for α > 0, the reconstruction
of the unknown buyer vendor distribution f(x, T) is actually a well-posed problem, at least for
suf�ciently smooth perturbations of p. This is due to the fact that we are solving a regularized
optimization problem.The price to pay is that the term involving f(x, ε) in (4.4) does not vanish.
However, since f(x, ε) is �xed, is does not appear in our stability estimates.

For the next result, we choose perturbed prices p1 and p2 such that |p1(T)− p2(T)| < 2a and
assume w.l.o.g. that p1(T) ≤ p2(T) and make the following additional assumptions:

(A4) δp < a,

(A5) f1(x, T), f2(x, T) ∈ L2(−L, L) ∩ H4(I) with I ⊂ (p2(T)− a, p1(T)+ a)

(A6) ‖ f1(x, T)− f2(x, T)‖H4(I) ≤ C6(δp + δλ)

Remark 4.5. Wemention that indeed it is natural to assume strong regularity of f in a neigh-
borhood of p(T) for T > 0, since it locally arises as the solution of a heat equation. On the other
hand we need to expect some singularities around p(T)− a and p(T)+ a due to the singular
source terms. Thus (A5) seems completely natural for forwards solutions of the price for-
mation model. Moreover, it can also be veri�ed that f(·, T) reconstructed via (4.4) has local
H4-regularity, which follows from using Ψ supported in I and an analysis of the solution of
the parabolic equation for Φ, which can be estimated in terms of the H−4 norm of the initial
value.

In the following we analyze the forward propagation for t > T in a small time interval. We
denote the new initial value by fi,0 := fi(·, T). First note that using the same localisation strategy
as in [19] (i.e. multiplying the solution to (1.1) with a smooth cut-off function that has support
inside the interval I), implies
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‖ fi‖L∞((T,T+γ) ;Hβ (I2)) ≤ C14

(

‖ fi‖L2(((T,T+γ)) ;H1((−L,L))) + ‖fi,0‖Hβ (I)
)

,

≤ C15

(
‖ fi,0‖L2((−L,L)) + ‖ fi,0‖Hβ (I)

)
forβ ≤ 4,

(4.6)

with γ > 0 to be �xed later on and where fi is the solution to (1.1) with the reconstructed
initial datum fi(x, T) that additionally satis�es (A4)–(A6). Furthermore, I2 is an interval that is
compactly contained in I. This allows us to derive the following estimates on terms of the form
(∂xKN) ∗ f, where we denote by KN(x, t) the heat kernel with Neumann boundary conditions on
[−L, L], see e.g. [6, section 6.4], and furthermore use the notation

KT
N(x, t) :=KN(x, t− T).

Lemma 4.6. For given T > 0, initial values f0, f1,0 and f2,0 at time T satisfying (A4), (A5) we
have for t ∈ [T, T+ γ] with γ suf�ciently small

|((∂xKT
N) ∗ ( f1,0 − f2,0))(p(t), t)| ≤ C16

(
‖ f1,0 − f2,0‖L2((−L,L)) + ‖ f1,0 − f2,0‖H4(I)

)
.

For two continuous functions p1(t) and p2(t), we have

|((∂xKT
N) ∗ f0)(p1(t), t)− ((∂xKN) ∗ f0)(p2(t), t)| ≤ C17‖p1 − p2‖C([0,T]).

Proof. First note that (∂xKT
N) ∗ f is the solution to the heat equation with homegeneous Neu-

mann boundary condition, zero right hand side and initial datum f. Then, the �rst estimate is a
direct consequence of (4.6) applied to such an solution with initial datum f1,0 − f2,0. The second
one follows from the fact that, as for t suf�ciently small, p1(t) and p2(t) are in I2 and thus, using
again (4.6), the derivative of a solution to the heat equation that appears on the left hand side
is Lipschitz continuous. �

We are now in a position to state the stability result for future prices.

Lemma 4.7. Let assumptions (A3)–(A6) be satis�ed and denote by f1 and f2 the solution to
(1.1) on the time interval [T, T+ γ] with initial data f1(x, T) and f2(x, T), reconstructed from
measurements p1,Λ1 and p2,Λ2 in [0, T], respectively. Then there exists a constant γ > 0 and
we the corresponding prices p1 and p2 for t ∈ (T, T+ γ) satisfy the estimate

‖p1(t)− p2(t)‖ ≤ C18e
C19(t−T)(δp + δΛ).

Note that unfortunately, we cannot give a lower bound on the quantity γ as it depends in a
non-linear and non-local fashion on the initial datum via the solution of the equation. However,
the proof below shows that as the transaction rate Λ increases, also γ becomes larger which
agrees with the modeling.

Proof. Due to assumption (A5)we can invoke [19] [lemma2.5] to show that for γ suf�ciently
small [depending on fi(x, T), i = 1, 2] the corresponding transaction rates Λ1,Λ2 are strictly
positive on [T, T+ γ]. Furthermore, (A5) implies that p1(t), p2(t) are in C

1([T, T+ γ]). Now
Duhamel’s formula allows us to express the solutions fi(x, t) to (1.1) as

fi(x, t) = KT
N ∗ fi,0 +

∫ t

T

Λi(τ )[K
T
N(x− pi(τ )+ a, t− τ )− KT

N(x− pi(τ )− a, t− τ )] dτ (4.7)

Taking the space derivative and evaluating at x = pi(t) we obtain
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Λi(t) = ∂x fi(p(t), t) = (∂xK
T
N ) ∗ fi,0(p(t), t)

+

∫ t

T

Λi(τ )[∂xK
T
N(pi(t)− pi(τ )+ a, t− τ )− ∂xK

T
N(pi(t)− pi(τ )− a, t− τ )] dτ .

(4.8)

Subtracting (4.8) for i = 1, 2 and using the linearity of the convolution, we obtain

Λ1(t)− Λ2(t) = (∂xK
T
N) ∗

(
f2,0(p2(t), t) −

(
∂xK

T
N ∗

(
f2,0(p1(t), t)

+ (∂xK
T
N) ∗ ( f2,0 − f1,0)(p1(t), t)

+

∫ t

0
(Λ1(τ )− Λ2(τ )) θ1(t, τ )+ Λ2(τ ) (θ1(t, τ )− θ2(t, τ )) dτ ,

(4.9)

with θi(t, τ ) = [∂xKT
N(pi(t)− pi(τ )+ a, t− τ )− ∂xKN(pi(t)− pi(τ )− a, t − τ )]. As the pi(t)

are continuous, choosing γ suf�ciently small guarantees that the derivatives of KT
N appear-

ing in the de�nition of θi are always evaluated away from their singularity, in particular
they are bounded and locally Lipschitz-continous, which implies with the local Lipschitz
constant λ

|θ1(t, τ )− θ2(t, τ )| ≤ λ|p1(t)− p1(τ )− p2(t)+ p2(τ )| ≤ 2λ‖p1(t)− p2(t)‖C([T,T+γ]).

Taking the absolute value on both sides of (4.9) and using lemma 4.6 implies

|Λ1(t)− Λ2(t)| ≤ C20

(
‖ f 01 − f 02 ‖L2((−L,L)) + ‖ f 01 − f 02 ‖H4(I)

)

+ C21‖p1(t)− p2(t)‖C([T,T+γ]) + C22

∫ t

T

|Λ1(τ )− Λ2(τ )| dτ ,

so that Gronwall’s lemma implies, together with (A3) and (A6), yields

|Λ1(t)− Λ2(t)| ≤ C23(δp + δΛ)e
C22t. (4.10)

Next we exploit the fact that fi(pi(t), t) = 0 by taking the time derivative, which gives

0 =
d

dt
fi(pi(t)) = ṗi(t)∂x fi(pi(t), t)+ ∂t fi(pi(t), t), i = 1, 2.

Subtracting the above equation for i = 1 and i = 2 respectively, using the de�nition of Λi and
integrating in time we obtain, for T ≤ t ≤ T+ γ

p1(t)− p2(t) =

∫ t

T

(
Λ2(s)∂t f1(p1(s), s)− Λ1(s)∂t f2(p2(s), s)

Λ1(s)Λ2(s)

)

ds

+ (p1(T)− p2(T))

(4.11)

Denoting by Λ = infT≤s≤T+γΛ1(s)Λ2(s) and using (A3) this yields
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|p1(t)− p2(t)| ≤
1

Λ

∫ t

T

|(Λ2(s)− Λ1(s))∂t f1(p1(s), s)| ds

+
1

Λ

∫ t

T

|Λ1(s)(∂t f1(p1(s), s)− ∂t f2(p1(s), s))|ds

+
1

Λ

∫ t

T

|Λ1(s)(∂t f2(p1(s), s)− ∂t f2(p2(s), s))|ds+ δp.

As a consequence of (4.6), ∂t fi(·, t) is bounded and Lipschitz continuous. Thus using (4.10),
(A3) and once more (4.6) applied to ∂ t f1(p1(t), t)− ∂t f2(p1(t), t) (and together with (A6))
�nally yields the assertion. �

5. Numerical simulation

We conclude by illustrating the proposed methodologies and con�rming the obtained analytic
results with various computational experiments. All simulations are performed on the domain
[−L, L], which is split into N intervals of length h. The discrete grid points are denoted by
xi = ih. We compute solutions at discrete times tk = k∆t, where ∆t is the discrete time step.
Howeverwewill omit all full time-discrete expressions in the following, to enhance readability.

The reconstruction of the buyer–vendor distribution is based on piecewise linear basis func-
tions. Let Vh denote the space of piecewise linear basis functions φj, which satisfy φj(xi) = δij.

We wish to reconstruct f̂ ∈ Vh, which is given by f̂ (x, T) =
∑J

j=1 f̂ jφj(x) using the duality
estimates (3.2).
Data generation:We solve the transformed LLmodel (2.2) for a given initial buyer–vendor

distribution f0. In doing so we transform the initial distribution f0 via (2.1), and compute the
solution to the heat equation (2.2) using an implicit in time discretization. The returned discrete
price p(k) = p(tk) corresponds to the zero levelset of the buyer–vendor distribution F(k) = F(tk)
(computed via linear interpolation). Note that we use a �ner spatial and temporal discretization
to generate the data than in the subsequent reconstruction.
Steepest descent:We solve (3.7) and the corresponding problem onΩ⊲ andΩ⊳ using steep-

est descent. In doing so, we compute the variational derivatives of (3.8) and obtain the �rst
order optimality system (3.9) as well as the updates for the controls u1 and u2. The detailed
steps are outlined in the while-loop of algorithm 1. Here the parameter β(l) > 0 is the step
size of the steepest descent update. We use the Armijo–Goldstein condition to adjust β(l) in the
search direction p. We recall that the Armino–Goldstein condition for a general functionalJ is
given by

J (x+ βp) ≤ J (x)+ βγ∇J (x)Tp. (5.1)

where γ ∈ (0, 1]. The starting value is set to β(0)
= 0. 25, which is then reduced (up to a max-

imum of four times) by a factor of 1
2 until condition (5.1) is satis�ed. Note that we transform

the computational domains Ω⊳ and Ω⊲ to [0, 1] as discussed in section 2.3 in all simulations.
We solve the forward as well as the adjoint equations using an implicit in time discretization
and piecewise linear basis functions in space.

5.1. Identifiabilty for different initial conditions

In the �rst experiment we set L = 0. 5 and the �nal time to T = 0. 25. We split the spatial
domain [−0. 5, 0. 5] into 200 elements and the time interval [0, 0. 25] into 125 time steps. The
initial datum is set to
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Algorithm 1. Reconstruction of f̂ (x,T).

Given: price pi and transaction rate λi at discrete times ti = i∆t

for i = 1 . . . J do

if xj < p(T) where φi(xj) = δij then

ψ1(x) = φi(x)

else

ψ2(x) = φi(x)

k = 0

while k < max. iterations and convergence criterion is not satis�ed

Adjoint equation: given ui,k1 (t), ui,k2 (t), ψ1(x) and ψ2(x) solve

∂tΦ
i,k
1 (x, t)+ ∂xxΦ

i,k
1 (x, t) = 0 ∂tΦ

i,k
2 (x, t)+ ∂xxΦ

i,k
2 (x, t) = 0

∂xΦ
i,k
1 (−L, t) = 0 ∂xΦ

i,k
2 (L, t) = 0

Φ
i,k
1 (p(t), t) = u

i,k
1 (t) Φ

i,k
2 (p(t), t) = u

i,k
2 (t)

Φ
i,k
1 (x,T) = ψ1(x) Φ

i,k
2 (x,T) = ψ2(x)

Forward equation: for Gi,k
1 (x, 0) = −Φ

i,k
1 (x, 0) and Gi,k

2 (x, t) = −Φ
i,k
2 (x, 0) solve

− ∂tG
i,k
1 (x, t)+ ∂xxG

i,k
1 (x, t) = 0 −∂tGi,k

2 (x, t)+ ∂xxG
i,k
2 (x, t) = 0

∂xG
i,k
1 (−L, t) = 0 ∂xG

i,k
2 (L, t) = 0

G
i,k
1 (p(t), t) = 0 G

i,k
2 (p(t), t) = 0

Update controls ui,k1 = u1(t) and u
i,k
2 = u2(t) using a step size β(l), which satis�es (5.1):

ui,k+1
1 (t) = ui,k1 (t)− β(l)

(

αui,k1 (t)+ ∂xG
i,k
1 (p(t), t)

)

ui,k+1
2 (t) = ui,k2 (t)− β(l)

(

αui,k2 (t)− ∂xG
i,k
2 (p(t), t)

)

.

k = k + 1
Reconstruct solution f̂ (x) =

∑

j f̂ jφj(x):

∑

j

∫ p(T)

−L
f̂ jφj(x)φi(x)dx =

∫ p(ε)

−L
f (x, 0)Φi

1(x, 0)dx+

∫ T

ε

Λ(t)(Φi
1(p(t)− a)− ui1(t))dt

∑

j

∫ L

p(T)
f̂ jφj(x)φi(x)dx =

∫ L

p(ε)
f (x, 0)Φi

2(x, 0)dx+

∫ T

ε

Λ(t)(ui2(t)−Φ
i
2(p(t)− a))dt

f0(x) = (x+ 0. 75)(x− 0. 65)(x− 0. 05). (5.2)

We approximate the �nal buyer–vendor distribution using J = 50 basis functions. Furthermore
we choose the following parameters

α = 0. 1, β(0)
= 0. 25, γ = 0. 2, max. iterations = 250 andmax error = 10−5.

Figure 2 shows the reconstructed and computed function F [the latter computed by solving the
heat equation (2.2) with the transformed initial datum F0]. We observe a good agreement, with
small artifacts at the boundary and the buyer–vendor interface. The corresponding controls are
shown in �gure 3.
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the presence of noise. Finally we con�rmed and illustrated our results with computational
experiments.

We believe that the developed framework provides the basis for more general data assim-
ilation problems in price formation. In [2] Burger et al considered a Boltzmann type price
formation model, which allows for more complex trading mechanisms. This problem is a sys-
tem of nonlocal reaction-diffusion equations on the whole domain, where multiple prices (even
with continuous distribution) and transaction rates can appear. Analogous questions can be
asked for this problem if only the expectation of the price is to be predicted, but the problem
could also be extended to a stochastic distribution of the price.
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