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a b s t r a c t 

For educational purposes, medical residents often have to pass through many departments, which place 

different requirements on them. They are informed about the upcoming departments by an annual train- 

ing schedule which keeps the individual departments’ service level as constant as possible. Due to poor 

planning and uncertain events, deviations in the schedule can occur. These deviations affect the service 

level in the departments, as well as the training progress and satisfaction of the residents. This arti- 

cle analyzes the impact of priorities on residents’ annual planning based on department assignments to 

combat uncertainty that might result in departmental changes. We present a novel two-stage formulation 

that combines residents’ tactical planning with duty and daily scheduling’s operational level. We deter- 

mine an analytical bound for the problem that is superior to the LP bound. Additionally, we approximate 

a bound based on the solution approach using the objective value of the deterministic solution of an 

instance and the absences in each scenario. In a computational study, we analyze the performance of 

various bounds, our solution approach, and the effects of additional priorities in residents’ annual plan- 

ning. We show that additional priorities can significantly reduce the number of unexpected department 

assignments. Finally, we derive a practical number of priorities from the results. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

All newly graduated physicians must continue their studies in a 

hree to seven years clinical training in a specialist discipline such 

s anesthesia or orthopedics. In this phase of training, they are 

alled residents . Although each specialization has different guide- 

ines, the central concept of each resident program consists of ro- 

ating through different medical departments (see Accreditation 

ouncil for Graduate Medical Education, 2017; German Medical As- 

ociation, 2018 ). Within these rotations, the resident is supposed 

o observe and learn different types of interventions. The hospi- 

al management is obliged to ensure the practicability of the resi- 

ent program within the given time. For this purpose, the manage- 

ent has different instruments available at different planning lev- 

ls, i.e., staffing and rostering decisions ( Erhard et al., 2018 ). While 

he instruments are generally similar for all use cases, it still makes 

ense to look at a specific case. 
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We will motivate the problem from the case of a German (task- 

ased) resident program ( German Medical Association, 2018; Kraul 

t al., 2019 ). A characteristic of German programs is that the hos- 

ital directly employs the residents, i.e., hospitals have a special 

nterest in taking care of the residents’ needs. In this context, an 

nnual training schedule considers the residents’ training objectives 

nd assigns them to specific departments according to demand re- 

uirements on a tactical level. The training schedule covers very 

ften one year ( Akbarzadeh & Maenhout, 2020; Bard et al., 2016a; 

raul, 2019 ). However, a training schedule not necessarily follows a 

alendar year. The training schedules are intended to ensure plan- 

ing reliability and have a direct influence on the daily roster, 

hich is often carried out monthly ( Fügener et al., 2015; Gross 

t al., 2018; Marchesi et al., 2020 ). We define the daily roster as 

 combination of two schedules as described below. First, the duty 

chedules allocate residents to overnight and weekend duties and 

nsure a minimum level of service 24/7, i.e., some residents need 

o stay in the hospital after regular working hours. Second, the 

aily schedules allocate residents to departments for their regular 

orking time, i.e., from Monday to Friday from 7 to 16 o’clock 

ith a full-time contract. Typically, each department can be associ- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Annual training schedule as discussed in literature (left) and in this paper (right). 

c

i

s

o

s

r

t

i

p

m

b

o

c

t

s

s

t

s

b

a

a

g

t

i

f

S

T

s

c

t

w

r

2

t

a

s  

n

a

p

p

o

v

b

i

N

i

t

o  

M

i

i

o

ted with a specialty discipline. While the duty schedule specifies 

hen a resident works, the daily schedule specifies where a res- 

dent works. Note that the duty schedule affects the daily sched- 

le, i.e., residents cannot be assigned to the daily schedule after an 

vernight duty ( European Parliament, Council of the EU, 2003 ). 

Although the training schedule serves only as an input for the 

perational level, the schedule provides the residents and planners 

ith information transparency and a certain degree of planning re- 

iability ( Kraul et al., 2019 ). However, a problem occurs if the daily

chedule does not comply with the assignments in the training 

chedule. For instance, in our case study’s real-world data for a 

hole year, about one-fifth of all daily assignments deviate from 

he training schedule. As a consequence, the resident has to work 

n a department for which they could not adequately prepare. In- 

ufficient preparation time has a direct influence on the quality of 

raining as well as the quality of care ( Denson et al., 2015; Ell-

an et al., 2016 ). Moreover, the training progress is jeopardized 

ecause it cannot be guaranteed to what extent interventions rel- 

vant to training are carried out in the deviating department. In 

ermany, these differences led in some cases to delays within the 

esident program of up to 50% of the total duration ( German Col- 

ege of General Practitioners & Family Physicians, 2009 ). This led 

o a tightening of the requirements for hospitals with regard to 

esident programs, i.e., hospitals must adhere to the time limits of 

esident programs and provide the residents with an objectively 

enerated schedule ( LAG Baden-Württemberg, 2015 ). Similar situa- 

ions do exist in other countries as well. In the following, we call a 

raining schedule to be stable if all assignments in the daily sched- 

le match the assignments in the training schedule. 

The purpose of the paper is the development of a new method 

o tackle the problem of deviations in the daily schedule from the 

ssignments of the training schedule. As already mentioned, a res- 

dent cannot be assigned to the daily schedule on a specific day 

f they had an overnight duty on the previous day. Depending on 

he department’s demand pattern, another resident may have to be 

ssigned to the respective department to ensure demand coverage. 

onsequently, a resident is assigned to a department different from 

he one specified in the training schedule. Besides, residents may 

e absent, e.g., due to workshops, conferences or illness. In this 

ase, a resident from another department would be asked to cover 

he absent resident. One approach to take these types of changes 

nto account in the training schedule and how it is partly applied 

n practice is by setting priorities for the assignments, i.e., a res- 

dent is assigned to more departments with different priorities in 

he training schedule. This gives residents additional information 

bout possible fields of activity and ensures that they are not sur- 

rised by short-term changes. Therefore, the reliability of planning 

s increased. It is important to note that we do not mean prefer- 

nces by priorities which might be specified by the residents, as is 

ften used synonymously in the literature. 

We define priorities as the importance of an assignment from 

he training schedule to the daily schedule. For instance, let a resi- 

ent be assigned with priority 1 to department ENT and with pri- 

rity 2 to department MJF in the training schedule for one specific 

eek. Usually, the resident will be assigned every day of this week 

egular working to department ENT in the daily schedule. How- 

ver, if there is a shortage in department MJF for one or more days,

.e., due to absences, this resident might be assigned to department 

JF on the day with the shortage. While a typical annual training 

chedule, as discussed in the literature, has a single department 

ssignment per period and resident, a training schedule with, for 

nstance, three priorities also has three potential department as- 

ignments per period and resident (see Table 1 ). However, at the 

perational level (daily schedule) only one of the potential assign- 

ents is applied. In other words, one can think of having more 

han one training schedule for each resident individually with de- 
1264 
reasing importance for assignments in the daily schedule. If a res- 

dent cannot be assigned to the department of the first training 

chedule in the daily schedule in a specific period, the assignment 

f the second schedule is applied, and so on, i.e., the first training 

chedule (priority of 1) has the highest valuation. 

This kind of training schedule design is not considered in cur- 

ent literature as will be shown in the next section. The contribu- 

ion of our paper is manifold. First, we present a novel mathemat- 

cal formulation of the annual resident scheduling problem using 

riorities. We assign residents with different priorities to depart- 

ents and maximize the time spent in departments with priorities 

ased on the training goals considering the operational restrictions 

f duty and daily scheduling. Second, we use a two-stage approach 

ombined with a sample average approximation (SAA) to model 

he uncertainty of absences of residents over a year and determine 

table annual training schedules. We model absences in a broader 

ense. Third, we present a decomposition to solve the formulation 

o near-optimality in an iterative process which generates a fea- 

ible solution in each iteration. Fourth, we determine an analytic 

ound for the problem that is superior to the LP bound as well as 

n approximative bound based on numerical results. Eventually, we 

nalyze our formulation by a real-world case of the resident pro- 

ram in anesthesiology of a German teaching hospital with more 

han 1200 beds and 80 residents in the anesthesia program. We 

dentify the minimum number of priorities needed to fulfill full in- 

ormation transparency, i.e., a stable training schedule. 

The reminder of this article is organized as follows. In 

ection 2 we review the state of the art in resident scheduling. 

he problem formulation as well as the mathematical model is de- 

cribed in Section 3 . The SAA and the solution algorithm is dis- 

ussed in Section 4 . The computational study and the analysis of 

raining priorities is performed in Section 5 . The paper finishes 

ith a conclusion and discussion in Section 6 , along with future 

esearch avenues. 

. Related work on resident scheduling 

Personnel scheduling problems have been studied in great de- 

ail over the last decades. The topics cover numerous application 

reas such as nurse rostering, call center scheduling, and airline 

cheduling ( van den Bergh et al., 2013 ). In the last two decades, a

ew type of personnel scheduling problem was analyzed as a side- 

rea of physician scheduling problems, namely resident scheduling 

roblems. Note that every resident is a physician but not every 

hysician is a resident. One of the main differences of this type 

f problem is that in addition to the classic shift planning in its 

arious variations ( van den Bergh et al., 2013 ), training goals must 

e considered, i.e., residents must spend a certain amount of time 

n several departments ( Franz & Miller, 1993; Ozkarahan, 1994 ). 

ote that most of the literature deals with the resident schedul- 

ng problem when training requirements are considered. However, 

here are also some papers dealing with training requirements in 

ther areas as well ( de Bruecker et al., 2018; Mak-Hau et al., 2021;

iller et al., 2017; Seizinger & Brunner, 2022 ). 

This review focuses mainly on resident and physician schedul- 

ng. An extensive overview of physician scheduling can be found 

n Erhard et al. (2018) . Gross et al. (2017) analyze the trade- 

ff between scheduling quality and scheduling stability during 
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e-planning of physicians taking into account the simultaneous 

lanning of the duty and daily schedule in a time horizon of 

ne month. Residents are taken into account by using a long- 

erm schedule serving as input for the daily roster. This long- 

erm schedule reflects the training goals and ensures allocation to 

he preferred departments. Their extensive study shows that the 

imultaneous planning of the duty and daily schedule considers 

raining aspects by far more than in the sequential planning, i.e., 

rst generating a duty schedule and then a daily schedule. In con- 

rast to this work, we are not interested in actual operational ex- 

cution, but in generating an annual schedule for residents using 

perational control mechanisms, i.e., we consider a tactical prob- 

em. 

Most of the resident scheduling literature deals with annual 

lanning problems. Beliën & Demeulemeester (2006) assign resi- 

ents to different training activities over one year. They minimize 

he number of irregular assignments, assuming a resident can per- 

orm only one activity in a period and has to repeat the activity 

or a given time before the activity can change. They formulate 

he problem as a binary problem and solve it using a branch-and- 

rice algorithm after a Dantzig–Wolfe reformulation. Bard et al. 

2016c) construct annual block schedules for family medicine resi- 

ents in a teaching hospital in the US. They formulate two mixed 

nteger problems (MIP). In the first model, they determine an ag- 

regated rotation schedule per month, taking into account duty as- 

ignments as well as fairness aspects in terms of treated patients. 

n the second formulation, they determine the individual rotation 

ssignments based on the solution of the aggregated schedule. In 

heir case study, they were able to show that their formulation is 

uperior to current planning, which is carried out manually. With 

heir formulation, it was possible to create the block schedules en- 

irely at the beginning of the academic year. Smalley & Keskinocak 

2016) design an annual training schedule as well as monthly duty 

osters. They focus on balancing the training progress among resi- 

ents of the same category and year. They solve their model with a 

tandard solver and evaluate the impact of the different objectives 

n the solution time. A network-based formulation of the resident 

cheduling problem is presented by Cire et al. (2018) . They assign 

esidents weekly to rotations at different hospitals over the year 

nd minimize the fixed and variable cost resulting from assigning 

esidents to hospitals and rotations. They show that the network- 

ased formulation is superior to a MIP model. In a case study, they 

nd out that the American University of the Caribbean could have 

aved, on average, 19% of their costs per year using the new formu- 

ation. Akbarzadeh & Maenhout (2020) also deal with the assign- 

ent of residents to different disciplines and hospitals. In contrast 

o Cire et al. (2018) , they do not only consider cost but also the

references of the residents. They develop different heuristics in- 

orporated in a decomposition yielding near-optimal solutions in 

 short timespan, even for large real-world instances. Akbarzadeh 

 Maenhout (2021) build on the previous work and develop a 

ranch-and-price algorithm to solve the problem optimal. They test 

ifferent branching and pricing strategies to speed up the solu- 

ion process. Proano & Agarwal (2018) as well as Kraul (2019) fo- 

us on fairness aspects in the annual scheduling of residents on 

 weekly basis. Both papers consider continuity of care, i.e., un- 

ecessary changes between departments/rotations are considered. 

owever, Proano & Agarwal (2018) simultaneously solve vacation 

nd rotation planning by maximizing the overall resident satisfac- 

ion due to their vacation assignments. In contrast to that, Kraul 

2019) focuses on the rotation planning and minimizes the number 

f departmental changes per week as well as the maximum devia- 

ion from the predefined training goals between the residents. One 

dvantage of both papers is that not only one schedule is gener- 

ted but several. This allows the hospital management to choose 

rom a number of schedules with different strengths and weak- 
1265 
esses. Castaño & Velasco (2020) assign a heterogeneous group 

f medical students to different rotations over a six-month pe- 

iod. They use a variable neighborhood search to evaluate linear 

nd non-linear objectives which measure the stability of the al- 

ocations. Akbarzadeh et al. (2022) assign medical students to in- 

ernships over one year. They deal with the requirements of differ- 

nt stakeholders like the university, the hospital, and the students. 

hey decompose their formulation by time and by students. They 

ombine the Hungarian method with a dynamic programming al- 

orithm in a step-wise optimization algorithm to solve their entire 

roblem. All the considered papers generate an (annual) training 

chedule for the residents by assigning them to exactly one depart- 

ent in each period. However, our approach generates an annual 

raining schedule that includes more than one possible department 

ssignment per period. 

The smaller the time horizon of the problem under con- 

ideration, the more detailed the models become. Bard et al. 

2013) and Lemay et al. (2017) construct shift schedules on a 

onthly basis for residents taking into account different types of 

references. The MIP formulation of Bard et al. (2013) considers 

2 different types of preferences, which are defined not only by 

esidents but also by hospital management. They use various pre- 

nd post-processing steps to solve their formulation in a hierarchi- 

al order as a goal programming approach. In contrast, we use the 

perational level as a tool for evaluating our annual training sched- 

le, i.e., to ensure the stability of the training schedule. We adopt 

he planning mechanisms of the operational level but do not use 

ndividual preferences of residents in the modeling. 

The feasibility of training is often analyzed in light of prob- 

ems related to staffing decisions ( Bard et al., 2016b; Brech et al., 

019 ). Brech et al. (2019) minimize the tardiness of training in 

 surgical department. In a MIP formulation, they determine the 

umber and type of surgical interventions a resident has to per- 

orm in a month based on the hospital’s portfolio. To solve real- 

orld instances, they develop a decomposition approach that they 

ombine with a local search technique. The hospital’s portfolio of 

nterventions is also considered by Kraul et al. (2019) . They deter- 

ine the total number of residents that can finish their training 

n time, taking into account an uncertain number of interventions 

elevant for training per period. They propose a robust MIP for- 

ulation and use a decomposition heuristic to solve the problem 

ear-optimal in a short time. Their experimental study analyzes 

he effect of conservatism concerning the uncertain interventions 

nd the resulting number of training positions. Apart from this 

ork, only Dittus et al. (1996) consider an uncertain environment 

or resident scheduling problems. They develop a simulation to test 

he operational practicability of different resident schedules. Their 

nalysis’s primary focus is the total and the maximum number of 

ninterrupted rest periods during on-call duties. 

The demand for physicians can be identified as the most com- 

on uncertain variable when looking at the physician scheduling 

iterature in general ( El-Rifai et al., 2015; Fügener & Brunner, 2019; 

anguly et al., 2014; Marchesi et al., 2020; Rath et al., 2017 ). El-

ifai et al. (2015) and Ganguly et al. (2014) analyze the shift 

cheduling in an emergency department taking into account an un- 

ertain patient arrival rate. While El-Rifai et al. (2015) use a SAA to 

olve their problem with 100 scenarios, Ganguly et al. (2014) in- 

egrate a queuing system in their formulation using chance con- 

traints. Rath et al. (2017) develop a two-stage MIP assigning surg- 

ries to anesthesiologists and operating rooms taking into account 

n uncertain duration of the surgeries. They use a robustness ap- 

roach to define the surgery duration and measure the total over- 

ime cost across all resources for a realization. Fügener & Brunner 

2019) use a SAA to consider unexpected overtime in physicians 

aily schedules. They integrate their stochastic formulation in a 

olumn generation heuristic to decrease the unplanned overtime 
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Table 2 

Literature synthesis indicating the studied characteristics in literature. 

Operational attributes Training attributes Stochastics 

Paper TH Dty Dem Req Prio Cont Dem Int Avl Method Distribution 

Dittus et al. (1996) 6 weeks x x x Simulation 41 

Kraul et al. (2019) 5 years x x x �-robustness –

Ganguly et al. (2014) 1 day x x Chance constraint Gamma 

El-Rifai et al. (2015) 1 day x x SAA Poisson 

Rath et al. (2017) 1 day x x �-robustness / SAA -/Log-normal 

Fügener & Brunner (2019) 1 week x x SAA Normal 

Marchesi et al. (2020) 1 month x x x SAA Poisson 

This paper 1 year x x x x x x SAA Uniform, Poisson 
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or a given workforce using 12 demand scenarios. While demand 

s subject to significant fluctuations when considering a short time 

orizon such as hours, this fluctuation has only an insignificant ef- 

ect when considering a period length of days and weeks. The ab- 

ence of individual employees, on the other hand, has an impact 

t this planning level and is considered in our work. A synthesis 

able summarizing the studied characteristics in literature with re- 

pect to an uncertain environment is given in Table 2 . 

The first column references the paper, while the time horizon 

TH) of the problem is given in the second column. The next two 

olumns account for the operational attributes duties (Dty) and de- 

and (Dem). Duties refer to special shifts that affect the availabil- 

ty as defined in Section 1 and demand means that only a mini- 

um or maximum number of workers can be assigned to the tasks 

nder consideration, e.g., shifts or departments. The next three 

olumns focus on the training attributes. The requirements (Req) 

sually define a minimum or maximum number of assignments to 

 specific task, e.g., shifts or departments. Priorities (Prio) refer to 

he concept introduced in Section 1 and continuity (Cont) refers to 

onsecutive assignments to the same task. The next three columns 

ighlight the different stochastic resources, i.e., demand (Dem), in- 

erventions (Int), and the availability (Avl). Note that the determin- 

stic resident scheduling literature covers all attributes except for 

he priorities. The last two columns show information about the 

odeling approach as well as the type of distribution. The liter- 

ture shows that SAA is a common approach to addressing such 

roblems. Interestingly, the type of distribution changes in the dif- 

erent studies, even when the same aspect is considered, such as 

atient arrival rates. 

Summarizing the literature review, we could identify several 

apers using training preferences as input for operational planning. 

hese preferences can also be interpreted as priorities. However, 

here is no paper determining the preferences of residents nor as- 

igning residents to rotations with different priorities as defined in 

ection 1 , i.e., multiple assignments per period. While Dittus et al. 

1996) and Kraul et al. (2019) do consider an uncertain environ- 

ent for residents, there is no paper to the best of our knowledge, 

aking into account an uncertain availability of residents. In the lit- 

rature that goes beyond resident planning problems, most papers 

onsider demand uncertainty. From the literature review, we can 

onclude that we are closing several research gaps with this paper. 

e extend the stochastic formulations of the resident scheduling 

roblem by the area of absences. Also, we are the first to model 

he possibility of creating (annual) training schedules with several 

ssignments to departments using priorities. 

. Two-stage resident scheduling problem formulation 

Uncertainty plays an important role in residents’ annual train- 

ng scheduling. As part of their training, they learn many differ- 

nt and demanding skills that they must perform independently 

ithin a very short time. In order to adequately prepare for new 
1266
kills, residents need to know as early as possible what tasks they 

ill face. Preparation is one of the reasons why there is an an- 

ual training schedule. Short-term changes in the daily schedule, 

uch as absences, often lead to deviations from the training sched- 

le. For example, in the real-world data of our case study for a 

hole year, about one-fifth of all daily assignments deviate from 

he training schedule. Unexpected department changes often mean 

hat a resident has not enough time to prepare for the new as- 

ignment. A lack of preparation time can negatively influence the 

raining and reduce employee satisfaction as well as the level of 

ervice, i.e., patient care. In order to increase the planning relia- 

ility of the training schedule, we present the following two-stage 

odel formulation of the resident scheduling problem. 

The planning horizon of this model is one year and will be de- 

cribed by the sets w ∈ W representing the weeks of a year and

 ∈ T representing the days in a week. Note that the time horizon 

an be changed depending on the hospital’s planning horizon, e.g., 

uarterly planning. Our main goal is to assign a set of residents 

 ∈ I to a set of departments j ∈ J on a weekly basis over the

ear so that residents have an overview of their assignments for 

he upcoming year, i.e., a tactical problem is solved. A set of prior- 

ties p ∈ P extends the dimension of assignments allowing more 

han one allocation to departments within a week in the training 

chedule. A duty and daily schedule is integrated to increase plan- 

ing reliability, i.e., as an evaluation step to determine the depart- 

ent assignments with different priorities in the training schedule. 

The first stage of our problem generates the annual training 

chedule. The core information of our model, included in the first 

tage, is given by the binary decision variable 

 i jwp = 

{ 

1 , if resident i is assigned to department j in week 
w with priority p in the training schedule 

0 , otherwise 
.

ere, an assignment to a department j with priority 1 corresponds 

o the resident’s main department in week w (see definition in 

ection 1 ). Each resident has a lower M 

training 
i j 

and upper limit 

 

training 

i j in terms of weeks of such assignments defined by the hos- 

ital management taking into account the training program and 

rogress for the upcoming year. An upper bound may be useful 

f, for example, there are bottlenecks in certain interventions rele- 

ant to resident training in individual departments. For stable plan- 

ing of the training schedule, the daily and duty schedule must 

lso be taken into account (see Section 1 ). These are generated 

n the second stage of our problem. Therefore, in addition to the 

et of departments used for daily scheduling, a set of duties d ∈ D

s needed. Some of the duties cannot be clearly assigned to a de- 

artment in our use case, which is why we consider the duties 

ndependently of the department. The duties d as well as the de- 

artments j have a desirable range of residents per day t going 

rom D 

duty 

dt 
to D 

duty 

dt and D 

daily 
jt 

up to D 

daily 

jt guaranteeing the func- 

ioning of the hospital. This range allows flexibility for the planner 

n terms of resident training goals. However, to be assigned to a 
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Fig. 1. Visual representation of the two stage formulation. 
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o  
uty or department, the resident must have the necessary senior- 

ty level given in the set l ∈ L . Residents may switch the senior-

ty level in the planning horizon, but the level is known in each 

eriod for each resident in advance for the upcoming year. Note 

hat working on a weekend and overnight are handled in the duty 

chedule. For simplicity, we assume that a resident needs a day 

ff after each duty. So, it is not possible to work several duties in 

 row. This means that each resident can work a maximum of 6 

ays a week. The assignment of residents to the duty and daily 

chedule is based on the absence of a resident T off
iwt 

(ω) where ω
s the random parameter for the second stage uncertainty. Remark 

hat such uncertainties will be considered in an operational set- 

ing in a rescheduling problem and be re-solved daily. Neverthe- 

ess, these uncertainties affect the annual training schedule as well 

nd should be considered in the creation process, i.e., a resident 

ight not be assigned to the department of the training sched- 

le on such a day. We are interested in generating a stable annual 

raining schedule in the first place, i.e., residents should know in 

dvance to which departments they might be assigned. A visual 

epresentation of the problem is given in Fig. 1 . The annual train- 

ng schedule covers the entire planning horizon, i.e., it is published 

nce. In contrast, a daily roster covers one month. The dotted ar- 

ows represent the direct influence of the annual training sched- 

le (first stage decision) on the daily rosters (second stage deci- 

ion). The recourse function Q( X ) := E ω [ Q(X , ω] evaluates the ex-

ected reward for assignments in the daily ( R daily ) and duty sched- 

le ( R duty ) for a given training schedule X considering a reward 

 

training 
p for each assignment in daily schedule according to the 

raining schedule as well. Exactly this matching of the daily and 

raining schedule is one of our main contributions. Note that our 

ain target is to maximize these rewards. Please find a summary 

f all used notation in the following. 

Sets with indices 

I set of residents (index i ) 

J set of departments (index j) 

D set of overnight duties (index d) 

W set of weeks (index w ) 

T set of days in a week (index t) 

T 

work set of working days in a week ( T 

work ⊆ T ) 

L set of seniority level (index l) 

P set of priorities (index p) 

Parameters 

ω random parameter for the second stage uncertainty 

T off
iwt 

(ω) 1, if resident i is absent on day t in week w , 0, otherwise 

L resident 
ilw 

1, if resident i has seniority level l in week w , 0, otherwise 

L daily 

jl 
1, if department j requires seniority level l, 0, otherwise 

L duty 

dl 
1, if overnight duty d requires seniority level l, 0, otherwise 

G 24h maximum number of overnight duties to be assigned to one 

resident in a single week 

M 

training 

i j maximum number of weeks resident i should be assigned to 

department j in the training schedule 

( continued on next page ) 
1267
M 

training 
i j 

minimum number of weeks resident i should be assigned to 

department j in the training schedule 

K j block length of department j in the training schedule 

D 
daily 

jt maximum demand for residents in department j on day t in the 

daily schedule 

D daily 
jt 

minimum demand for residents in department j on day t in the 

daily schedule 

D 
duty 

dt maximum demand for residents on overnight duty d on day t in 

the duty schedule 

D duty 

dt 
minimum demand for residents on overnight duty d on day t in 

the duty schedule 

C daily cost per resident shortage on a department 

R training 
p reward for assigning a resident to a department as planned in 

the training schedule with priority p

R daily reward for assigning a resident to a department 

R duty reward for assigning a resident to an overnight or weekend duty 

Decision variables 

x i jwp 1, if resident i is assigned to department j in week w with 

priority p in the training schedule, 0, otherwise 

y i jwt (ω) 1, if resident i is assigned to department j on day t in week w , 0, 

otherwise 

z idwt (ω) 1, if resident i is assigned to duty d on day t in week w , 0, 

otherwise 

δdaily 
jwt 

(ω) resident deficit for department j on day t in week w 

(X , ω) = max 
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

p∈ P 

R 

training 
p x i jwp y i jwt (ω) (1a) 

+ 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

R 

daily y i jwt (ω) + 

∑ 

i ∈ I 

∑ 

d∈ D 

∑ 

w ∈ W 

∑ 

t∈ T 

R 

duty z idwt (ω) 

(1b) 

−
∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

C daily δdaily 
jwt 

(ω) (1c) 

Objective function The objective function (1) can be divided into 

hree parts. While all three are dependent on the second stage 

ecision, the first one also depends on the first stage. In (1a) we 

ant to maximize the reward of having residents assigned to their 

epartment from the training schedule ( x i jwp ) in the daily sched- 

le ( y i jw 

(ω) ). This term is used to measure the implementation of 

he training schedule at the operational level. Note that the de- 

ision variables x i jwp and y i jwt (ω) are multiplied together so that 

he objective function is non-linear. Since non-linear functions of- 

en make it difficult to find a solution, we will linearize the term 

fter the complete model is described. By using different rewards 

or the different priorities, we want to facilitate the assignment to 

he more important priority, i.e., R 
training 
p > R 

training 

p ′ if p < p ′ . Typi-

ally, hospital management sets rewards for each priority to ensure 

raining progress. Note, these can also be individualized for resi- 

ents to give preferences on the respective training areas, i.e., by 

xtending the parameter to R 
training 
i jwp 

. However, for the subject un- 

er investigation, this extension does not provide any value. The 

econd part (1b) of the objective function rewards the assignment 

f residents to departments in the daily schedule ( y i jwt (ω) ) as well
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s to duties in the duty schedule ( z idwt (ω) ). Note, R daily and R duty 

re not individualized, as we do not generate actual daily and duty 

chedules in the model but use them to build the stable annual 

raining schedule. As said in Section 1 , daily and duty schedules 

re published monthly (see Bard et al., 2013; Gross et al., 2017 ). In

he last term (1c) we penalize violations on an operational level. 

n particular, we look at the shortfall in the minimum demand per 

epartment in the daily schedule. Note that the rewards and costs 

re primarily weights to control the construction of the different 

chedules. However, in a real-world setting, it is usually the case 

hat R duty � C daily � R daily , R 
training 
p ( Gross et al., 2017 ). The reasons

re primarily to maintain operations 24 / 7 and, along with that, to 

nsure health care and the hospital’s profitability. ∑ 

j∈ J 

x i jwp ≤ 1 ∀ i ∈ I , w ∈ W , p ∈ P (2) 

∑ 

w ∈ W 

∑ 

p∈ P 

x i jwp ≤ M 

training 

i j ∀ i ∈ I , j ∈ J (3) 

∑ 

w ∈ W 

x i jw 1 ≥ M 

training 
i j 

∀ i ∈ I , j ∈ J (4) 

∑ 

j∈ J 

x i jwp −
∑ 

j∈ J 

x i jwp ′ ≥ 0 ∀ i ∈ I , w ∈ W , p, p ′ ∈ P, p < p ′ (5) 

 i jwp + x i jwp ′ ≤ 1 ∀ i ∈ I , j ∈ J , w ∈ W , p, p ′ ∈ P, p < p ′ (6) 

 i jw 

′ p ≥ x i jwp − x i jw −1 p ∀ i ∈ I , j ∈ J , w ∈ W 

\{| W | − K j + 1 , . . . , | W |} , p ∈ P, 

w 

′ ∈ { w + 1 , . . . , w + K j − 1 } (7) 

 i jw 

′ p ≥ x i j1 p ∀ i ∈ I , j ∈ J , p ∈ P, w 

′ ∈ { 2 , . . . , K j } (8) 

Training schedule The Constraints (2) up to (6) are constructing 

he training schedule and are the first stage decision. Constraints 

2) ensure that a resident can be assigned to at most one depart- 

ent per week and priority. An individual upper bound of assign- 

ents to a specific department in the training schedule is given in 

onstraints (3) . Note that this bound considers all priorities, i.e., 

 resident can be assigned to one department at most M 

training 

i j 

imes, regardless of the priority. However, the lower bound of as- 

ignments to one department in the training schedule is limited 

o priority 1 as stated in Constraints (4) . Under the assumption 

hat a resident is primarily assigned to their first priority, the min- 

mum training progress should be ensured in this respect. Note 

hat M 

training 

i j and M 

training 
i j 

are defined individually per resident. The 

ain reason for this is that the training goals may differ between 

he individual residents for the upcoming year. This difference is 

ainly but not exclusively due to the different training years of 

he residents, i.e., even within the same training year, residents can 

ave a different focus. The priorities have an order to each other, 

nd this is ensured by Constraints (5) , i.e., a resident can only be

ssigned to a department with priority 2 if they are also assigned 

o a department with priority 1 in the same week. Additionally, 

e have to ensure that a resident is not assigned to the same de- 

artment with different priorities in the same week as described 

n Constraints (6) . Finally, the training schedule should be used at 

he operational level to enforce continuity, i.e., to work consecu- 

ive weeks in the same department. Therefore, Constraints (7) and 

8) ensure that an assignment in the training schedule to a de- 

artment j is at least K j weeks. The idea of these constraints is 
1268 
o design blocks of training. For example, let parameter K j = 4 . In

his case, a resident who is assigned in the first week of the year 

o department A must be assigned to department A in the follow- 

ng three weeks as well. These blocks are usually used to increase 

he learning effect of a resident in one department as well as to 

tabilize the service level of the departments ( Kraul, 2019 ). ∑ 

i ∈ I 

y i jwt (ω) ≤ D 

daily 

jt ∀ j ∈ J , w ∈ W , t ∈ T (9) 

∑ 

i ∈ I 

y i jwt (ω) + δdaily 
jwt 

(ω) ≥ D 

daily 
jt 

∀ j ∈ J , w ∈ W , t ∈ T (10) 

∑ 

j∈ J 

y i jwt (ω) ≤ 1 − T off
iwt (ω) ∀ i ∈ I , w ∈ W , t ∈ T (11) 

 i jwt (ω) ≤
∑ 

l∈ L 

(L daily 

jl 
L resident 

ilw 

) ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T (12) 

Daily schedule The block of Constraints (9) to (12) is used to 

onstruct the daily schedule for the complete time horizon and is 

he first part of the second-stage decision. Note that the assign- 

ent for the daily schedule depends on the realization of the un- 

ertain term. At the operational level a minimum and maximum 

umber of residents can be assigned to a department as formu- 

ated in Constraints (9) and (10) . It is also possible to assign fewer

esidents to a department than the minimum required. However, 

uch a violation is penalized in the objective function (see (1c) ). 

onstraints (11) ensure that a resident can be assigned to a maxi- 

um of one department per day, if available on that day ( T off
iwt 

(ω) ).

ote that the availability is the uncertain parameter. Additionally, 

onstraints (12) ensure that a resident’s assignment to a depart- 

ent is possible if the resident has the seniority level needed by 

he department. Note that this type of formulation also allows a 

esident with a higher seniority level to be assigned to a depart- 

ent with a lower seniority level requirement. For instance, a se- 

iority level l can remain active ( L resident 
ilw 

= 1 ∀ w ∈ W : w ≥ w 

′ ) af-

er a resident has reached the next year of training in the period 

 

′ . ∑ 

i ∈ I 

z idwt (ω) ≤ D 

duty 

dt ∀ d ∈ D, w ∈ W , t ∈ T (13) 

∑ 

i ∈ I 

z idwt (ω) ≥ D 

duty 

dt 
∀ d ∈ D, w ∈ W , t ∈ T (14) 

∑ 

d∈ D 

z idwt (ω) ≤ 1 − T off
iwt (ω) ∀ i ∈ I , w ∈ W , t ∈ T (15) 

 idwt (ω) ≤
∑ 

l∈ L 

(L duty 

dl 
L resident 

ilw 

) ∀ i ∈ I , d ∈ D, w ∈ W , t ∈ T (16) 

∑ 

d∈ D 

∑ 

t∈ T 

z idwt (ω) ≤ G 

24h ∀ i ∈ I , w ∈ W (17) 

∑ 

d∈ D 

3 z idw (t−1) (ω) ≤ 3 −
∑ 

d∈ D 

z idwt (ω) 

−
∑ 

j∈ J 

y i jwt (ω) − T off
iwt (ω) ∀ i ∈ I , w ∈ W , t ∈ T , t > 1 (18) 

∑ 

d∈ D 

3 z id(w −1)7 (ω) ≤ 3 −
∑ 

d∈ D 

z idw 1 (ω) 

−
∑ 

j∈ J 

y i jw 1 (ω) − T off
iw 1 (ω) ∀ i ∈ I , w ∈ W , w > 1 (19) 
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Duty schedule The duty schedule extends the daily schedule by 

ssigning overnight duties ( D) and ensures treatment 24 / 7 . Note 

hat the assignment of duties is also part of the second-stage de- 

ision. Constraints (13) and (14) limit the number of residents that 

an be assigned to a duty per day. Constraints (15) and (16) are 

nalogous to Constraints (11) and (12) of the daily schedule and 

nsure that a resident can be assigned to no more than one duty 

er day if available and that they have the appropriate seniority 

evel. Overnight duties are stressfull to residents as they require 

he resident to be present in the hospital for 24 hours. Therefore 

he total number of overnight duties in one week is limited for ev- 

ry resident by Constraints (17) . The next two constraints ensure 

hat a resident has a day off after being assigned to an overnight 

uty, i.e., no assignment to a duty ( z idwt (ω) = 0 ) nor a regular shift

 y i jwt (ω) = 0 ). Additionally, a resident should not be assigned to a

uty if they have already a day off ( T off
iwt 

(ω) ) on the following day.

hile Constraints (18) consider the days from Monday up to Sat- 

rday, Constraints (19) are needed for overnight duties on Sunday 

 t = 7 ). Eventually, variable domain definitions are handled in Con- 

traints (20) and (21) . 

 i jwp , y i jwt (ω) , z idwt (ω) ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J , d ∈ D, 

w ∈ W , t ∈ T , p ∈ P (20) 

daily 
jwt 

(ω) ∈ Z + ∀ i ∈ I , j ∈ J , d ∈ D, w ∈ W (21) 

The solution of this formulation will result in a feasible an- 

ual training schedule taking into account the operational level of 

 daily schedule as well as the duty schedule, i.e., a weekly as- 

ignment of residents to departments with different priorities. Re- 

ark that the solution of the daily and duty schedule cannot be 

sed directly for the operational level, i.e., a duty schedule is usu- 

lly published on a monthly basis in order to consider individual 

references such as working a night duty on Saturday. In addition, 

ctual absences are not known in advance. However, the hospital 

anagement can use the solution of the duty schedule as well 

s the daily schedule provided by our model as a start solution 

or operational planning. In general, solving non-linear programs is 

uch harder than solving linear ones. Therefore, we will linearize 

he non-linear term of the objective function (1a) in the following 

aragraph. 

Linearization of the non-linear objective term The non-linear term 

 i jwp · y i jwt (ω) in the objective function (1a) can be expressed 

n a linear form by using additional binary decision variables 

i jwt p (ω) ∈ { 0 , 1 } . Note, πi jwt p (ω) is defined as a binary variable 

ince x i jwp and y i jwt (ω) are binary as well. Consequently, the mul- 

iplication of the two variables can also be only binary. As a first 

esult, we can replace the objective term (1a) by the following 

erm (22a) . 

ax 
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

p∈ P 

R 

training 
p πi jwt p (ω) (22a) 

Additionally, we need to ensure that πi jwt p (ω) becomes equal 

o 1 if and only if x i jwp = y i jwt (ω) = 1 . For this purpose, three ad-

itional types of constraints are required. 

i jwt p (ω) ≤ x i jwp ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P (23) 

i jwt p (ω) ≤ y i jwt (ω) ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P (24) 

i jwt p (ω) ≥ x i jwp + y i jwt (ω) − 1 ∀ i ∈ I , j ∈ J , w ∈ W , 

t ∈ T , p ∈ P (25) 

i jwt p (ω) ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P (26) 
1269 
onstraints (23) and (24) bound πi jwt p (ω) by the correspond- 

ng training schedule variable x i jwp (first stage) and daily sched- 

le variable y i jwt (ω) (second stage), i.e., πi jwt p (ω) = 0 if x i jwp = 

 or y i jwt (ω) = 0 . Constraints (25) are needed to ensure that 

i jwt p (ω) = 1 if both x i jwp and y i jwt (ω) are equal to 1. Finally, vari-

ble domain definition is handled in Constraints (26) . 

. Sample average approximation for resident scheduling 

In this section, we first transfer the uncertainty of the second 

tage of our problem into a scenario approach and then decom- 

ose the problem to solve it efficiently. With a planning horizon 

f one year, uncertainty can be replicated by an absence plan, i.e., 

ach scenario describes the absence of all residents for the en- 

ire planning horizon. For a detailed description of the SAA, we 

ecommend Kim et al. (2014) . We assume that the random pa- 

ameter ω follows a discrete distribution with a finite support. 

herefore, let s ∈ S be the set of scenarios and p s > 0 the prob-

bility for a realization of scenario ω s . Note that 
∑ 

s ∈ S 

p s = 1 . In

his case, Q(X ) = E ω [ Q(X , ω)] = 

∑ 

s ∈ S 

p s Q(X , ω s ) applies to our

ecourse function. Consequently, the second stage decision vari- 

bles y i jwt (ω) , z idwt (ω) , δdaily 
jwt 

(ω) , πi jwt p (ω) and the random ab- 

ences T off
iwt 

(ω) will be extended by the set of scenarios. The com- 

lete model formulated as a sample average approximation resi- 

ent scheduling problem (SAA-RSP) can be found in the appendix. 

he realization of the absences of all residents over the year de- 

nes a scenario, i.e., T off
iwts 

= 0 ∨ 1 (present or absent). The num- 

er of scenarios can quickly become very large, so it is not re- 

listic to map all scenarios. Instead, we will use a subset of sce- 

arios to obtain a good estimator ( Verweij et al., 2003 ). In gen-

ral, looking at the size of the formulation, we find that – even in 

he deterministic case, i.e., taking only one scenario into account 

the problem is too big to be solved by standard solvers. The 

eal-world instance encountered in this paper with | I | = 80 res- 

dents, | J | = 14 departments, and | D| = 17 overnight duties leads

o more than 1 . 8 · 10 6 binary decision variables and 3 . 6 × 10 6 

onstraints assuming only two priorities in the training schedule. 

ote that each additional scenario taking into account increases 

he problem size by almost the same amount. 

A common approach in the literature to deal with such 

arge problem sizes and scenarios is decomposing the prob- 

em ( Ruszczy ́nski, 1997 ). Analyzing the mathematical formulation 

f Section 3 , we can see that the first stage decision, i.e., the con-

traints for the training schedule, is connected with the second 

tage only by the objective (1a) . Note, Constraints (25) are the con- 

ection after linearization of the non-linear objective term. We can 

ake advantage of this characteristic and decompose the problem 

recisely between the first and second stages (see Fig. 2 ). Note that 

he domain definitions of the decision variables stay the same as 

ell. 

Additionally, we know that the scenarios s ∈ S of the second 

tage are independent of each other. As a result, we can solve each 

cenario individually. To solve the decomposition, we propose an 

terative approach where the first and second stages are solved al- 

ernately as shown in Algorithm 1 . For solving the two stages inde- 

endently, the linking variables π must be manipulated based on 

he solution of the first or second stage of the problem. We know 

rom the formulation in Section 3 that the objective function term 

22a) can only be changed when solving the second stage if an as- 

ignment has taken place in the first stage, i.e., the upper bound 

or π is determined by the x variables of the first stage. The same 

pplies to the first stage – only if someone has been assigned to a 

epartment in the daily schedule of the second stage, the assign- 

ent of the first stage influences the objective function term (22a) , 

.e., the upper bound for π when solving the first stage depends 

n the individual y variables of the scenarios. In what follows, we 
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Fig. 2. Visualization of the constraints for the decomposed two stage resident 

scheduling formulation. 

Algorithm 1 Solution algorithm for the SAA-RSP. 

\* Initialization *\ 

Initialize the first stage problem (1) and the second stage prob- 

lem (2) for all scenarios s ∈ S . Set S̄ = S . 

while Termination criteria is False do 

\* Generate the training schedule *\ 

Solve problem (1). 

\* Update π based on the training schedule *\ 

Set π .ub = x . 

\* Choose a subset of scenarios *\ 

if batching is True then 

Randomly choose a subset S̄ = B ⊂ S 

end if 

for s ∈ S̄ do 

\* Generate the daily roster for scenario s *\ 

Solve problem (2). 

end for 

\* Update π based on the daily rosters *\ 

Set π .ub = y . 

end while 

Report the final solution. 
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efer to this relationship with the upper bound of π depending 

n which stage we are considering. The π variables are initialized 

ith 0 . The termination criteria can be set by the user, e.g., by time

r optimality gap. However, the algorithm finally terminates if the 

rst stage’s objective value and those of the second stage do not 

hange anymore within one iteration. Note that our decomposition 

an also be seen in the sense of an L-shaped approach, where we 

o not explicitly formulate the cuts from the second stage and only 

se them for a single iteration ( Laporte & Louveaux, 1993 ). 

For the first stage, the decomposition and fixation of the bounds 

ave the consequence that the A-matrix is totally unimodular and 

an be solved efficiently as a linear program. Remark that we can 

ormulate the first stage as a circulation problem with integral ca- 

acities, lower bounds on the flow, and node requirements. In this 

ormulation each decision variable x i jwp can be seen as an edge 

f the graph. We can further reduce the formulation to a maxi- 

um flow problem ( Kleinberg, 2006 ). The upper bound of the π
ariables determine the weight of the edges x i jwp . Since the upper 

ound is determined from the daily schedule in the second stage 

f scenario s ∈ S it can be replaced by 
∑ 

s ∈ S 

∑ 

t∈ T 

p s R 
training 
p y i jwts .

he objective value of this formulation corresponds to the objec- 

ive (22a) . Objective (1b) and (1c) are a constant in the first stage

nd can be added after the optimization. 
1270 
For the second stage, we propose two solution strategies that 

e will evaluate in the experimental study of Section 5 . In the 

rst case, we solve all sample scenarios after terminating the new 

ounds for π , i.e., the generated subset of the complete sample. 

his gives us an operational assignment (daily and duty schedule) 

or each scenario and a complete evaluation for the training sched- 

le, i.e., Q(X ) . Although the individual scenarios can be solved in- 

ependently and in parallel, the computing effort in an actual ap- 

lication inevitably increases as the number of scenarios increases, 

.e., the solution time over all scenarios. Therefore we consider a 

econd approach where we do not solve all scenarios in every iter- 

tion but only a subset B ⊂ S . We will refer to this as the batch-

ng method. With this variation, the solution time within one it- 

ration can be shortened, i.e., if not all scenarios can be solved in 

arallel. One of the advantages of this iterative solution approach 

s that in each iteration, a feasible solution is generated, i.e., a 

ower bound. Consequently, the hospital management can choose 

etween several schedules. A major drawback, however, is that we 

o not get an upper bound within the algorithm. Nevertheless, the 

lgorithm moves towards a local optimum over the iterations, since 

nsuring operational functionality is given higher weight than ad- 

erence to the training schedule. 

To overcome the problem with the upper bound in our algo- 

ithm, we have analyzed ways to obtain a strong bound efficiently. 

ne problem for determining a strong dual bound is the size of the 

ompact model. Additionally, the LP relaxation offers only a poor 

ound with respect to the optimal objective value, and in the de- 

erministic case alone takes more than 300 seconds to solve for re- 

listic problem sizes. One reason for the poor performance of the 

ound is due to the Constraints (18) and (19) . In the LP solution 

t is possible to be assigned to the daily schedule after a duty if 

ore than one resident is assigned to the duty ( z idwts ≤ 0 . 5 ). How-

ver, this is not the only reason. In the experimental study, we 

ill see that the bound increases with additional priorities as well. 

n our preliminary studies of this problem, we found out that a 

agrangian relaxation of Constraints (4) could give a strong dual 

ound. Nevertheless, a solution time of more than eight hours for 

 small number of scenarios is beyond the scope. Therefore, we 

rst wanted to determine an analytical bound ( UB AB ) for the de- 

erministic case as shown in Proposition 1 . 

roposition 1. An upper bound for the deterministic resident 

cheduling problem ( T of f ˆ = known absences or 0 ) can be determined 

y the reward for all duties in the time horizon, the reward for all 

esidents being assigned to a department in the time horizon, and 

he reward for all residents being assigned to their first priority, i.e., 

 

∗ ≤ R duty α + R daily β + R 
training 
1 

γ . 

roof. Let α be the total number of duties in the time horizon, 

the total number of residents being assigned to a department 

n the time horizon, and γ the total number of residents being 

ssigned to their first priority of the training schedule. 

(1.) Due to the practical characteristics of the resident schedul- 

ing problem, each duty is allocated first, i.e., R duty � C daily �
R daily , R 

training 
p . As a result, α is bounded by | W | ∑ 

d,t D 

duty 

dt . 

(2.) On each working day at most | I | residents can be assigned 

to a department. However, Constraints (18) and (19) ensure 

that a resident has a day off if he or she was on duty the day

before. Since R duty � C daily � R daily the number of residents 

can be reduced by the number of duties for which the fol- 

lowing day (day off) is a working day. Additionally, we can 

reduce the value by the total number of known absences. 

Thus, β is bounded by | I || T 

work || W | − | W | ∑ 

d,t D 

duty 

dt −
| T off| with t ∈ { k ∈ T | (k + 1) mod(7) ∈ T 

work } . 
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Algorithm 2 Calculation of the priority reduction per scenario 

εp (ω s ) . 

Let | T of f (ω s ) | the amount of absences in a scenario and n p the 

total number of residents assigned to a department as stated in 

the training schedule with priority p ( πi jwt p = 1 ) where n 0 is the 

total number of residents assigned to a department without any 

priority of the deterministic model. 

Set ε0 (ω s ) = min { n 0 , | T of f (ω s ) |} , εp = 0 ∀ p ∈ P , α = 

max { 0 , | T of f (ω s ) | − n 0 } , and β = | P| . 
while α > 0 and β  = 0 do 

Set εβ (ω s ) = min { n β , α} . 
Set α = max { 0 , α − n β} . 
Set β = β − 1 . 

end while 

Report ε(ω s ) . 

Table 3 

Model information for the experimental study . 

| I | | J | | D| | W | | T | | L | G 24h R daily R duty C daily 

80 14 17 52 7 5 2 10 200 50 

5
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(3.) We can assume that all assignments of (2.) are the first pri- 

ority in the training schedule of the residents, i.e., γ = β . 

Then follows z ∗ ≤ R duty α + R daily β + R 
training 
1 

γ with the bounds 

or α, β, γ given in (1.),(2.), and (3.). �

Since the bound can also be calculated for individual scenarios 

see (2.) in Proposition 1 ), it is also possible to generate an upper

ound for instances with several scenarios, i.e., U B AB = 

∑ 

s ∈ S p s U B AB 
s 

ith UB AB 
s the analytical bound of scenario s . Additionally, this 

ound is valid for any number of priorities since we assume all 

ssignments to be the first priority in the training schedule. In the 

xperimental study, we show that the analytical bound is, on av- 

rage, more than 8% better than the LP relaxation. Nevertheless, 

he study from Section 5 shows that even this bound is still a 

oor bound, i.e., the upper bound may be tighter. For this reason, 

e approximate an additional upper bound based on the solution 

ethodology. Since the deterministic case can be solved quickly 

ith our approach, we wanted to define a bound based on the 

eterministic solution under the assumption that T off ˆ = known ab- 

ences or 0 . Note that the deterministic solution is a lower bound. 

owever, we can assume that the algorithm cannot find a bet- 

er solution in any scenario. As explained in Proposition 2 , the 

pper bound ( UB SAA −RSP ) can be defined by z ∗ ≤ ζ
∑ 

s ∈ S 

p s ( ̂ z −
 

daily | T of f (ω s ) | − ∑ 

p∈ P 

R 
training 
p εp (ω s )) where ζ is the approxima- 

ion level. Note that we will estimate ζ in the experimental study 

n Section 5 

roposition 2. An upper bound for the SAA-RSP can be determined 

y solving the deterministic model ( T of f ˆ = known absences or 0 ) 

nd the random absences T off
iwt 

(ω s ) in the scenarios s ∈ S with z ∗ ≤∑ 

s ∈ S 

p s ( ̂ z − R daily | T of f (ω s ) | − ∑ 

p∈ P 

R 
training 
p εp (ω s )) . 

roof. Assume ˆ z be the optimal objective value for the determin- 

stic model, and | T of f (ω s ) | the amount of absences in a scenario. 

(1.) The SAA-RSP is bounded by ˆ z . Obviously, z ∗ ≤ ∑ 

s ∈ S 

p s ̂z 

since the solution space is decreased, i.e., Constraints (11), 

(15), (18) , and (19) decrease the solution space if T 
of f 

iwt 
(ω s ) =

1 for any i ∈ I , w ∈ W , t ∈ T . 

(2.) The number of available residents per day in each sce- 

nario is less or equal to the number of available resi- 

dents in the deterministic model. Consequently, the rewards 

for assigning residents in the daily schedule decreases by 

the total amount of absent residents, i.e., z ∗ ≤ ∑ 

s ∈ S 

p s ( ̂ z −
R daily | T of f (ω s ) | ) . 

(3.) The absence of the residents also affects the reward for 

assignments to the training schedule. We know from the 

deterministic solution how often a resident is assigned to 

a department and with which priority (and with no pri- 

ority) based on the training schedule. εp (ω s ) is the total 

number of residents that will no longer be assigned to a 

department with priority p in scenario s . εp (ω s ) can be 

calculated by Algorithm 2 . Then follows z ∗ ≤ ∑ 

s ∈ S 

p s ( ̂ z −
R daily | T of f (ω s ) | − ∑ 

p∈ P 

R 
training 
p εp (ω s )) . 

If we now assume that ˆ z is not optimal, i.e., it is only a lower

ound (obtained by our solution algorithm), then a parameter ζ
an be determined, which can estimate an upper bound for all in- 

tances, i.e, z ∗ ≤ ζ
∑ 

s ∈ S 

p s ̂  z → ζ ≥ z ∗∑ 

s ∈ S 

p s ̂ z 
. Note that this is an 

x-post analysis. The bound can only be calculated after solving 

he deterministic model. �

Determining an upper bound in this way has several advan- 

ages. First, we can derive an upper bound for each scenario. We 

an integrate these bounds into each model of the second stage to 

ccelerate the solution process. Second, we can derive a global up- 

er bound for the overall problem. Herewith, we can evaluate the 

olution quality of the algorithm in each iteration. 
1271 
. Analyzing training priorities in annual scheduling 

In this section, we apply our model in an experimental study 

ased on real-world data concerning residents in anesthesiology of 

 large teaching hospital in Germany with more than 1200 beds. 

n Section 5.1 , we will analyze the performance of our developed 

olution approach. After that we will derive managerial insights 

ased on parameter variations of our problem in Section 5.2 . 

In our study, we analyze the annual scheduling of anesthesiol- 

gy residents, i.e., | W | = 52 and | T | = 7 resulting in a total of 364

lanning days. Residents can be assigned in the training sched- 

le and daily schedule to 14 different departments. Additionally, 

7 different overnight duties with a total of 86 assignments per 

eek must be considered in the duty schedule, i.e., there is not 

 demand for every duty every day. The absences for the scenar- 

os are drawn equally distributed with a probability of 10% per day 

nd resident. We defined the absentee rate in consultation with 

he hospital and in consideration of the literature ( Ozcan, 2009 ). 

e have also tested the algorithm with other distributions and 

btained similar results, e.g., a Poisson distribution for sequences 

f absences. An overview of the relevant parameters is given in 

able 3 and the complete information is given in the online sup- 

lementary. 

All computations are performed on a 1.9 gigahertz (Intel®

ore TM CPU i 7 − 8650 U) with 16 gigabyte RAM running under the 

indows 10 Enterprise operating system. All models are coded in 

ython 3.7, and Gurobi 9.0 ( Gurobi Optimization L, 2019 ) is used 

o solve all instances of the formulations. The default settings of 

urobi are used unless otherwise stated in the specific section. 

.1. Evaluation of the solution approach 

In this Section, we will analyze the performance of the solu- 

ion approach. For this purpose, we will first evaluate the perfor- 

ance of our upper bound as described in Section 4 and compare 

t with the LP relaxation of the compact formulation as well as a 

ombinatorial relaxation of Constraints (4) since the Lagrangian re- 

axation is out of scope (see Section 4 ), i.e., the Lagrangian multi- 

lier is fixed to 0 ( Wolsey, 1998 ). We will then evaluate the perfor-

ance of our SAA-RSP algorithm in terms of the number of scenar- 

os. Here we will analyze both options of the algorithm, i.e., with 

ll scenarios in each iteration and with batches. 
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Table 4 

Deterministic results for the resident scheduling problem. 

LP relaxation Combinatorial relaxation Analytic bound SAA-RSP algorithm 

Instance | P| UB Time (seconds) UB Time (seconds) UB LB Iterations Time (seconds) 

1 1 1,527,232 215 1,332,580 511 1,421,280 1,282,930 19 404 

2 1 1,525,710 267 1,330,560 310 1,420,160 1,278,910 13 259 

3 1 1,527,032 299 1,331,760 359 1,420,560 1,285,480 19 480 

4 1 1,534,339 217 1,345,570 333 1,426,800 1,297,620 22 521 

5 1 1,528,012 183 1,337,720 292 1,423,400 1,287,580 20 557 

1 2 1,601,147 623 1,398,289 3601 1,421,280 1,305,835 25 512 

2 2 1,599,516 586 1,396,065 3601 1,420,160 1,304,895 26 535 

3 2 1,600,962 354 1,397,340 3601 1,420,560 1,305,305 18 422 

4 2 1,609,049 494 1,412,155 3601 1,426,800 1,319,355 24 508 

5 2 1,602,174 381 1,403,770 3601 1,423,400 1,310,050 20 558 
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Fig. 3. Probability density function and histogram of the sample of the upper 

bounds normalized by the LP relaxation (top: | P| = 1 , bottom: | P| = 2 ). 
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Performance of the upper bound The upper bound is an impor- 

ant tool for measuring solution quality. In this part of the study, 

e evaluate the performance of the LP relaxation of the model pre- 

ented in Section 3 , a combinatorial relaxation of Constraints (4) , 

he analytic bound (see Proposition 1 ), and the bound derived from 

he solution algorithm (see Proposition 2 ). Finally, we estimate the 

arameter ζ based on the evaluation (see Proposition 2 ). 

For the determination of an upper bound, we have set a time 

imit of one hour. This time limit reduces this part of the analysis 

o at most 1 scenario and 2 priorities. For larger sets, the LP re-

axation already exceeds the time limit. We analyzed in total 5 dif- 

erent instances with a varying number of known absences based 

n the real-world data using one and two priorities each with 10 

ifferent scenarios, i.e., 110 settings (10 deterministic and 100 with 

 scenario). The results of the deterministic instances with | P| = 1 

nd | P| = 2 are given in Table 4 . 

The first two columns identify the instance and the number of 

riorities. The next two columns show the optimal solution of the 

P relaxation (upper bound of the original problem) and the so- 

ution time. Here it is noticeable that the objective function value 

ncreases with two possible priorities compared to one. The same 

nformation is given in columns five and six but for the combi- 

atorial relaxation. While the combinatorial relaxation (CR) is the 

trongest of the three upper bounds presented, it should be noted 

hat it can only be solved optimally with one priority. In other in- 

tances, the time limit was exceeded, and the current upper bound 

t termination was used accordingly. The analytic bound (AB) is 

iven in the seventh column. Here we can see directly that the 

ound between one and two priorities does not change. The reason 

or this is that when calculating the bound, it is assumed that all 

ssignments are carried out with the first priority. Consequently, as 

he number of priorities increases, the analytical bound becomes 

ncreasingly stronger than the LP bound, i.e., about 7% better with 

ne priority and almost 12% better using two priorities. The last 

our columns show the information of the SAA-RSP algorithm. The 

ptimality gap between the best upper bound (combinatorial re- 

axation) and the solution of the SAA-RSP algorithm is on average 

% . Note that for the SAA-RSP algorithm no upper bound is given 

ince we want to estimate the bound in a next step for the scenar-

os. 

We first analyze the solution time of each approach for the 100 

nstances. We differentiate between the settings using one and two 

riorities. For the SAA-RSP algorithm, we used the deterministic 

ases’ solution time since this value is the basis for the calculation. 

he scenario-specific values as described in Proposition 2 can be 

dded at almost no cost, i.e., it takes less than 1 second. The LP 

elaxation’s average solution time using one and two priorities is 

ignificantly different ( p -value = 0 . 0018 ), i.e., the solution time is

ncreasing with additional priorities. With a p -value of 0.0 0 02, the 

AA-RSP algorithm’s average solution time is significantly different 
b

1272 
s well for one and two priorities. However, we have to consider 

hat these 100 instances’ solution time is based on only ten in- 

tances. Consequently, the sample is too small to evaluate the dif- 

erence in solution time for the SAA-RSP algorithm. We will take a 

loser look at the solution time when we analyze the performance 

f the algorithm. For the CR, it can be stated that instances with 

wo priorities can no longer be solved within an hour. 

Solving the CR not optimal has consequences on the quality of 

he bounds. To evaluate the quality of the bounds, we have taken 

he LP relaxation as a basis, i.e., UB b 

UB LP with b ∈ { CR, AB, SAA − RSP } .
igure 3 shows the individual bounds’ distribution per solution 

ethod as a histogram and the resulting normal distribution es- 

imated based on the data. Note that we set ζ = 1 for UB SAA −RSP to

ompare the generated bound with the other ones. First, the small 

ange on the x-axis must be considered. Since the bounds for one 

olution method are all close together, the standard deviation is 

iny in each case, i.e., with a minimum of 0.0014 for CR with one 

riority and at most 0.0025 for the SAA-RSP algorithm with one 

riority. A surprising result for the instances with only one priority 

top) is that UB CR is stronger than UB SAA −RSP with ζ = 1 . Remem- 

er that UB SAA −RSP is based on the lower bound of the determin- 

stic model (see Proposition 2 ) and for the deterministic instances 

e had – obviously – UB CR > LB SAA −RSP (see Table 4 ). Since the CR 

or cases with two priorities is not solved within the time limit, 

he bound’s quality substantially shifts. It is still better than the 

P relaxation, but worse than the AB. Looking at the distance be- 

ween the distribution of AB and the distribution of SAA-RSP, it can 

e seen that there is no difference between using one or two pri- 
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Table 5 

Average performance results of the SAA-RSP algorithm. 

| P| Algorithm Gap (%) Iterations Total time (seconds) Aggregated time (seconds) 

1 SAA-RSP 7.24 7.4 158 4288 

SAA-RSP (warm start) 3.72 1.0 64 1657 

SAA-RSP (batching) – – – –

2 SAA-RSP 4.91 17.5 464 10,385 

SAA-RSP (warm start) 2.56 15.1 442 8506 

SAA-RSP (batching) 2.56 35.6 3350 3350 
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rities, i.e., both with a mean difference of 0.06 ( UB AB 

UB LP − UB SAA −RSP 

UB LP ) 

nd a p -value of 0.2810. Interestingly, this is similar to the dis- 

ance between the CR distribution and the SAA-RSP distribution 

hen the lower bound is used for CRs with two priorities (assum- 

ng the lower bound is the optimal solution), i.e., the distance be- 

ween CR and SAA-RSP for one and two priorities with a mean dif- 

erence of 0.05. Nevertheless, they are significantly different, with 

 p -value of 3 . 15 × 10 −25 . Assuming that an upper bound is al-

ays in this interval, we can determine UB SAA −RSP with ζ = 0 . 95 .

ote that ζ is derived from the lower bound of the CR, i.e., we 

ight underestimate the upper bound. However, we do know that 

he AB always applies. Comparing the AB with our approximation 

 possible underestimation of up to 12% can be derived. In the per- 

ormance analysis of the algorithm, we will consider the bound 

ccordingly. 

erformance of the SAA-RSP algorithm . 

In this part of the study, we will further analyze the perfor- 

ance of the SAA-RSP algorithm. For this purpose, we will exam- 

ne three different variants in more detail—first, the (classical) SAA- 

SP algorithm (Cl), as described in Section 4 . Second, the same 

lgorithm, but with a warm start (WS). Since we solve the de- 

erministic problem to determine the upper bound, this solution’s 

raining schedule is used to initialize the algorithm in the first it- 

ration. Finally, the batching method (see Section 4 ) is analyzed. 

ere we will randomly use 1 / 10 of the scenarios in each iteration,

.e., | B| = � | S | 
10 � . For the batching, a warm start is used as well.

s a termination criterion of the batching procedure, a total run- 

ime of one hour is chosen. We will use the same 10 settings (5

nstances) as in the first study. However, the number of scenarios 

 | S | ) is now set to 10 and 50. In a second step, we will analyze

he performance of the scenario size (10 vs. 50) with an out of 

ample evaluation, i.e., we evaluate the performance of the gen- 

rated training schedule with 500 different scenario trees. This is 

o show that the selected number of scenarios is sufficient for the 

roblem. 

The results of the first part of the study are given in Table 5 . We

o not separate the instances with 10 and 50 scenarios as there 

re no differences except the total runtime. The total runtime in- 

reases linearly with the number of scenarios. The first column of 

able 5 shows the number of priorities. The second column iden- 

ifies the algorithm used. Columns three to six refer to the perfor- 

ance indicators. Column 3 indicates the average optimality gap. 

ere it becomes clear that the SAA-RSP algorithm with two pri- 

rities leads to better results, i.e., an optimality gap of 7 . 24% with

ne priority and 4 . 91% with two priorities. However, this is accom- 

anied by a longer runtime. The average number of iterations in- 

reases by 10, as shown in the fourth column. The same can be 

een in the algorithms runtime for solving the second stage in par- 

llel (Column 5) and not in parallel (Column 6). 

It is interesting that the SAA-RSP with a warm start and | P| =
 only needs one iteration to terminate. This is mainly because of 

he randomness of absences, i.e., a resident is often only absent 

or one day. The initialized training schedule is already at a (local) 

ptimum and cannot change further with only one priority. If the 
s

1273 
umber of priorities is set to two, the number of iterations and 

he runtime increases significantly. On average, it also remains well 

elow that of the classic SAA-RSP. The optimality gap is even better 

n each of the 100 instances, with an average of 2 . 56% . 

Batching is only performed for instances with two priorities be- 

ause the (local) optimum is also given in this approach for one 

riority. In most cases, the batching terminates due to the time 

imit. The average aggregated runtime is 3350 seconds. However, 

ecause of the smaller number of simultaneously considered sce- 

arios (10 per iteration), this method can perform significantly 

ore iterations in time – on average, 35.6. A rather surprising re- 

ult is the optimality gap. This gap averages 2 . 56% , like the warm

tart. One reason for the good performance of batching can be the 

hange of scenarios. As the procedure often solves a different com- 

ination of scenarios, the algorithm does not necessarily move to 

 fixed local optimum. Concluding, batching is not only advanta- 

eous for reasons of computing capacity – the total runtime was 

xed at one hour in the tests – but is also equivalent to a warm 

tart in terms of solution quality. 

To show that the chosen total number of scenarios (10 or 50) is 

ufficient for the evaluation, we test the generated solution of the 

raining schedule on scenarios out of the sample, i.e., the second 

tage is run once for every scenario with the final training sched- 

le of an instance as input ( Santoso et al., 2005 ). For this purpose,

e use 500 additional scenario trees generated in the same way 

s before. The objective function value is not a good tool for com- 

arison since it depends significantly on the number of missing 

esidents. For this reason, we compare the number of residents 

ith unexpected assignments, i.e., assignments that deviate from 

he training schedule. We follow a two-step approach. First, we an- 

lyze differences in the expected value. The results show that the 

eviations are significantly different with a p -value of 2 . 4 × 10 −24 

hen the training schedule is determined with only 10 scenarios, 

.e., 10 scenarios are not sufficient to generate a stable solution out- 

ide the sample. In contrast, there is no significant difference with 

 p -value of 0.06 when the training schedule is determined with 

0 scenarios. Second, we evaluate whether the variance of differ- 

nt scenario trees is the same. For the training schedule with 50 

cenarios, we could not find a significant difference in the number 

f unexpected assignments using a Levene test with the smallest 

 -value of 0.05. Thus, we can conclude that a scenario size of 50 is

ufficient to generate a stable training schedule for our problem. 

.2. Managerial insights of annual resident scheduling 

In this part of the study, we will take a closer look at the man-

gerial implications of our modeling approach. First, we analyze 

he effect of training priorities by assuming a different number of 

riorities for the same instances. In the second part of our analysis, 

e will change the number of overnight duties and the workforce 

ize to evaluate their impact. 

Effect of training priorities 

In this last part of the study, we analyze the effect of priorities 

n the stability of the training schedule. Remember that a training 

chedule is stable if all assignments in the daily schedule match 
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Table 6 

Overview of the assignments in the daily schedule per resident according to the training schedule . 

Total assignments With p = 1 With p = 2 With p = 3 Unexpected assignments 

| P| = 1 5% Mean 154.6 143.5 – – 11.1 

Min 123 95 – – 0 

Max 189 189 – – 41 

10% Mean 144.3 130.1 – – 14.1 

Min 112 80 – – 0 

Max 178 178 – – 45 

20% Mean 123.6 116.0 – – 7.5 

Min 96 81 – – 0 

Max 150 148 – – 33 

| P| = 2 5% Mean 154.6 143.4 9.4 – 1.8 

Min 120 94 0 – 0 

Max 194 191 31 – 17 

10% Mean 144.3 134.4 8.8 – 1.1 

Min 105 81 0 – 0 

Max 180 178 35 – 14 

20% Mean 123.6 116.1 7.0 – 0.4 

Min 96 80 0 – 0 

Max 153 150 30 – 8 

| P| = 3 5% Mean 154.6 143.4 9.4 0.1 1.6 

Min 117 88 0 0 0 

Max 193 189 34 4 16 

10% Mean 144.3 134.4 9.8 0.1 0.0 

Min 110 89 0 0 0 

Max 177 176 39 4 1 

20% Mean 123.6 116.1 7.1 0.0 0.4 

Min 96 78 0 0 0 

Max 153 149 29 3 7 
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he assignments in the training schedule. We will use the average 

umber of unexpected assignments as a measure for the stability. 

or this purpose, we use the previous studies’ results and consider 

he daily schedule assignments in detail, i.e., the daily schedules 

f all used scenarios. Additionally, we extend the number of prior- 

ties to at most three and consider absence rates of 5% , 10% , and

0% . Thus almost 1.0 0 0,0 0 0 individual plans from the daily sched-

les are analyzed, i.e., all rosters from the scenarios of the differ- 

nt instances. As in the previous study, there is no difference in 

he number of scenarios for the instances, so in the following, we 

nly distinguish between the number of priorities and the absence 

ate. Table 6 summarizes the assignments of each resident in the 

aily schedule according to the resident schedule. We first discuss 

he base case with an absence rate of 10% and then compare the 

esults with the absence rate of 5% and 20% . 

The first three columns declare each row’s information, i.e., the 

verage, minimum, maximum value using one, two, and three pri- 

rities with an absence rate of 5% , 10% , and 20% . The next column

ives information about the average number of total assignments 

er resident. On average, each resident has 144.3 assignments in 

he daily schedule over the year. While the average number of 

ssignments is identical regardless of the number of priorities, the 

aximum (from 177 to 180) and minimum (from 105 to 112) num- 

er changes depending on the number of priorities. Remember 

hat a resident cannot be assigned to the daily schedule after an 

vernight duty. 90% of all assignments are correct according to the 

raining schedule using only one priority. Consequently, an average 

f 10% of the assignments does not correspond to the training 

chedule. This leads to more than two months of assignments in 

n unexpected department (45 days) in individual cases. Since 

hese assignments are not made in one go, this can lead to a loss 

f quality in the respective departments and the training of the 

esidents. If the number of possible priorities is increased from one 

o two, the situation already changes drastically. Surprisingly, with 

wo and three priorities, the algorithm can assign on average more 

esidents with their first priority in the daily schedule, i.e., 93% 

ersus 90% . One reason for this could be that the algorithm with 

wo priorities drives to other solution regions and thus reaches 
1274 
ifferent (local) optima. However, the most interesting point is 

he number of unexpected assignments. These can be almost 

ompletely eliminated with two priorities, i.e., on average, one un- 

xpected assignment per resident in a year. Using three priorities 

educes the number even further, with at most one unexpected 

ssignment per resident. From this it can be concluded that in 

he case under consideration already three out of a maximum of 

4 possible priorities are sufficient to generate a stable training 

chedule. If we compare the different absence rates, we can see 

 similar behavior, i.e., two priorities support the planner with 

 stable training schedule. However, we can see an interesting 

spect with one priority in the 20% case. The average number 

f unexpected assignments is lower than in the other two cases, 

.e., 7.5 ( 20% ) versus 11.1 ( 5% ) and 14.1 ( 10% ). This is because the

umber of absent residents is higher than the number of potential 

ackups, i.e., some positions cannot be reassigned due to absences. 

An advantage from an application perspective is that not every 

esident is assigned to a department in every period with all prior- 

ties, i.e., Constraints (2) allow a maximum of one assignment per 

riority. Consequently, residents do not receive unnecessarily more 

nformation, i.e., the model determines the potential replacement 

esidents. Additionally, the planner has fewer options to choose 

rom in case of absences. This is an advantage since the operational 

e-planning will not affect the training progress of the individual 

esidents. Considering the number of priorities, we were able to 

how that just two priorities are sufficient to eliminate almost all 

nexpected assignments. While three priorities have slightly fewer 

nexpected assignments than two priorities, the information gain 

s out of balance in our view, i.e., a resident is assigned to a depart-

ent with priority three at most four times over the year. Based 

n these results, we recommend at least two priorities in the an- 

ual planning of residents for our use case. 

Effect of duties and workforce size 

In Section 1 , we motivated that overnight duties affect the 

raining progress since a resident needs a day off after working an 

vernight duty. From a managerial perspective, hospital manage- 

ent can allow more experienced physicians (specialists) to work 

n overnight duty if it is not part of the training program. We an- 
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Table 7 

Average assignments in the daily schedule per resident according to the training schedule . 

| I| Duties Total assignments With p = 1 With p = 2 Unexpected assignments 

64 on 133.6 129.2 4.4 0.0 

off 187.0 164.0 22.1 1.0 

72 on 139.5 132.3 6.8 0.3 

off 187.1 157.3 21.3 0.8 

80 on 144.3 134.4 8.8 1.1 

off 187.1 156.0 19.9 11.2 

160 on 181.7 142.3 31.0 8.4 

off 203.0 164.4 27.2 11.5 
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lyze the impact of overnight duties on training. In addition, we 

nalyze the impact of changing staffing levels on the stability of 

he training schedule. We analyze a total of eight different settings, 

.e., we consider staffing levels of 64, 72, 80 (base case), and 160 

esidents with and without all 17 types of duties. The other pa- 

ameters stay unchanged, except for the case with 160 residents. 

ere, we increase the minimum ( D 

daily 

dt 
) and maximum demand of 

he departments ( D 

daily 

dt ) by 100% as well. We analyze the different 

ases in the same way as in the previous study, i.e., we measure 

he number of assignments according to the training schedule. The 

esults are given in Table 7 . 

The first two columns give information on the analyzed case, 

.e., the number of residents | I| and if duties are considered (on) 

r not (off). The next column gives information about the aver- 

ge number of total assignments per resident. An expected result 

s that residents can be assigned more often to a department if 

hey do not have to work overnight duties (no day off require- 

ent on the next working day), i.e., the training progress can be 

ncreased. Moreover, this effect is higher when the staffing level 

ecreases. While the average number of assignments for the base 

ase (80 residents) increases by 42.8 assignments from 144.3, this 

ifference is 47.6 for 10% and 53.4 for 20% workforce reduction. On 

he other hand, if the number of residents increases by 100% , the 

ffect is smaller in magnitude, with 21.3 additional assignments, 

ut still there. These values precisely match the potential number 

f days off due to the overnight duties, which are not needed as 

uties are not considered. The last three columns show how many 

ssignments match their first and second priority in the training 

chedule or are unexpected. A non-intuitive observation is that the 

verage number of unexpected assignments increases when resi- 

ents do not have to perform overnight duties. This is true in ab- 

olute values and relative to the total number of assignments. This 

ehavior is especially prevalent in the case of 80 residents, where 

he number of unexpected assignments increases by 10.1 assign- 

ents per resident. One reason is that the different requirements, 

.e., for duty and department demand as well as the training, are 

atched with the number of residents (i.e., the staff and require- 

ents planning are well aligned in our real-world data). When du- 

ies no longer need to be staffed (by residents), more residents are 

n the system daily. As a consequence, the upper demand limit of 

epartments ( D 

daily 

dt ) is reached more often, so residents have to 

e assigned to another department. If this is the case, the number 

f priorities would have to be increased, as shown in the previ- 

us study, to avoid unexpected assignments. Please note that in- 

reasing the upper demand limit of a department cannot easily be 

one as the value, amongst other things, depends on the infras- 

ructure (e.g., the number of operating rooms to provide service). 

dditionally, we can see that decreasing the number of residents 

ncreases the relative number of assignments according to the first 

riority in the training schedule. Reducing the number of residents 

y 20% increases the number of first-priority assignments by 4% . If 

he number of residents is increased by 100% , this value decreases 

y 14% . To summarize our findings, reducing the number of du- 
f

1275 
ies has a positive effect on the training of the residents, i.e., they 

an be assigned more often to a department necessary for training. 

owever, the trade-off for the increase in total assignments is that 

ore priorities are needed to reduce the number of unexpected as- 

ignments. Overall, we show that the system setting affects train- 

ng and that some hidden relations exist. Therefore, management 

hould be cautious when changing the setting (e.g., relieving resi- 

ents from duty assignments). 

. Conclusions 

The annual planning of residents is a complex and recurring 

roblem. Although the problem is suitable for automated planning, 

t is still often done by hand. Since departments’ changes for res- 

dents are accompanied by much preparation and stress, a stable 

raining schedule is useful. Due to physicians’ increasing shortage, 

ospitals are competing with each other to attract the best resi- 

ents. Consequently, they have to emphasize themselves on differ- 

nt levels against their competitors. One possibility is to provide 

igh-quality training schedules that ensure the defined goals are 

et in time. 

In this work, we investigated the operative level’s effects in 

erms of daily and duty scheduling on residents’ annual plan- 

ing in terms of planning reliability. We could identify a chang- 

ng demand within a week, absences resulting from overnight du- 

ies, and other absences such as workshops, conferences or sick- 

ess as sources of disturbance. To avoid unforeseen changes in de- 

artments due to these disturbances, we developed an innovative 

ew formulation for the annual planning of residents, which has 

 schedule with multiple assignments (priorities) per resident as 

utput. By using different priorities on a tactical level, residents 

et more information about their planed assignments. The plan- 

ers also get a smaller selection of possible replacements in case 

f absences without neglecting training goals. For short term re- 

lanning, unplanned delays in training can be prevented. Besides, 

e have derived an analytic bound for the problem formulation, 

hich is superior to the LP bound and can be calculated with al- 

ost no time effort. Furthermore, we have derived a bound by 

ur solution method. Although this work deals specifically with the 

lanning of residents, this model can also be applied to other areas 

here personnel can be assigned to different departments/ areas. 

In the experimental study, we showed that the analytic bound 

ecomes increasingly stronger as the number of priorities in- 

reases. The performance analysis of the SAA-RSP algorithm 

howed that a warm start with the solution of the determinis- 

ic problem and in combination with a batching scheme is ad- 

antageous both in terms of solution quality and solution time. 

hen it comes to the number of priorities, the hospital manage- 

ent can choose between one and the number of departments. 

hile with each additional priority the probability of an assign- 

ent corresponding to the training schedule increases, the increas- 

ng number of priorities decreases the quality of information, e.g., 

ith 5 different departments and a training schedule with 5 dif- 

erent priorities it is clear that one will be assigned to one of 
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hese departments. For our case, we were able to show that just 

wo out of at most 14 priorities, i.e., preferable sequence of the 

ubset of departments, are sufficient to eliminate almost all un- 

xpected assignments. While the appropriate number of priorities 

ay vary depending on the case, the biggest reduction in unex- 

ected assignments is provided by one additional priority. How- 

ver, we were also able to identify the limitations of this approach. 

or example, a planner can only reassign positions if enough res- 

dents are available, i.e., there is a correlation between the mini- 

um demand per department and the number of residents em- 

loyed. Based on these results, we recommend at least two prior- 

ties in the annual training planning of residents. This allows min- 

mizing re-planning effort s in terms of the training schedule and 

voids possible deviations from training goals by residents. Conse- 

uently, our approach saves additional planning time and enables 

he residents to better prepare for the possible assignments. Even- 

ually, this will increase the quality of the training and the qual- 

ty of care in the long term. An interesting outcome is that re- 

ucing the number of duties increases the number of unexpected 

ssignments. Meaning that hospital management has to deal with 

he trade-off between additional assignments relevant to the train- 

ng and the number of priorities to generate a stable training 

chedule. 

The literature review showed that resident scheduling problems 

ften consider a single case. In order to give future researchers an 

asy entry into the topic, a provision of test data sets with differ- 

nt characteristics would be a desirable contribution. Even though 

he SAA-RSP algorithm delivers excellent results, the process can 

till be improved. It is not always possible to find an optimal solu- 

ion in its current form because the procedure has no exploration 

tep, i.e., it cannot escape from a local optimum. However, the lit- 

rature has many ideas to avoid this problem. A simple possibility 

ould be to use different feasible training schedules as a starting 

olution. Moreover, alternative solution techniques can be used to 

odel the uncertainty of the problem and give some theoretical 

ontributions. Instead of a two-stage solution approach, the dy- 

amics of the problem could be considered using a multi-stage 

pproach. This approach should be possible since the uncertain- 

ies are realized independently and incur at different times during 

he horizon. Herewith, it should be possible to follow the train- 

ng program more accurately. A possible price is a delayed in- 

ormation transfer about the changes in the schedule. Identifying 

nd evaluating this trade-off would fill an interesting research gap. 

esides improving the solution procedure, one can also consider 

ossible extensions. By decomposing the problem, both the tacti- 

al and operational levels can be extended almost independently. 

specially the tactical level with the training schedule has poten- 

ial because this level can be solved quickly. The operational level 

an be exchanged almost one-to-one with other models of oper- 

tional planning from the existing literature. However, it must be 

onsidered that the operative models’ solution is the procedure’s 

ottleneck, and more complex models often increase the solution 

ime. 
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ppendix A 

Please find a summary of all used notation in the following. 
1276 
Sets with indices 

I set of residents (index i ) 

J set of departments (index j) 

D set of overnight duties (index d) 

W set of weeks (index w ) 

T set of days in a week (index t) 

T 

work set of working days in a week ( T 

work ⊆ T ) 

L set of seniority level (index l) 

P set of priorities (index p) 

S set of scenarios (index s ) 

Parameters 

T off
iwts 

1, if resident i is absent on day t in week w in scenario s , 0, 

otherwise 

L duty 

dl 
1, if overnight duty d requires seniority level l, 0, otherwise 

L daily 

jl 
1, if department j requires seniority level l, 0, otherwise 

L resident 
ilw 

1, if resident i has seniority level l in week w , 0, otherwise 

G 24h maximum number of overnight duties to be assigned to one 

resident in a single week 

D 
duty 

dt maximum demand of residents for overnight duty d on day t

D 
daily 

jt maximum demand of residents for department j on day t

D daily 
jt 

minimum demand of residents for department j on day t

M 

training 

i j maximum number of weeks resident i should be assigned to 

department j in the training schedule 

M 

training 
i j 

minimum number of weeks resident i should be assigned to 

department j in the training schedule 

K j block length of department j in the training schedule 

C daily cost per resident missing to satisfy minimum demand on a 

department 

R duty reward for assigning a resident to an overnight or weekend duty 

R daily reward for assigning a resident to a department 

R training 
p reward for assigning a resident to a department as planned in 

the training schedule 

p s probability for a realization of scenario s 

Decision variables 

x i jwp 1, if resident i is assigned to department j in week w with 

priority p

in the training schedule, 0, otherwise 

y i jwts 1, if resident i is assigned to department j on day t in week w in 

scenario s , 0, otherwise 

z idwts 1, if resident i is assigned to duty d on day t in week w in 

scenario s , 0, otherwise 

δdaily 
jwts 

resident deficit for department j on day t in scenario s in week w 

πi jwpts 1, if resident i is assigned to department j in week w with 

priority p in scenario s 

in the training schedule and daily schedule, 0, otherwise 

ax 
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

p∈ P 

∑ 

s ∈ S 

R 

training 
p p s πi jwpts 

+ 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

s ∈ S 

R 

daily p s y i jwts 

+ 

∑ 

i ∈ I 

∑ 

d∈ D 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

s ∈ S 

R 

duty p s z idwts 

−
∑ 

j∈ J 

∑ 

w ∈ W 

∑ 

t∈ T 

∑ 

s ∈ S 

C daily p s δ
daily 
jwts 

∑ 

j∈ J 

x i jwp ≤ 1 ∀ i ∈ I , w ∈ W , p ∈ P 

∑ 

w ∈ W 

∑ 

p∈ P 

x i jwp ≤ M 

training 

i j ∀ i ∈ I , j ∈ J 

∑ 

w ∈ W 

x i jw 1 ≥ M 

training 
i j 

∀ i ∈ I , j ∈ J 

∑ 

j∈ J 

x i jwp −
∑ 

j∈ J 

x i jwp ′ ≥ 0 ∀ i ∈ I , w ∈ W , p, p ′ ∈ P, p < p ′ 

 i jwp + x i jwp ′ ≤ 1 ∀ i ∈ I , j ∈ J , w ∈ W , p, p ′ ∈ P, p < p ′ 

 i jw ′ p ≥ x i jwp − x i jw −1 p ∀ i ∈ I , j ∈ J , w ∈ W \ 
{| W | − K j + 1 , . . . , | W |} , p ∈ P, 

w 

′ ∈ { w + 1 , . . . , w + K j − 1 } 
 i jw ′ p ≥ x i j1 p ∀ i ∈ I , j ∈ J , p ∈ P, w 

′ ∈ { 2 , . . . , K j }∑ 

i ∈ I 

y i jwts ≤ D 

daily 

jt ∀ j ∈ J , w ∈ W , t ∈ T , s ∈ S 

https://doi.org/10.13039/501100001659
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y

z

 

 

π

π

π

x

δ

S

f

R

A

A

A

A  

B

B  

B  

B  

B

B

d  

C

C  

D  

D  

E

E

E  

E

F

F  

F

G

G

G

G

G

G

K  

K

K

K

L

L

L  

M  

M

M  

O

∑ 

i ∈ I 

y i jwts + δdaily 
jwts 

≥ D 

daily 
jt 

∀ j ∈ J , w ∈ W , t ∈ T , s ∈ S 

∑ 

j∈ J 

y i jwts ≤ 1 − T off
iwts ∀ i ∈ I , w ∈ W , t ∈ T , s ∈ S 

 i jwts ≤
∑ 

l∈ L 

(L daily 

jl 
L resident 

ilw ) ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , s ∈ S 

∑ 

i ∈ I 

z idwts ≤ D 

duty 

dt ∀ d ∈ D, w ∈ W , t ∈ T , s ∈ S 

∑ 

d∈ D 

z idwts ≤ 1 − T off
iwts ∀ i ∈ I , w ∈ W , t ∈ T , s ∈ S 

 idwts ≤
∑ 

l∈ L 

(L duty 

dl 
L resident 

ilw ) ∀ i ∈ I , d ∈ D, w ∈ W , t ∈ T , s ∈ S 

∑ 

d∈ D 

∑ 

t∈ T 

z idwts ≤ G 

24h ∀ i ∈ I , w ∈ W , s ∈ S 

∑ 

d∈ D 

3 z idw (t−1) s ≤ 3 −
∑ 

d∈ D 

z idwts 

−
∑ 

j∈ J 

y i jwts − T off
iwts ∀ i ∈ I , w ∈ W , t ∈ T , s ∈ S , t − 1 > 0

∑ 

d∈ D 

3 z id(w −1)7 s ≤ 3 −
∑ 

d∈ D 

z idw 1 s 

−
∑ 

j∈ J 

y i jw 1 s − T off
iw 1 s ∀ i ∈ I , w ∈ W , s ∈ S , w − 1 > 0

i jwt ps ≤ x i jwp ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P, s ∈ S 

i jwt ps ≤ y i jwts ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P, s ∈ S 

i jwt ps ≥ x i jwp + y i jwts − 1 ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P, s ∈ S 

 i jwp , y i jwts , z idwts ∈ { 0 , 1 } ∀ i ∈ I , j ∈ J , w ∈ W , t ∈ T , p ∈ P, s ∈ S 

daily 
jwts 

∈ Z + ∀ j ∈ J , w ∈ W , t ∈ T , s ∈ S 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2023.02.007 . 
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