Universal normal bases for the abelian closure
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by
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1. Introduction. If E/F is a finite-dimensional Galois extension with
Galois group G, then, by the Normal Basis Theorem, there exist elements
w € E such that {g(w) | g € G} is an F-basis of E, a so-called normal basis,
whence w is called normal in E/F.

In the present paper, we study normal bases for cyclotomic fields. Let Q
be the field of rational numbers; for a positive integer n, we let (, denote
the nth cyclotomic field, i.e., Q,, = Q((), where (, is a primitive nth root
of unity. For the basics on cyclotomic fields, we refer to [Ri] or [Wal; we just
remark that Q,, = Q,,, with n > m holds if and only if n = 2m and m is odd.
As index set for the cyclotomic fields we therefore use the set A of positive
integers which are either odd or divisible by 4. Thus, if n,e € A, then
Qn € Q. if and only if n divides e. We call Q. /Q,, a cyclotomic extension.

DEFINITION 1.1. Let e,n € A be such that n divides e. Then w € Q.
is called wniversally normal in Q./Q, if w is normal in Q./Qy for every
cyclotomic intermediate field Q4 of Q. /Q,, (i.e., for every divisor d € N of
e which is divisible by n). If w € Q. is simultaneously normal in Q. /K for
every intermediate field K of Q. over QQ,,, then w is called completely normal

in Qe /Qn.

The study of simultaneously normal elements is a nontrivial task which
was first considered by Faith [Fa], but it was first proved by Blessenohl and
Johnsen [BlJol] that completely normal elements exist for arbitrary finite
Galois extensions F/F. For more details we refer to the recent monograph
[Ha], which is an extensive treatment of (completely) normal elements for
finite fields, the central topics being their characterization, enumeration as
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well as explicit and algorithmic constructions of these objects. Many ideas
of [Ha| are also essential for the present work.

In Section 3 we characterize and provide explicit constructions of com-
pletely normal elements for Q.= /Q, where r is any odd prime number and
where m > 1 is any integer. In Section 5 we characterize and provide ex-
plicit constructions of universally normal elements for Qom /(QQ, where m > 2
is any integer. Both constructions draw from Sections 4 and 2. In Section 4
we study regular cyclotomic extensions, which are defined to be extensions
of the form Q. /Q,,, where e and n have the same prime divisors. In Section 2
we provide important results on simultaneous generators for submodules of
cyclic Galois extensions which apply to most of the situations considered
in Sections 3-5. In Section 6, based on a product construction, we provide
universally normal elements for Q,, /Q where n € N is arbitrary.

When working in a fixed algebraic closure of @, a famous theorem of
Kronecker and Weber (sece e.g. [Wal) states that

Q = U Qn
neN
is the abelian closure over Q, i.e., @ is the smallest algebraic extension A over
(Q such that any finite abelian extension of Q is contained in A. In Section 6
we provide a constructive version of the Normal Basis Theorem for Q/Q
by explicitly determining trace-compatible sequences entirely consisting of
universally normal elements.

DEFINITION 1.2. For n € N let w, € Q be such that Q, = Q(wy). The
sequence (wp)nen is called trace-compatible if the (Q.,Qq)-trace of w, is
equal to wy whenever d divides e (1).

By results of Lenstra [Le], trace-compatible sequences of normal elements
can be seen as analogues of normal basis generators of infinite-dimensional
Galois extensions. The notion of trace-compatibility seems to be introduced
by Scheerhorn [Sche], where additive representations of the algebraic closure
of a finite field are studied.

Explicit descriptions of cyclotomic fields are important for various ap-
plications where computations with roots of unity are involved, e.g., for
representation theory or the discrete Fourier transform (see [Bo], [Br] and
the literature cited there). In [Bo] and [Br] there are determined special in-
tegral bases for cyclotomic fields, which in general are not normal bases. We
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for all cyclotomic fields Q,, over QQ, but these are not universally normal in
general.

P IR

(*) Recall that for a Galois extension E/F with Galois group G the (E, F)-trace of
weEis) qg(w).



Universal normal bases 331

2. Simultaneous generators for cyclic Galois extensions. In the
present section we assume that £/F is a finite Galois extension with cyclic
Galois group, but F' is an arbitrary field, with characteristic p, say. We shall
prove two theorems which are very useful for the cyclotomic extensions to
be considered in Sections 3-5.

We start with some general remarks on cyclic Galois extensions; for
details we refer to [Ha, Section 8]. For an intermediate field K of E/F
let Gg be the Galois group of E/K. After fixing a generator ap of Gp

(as module over the ring of integers), we take ag := ag{:F] as a generator

for Gx (where [K : F| is the degree of K/F). The entire K G g-module
structure of (E,+) is described in terms of the polynomial ring K[x] and
ak as follows: for f € K[z] and v € E, we let fog v := f(ak)(v). The
(K, ak)-order of v € E is the monic polynomial g € K|[z] of least degree
such that gox v = 0; it is denoted by Ordg q, (v). The monic K-divisors of
z[EK] 1 correspond bijectively to the K Gg-submodules of E: the divisor g
corresponds to the kernel of g(ak ), which is denoted by Uk 4, throughout; we
say that g is the annihilator of Uk 4 with respect to K and o, and call Uk 4
a (K, ak)-module. Moreover, Uk 4 is cyclic, i.e., free on one generator as a
(K, ak)-module. Any v € E such that KGgv = Uk g4 is called a (K, ak)-
generator of Uk 4; the latter is the case if and only if Ordg o, (v) = g.

We have to consider the situation where a subgroup U of (E,+) is
equipped with more than one module structure. We summarize some ba-
sic facts and refer to [Ha, Section 11] for details. Let C be a nonempty set
of intermediate fields of E/F. A subgroup U of (E,+) is called a C-module
if U is a (K, ag)-module for all K € C. If v € U is such that KGgv = U
for all K € C, then v is called a C-generator for U. It is proved in [Ha,
Section 12] that such elements do always exist. Here, we are concerned with
a construction of C-generators in a situation which is applicable to certain
cyclotomic field extensions. Now, if U is an {M, L}-module, then there are
monic L- and M-divisors fr of zlE:Ll 1 and far of zlBM] _ 1 respectively,
such that U = Uy ¢, = Up,s,,. If additionally M is a subfield of L, then fys
and fr, are related as follows: f (z!**M]) = fu;, and therefore, in particular,
fr € M[z].

Throughout, for an integer n > 1 which is not divisible by p, and for
an algebraic extension K of F, let K,, denote the nth cyclotomic field over
K, ie., K, is obtained by adjoining a primitive nth root of unity to K (we
assume that everything takes place in a fixed algebraic closure of F'). Also,
let ¢, denote the nth cyclotomic polynomial (over F').

THEOREM 2.1. As above let M,L be intermediate fields of the cyclic
Galois extension E/F with M C L. Let f1, be a monic M -divisor of z[EL1 -1
and let for = fr(z2M). Consider the {M, L}-module U = Ur 5, = Unt fs, -
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Assume that LOM,, = M for every divisor n of [E : L] which is not divisible
by p and for which &, and f1, are not relatively prime. Then every (M, apr)-
generator of U is likewise an (L, ar)-generator of U.

Proof. We consider the decomposition fr, = [], fg( ), where n runs
over all divisors of [E : L] which are not divisible by p and where f, :=
ged{D,, fr) # 1 (o(n) > 1 for all n). Since fr € M]z], each f, is also a
polynomial with coefficients in M, and, with g, := f, (/L") we have U,, :=
U, oy =U, .oy and @, U, is a decomposition of U as an { M, L}-module

~ M E\"‘/ ~ L \ v, TTEEE et = = et
(see [Ha Sectlon 12]). Every (M, apr)-generator v of U can be uniquely
written as v = ) v,, where for each n, v, is an (M, aar)-generator of U,

(see [Ha, Theorem 8.6]). Moreover, the (L, ar )-order of each v,, divides f; e(n)
Now, let u = v, be some component of v and let v = Ordy, o, (u). Slnce
L N M, = M by assumption, we have [L,, : L| = [M,, : M], which means
that &,, splits over L as over M. Thus, v € M{z], and hence v = fﬁ(n) for

otherwise 7(:[:“‘ M) 1) would be a proper divisor of g”‘ n) annihilating u. Since

this holds for all n, we conclude that v has (L, ar)-order equal to fr (see
again [Ha, Theorem 8.6]), and everything is proved. =

THEOREM 2.2. Let C be a set of intermediate fields of the cyclic Galois
extension E/F containing (with respect to set-theoretic inclusion) a unique
mazimal element L and a unique minimal element M. Let n be a diwvisor of
[E : L] which is not divisible by p and assume that g1, is an irreducible monic
L-divisor of ®,,. For each K € C let gi be the unique irreducible monic K -
divisor of &, such that g;, divides gx (in L[z]) and let fi := g (z!%K]).
Then Un ¢y € Uk, f,. whenever K C N and Upr, g, ts a C-module.
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v of UL s, , the following two assertions hold:

(1) For all K € C, Ordg o (v) =

L:M]—1 .
(2)w.—zg (‘)] at(v)isaC """t
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Proof. It is clear that Uy ¢y C Uk, s, whenever K C N, as gy divides
gk in this case. It is also clear that Uys f,, is a C-module, as far = gas(z!L+M])
by definition and as [K : M| divides [L : M| for every K € C. Now, let K € C.
As M C K and L Q M, by assumptlon, we have L C K, and therefore
[LNK, : K] = [L: K|. Hence, g splits over L into [L : K] irreducible
monic polynomials, namely

[L:K]—1

H o (gr)

(the Galois automorphisms are naturally extended to polynomial rings).
Next, let v be as in the assertion. Then Ordy ,, (v) = g1 as gr, is irreducible
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over L. An application of (1) of Theorem 14.5 in [Ha] to the fields L and K
shows that Ordg o, (v) = gx (2!**K]), and this proves assertion (1). Finally,

. K:M]-1 ;
let[w EJe as in (2). For K € C we have w = ZL:O ) o'y (u), where u =
V\LLZKJ—']. ] /N AT 3. ;. ~ora ~ o 4 4w s rre 1 L1
i=o0  ax(v). Now, an application of (2) of Theorem 14.5 in [Ha] to the

fields L and K shows that Ordg ., (u) = fx = gx(z[F*K]), and therefore,
the (K, ax)-order of o, (u) is equal to o'y, (fx). By assumption we further
have K C L € M, whence [K N M, : M| = [K : M], and therefore, gy,
splits over K as

[K:M]-1

IT ewox).
i=0

An application of Theorem 8.6 in [Ha] thus yields Ord g q, (w) = gar (z!FED),
which means that w is a (K, ag)-generator of Ups ,,, since as a (K, ax)-
module the latter is equal to Uy, (,12:x1y. This completes the proof of the
theorem. m

3. Complete normal bases for cyclotomic r-extensions, r odd. If
r is a prime and m > 1, then we call Q.m /Q a cyclotomic r-extension. In
the present section, we consider the case where r is odd. We give an efficient
characterization of completely normal elements for such extensions and also
provide explicit constructions of those elements.

For simplicity, let throughout E := Q.m, where m > 1. Since E/Q is a
cyclic extension of degree 7™ ! (r —1), we may use the approach of Section 2.

Assume first that m = 1. If L is an intermediate field of E/Q, then
L’lﬂQrv-I - Em@‘r‘——l = (ﬂ\ We therefore may a nnn]v Theorem 2.1 with M = @

ATe

and fp = zFL —1 to deduce that each normal element of E/Q) is normal
in E/L. As L was chosen arbitrarily, any normal element of E/Q is already
completely normal. We remark that the latter also follows from a more
general result on abelian extensions from Blessenohl and Johnsen [BlJo2].
As it is well known (see the historical remark in [Jo]) that any primitive rth
root of unity is normal in E/Q, we note the following.

MTryrnAanoasr 21 T+ . arara a4 1n andh
B g Uit

OLUREM J.1. LEL [ be a plulubi"u(i TOOL Of unity, wier
prime. Then p is completely normal in Q,/ Q
We now consider the case m > 2. Let C be the set of proper cyclotomic
subfields of F ie C = {@j @77 . @ 1 1 F‘nrfhprmmm let C be the set

of all subﬁelds of Qrm 1, and let T,.m be the kernel of the ( , Qpm-1)-trace

mapping. Then Q,n-1 & T,m is a decomposition of F as a C-module. More-
over, with respect to a fixed generator « of the Galois group of E / Q, 1
is annihilated by " "~ —1 and T,m is annihilated by, @, (z"" “("=1) =

@,m-1(z""!). (Observe that the product of the latter two polynomials is
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equal to
xrm'l(r—l) 1= x[E:Q} . 1,

the annihilator polynomial of « over Q.)

THEOREM 3.2. Let w = u—+v be the decomposition of w € E correspond-
ing to Qum—1 ® Tpm. Then w is completely normal in E/Q if and only if u
and v are 6—generators for Qum—1 and T,m, respectively, where C as above
is the set of subfields of Qm-—1.

Proof. It suffices to show that any sum u+wv ofCA-generators u of Qpm—1
and v of T;» is a completely normal element of E/Q. Let therefore L be
a subfield of E which is not contained in C. Then [L : Q] = r™~1t, where
t # 1 is a divisor of r — 1. We counsider further the unique subfield M of L
with [M : Q] = 7™ 2t Then M € C, and therefore w = u + v is normal
in E/M (we have used [Ha, Theorem 8.6] for the latter argument). Now,
[E : L] =t divides » — 1, whence LN M; C E N My = M. Hence, Theo-
rem 2.1 is applicable to f; = z!®Ll — 1 and yields the normality of w in
E/L. As the latter holds for all L, we conclude that w is completely normal

in £/Q. =

Observing that, by the definition of C, u € Q,m-1 is completely normal
over Q if and only if u is a C- generator of Q.n-1, using Theorem 3.1 and
induction, it remains to determine a C- -generator for T.m, where m > 2.

ove we sde tho {'Alln"nﬂm constru
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THEOREM 3.3. Let m > 2 and X\ := |m/2| be the integer part of m/2.
Then A > 1 and L := Q. is an intermediate field of £ = Qpm over Q.

Let g be an irreducible I.-divisor nfdi m—x, and assume that y € Uy, , is any

oL CLWLL LT Ly y WGy W2 WIIET WHloy L,g o Wi

)\-1 .
nonzero element. Then, with C as in Theorem 3.2, v := Z;:o (r=1)=1 (y)

s a a-generator of Tym.

Proof. Let K be the set of all intermediate fields of L/(). We have
[E: L] =r™* and L C Q.m-» by definition of \. We are therefore able
to apply Theorem 2.2 (with M replaced by Q). Since ¢ is irreducible, any
nonzero y € Uy, , is an (L, all*¥)-generator of Uy, ,. Furthermore, as @,.m—»
is irreducible over (), Theorem 2.2 yields that v is a K-generator of Up,y,
where

f _ @rm-x(mr)‘—l(r—l)) _ @Tm—1(xr_1).
Thus, Ug, ¢ = T;m, and it remains to show that v generates T, with respect
to all fields N € C\ K. Let N be such a field. Then [N : Q] is of the form
r't, where m — 2 > 1 > XA — 1 and where ¢t > 1, but 7't # rL. Thus,
K := NN Q,» has degree 7't over Q. We seek to y‘ Theorem 2.1 with
Nj=

L replaced by N and M replaced by K: [E : ~1=l(r — 1)/t and T,m
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as an (N, !V @)-module is annihilated by @,m-1-:1 (2" ~1/%) which is equal
to T141r—1)/¢ Parm-1-1; for all d we have NN Kgm-1-1 = NN Kpm-1-1 = K,

because Krm 11 —KQrm 10 =Qu asm—1-1 >1 Thus, Theorem 2.1

K@ AT S IN: *r\] .
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Tym. Sincg N was chosen arbitrarily, we conclude that every IC generator of
T,m is a C-generator of T,m, and everything is proved. m

In Section 4 (see the proof of Theorem 4.1), we will see that any irre-
ducible L-divisor of @, is a binomial, i.e., of the form x® — ¢ (with explicit
values for b and (), whence a nonzero y as in the assertion of Theorem 3.3 is
just an eigenvector of a® over L. We shall also see that any r™th root of unity
can be chosen as y. Using Theorems 3.1 and 3.2 and induction, we therefore
altogether have the following result whose proof is covered by Section 4.

THEOREM 3.4. Assume that m > 2 and that r is an odd prime. Let n be

any primitive r™th root of unity and assume that o is any generator of the

Galois group of Qpm /Q. Then, with C and T,= as before,

plm/2I -1 1)1

M o ()

a4

=0

is a C-generator of T.m. Moreover,

rLk/ﬂ_l(r—l)—l

m
m—1 com—k m—k
D DEEED DRI AU
k=2 j=0

is completely normal in Qp.m /Q.

4. Normal bases for regular cyclotomic extensions. For an integer
n let v(n) denote the square-free part of n. If e,n € A with e being a multiple
of n, we call Q./Q, a regular cyclotomic extension if v(e) = v(n). In the
present section, among other things, we shall explicitly provide normal bases
for these kind of extensions. The results apply to the extension Q.m /Q,x
which occurred in Theorem 3.3 (m > 2),as A > 1. .

Tirgt 1+ nnt AR e +4 chanr that o vraciilar Ao
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cyclic of degree e/n, whence, again, the approach of Section 2 is applicable.
Throughout, let o be any generator of the Galois group of Q. /Q,.

THEOREM 4.1. Consider a regular cyclotomic extension Q. /Q,, . For any
divisor k of e/n let (i be a primitive (nk)th root of unity, and let I}, be the
set of j € {1,...,ged(k,n)} which are relatively prime to ged(k,n). Then
the following two assertions hold:

(1) The (Qn,0)-order of 3" .., (I is equal to $y.
» } €I Sk
(2) w=2"40/n 2jer, Sh 8 normal in Qe /Qy.
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Proof. We fix a divisor k of e/n and let a := ged(k, n). The kth cyclo-
tomic polynomial @, splits over (,, as

&) = H (xk/a . /\j),

J€L

where A € Q,, is a primitive ath root of unity. For j € Iy let g; := 2*/¢ — M.
Let n be any primitive (nk)th root of unity. The restriction of o to Q.
(likewise denoted by o) satisfies o(n) = n* ", where s € {1,...,k} is some
integer which is relatively prime to k. Now,

(1+sn)k/a—1=%k-5,

where S and k are relatively prime, whence

g;(0)(m) = n(n'="S = X).
As n"Tk‘S is a primitive ath root of unity and as g; is irreducible over Q,,
a suitable choice of j € I} shows that the (Q,,o)-order of 7 is equal to g;.
(Observe that, as remarked in Section 3, the latter justifies the choice of n
(in Theorem 3.4) as y (from Theorem 3.3) with k replaced by r™ * yields
that 7 is a C-generator of Trm.)

Furthermore, for ¢ € Iy, the (Q,, 0)-orders of the elements 1" run through
all irreducible Q,-divisors g; of @k, whence v, as in the statement has
(Qn,0)-order &, (by [Ha, Theorem 8.6]). This proves (1), and (2) holds
as (again by [Ha, Theorem 8.6]) the (Q,, o)-order of w is equal to the prod-
uct of the (Q,,o)-orders of the v, which is equal to Hk| P = x/" — 1,
whence w is normal in Q. /Q,. m

e/n

Observe that the conclusion of Theorem 4.1 also holds when, for every
k, mx is any eigenvector of o*/8°d(k:n) (over Q).

REMARK 4.2. Since we have determined generators of modules which
are annihilated by cyclotomic polynomials, our approach naturally leads to
sequences of normal elements for towers of reqular cyclotomic extensions
over a field Q,: let k,l > 1, n € N and assume that v(kl) divides v(n). If
u is normal in @, /Q,, and if ¢ is a generator of the Galois group of @,z
over (J,,, then for every divisor d of kl which is not a divisor of k, we let vy

be an element (in Qy,x;) having (Q,,0)-order 4. Then u+ 3", v4 is normal

i MY /Y
L NInkl/ ¥¢n -

Observe also that the (Qui;, Qui)-trace-mapping 7 is equal to (o*! —
1)/(0*—1), whence 7(vq) = 0 for every d dividing k& but not k. Consequently,
w =" u+>,vq) is normal in Qnz/Qp and 7(w) = u, and this indicates
how to obtain trace-compatible sequences of normal elements for towers of
regular cyclotomic extensions.
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Even more generally, we may consider the set R, of all e such that
Q¢ is regular cyclotomic over @,. Since R,, is closed under taking greatest
common divisors, Q,~ := UeeRn Q. is an algebraic extension over Q,,
which we call the regular cyclotomic closure of (J,,, and which for n > 1 is
infinite by the definition of A'. Now, define u,, := 1 and let u,> be normal
in Q,2 over @, with Tr,2 ,,(u,2) = wy,, where Tr,2 ,, denotes the (Q,2,Qy,)-
trace mapping. Inductively, for every ¢t > 2, let u,:+1 be normal in Q¢+
over Q, such that Tr,i+1 ¢ (Upt+1) = uye. Finally, for any e € R, take a t
such that e divides n’, and define u. := Try¢ (une). The transitivity of the
trace mappings and the well known fact that the trace of a normal element
again is normal imply that the sequence (u.,)mer, is trace-compatible for
R, and entirely consists of normal elements over QQ,,, and thus provides a
normal basis for Q,~ over Q,.

5. Universal normal bases for cyclotomic 2-extensions. In the
present section we explicitly determine universal normal bases for cyclotomic
2 extensions. For simplicity, let £ := (Jom, where m > 2. We denote by

Um>2 Qam the 2-primary closure of Q in @, i. e., E is obtained by

adjommg the set R:={n € Q | n?" =1 for some i} to Q. Let s be any odd
integer. For n € R define

1+4s -1

a(n) =n and () =7

The restrictions of o and ¢ to E (likewise denoted by o and ¢) generate the
Galois group of E/Q, throughout denoted by G (in that context the group
orders of o and ¢ are 2™~ 2 and 2, respectively). Using this description, it is
easy to show that for m € {2,3}, each normal element of E/Q is completely
normal in E/Q. Moreover, with Linear Algebra, normal elements are easily
obtained in these cases, and one can show that the following holds.
THEOREM 5.1. Let X be a primitive 8th root of unity. Then —1 + A? is
completely normal in Qq/Q, and —1+ X+ \? is completely normal in Qg /Q.

From now on, we may restrict our attention to the case m > 4. Let

C™ = {Q4,...,Qzm-1}. Similarly to Section 3, if Tom denotes the kernel

of the (E, Qym-1)-trace mapping, then Qom-1 @ Thm is a decomposition of
E into C ™ -modules, respecting additionally the action of QG. Moreover,
just by definition, w = w 4 v is universally normal in E/Q if and only if
its components u and v with respect to the decomposition Qym-1 & Tom of
E are C™-generators as well as QG-generators of Qam—1 and Thm, respec-
tively. Observing that the C-generators of QQym-1 which are additionally
QG-generators are exactly the universally normal elements of Q-1 /Q, by
Theorem 5.1 and induction it remains to determine C -generators for Thm
which are additionally QG-generators of Tom.
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Since we want to make use of the results from Section 4, we first consider
the extension E/Qy, which is regular cyclotomic (and cyclic of degree 272
with Galois group generated by o, restricted to E). If k := | (m—4)/2], then
K = Q2+« is a member of €. We have [E : K] = 2m727% and ®Pym-2-«

t:

e mcrme A0, aa £A1laszra <57 nf "“.4-"
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T G . n—4—xr .
(5.1) (x? — i) - (2? + 1)
Let f be the first of these factors and Vy = Ug g the (K O’K) submodule of
Tom bonesponumg to J, where O — UQK. As shown in the first part of the

proof of Theorem 4.1, the (K, o )-order of a primitive 2”'th root of unity 7
is an irreducible K-divisor of $om-2-~, without loss of generality a divisor
of f. Now, by the choice of k, we may apply Theorem 2.2 with L replaced
by K and M replaced by Q4 to deduce that

2% —1

SO
is a K-generator of Vy, where K is the set of intermediate fields of K/Qy.

What has been said for v and f likewise holds for ¢(v) and the codivisor

g = 22" 4 of fin @ym-—n-2 over Qq, ie., ¢(v) is a K-generator of
V, = Uk,y. Summarizing, by (5.1) and the fact that Tom as a (K,0k)-
module is annihilated by @5m-2-«, this yields that

u:= v+ ¢(v) is a K-generator of Tom.

Next, for each intermediate field L of E/K, we may apply Theorem 2.1 with
fr = P(g.z) and M replaced by K to conclude that

u is even a C~-generator of Thm.

Unfortunately, u is not a generator of Th= as a module over QG, because u
is fixed under ¢, whence Q(u) only is the largest real subfield of E (which
has degree 2™~2 over QQ and is different from Qym-1). We therefore seek
to modify u to obtain a QG-generator of Tom. Let y := (1 4 4)u. Since
1+ € Q4 is nonzero, y is a C -generator of Tym. In particular, the (Q4, 0)-
order of y is equal to @Pym-2. Now, the (Q, o)-order of y, which we define
to be the minimal polynomial of y with respect to o over Q, likewise is
equal to @9m-2, whence the (Q, o)-submodule A of Thm (i.e., the o-invariant
Q-subspace of Thm) generated by y has Q-dimension 273 = deg(Pom-2).
Let B be the (Q, o)-module generated by ¢(y) = (1—2)¢(u) = (1—i)u. Again,
this space has Q-dimension 2™~2 and with respect to ¢ is annihilated by
@ym-2. Now, it is not difficult to show that AN B = {0}, and therefore
A @® B = Tym. Moreover, since B = 1(A), we see that Tom in fact is the
QG-module generated by y. Summarizing, this yields that

y is a C~-generator and a (QG-generator of Tom.

Using Theorem 5.1 and induction, we have proved the following theorem.
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THEOREM b5.2. Let m > 4 be an integer and let o be a generator of the
Galois group of Qom over Qy. Let 1 be a primitive 4th root of unity and n a
primitive 2™ th root of unity. Then, with C~, G and Tom as above,

gllm=—a)/2] 4

1+ Y o+

is universally normal in Qom /Q.

6. The product construction and trace-compatibility. In this final
section, we show how to obtain universally normal elements for arbitrary
cyclotomic fields as well as trace-compatible sequences of universally normal
elements for the abelian closure Q over Q. The first task is solved by the
following theorem in combination with Theorems 3.4 and 5.2.

THEOREM 6.1. Let n € N and Hj r;-lj be the prime factorization of n.
Assume that for each j, w; is universally normal in Q =; /Q. Then w :=
7

TT. w; 15 universally normal in @, /(.
.I..L] 4 K7

Proof. The argument is similar to the proof of the Reduction Theorem
in [Ha, Section 4] (see also [BlJol, Hilfssatz 4.4]). Let m,n € N be relatively
prime and let I € N be a divisor of mn. If u is universally normal in Q,, /Q,
then u is normal in Q,, over @, N Q1 = Qged(m,1)- Since Qr, and  are
linearly disjoint over (gcd (m,1), © also provides a normal element for 0, Q) =
Qiem(1,m) over ;. Analogously, if v is universally normal in @, /Q, then v

nrn‘_nr]nq a nnrmn] n]pmpnf Fnr‘ ﬂ mr = ﬂ v Qver ﬂ) F‘Tna”v Cnn(‘(l ﬂ (ﬂ):
=+ et e e ~ o £ i~ 4 Xl(,lnkl ny v TR ARARAEST Y AV ITE L

and Q, Q, are linearly disjoint over (;, uv is normal in Q,,,, /Q;. Ab the latter
holds for all L, everything is proved. =

The determination of trace-compatible sequences of universally normal
elements for § over (§ is similar to the corresponding task for completely
normal elements in an algebraic closure of a finite field (see [Ha, Section 25]).
It relies on the idea of Scheerhorn [Sche| that a product construction as in

Theorem 6.1 can be used to achieve tr

CDS

CONSTRUCTION 6.2. Start with a nonzero w1 € Q. If m = r is an odd
prime, let n be a primitive rth root of unity (see Theorem 3.1) and w, :=
—wn. If m =4, let wy = (—w1/2)(—1 + 1), where i is a primitive 4th root
of unity. If m = 8, let wg := (—w1/2)(—1+ 17+ A), where A is a primitive
8th root of unity (see Theorem 5.1).
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Assume that n € N and that for k < n, the element wy already con-
structed is universally normal in Qi /Q and that the constructed sequence
(Wk) ke, k<n—1 18 trace-compatible. If n = r™, where v is a prime, m > 2 if
r is odd and m > 4 if r = 2, use Theorems 3.4 and 5.2 to obtain a v € T\m

which generates that space with respect to all cyclotomic subfields of Qpm-1.

Define wym = (1/r)w,m-1+v. If n is not a prime power, consider the prime
k a; o k

factorization HFl ;7 of n and define w, = [[;_, w =; (see Theorem 6.1).

.7
y normal in Q, /Q. Moreover, (wy)kep, k<n 18

""""""" <7l ./v N

—
3
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3
~
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3
w
pon
—
=

trace-co mpatzbl

Proof. To justify the assertions in Construction 6.2, it remains to prove
the trace-compatibility of the sequences. This is easily checked for the ini-
tialization. For the other case one has to show that Tr, ,/.(wn) = w, /r for
all prime divisors 7 of n (the latter denotes the (Q,,Q, . )-trace mapping).

. . . . k
Let therefore » be some prime divisor of n, say r = r;. Since v := [] je2 W,

is an element of Q, /., one has

N
&
p—

T‘I‘n,n/,n ('wn) =7 Trn,n/r(wrfl )

As the restriction of the Galois group of Q, /Q,,, to @r‘lll is equal to the
Galois group of Q21 /Q a,-1, one has further
1 1

Trn,n/r(w,.;1) - Trr?l,rtlzl_l (wrfl) = Wyer-t

Since we have used Theorem 6.1 throughout Construction 6.2, the term in
(6.1) in fact is equal to w,, /., and we are done. =
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