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The aim of this paper is to further develop mathematical models for bleb formation in cells, including
cell membrane interactions with linker proteins. This leads to nonlinear reaction–diffusion equations on a
surface coupled to fluid dynamics in the bulk. We provide a detailed mathematical analysis and investigate
some singular limits of the model, connecting it to previous literature. Moreover, we provide numerical
simulations in different scenarios, confirming that the model can reproduce experimental results on bleb
initiation.
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1. Introduction

Bleb formation or ‘blebbing’ is a biological process during which the cell membrane of a eucaryotic cell
is disconnected from the cell cortex. The inflowing cytosol pushes out the free membrane part which
builds a protrusion called a bleb. Due to regeneration mechanisms of the cell the membrane connection
to the cortex is restored and the protrusion is healed after some time. Despite these phases seem to be
well established the particular cause for the transition from one phase to the other or the initialization
of the whole process are still subject to debate. Blebbing has been related to many interesting biological
processes such as mitosis (Boss, 1955), cell spreading (Breiter-Hahn et al., 1990) and apoptosis
(Robertson et al., 1978). It has also been noticed as migration mechanism, especially in embryonic
(Concha & Adams, 1998; Hofreiter, 1943) and cancer cells. Nevertheless, according to Charras et al.
(2008), the lamellipodia migration mechanism had received a lot more interest and the authors found
it necessary to emphasize the importance of deeper investigations into bleb formation. Following their
promotion effort has been made to derive bio-physical models and develop an understanding of this
phenomenon by numerical means focusing on fluid–membrane interaction (Strychalski & Guy, 2013,
2016; Young & Mitran, 2010), on membrane dynamics including linker influence Lim et al. (2012)
or on linker kinetics Alert et al. (2015). There has also been effort in enhanced mechanical modelling
(Woolley et al., 2014) and on developing models of a full bleb life cycle in three dimensions (Manakova
et al., 2016).
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2 P. WERNER ET AL.

In this work we propose a model for bleb formation in three dimensions taking into account the
following aspects:

• elastic properties of the membrane described via Canham–Helfrich energies;

• forces of the actin cortex exerted on the membrane via linker proteins;

• activation and deactivation of linker proteins as well as possible movement of the proteins;

• intracellular fluid–dynamics and the corresponding fluid–structure interaction.

A key issue of the cell blebbing phenomenon is the fact that there are actually two free boundaries,
the membrane and the cortex that strongly interact via linker proteins. We describe the membrane by
a height relative to the cell cortex, which is subject to forces exerted by a surrounding fluid as well as
proteins that connect the cell membrane with the cell cortex and act like springs (cf. Alert et al., 2015).
We take into account that these proteins may disconnect by introducing a ripping rate function whose
steepness is controlled by a small parameter ϑ . This way we rediscover the model of Lim et al. (2012)
by ignoring movement of the linker proteins and passing to the limit ϑ ↘ 0.

Besides the detailed mathematical modelling we provide a detailed analysis of the model in the case
of small deformations of the membrane relative to the cortex, where a linearization of the mechanics
applies. The key nonlinearities we focus on are hence due to the presence of the linker proteins. Besides
well posedness of the time-dependent model we prove the existence of stationary solution and show
that some critical pressure (e.g. arising from cortex contraction) is necessary and sufficient to form a
bleb, which we define as a deformation above a critical height of the membrane relative to the cortex at
which linkers are ripping off. As mentioned above we study singular limits and show that the models of
Alert et al. (2015) and Lim et al. (2012) arise as special cases respectively scaling limits of our model.
Moreover, we provide a numerical study of the bleb initiation by a critical pressure.

The paper is organized as follows: after having fixed some basic notational conventions in Section 2,
we derive a fourth-order evolution system of equations in Section 3 starting from first principles. The
main result of Section 4 is a global-in-time existence theorem for solutions of this system. The following
Section 5 is devoted to proving existence of stationary solutions and studying stability of a particular
subclass of stationary solutions by means of nonlinear semigroups. The analytical part of this paper ends
with Section 6, in which we pass to the limit ϑ ↘ 0 in the parameter controlling the disconnection rate.
Finally, we illustrate some properties of our model numerically by presenting simulations of different
biological situations in Section 7 and conclude in Section 8.

2. Preliminaries

General By IX we denote the identity on the set X. We denote the minimum of two values x and y by
x∧y. Let F : X → Y for Banach spaces X and Y; the Gateaux derivative of F in direction v ∈ X at x ∈ X,
if it exists, written as d

dv (F)
∣∣

x. The space of Radon measures or regular, countably additive measures
on a measurable space Ω ⊆ R

n that is absolutely continuous with respect to the Lebesgue measure is
rca(Ω).

Differential operators and vectorial Sobolev spaces Gradients ∇u (in the weak and strong sense and
independent of whether they are on open sets or manifolds) of scalar functions u are column vectors.
The Jacobian ∇v of a vector-valued function v is the matrix whose lines are the transposed gradients of
the components of v. We write J (v) = (∇v + (∇v)T

)
for the symmetrized gradient. The set of k-times,

k � 0, weak differentiable, X-valued functions, where X is a vector space, on some open set Ω ⊆ R
3 is
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 3

Hk(Ω , X). We will also employ the subspaces of mean-value-free functions,

Hk
mvf(Ω) =

{
u ∈ Hk(Ω)

∣∣∣∣ˆ
Ω

u dx = 0

}
,

of functions with time-constant mean value,

Ccmv([0, T], X) =
{

u ∈ C([0, T], X)

∣∣∣∣ 
Ω

u(t, x) dx =
 
Ω

u(0, x) dx for a.e. t ∈ [0, T]

}
,

T ∈ [0, ∞), of solenoidals functions,

Hk
σ (Ω) = {u ∈ C∞(Ω) | ∇ · u = 0}Hk(Ω)

,

and the traces of solenoidal functions,

Hk
γ0σ
(M,R3) =

{
u ∈ Hk(M)

∣∣∣∣ˆ
M

u · νM dσ 2 = 0

}
,

where M ⊆ R
3 is some two-dimensional manifold with outer unit normal field νM and σ 2 the Hausdorff

measure with Hausdorff dimension two.

Shape derivatives For denoting the shape derivative of a functional W in directions θ and ϑ we
following the notation in Delfour & Zolésio (2011) using d (W; θ) for the first and d2 (W; θ ,ϑ) for
the second shape derivative. We denote by

Mδ[v] = {x + δv(x) | x ∈ M},

for a hypersurface M, δ ∈ I ⊆ R, I being an interval, and v : M → R
3, the perturbation of M by

v. In this particular case the shape derivative of the functional W being defined on Mδ[v] is d (W; v)
= d

dδ

(
W

(
Mδ[v]

))∣∣
δ=0.

Differential geometry The notation of this paragraph follows Amann & Escher (2006) and Barrett
et al. (2020). With Diffq(X, Y) we denote the set of all Cq-diffeomorphisms mapping the Banach space
X into the Banach space Y . The set of functions{

ϕ : J × X → Y
∣∣∣∀s ∈ J : ϕ(s, ·) ∈ Diffq(X, Y) ∧ ∀x ∈ X : ϕ(·, x) ∈ Ck(J, Y)

}
,

where J is a real interval, is denoted by Diffk,q(J × X, Y). We call an n-dimensional manifold Γ ⊆ R
n+k

a real submanifold. The tangent space of a real submanifold at a point p ∈ Γ is denoted by TpΓ ⊆ R
n+k.

Let
(
Γs

)
s∈J be a family of real submanifolds in R

n with a mapping X : J×Γ → ⋃
s∈J Γs such that Xs

is a global parametrization of Γs on a reference manifold Γ . We call the set G(Γs; s ∈ J) = ⋃
s∈J{s}×Γs

an evolving manifold. If Γs are hypersurfaces, then we use the term evolving hypersurface. For functions
f s : Γs → N, where N is a set, we define the function

f : G(Γs; s ∈ J) → N, (s, x) �→ f s(x).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/4/1/tnaa001/5824022 by U

niv Augsburg user on 15 February 2023



4 P. WERNER ET AL.

An evolving manifold G(Γs; s ∈ J) is smooth if TpG(Γs; s ∈ J) �= {0} × R
n for all p ∈ G(Γs; s ∈ J).

For such a smooth evolving manifold we denote the velocities ∂s(X
s)
∣∣

r ◦ (Xr)−1 by Vr. If the manifolds
are orientable, i.e., there exist smooth outer unit normal fields νs : Γs → R

3, then the velocities can
be decomposed in their normal Vs

ν = Vs
ννs, Vs

ν = Vs
ν · νs and tangential Vr

τ components. We define a
differential operator

∂◦
s (f )| r = ∂s

(
f ◦ (s, θ) �→ (

s,Xs(θ)
))∣∣

r ◦ (
Xr)−1

called the material derivative (of f with respect to X).— The parametrization mapping shall always be
given by the context if not stated explicitly.

For any real submanifold Γ ⊆ R
n, the tangential gradient ∇Γ of a function f : Γ → R at p ∈ Γ is

given by

∇Γ (f )
∣∣

p = PTpΓ

(
∇(f̄ )∣∣ p

)
,

where f̄ is any differentiable extension of f to an open neighbourhood of p in R
n and PTpΓ

is the
orthogonal projection onto the tangent space TpΓ of Γ at p. The projection matrix l − νΓ (p) ⊗ νΓ (p)
and the projection PTpΓ

are identified. This way, we also acquire the partial tangential derivatives

∂Γ ,i(f )
∣∣

p =
(
∇Γ (f )

∣∣
p

)
i
, i ∈ {1, . . . , n}.

For a differentiable, orientable real submanifold Γ ⊆ R
n with normal field ν, we denote the

Weingarten map by HΓ : Γ → R
(n,n), p �→ ∇Γ (ν)

∣∣
p. Then, the mean curvature of Γ is HΓ =

tr(HΓ ) = ∇Γ · ν and the Gaussian curvature is KΓ = det
(
HΓ

)
.

Physical dimension and units The sets Rn, n ∈ N, are identified with the product sets Rn × D × U,
where D is the set of all physical dimensions D = {T,L,M,N, . . . } (meaning time, length, mass, etc.)
and U the set of all physical units. For x ∈ R

n, we denote by 〈x〉 its second component (called the
physical dimension of x). When we write x, we always refer to the first component.

3. Modelling

As mentioned in the introduction, many details of the process of bleb formation are still subject to
research and not fully understood. Therefore, we aim at a rather abstract model following the general
description of the process in Charras et al. (2008): the main parts of a eucaryotic cell that are involved
in bleb formation are the cell membrane, which is basically a bilayer of lipid molecules, the cell
cortex, which is a network of actin fibres, and elastic proteins which connect the cell cortex to the cell
membrane. These linker proteins are only stretchable to a certain length above which they disconnect
from the membrane. Inside the cell there is a fluid that is called the cytosol and the cell is itself swimming
in an extracellular fluid. Caused by mechanisms which have not completely been understood yet, a
certain patch of the cell cortex contracts and raises the pressure on the membrane locally. This way, the
corresponding membrane patch is pushed so far away from the cortex that most of the linker proteins
disconnect. The cytosol that pushes against the free membrane patch now causes the formation of a
protrusion which is called a bleb. Over time, the protein linkers are reconnected to the cell membrane
causing the membrane patch to be fixed to the cortex again and the bleb to vanish.
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 5

Fig. 1. Cell geometry.

3.1 The fluid system

Let D ⊆ R
3 be a bounded, connected and open set with sufficiently regular boundary. We require

this set to be partitioned into the open connected set Ωext
0 , modelling a reference region exterior to the

cell, the open connected set Ω int
0 , modelling a reference region interior to the cell, and the boundary

M0 of Ω int
0 , which shall be a two-dimensional orientable C2-manifold, modelling the membrane in its

initial state; its unit normal field is denoted by νM0
: M0 → R

3. The region which is occupied by

the cell at time t ∈ [0, ∞) is given as the image Ω int(t) = Φ(t,Ω int
0 ) of Φ ∈ Diff1,2([0, ∞) × D, D),

where Φ(0, ·) = ID. Consequently, the exterior region is Ωext(t) = Φ
(
t,Ωext

0

)
and the whole domain

is denoted by Ω(t) = Ωext(t) ∪Ω int(t) and M(t) = Φ
(
t, M0

)
. Furthermore, the cell cortex is denoted

by C ⊆ Ω int
0 and is modelled as a sphere which is fixed in time. Figure 1 illustrates a typical geometry

compatible with the previous description.
Both the fluid in the inner region, representing the cytosol, and in the outer region with pressures

pi : Ω i
T → R and velocities ui : Ω i

T → R
3, i ∈ {int, ext}, are described by incompressible stationary

Stokes equations in Eulerian coordinates

μiΔui + ∇pi = 0 (3.1a)

∇ · ui = 0, (3.1b)

on Ω i
T = ⋃

t∈[0,T]{t} ×Ω i(t) with final time T > 0 (time dependency will be brought into the system
by boundary conditions). This is justified by small length scales as in Strychalski & Guy (2013). For
any functions gi : Ω i

T → X, i ∈ {int, ext}, into a vector space X, we associate the function

g(t, x) =
{

gext(t, x) x ∈ Ωext(t)

gint(t, x) x ∈ Ω int(t).
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6 P. WERNER ET AL.

We further pose a homogeneous Dirichlet boundary condition at the exterior boundary

Γ = ∂ (Ω(t) ∪ M(t)) = ∂D,

which does not change over time,

γ0

(
uext) �Γ= 0,

where γ0 is the trace operator. For every t ∈ [0, ∞) let ft ∈ L2
γ0σ

(
M(t),R3

)
,
〈
ft,i

〉 = ML
T2 , i ∈ {1, 2, 3}, be

a force we will specify below. The stress at the interface M(t) is subject to a Neumann-type boundary
condition:

�T(t, ·)� νM(t) = ft, (3.2)

where T = μJ(u) − pl is the Cauchy stress tensor of the interior and exterior fluid and we define

�g� (t, ·) = γ0

(
g �Ωext

T
(t, ·)

)
�M(t) −γ0

(
g �Ω int

T
(t, ·)

)
for any function g : Ωext

T ∪Ω int
T → X. To assure

well posedness of the problem we further require

�u� = 0 on M(t).

Taking an energetic point of view we consider a variational formulation of the Stokes equations (3.1)
with boundary conditions (3.2) (the no-jump condition is encoded in the solution space):

Problem 3.1 Find u ∈ H1
(
[0, T], H−1

(
D,R3

)) ∩ L2
(
[0, T], H1

0

(
D,R3

))
and p ∈ L2

(
[0, T], L2(D)

)
such that

μ

2

(
J(u), J(ϕ)

)
L2(D,R(3,3))

− (p, ∇ · ϕ)L2(D) = (ft,ϕ)L2(M(t),R3) (3.3a)

(∇ · u, q)L2(D) = 0 (3.3b)

for all ϕ ∈ H1
0

(
D,R3

)
and q ∈ L2(D).

Remark 3.2 Another formulation of the Stokes equations includes the term (∇u, ∇ϕ)L2(D,R(3,3)) instead

of 1
2

(
J(u), J(ϕ)

)
L2(D,R(3,3))

. We observe that, because of u being solenoidal,

(
∇u, (∇ϕ)T

)
L2(D,R(3,3))

=
(
(∇u)T , ∇ϕ

)
L2(D,R(3,3))

= −
(
∇ · (∇u)T ,ϕ

)
L2(D,R3)

= 0,

so both expressions are equal. The motivation to use the latter is related to the structure of the employed
Neumann boundary conditions.

We introduce a function h : [0, T] × C → R, 〈h〉 = L, which is intended to give the membrane’s
height relative to the cortex in normal direction νC, i.e.,

M(t) = {
x + h(t, x)νC(x) |x ∈ C

}
. (3.4)

We further require M(t) lying in a sufficiently small tubular neighbourhood of C (this approach is
analogous to Elliott et al., 2017):
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 7

Condition 3.3 Let Uδ (C) = {
x + δνC(x) | x ∈ C

}
, δ > 0. Then M(t) ⊆ Uδ (C), such that the

orthogonal projection
PC : Uδ (C) → C(t), y �→ arg minx∈C ‖y − x‖2

exists.

Yet there is no guarantee that the mapping in (3.4) is bijective between C and M(t) as multiple
points in M(t) may have the same projection point rendering the existence of a function h impossible.
Therefore, we also pose an invertibility condition for the parametrization of the membrane over the
cortex:

Condition 3.4 It shall hold,

∂tΦ(t, y) = ∂th(t, x)νC(x) (3.5)

for y ∈ M0, x = PC(y).

Potential energy In view of Condition 3.3, we define a rescaled height h = δ̂h and we may regard
M(t) as small perturbation of C by ĥνC with order of magnitude δ. In particular, we write M(t)
= Cδ

[̂
h(t, ·)νC

]
.

In order to derive a mathematical model, let us turn to the bio-physical properties of the membrane-
cortex system just described: the membrane shall consist of lipid molecules arranged in two layers. On
the cortex, there are proteins connected to the membrane, therefore called linkers proteins. They are
considered stretchable and shall obey Hooke’s law for springs, so we can assign the potential energy
density functional

V(t, h) = 1

2
ξρa ‖h(t, ·)‖2

L2(C) ,

where ξ ∈ L∞(C, [0, ∞)), 〈ξ 〉 = MT−2, is a function playing the role of a spring constant in every
spatial point and ρa ∈ L2(C),

〈
ρa

〉 = L−2, is the density of active linkers (further explanation below,
see Section 3.4). There are several models (cf. Seifert, 1997) for the surface energy of membranes. A
widely used example is the Helfrich energy (cf. Helfrich, 1973 and Zhon-can & Helfrich, 1989):

W(M) =
ˆ

M

κ

2

(
HM + HM

0

)2 + κGKM dσ 2,

where HM : M → R, HM
0 ∈ R and KM : M → R are the mean curvature, spontaneous mean

curvature and Gaussian curvature of M, respectively, with bending rigidity κ and Gaussian bending
rigidity κG.

The second-order expansion of the total energy density of the membrane-cortex system at time
t ∈ [0, ∞) is

V
(
t, δ̂h

) + W
(
Cδ

[̂
hνC

]) = V(t, 0)+ W
(
M0

) + δ

(
d

dδ

(
V
(
t, δ̂h

))∣∣∣∣ 0̂h + d
(
W; ĥνC

))
+ δ2

(
ds

dδs

(
V
(
t, δ̂h

))∣∣
0(̂h, ĥ)+ d2 (W; ĥνC, ĥνC

)) + o(δ3)

= W
(
M0

) + δd
(
W; ĥνC

) + δ2
(

1

2
ξρa

∥∥̂h
∥∥2

L2(C) + d2 (W; ĥνC, ĥνC
))

+ o(δ3),
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8 P. WERNER ET AL.

where we have used that the derivatives of W
(
Cδ

[̂
h(t, ·)νC

])
with respect to δ at 0 are equal to

the shape derivatives of W in direction ĥ(t, ·)νC at zero. If the cortex was an equilibrium shape of
Helfrich’s energy, then we would have d

(
W; ĥνC

) = 0. However, this may be especially not true if
the cortex is contracted due to myosin motor activity. Therefore, we model d

(
W; ĥνC

) = (
δp0, ĥ

)
L2(C)

for p0 ∈ L∞([0, T], L∞(C)) interpreting p0 as a stress that is exerted on the membrane due to the cortex
contraction and transmitted by the fluid. The energy functional up to second order therefore is

I
(
t, ĥ; δ, C, ρa, κ , κG, ξ

) = W
(
M0

) + δ2
((

p0, ĥ
)

L2(C) + 1

2
ρaξ

∥∥̂h
∥∥2

L2(C) + d2 (W; ĥνC, ĥνC
))

.

Remark 3.2 Setting d
(
W; ĥνC

) = (
δp0, ĥ

)
L2(C) introduces a mechanism by which an initially flat

membrane in a resting fluid may be deformed after all: not considering d
(
W; ĥνC

)
as a parameter but

instead taking the terms that come out of a computation of this shape derivative would only change
the coefficients of the ΔCh and h terms in the variational principle we will derive below. The resulting
equation is homogeneous and therefore does not show any deforming behaviour in case the membrane
is initially flat and the fluid velocity zero. The more physical but also rather complex approach for
introducing this mechanism would be to relate the pressure p0 to shape deformations of the cortex and
then describe the influence of p0 on the fluid introducing another surface-bulk coupling this way.

3.2 Connecting the fluid and the membrane model

The fluid system is not closed but subject to external forces ft. This is exactly where the membrane-
cortex system comes into play: the potential energy of this system is considered to be the source of
forces acting on the fluid and therefore being transformed into kinetic energy of the fluid. We also
take a damping effect due to friction between the fluid particles and the cortex into account with a
linear friction model with friction constant c having dimension 〈c〉 = MT−1L−2. In order to enforce
Condition 3.4 these forces are all directed normally to the cortex, so the tangential part of ft is zero:

ft = − d

d̂h

(
I

(
t, ĥ; δ, C, κ , κG, ξ

))∣∣
0ϕ − δ2 (c∂t̂hνC,ϕνC

)
L2(C,R3)

. (3.6)

Recalling (3.5) we have the fluid particles at the membrane moving in the direction of the cortex normal.
Taking the length of the velocity vector to be the change of the membrane’s height in time we have
specified the Dirichlet boundary of u at M(t), and we therefore may express

�
T̂(t, ·)� νM̂(t) = DNt

([
∂t

(
δ̂h(t, ·)) νC]X)

,

where [ϕ]X = ϕ ◦ X(t, ·)−1 for X(t, ·) := IC + h(t, ·)νC and any function ϕ with domain C and

DNt : H1
γ0σ

(
M̂(t),R3

)
→ L2

γ0σ

(
M̂(t),R3

)
is the Dirichlet-to-Neumann operator of the Stokes problem Problem 3.1. A definition and references
to important properties of this operator is given in Appendix A. By combination of both descriptions of
the Neumann data we are going to derive a partial differential equation (PDE) model:
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 9

3.3 PDE description of the height function

Approximation of the Dirichlet-to-Neumann operator For sufficiently regular Stokes flow velocity
we can make use of the small height condition Condition 3.3 to approximate the time-dependent
Dirichlet-to-Neumann operator (see Appendix C) with its stationary version on C. This way we arrive
at a gradient-flow structure

− d

dh

(
I

(
t, ĥ; δ, C, ρa, κ , κG, ξ

))∣∣
0ϕ = δ2 (c∂t̂h(t, ·)νC,ϕνC

)
L2(C,R3)

+δ2 (DN0

(
∂t̂hνC

)
,ϕνC

)
L2(C,R3)

+ o(δ3)

= δ2
((

cIH1(C,R3) + DN0

) (
∂t̂hνC

)
,ϕνC

)
L2(C,R3)

+ o(δ3)

= δ2 〈L (
∂t̂hνC

)
,ϕνC

〉
H− 1

2 (C,R3)
+ o(δ3)

(3.7)

with L = cIH1(C,R3) + DN0 and ϕ ∈ H2(C).
Calculating the variation of the potential energy
To derive a full PDE description for h we have to calculate the variation of the potential energy

functional. So first, we calculate the first and second shape derivatives of W. Recall,

W
(
Cδ

[̂
hνC

]) = κ

2

ˆ
Cδ

[̂
hνC

] (Hδ
)2

dσ 2 + κ

ˆ
Cδ

[̂
hνC

] HδH0 dσ 2 +
ˆ

Cδ
[̂
hνC

] κ2 H2
0 + κGKδ dσ 2,

where Hδ is the mean curvature of Cδ
[̂
hνC

]
Observe that the integral over the Gaussian curvature is constant in δ due to the Gauss–Bonnet

theorem (Cδ
[̂
hνC0

]
is homeomorphic to C) and therefore vanishes when differentiated in δ. The

necessary calculations have been carried out before for the Willmore energy, e.g., in Elliott et al. (2017,
p. 7):

1

2
d2

(ˆ
C

H2 dσ 2; ĥνC

)
=
ˆ

C

(
ΔCĥ + | H|2̂h

)2 + 2HH : 2̂h∇2
Cĥ

+2H∇Cĥ · ∇Cĥ + Hh∇Cĥ · ∇CH

−H2∇Cĥ · ∇Cĥ − 5

2
H2̂hΔCĥ

+̂h2
(

2H tr
(
H3

)
− 5

2
H2|H|2 + 1

2
H4

)
dσ 2.

The additional calculations use the same techniques and the interested reader may consult the appendix
(Corollary 3 and Corollary 5) for details:

d2
(ˆ

C
H dσ 2; ĥνC0

)
=
ˆ

C
2̂h tr

(
H∇2

Cĥ + ĥH3
)

− ĥHΔCĥ − 3̂h2H | H|2 + H∇Cĥ · ∇Cĥ + ĥ2H3 d σ 2
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10 P. WERNER ET AL.

and

d2
(ˆ

C
1 dσ 2; ĥνC0

)
=
ˆ

C
∇Cĥ · ∇Cĥ − h2 | H|2 + h2H2 dσ 2.

Spherical cortex shape Significant simplification of these terms is achieved by considering C to be
a sphere with radius R:

1

2
d2

(ˆ
C

H2 dσ 2; ĥνC

)
=
ˆ

C

(
ΔCh

)2 − 2

R2 ∇Ch · ∇Ch dσ 2

(cf. Elliott et al., 2017) and

d2
(ˆ

C
H dσ 2; ĥνC0

)
=
ˆ

C

2

R
∇Ch · ∇Ch dσ 2

(cf. Corollary 4) and

d2
(ˆ

C
1 dσ 2; ĥνC

)
=
ˆ

C
∇Ch · ∇Ch + 2

R2 h2 dσ 2.

Force density equation All together we arrive at the following expression for (3.7):

− (
ρaξh,ϕ

)
L2(C) − (p0,ϕ)L2(C) − a(h,ϕ) = 〈

L
(
∂thνC

)
,ϕνC

〉
H− 1

2 (C,R3)
, (3.8)

where

a (h,ϕ) = κ
(
ΔCh,ΔCϕ

)
L2(C) + γ

(∇Ch, ∇Cϕ
)

L2(C,R3)
+ λ (h,ϕ)L2(C)

with γ = κ
2

(
− 4

R2 + 2
R H0 + 1

2 H2
0

)
and λ = κ 2

R2 H2
0 .

Remark 3.3 The form a (·, ·) may not be coercive on H2(C) nor may it be non-negative. In order to
assure at least non-negativity, we make the following considerations:

In case H0 � 0, we follow Elliott et al. (2017) and derive a Poincaré-type inequality from Courant’s
min–max principle

ˆ
C

h2 dσ 2 � R2

2

ˆ
C

|∇Ch|2 dσ 2 � R4

4

ˆ
C

(
ΔCh

)2 dσ 2,

where 2
R2 is the second eigenvalue of the Laplace–Beltrami operator, on span {1}⊥, i.e., for all functions

with mean zero. As H2(C) = span{1} ⊕ span{1}⊥ for every u ∈ H2(C) there is a constant m (u’s mean
value) and u0 (being mean-value-free) such that u = m + u0. We observe

a(u, u) = a(m, m + u0)+ a(u0, m + u0) = a(m, m)+ 2a(m, u0)+ a(u0, u0)

� λ ‖m‖2
L2(C) + 2λ(m, u0)L2(C) + λ

∥∥u0

∥∥2
L2(C)

� 0.
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 11

In case H0 < 0 we need a compatibility condition on H0 and R. We require 2
R H0 + 1

2 H2
0 � 0. This

leads to 2
R + 1

2 H0 ≤ 0, and further H0 ≤ − 4
R .

For coercivity we shall therefore require H0 ∈ (0, ∞) ∪ (−∞, − 4
R ).

3.4 Protein linkers

The quantity ρa has been mentioned before in modelling the potential energy of the membrane-cortex
system. It models the density of linkers that are connected to the membrane. We also take linkers into
account that are disconnected and whose density is denoted ρi. Both active and inactive linkers are
considered to be mobile species diffusing on the cortex. Moreover, they are transformed into each other
as result of overstretching above a critical height h∗ ∈ C(C, [0, ∞)), which causes active linkers to
disconnect, or regeneration mechanisms connecting inactive linkers to the membrane again. A reaction–
diffusion kind of system may be used to model these processes:

∂tρa − ηaΔCρa = kρi − r

(
h − h∗

ϑ

)
ρa (3.9a)

∂tρi − ηiΔCρi = −kρi + r

(
h − h∗

ϑ

)
ρa, (3.9b)

where ηa, ηi ∈ [0, ∞) are the active and inactive linker diffusivities, k ∈ [0, ∞) a regeneration rate and
r : R → [0, ∞) a disconnection rate being Lipschitz continuous and r �(−∞,0)= 0 (a typical example
is the non-negative part). The disconnection of linkers from the membrane is considered to be a fast
process. To account for this, a (small) parameter ϑ ∈ (0, ∞) is used for rescaling the argument of r. (In
Section 6, we analyse the solution’s behaviour when ϑ ↘ 0.) For the sake of readability we may use the
abbreviation

rϑ (h) = r

(
h − h∗

ϑ

)
in the following.

Remark 3.4 Approaching the linker movement by a reaction–diffusion model is motivated by the work
of Alert & Casademunt (2016). They consider the following equation for the membrane height h and
linker density ρa (we adopt the notation of this work for their parameters and quantities):

c∂th = p0 − ξhρa (3.10a)

∂tρa = k
(
ρ0 − ρa

) − koff (h) ρa (3.10b)

with a maximal linker density ρ0 and a disconnection rate koff. However, there is an important new aspect
to the model presented here: the concept of inactive linkers is not present in (3.10), but a gauge protein
density ρ0 is assumed of which a part is connected ρa and ρ0 − ρa is disconnected. As consequence of
this condition their approach is limited to scenarios where the cortex is intact. Nevertheless, it has also
been observed (Charras et al., 2008) that bleb formation may be triggered by cortex disruption (leading
to a hole in the cortex). This case is contained in our active–inactive linker setting with ρa(0, x) ≡
ρi(0, x) = 0 for x ∈ D, where D is the area of the hole in the cortex (cf. Section 7.3).

Indeed, (3.10) is a specialization of our model: set ηa = ηi = η and ρa(0, ·)+ ρi(0, ·) ≡ ρ0. Adding
(3.9a) and (3.9b) we get

∂t(ρa + ρi)+ ηΔC

(
ρa + ρi

) = 0,
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12 P. WERNER ET AL.

which is solved by ρa + ρi ≡ ρ0. This way we can express ρi = ρ0 − ρa giving (3.10).

After having derived a PDE model for the blebbing phenomenon we will deal analytically with the
following issues in the next sections:

1. global-in-time existence of weak solutions (Section 4),

2. existence of stationary solutions and their stability (Section 5),

3. convergence of stationary solutions to a singular limit when ϑ ↘ 0,

4. and rediscovering the model for bleb formation proposed in Lim et al. (2012) (Section 6).

4. Time-dependent solutions

In the following three chapters, we analyse a variational formulation of (3.8), (3.9a) and (3.9b) having
the following strong equivalent for sufficiently regular h, ρa, ρi:

L
(
∂thνC

) · νC + κΔ2
Ch − γΔCh + λh = −ξρah + p0 (4.1a)

∂tρa − ηaΔCρa = kρi − rϑ (h) ρa (4.1b)

∂tρi − ηiΔCρi = −kρi + rϑ (h) ρa, (4.1c)

where we write rϑ (h) = r
(

h−h∗
ϑ

)
. Let us summarize the properties of the parameters involved:

• κ and λ are non-negative constants, whereas γ is also a constant but not necessarily non-
negative.

• The operator L in front of the time derivative is the sum of the identity and the Dirichlet-to-
Neumann operator of the Stokes problem.

• The function ξ is in L∞([0, T], L∞(C)) as well as the pressure p0. Also, ξ is assumed to be
non-negative a.e.

• The repairing rate k is a non-negative constant.

• The diffusivities ηa, ηi are taken to be positive.

• The disconnection rate r is assumed to be non-negative and Lipschitz; the corresponding
steepness parameter ϑ shall be non-negative as well.

• The critical height h∗ is a non-negative L∞([0, T], L∞(C)) function.

For better readability we introduce the following forms: ba

(
ρa, σa

) = ηa

(∇Cρa, ∇Cσa

)
L2(C,R3)

and

bi

(
ρi, σi

) = ηi

(∇Cρi, ∇Cσi

)
L2(C,R3)

.

Problem 4.1 Find

h ∈ L2
cmv

(
[0, T], H2(C)

)
∩ H1

(
[0, T], H1

mvf(C)
)

,

ρa, ρi ∈ L2
(

[0, T], H1(C)
)

∩ H1
(

[0, T], H−1(C)
)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 13

such that (
L
(
∂thνC

)
,ϕνC

)
L2(C) + a (h,ϕ) = − (

ρaξh,ϕ
)

L2(C) + (
p0,ϕ

)
L2(C) (4.2a)〈

∂tρa, σa

〉
H−1(C) + ba

(
ρa, σa

) = k
(
ρi, σa

)
L2(C) − (

rϑ (h) ρa, σa

)
L2(C) (4.2b)〈

∂tρi, σi

〉
H−1(C) + bi

(
ρi, σi

) = −k
(
ρi, σi

)
L2(C) + (

rϑ (h) ρa, σi

)
L2(C) (4.2c)

for all ϕ ∈ H2(C), σa ∈ H1(C) and σi ∈ H1(C) and initial values h(0, ·) ∈ L2(C), ρa(0, ·) ∈
L2(C, [0, ∞)), ρi(0, ·) ∈ L2(C, [0, ∞)).

The antisymmetric structure of the linker equations allows for a simple conclusion:

Lemma 4.2 (Mass conservation). Let ρa and ρi be parts of a solution to Problem 4.1 in the strong sense.
Then, there exists m0 ∈ [0, ∞) such that for almost all t ∈ [0, ∞)

ˆ
D
ρa(t, x)+ ρi(t, x) dx = m0.

Proof. Add (4.1b) and (4.1c), integrated over D, to achieve

ˆ
D
∂t(ρa + ρi) dx =

ˆ
D
ηaΔDρa + ηiΔDρi dx.

Then, with the divergence theorem on closed manifolds, we get

ˆ
D
∂t(ρa + ρi) dx = 0.

The integral and the weak differential operator commute, so
´

D ρa + ρi dx is constant almost everywhere
in time. Considering the non-negativity of the initial values the claim follows. �

4.1 Global-in-time existence

In the following we refer to

• the initial values ρ0
a = ρa(0, ·), ρ0

i = ρi(0, ·), h0 = h(0, ·),
• the coefficients κ , γ , λ, the pressure p0, the critical height h∗, the linkers spring constant ξ , the

function r with its Lipschitz constant Lr, the parameter ϑ , the repairing rate k,

• the positive definite, self-adjoint operator L = S2, and the constant Ξ > 0 such that
Ξ ‖u‖2

H1(C)
≤ (Lu, u)L2(C)

as the data of Problem 4.1.
We set

XT = L∞ (
[0, T], H1(C)

)
, YT = L∞ (

[0, T], L2(C)
)

and define the operator

FT : XT × YT × YT → XT × YT × YT

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/4/1/tnaa001/5824022 by U

niv Augsburg user on 15 February 2023



14 P. WERNER ET AL.

such that a triple
(
h̄, ρ̄a, ρ̄i

) ∈ XT × YT × YT is mapped to
(
HT(ρ̄a), GT(h̄)

)
with HT : YT → XT such

that HT(ρ̄a) solves(
L
(
∂thνC

)
,ϕνC

)
L2(C,R3)

+ a (h,ϕ) = − (
ρ̄aξh,ϕ

)
L2(C) + (

p0,ϕ
)

L2(C) (4.3)

and GT : XT → YT × YT such that GT(h̄) solves〈
∂tρa, σa

〉
H−1(C) + ba

(
ρa, σa

) = k
(
ρi, σa

)
L2(C) − (

rϑ
(
h̄
)
ρa, σa

)
L2(C) (4.4a)〈

∂tρi, σi

〉
H−1(C) + bi

(
ρi, σi

) = −k
(
ρi, σi

)
L2(C) + (

rϑ
(
h̄
)
ρa, σi

)
L2(C) (4.4b)

for all ϕ ∈ H2(C), and σa, σi ∈ H1(C) with initial data h0, ρ0
a , ρ0

i .

Remark 4.3 (Well defined). The unique existence of a solution to (4.4) follows by standard parabolic
PDE theory. Existence and uniqueness of solutions to (4.3) may be shown by employing a Petrov–
Galerkin-type approximation argument. (We refer the interested reader to Appendix B.) Hence, FT is
well defined.

We aim at a Banach-type fixed point argument. To this end the following a priori estimates are
derived, which will give us Lipschitz continuity of the map FT . We will then show that FT is contractive
in a rescaled topology of XT and YT by introducing the rescaled L∞ norms

| u | = ess sup0�s�T

(
e−βs‖u‖(s)) ,

‖ · ‖ ∈ {‖·‖L2(C) , ‖·‖H1(C)}, for a constant β > 0 that we may choose with respect to the problem data
and T . In the following, XT and YT are equipped with their corresponding rescaled norms. We will not
state the rescaling constant explicitly since, from now on, the rescaling factor of every rescaled norm
we deal with shall be e−βt if not stated otherwise.

Remark 4.4 We will make use of the following interpolation embedding, which is a specialization of
Amann (2000), Theorem 3.1 for θ ∈ [0, 1] and m ∈ [0, ∞):

L2([0, T], Hm(C)) ∩ H1 ([0, T], H−m(C)
) ∼= Hθ

(
[0, T],

(
Hm(C), H−m(C)

)
θ ,2

)
isometrically. Choosing θ = 1

4 and m = 1 we have

H
1
4 ([0, T], X) ↪→ L4 ([0, T], X) ,

(
H1(C), H−1(C)

)
1
4 ,2

∼= H
1
2 (C) ↪→ L3(C);

hence

L2([0, T], H1(C)) ∩ H1
(

[0, T], H−1(C)
)
↪→ L4

(
[0, T], L3(C)

)
, (4.5)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 15

A priori estimates There will be a lot of constants in the following estimates, so for ease of notation
and in the sake of readability, we will slightly abuse notation and write C(ξ ,Ξ , . . . ) or similar for an
expression that only depends on the problem data; it does not necessarily denote the same expression in
every occurrence. For convenience, we abbreviate � = ffl

D h dx.

Lemma 4.5 Let ρ̄a ∈ YT , ρ̄a � 0 a.e. and T > 0. The following bound holds for h = HT(ρ̄a):

‖h‖2
L∞([0,T],H1(C)) � C(T ,Ξ , ξ , |C|)

(∥∥∥S((h0 − �0)νC)

∥∥∥2

L2(C)
+ ∥∥p0

∥∥2
L∞([0,T],L2(C)) + �

2
0

)
. (4.6)

Proof. (i) We observe that because the mean value of h is constant in time, we have � = �0 and
L(∂thνC) = L(∂t(h − �0)νC). As

´
C L(∂thνC) · νC dx = 0, we have

´
C L(∂thνC) · �0νC dx = 0, so by

testing (4.3) with ϕ = h, we achieve

1

2
∂t

∥∥S
(
(h − �0)νC

)∥∥2
L2(C,R3)

+ κ
∥∥ΔCh

∥∥2
L2(C) + γ

∥∥∇Ch
∥∥2

L2(C,R3)
+ λ ‖h‖2

L2(C)

= − (
ρ̄aξh, h

)
L2(C) + (

p0, h
)

L2(C)

�
(
p0, h

)
L2(C) ,

where we dropped the term − (
ρ̄aξh, h

)
L2(C) because of its non-positivity. We note that

Ξ ‖u‖2
L2(C) � Ξ ‖u‖2

H1(C) � Ξ
∥∥uνC

∥∥2
H1(C,R3)

�
(
L(uνC), uνC

)
L2(C,R3)

�
∥∥S(uνC)

∥∥2
L2(C,R3)

for u ∈ H1
mvf(C)); therefore,

√
Ξ

∥∥h − �0

∥∥
H1(C) �

∥∥S((h − �0)νC)
∥∥

L2(C)

leading to

‖h‖2
H1(C) � 2

∥∥�0

∥∥2
H1(C) + 2Ξ−1

∥∥S((h − �0)νC)
∥∥2

L2(C) .

With this simple observation the remaining right-hand side term is bounded by employing the Cauchy–
Schwartz and then the Young inequality:

1

2
∂t

∥∥S
(
(h − �0)νC

)∥∥2
L2(C,R3)

+ κ
∥∥ΔCh

∥∥2
L2(C) + γ

∥∥∇Ch
∥∥2

L2(C,R3)
+ λ ‖h‖2

L2(C)

≤ 1

2

∥∥p0

∥∥2
L2(C) + |C|�2

0 + 1

Ξ

∥∥S((h − �0)νC)
∥∥2

L2(C) .

(4.7)
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16 P. WERNER ET AL.

The Grönwall inequality then gives us the bound:

∥∥S
(
(h − �0)νC

)∥∥2
L2(C,R3)

(t) �
∥∥∥S((h0 − �0)νC)

∥∥∥2

L2(C)
et2Ξ−1 +

ˆ t

0
e(t−s)2Ξ−1

(∥∥p0

∥∥2
L2(C) + 2|C|�2

0

)
ds

� C(Ξ , ξ , |C|)
(∥∥∥S((h0 − �0)νC)

∥∥∥2

L2(C)
+ T(

∥∥p0

∥∥2
L∞([0,T],L2(C)) + �

2
0)

)
.

(4.8)

With the positive definiteness of L we even have

‖h‖2
H1(C) (t) � C(Ξ , ξ , |C|)

(∥∥∥S((h0 − �0)νC)

∥∥∥2

L2(C)
+ T(

∥∥p0

∥∥2
L∞([0,T],L2(C)) + �

2
0)+ �

2
0

)
.

This finishes the proof. �
Lemma 4.6 Let T > 0 and h̄ ∈ XT . The following a priori bounds hold for

(
ρa, ρi

) = GT(h̄):

(i)
∥∥ρa

∥∥2
L∞([0,T],L2(C))+

∥∥ρi

∥∥2
L∞([0,T],L2(C)) �

(∥∥ρ0
a

∥∥2
L2(C) + ∥∥ρ0

i

∥∥2
L2(C)

)
eTk+C(k,ρi)‖rϑ (h̄)‖2

L2([0,T],L4(C)) ,

(ii)

∥∥ρa

∥∥2
L2([0,T],H1(C)) + ∥∥∂tρa

∥∥2
L2([0,T],H−1(C)) � C(k, ηa, ηi)

(∥∥∥ρ0
a

∥∥∥2

L2(C)
+

∥∥∥ρ0
i

∥∥∥2

L2(C)

)
·

·
(

1 + Tk + ∥∥rϑ
(
h̄
)∥∥2

L2([0,T],L4(C))

)
eTk+C(k,ηi)‖rϑ (h̄)‖2

L2([0,T],L4(C)) .

Proof. (i) We test (4.4a) by σa = ρa:

1

2
∂t

∥∥ρa

∥∥2
L2(C) + ηa

∥∥∇Cρa

∥∥2
L2(C,R3)

= k
(
ρi, ρa

)
L2(C) − (

rϑ
(
h̄
)
ρa, ρa

)
L2(C)

and (4.4b) by σi = ρi:

1

2
∂t

∥∥ρi

∥∥2
L2(C) + ηi

∥∥∇Cρi

∥∥2
L2(C,R3)

= −k
(
ρi, ρi

)
L2(C) + (

rϑ
(
h̄
)
ρa, ρi

)
L2(C)

and add the equations leaving out the non-positive term − (
rϑ (h̄)ρa, ρa

)
L2(C) on the right-hand side

(rϑ � 0 by assumption):

1

2
∂t

(∥∥ρa

∥∥2
L2(C) + ∥∥ρi

∥∥2
L2(C)

)
+ ηa

∥∥∇Cρa

∥∥2
L2(C,R3)

+ ηi

∥∥∇Cρi

∥∥2
L2(C,R3)

+ k
∥∥ρi

∥∥2
L2(C)

� k
(
ρi, ρa

)
L2(C) + (

rϑ
(
h̄
)
ρa, ρi

)
L2(C)

� k

2

(∥∥ρa

∥∥2
L2(C) + ∥∥ρi

∥∥2
L2(C)

)
+

+
∥∥rϑ

(
h̄
)∥∥2

L4(C)

∥∥ρa

∥∥2
L2(C)

4ε
+ ε

∥∥ρi

∥∥2
L4(C) .

(4.9)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 17

We may absorb ε
∥∥ρi

∥∥2
L4(C) on the left choosing ε small enough. The Grönwall inequality now implies

∥∥ρa

∥∥2
L2(C) (t)+ ∥∥ρi

∥∥2
L2(C) (t) �

(∥∥∥ρ0
a

∥∥∥2

L2(C)
+

∥∥∥ρ0
i

∥∥∥2

L2(C)

)
e

tk+C(k,ηi)‖rϑ (h̄)‖2
L2([0,T],L4(C))

thus giving the claimed L∞ − L2 bound.
(ii) We start again with (4.9), drop ηi

∥∥∇Cρi

∥∥2
L2(C) + k

∥∥ρi

∥∥2
L2(C) on the left, integrate in time and

then also drop
∥∥ρa

∥∥2
L2(C) (t)+ ∥∥ρi

∥∥2
L2(C) (t) on the left:

2ηa

∥∥∇Cρa

∥∥2
L2([0,T],L2(C,R3))

�
(

Tk + C(k, ηi)
∥∥rϑ

(
h̄
)∥∥2

L2([0,T],L4(C))

)(∥∥ρa

∥∥2
L∞([0,T],L2(C))

+ ∥∥ρi

∥∥2
L∞

(
[0,T],L2(C)

) ).

We further test (4.4a) by σa ∈ H1(C) with
∥∥σa

∥∥
H1(C) � 1 such that 〈ρa, σa〉H−1(C) � 0 w.l.o.g., shift the

gradient term to the right and use the Hölder inequality on the right-hand side terms:

〈
∂tρa, σa

〉
H−1(C) � ηa

∥∥∇Cρa

∥∥
L2(C) + k

∥∥ρi

∥∥
L2(C) + ∥∥rϑ (h̄)

∥∥
L4(C)

∥∥ρa

∥∥
L2(C) .

Squaring the inequality and integrating in time we obtain

ˆ T

0

〈
∂sρa, σa

〉2
H−1(C) ds � C(k, ηa)

(∥∥∇Cρa

∥∥2
L2([0,T],L2(C)) + ∥∥ρi

∥∥2
L2([0,T],L2(C))

+
ˆ T

0

∥∥rϑ (h̄)
∥∥2

L4(C) (s)
∥∥ρa

∥∥2
L2(C) (s) ds

)
� C(k, ηa)

(∥∥∇Cρa

∥∥2
L2([0,T],L2(C)) + ∥∥ρi

∥∥2
L2([0,T],L2(C))

+ ∥∥ρa

∥∥2
L∞([0,T],L2(C))

∥∥rϑ (h̄)
∥∥2

L2([0,T],L4(C))

)
.

�
Lemma 4.7 Given a time T > 0 there exist constants M1 > 0, M2 > 0, depending on the data of
Problem 4.1 such that the operator FT maps the set

KT = {
(u, v, w) ∈ XT × YT × YT

∣∣‖u‖2
L∞([0,T],H1(C)) � M1,

‖v‖2
L∞([0,T],L2(C)) + ‖w‖2

L∞([0,T],L2(C)) � M2,

v, w � 0 a.e.
}
,

into itself for initial data h0, ρ0
a � 0, ρ0

i � 0 a.e.
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18 P. WERNER ET AL.

Proof. We choose M1 as the expression on the right-hand side of the equation in Lemma 4.5. The bound

M2 then directly follows with Lemma 4.6 by setting M2 = N
(∥∥ρ0

a

∥∥2
L2(C) + ∥∥ρ0

i

∥∥2
L2(C)

)
e

T
(

k+Ñ
M1Lr
ϑ

)
for

some sufficiently large N, Ñ ∈ [0, ∞).
We may consider (4.4a) and (4.4b) as reaction–diffusion system with right-hand side

f (ρa, ρi) =
(

f1(ρa, ρi)

f2(ρa, ρi)

)
=

(
kρi − rϑ (h̄)ρa

−kρi + rϑ (h̄)ρa

)
.

According to Pierre (2010, Lemma 1.1) quasi-positivity of f is sufficient to guarantee preservation of
non-negativity. We see immediately that for r1, r2 � 0, f1(0, r2) = kr2 � 0 and f2(r1, 0) = rϑ (h̄)r1 � 0,
so ρa and ρi are non-negative since the initial data are non-negative. Therefore, FT(KT) ⊆ KT . �

To apply Banach’s fixed point theorem we have to show that there is a β > 0 such that FT is a
contraction for an arbitrarily chosen T > 0. To this purpose we choose an arbitrary pair of arguments
u = (

h̄1, ρ̄a
1, ρ̄i

1
)
, v = (

h̄2, ρ̄a
2, ρ̄i

2
)

and derive a bound on the difference of
(
h1, ρ1

a , ρ1
i

) = FT(u) and(
h2, ρ2

a , ρ2
i

) = FT(v) in the rescaled norm:

∣∣FT(u)− FT(v)
∣∣

XT×YT×YT
� L |u − v| XT×YT×YT

,

where L ∈ [0, 1). For ease of notation we abbreviate hΔ = h1 − h2, ρaΔ = ρ1
a − ρ2

a and ρiΔ = ρ1
i − ρ2

i .

Lemma 4.8 There is a β (depending only on problem data) such that the following estimate holds:

∣∣hΔ∣∣ L∞([0,T],H1(C)) � Lh

∣∣ρ̄aΔ

∣∣
L∞([0,T],L2(C)) (4.10)

for some Lh ∈ [0, 1).

Proof. Subtracting (4.3) for the two different arguments one achieves (using the linearity of L):

(
L
((
∂thΔ

)
νC

)
,ϕνC

)
L2(C,R3)

+ κ
(
ΔChΔ,ΔCϕ

)
L2(C) + γ

(∇ChΔ, ∇Cϕ
)

L2(C,R3)

+λ (hΔ,ϕ
)

L2(C) = −
(
ρ̄a

1ξh1,ϕ
)

L2(C)
+

(
ρ̄a

2ξh2,ϕ
)

L2(C)
.

(4.11)

(i) We then test by ϕ = hΔ and insert a suitable zero expression on the right-hand side. (Note that hΔ is
mean-value-free as �1 = �0 = �

2.)

1

2
∂t

∥∥S
(
hΔνC

)∥∥2
L2(C,R3)

+ κ
∥∥ΔChΔ

∥∥2
L2(C) + γ

∥∥∇ChΔ
∥∥2

L2(C,R3)
+ λ

∥∥hΔ
∥∥2

L2(C)

= −
(
ρ̄aΔξh1, hΔ

)
L2(C)

−
(
ρ̄a

2ξhΔ, hΔ

)
L2(C)

.
(4.12)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 19

The last term on the right-hand side is non-positive, so we drop it. We apply the Hölder and then Young
inequality and use the positive definiteness of L:

1

2
∂t

∥∥S
(
hΔνC

)∥∥2
L2(C,R3)

+ κ
∥∥ΔChΔ

∥∥2
L2(C) + γ

∥∥∇ChΔ
∥∥2

L2(C,R3)
+ λ

∥∥hΔ
∥∥2

L2(C)

� 1

2

∥∥ρ̄aΔ

∥∥2
L2(C)

∥∥∥ξh1
∥∥∥2

L4(C)
+ 1

2

∥∥hΔ
∥∥2

L4(C)

� 1

2
C(Ξ , C, ξ)

(∥∥ρ̄aΔ

∥∥2
L2(C)

∥∥∥h1
∥∥∥2

L4(C)
+ ∥∥S(hΔνC)

∥∥2
L2(C)

)
.

With the Grönwall inequality we obtain

∥∥S
(
hΔνC

)∥∥2
L2(C,R3)

(t) � C(Ξ , C, ξ)eTC(Ξ ,C,ξ)
ˆ t

0

∥∥ρ̄aΔ

∥∥2
L2(C) (s)

∥∥∥h1
∥∥∥2

L4(C)
(s) ds.

By multiplying the inequality with e−βt and inserting e−βseβs under the right-hand side time integral
we arrive at

e−βt
∥∥S

(
hΔνC

)∥∥2
L2(C,R3)

(t) � C(T ,Ξ , C, ξ)e−βt
ˆ t

0
e−βseβs

∥∥ρ̄aΔ

∥∥2
L2(C) (s)

∥∥∥h1
∥∥∥2

L4(C)
(s)ds

� C(T ,Ξ , C, ξ)
∣∣ρ̄aΔ

∣∣ 2
L∞([0,T],L2(C))

ˆ t

0
eβ(s−t)

∥∥∥h1
∥∥∥2

L4(C)
(s) ds.

Observe

ˆ t

0
eβ(s−t)

∥∥∥h1
∥∥∥2

L4(C)
(s) ds �

∥∥∥h1
∥∥∥2

L∞([0,T],L4(C))

ˆ t

0
eβ(s−t) ds =

∥∥∥h1
∥∥∥2

L∞([0,T],L4(C))
β−1 (1 − e−βt) ,

so by choosing β appropriately large, the claimed contraction estimate follows. �
Lemma 4.9 The following estimates hold:

∣∣ρiΔ

∣∣
L∞([0,T],L2(C)) + ∣∣ρaΔ

∣∣
L∞([0,T],L2(C)) � L�

∣∣h̄Δ∣∣ L∞([0,T],L6(C)) (4.13)

for L� ∈ (0, 1).

Proof. (i) Subtracting (4.4b) for the two different arguments and inserting a suitable zero expression
on the right-hand side we obtain

〈
∂tρiΔ, σi

〉
H−1(C) + ηi

(∇CρiΔ, ∇Cσi

)
L2(C,R3)

= −k
(
ρiΔ, σi

)
L2(C)

+
((

rϑ

(
h̄1
)

− rϑ

(
h̄2
))
ρ1

a , σi

)
L2(C)

+
(

rϑ

(
h̄2
)
ρaΔ , σi

)
L2(C)

.
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20 P. WERNER ET AL.

By choosing σi = ρiΔ we find

1

2
∂t

∥∥ρiΔ

∥∥2
L2(C) + ηi

∥∥∇CρiΔ

∥∥2
L2(C,R3)

+ k
∥∥ρiΔ

∥∥2
L2(C) �

((
rϑ

(
h̄1
)

− rϑ

(
h̄2
))
ρ1

a , ρiΔ

)
L2(C)

+
(

rϑ

(
h̄2
)
ρaΔ, ρiΔ

)
L2(C)

.

We apply the Hölder inequality on the right-hand side and then use Young’s inequality with a parameter
ε so small that ε

∥∥ρiΔ

∥∥2
L4(C) can be absorbed by the H1 norm on the left:

1

2
∂t

∥∥ρiΔ

∥∥2
L2(C) + α

∥∥ρiΔ

∥∥2
H1(C) � 1

4ε

∥∥∥(rϑ

(
h̄1
)

− rϑ

(
h̄2
))∥∥∥2

L4(C)

∥∥∥ρ1
a

∥∥∥2

L2(C)

+ 1

4ε

∥∥∥rϑ

(
h̄2
)∥∥∥2

L4(C)

∥∥ρaΔ

∥∥2
L2(C) ,

(4.14)

where α is some positive constant.
Next, we subtract (4.4a) for the two different arguments and insert a suitable zero expression on the

right-hand side to obtain

〈
∂tρaΔ, σa

〉
H−1(C) + ηa

(∇CρaΔ, ∇Cσa

)
L2(C,R3)

= k
(
ρiΔ, σa

)
L2(C)

+
((

rϑ

(
h̄2
)

− rϑ

(
h̄1
))
ρ1

a , σa

)
L2(C)

−
(

rϑ

(
h̄2
)
ρaΔ, σa

)
L2(C)

.

Testing with σa = ρaΔ leads to

1

2
∂t

∥∥ρaΔ

∥∥2
L2(C) + ηa

∥∥∇CρaΔ

∥∥2
L2(C,R3)

= k
(
ρiΔ, ρaΔ

)
L2(C) +

((
rϑ

(
h̄2
)

− rϑ

(
h̄1
))
ρ1

a , ρaΔ

)
L2(C)

−
(

rϑ

(
h̄2
)
ρaΔ, ρaΔ

)
L2(C)

� k
(
ρiΔ, ρaΔ

)
L2(C)+

((
rϑ

(
h̄2
)
− rϑ

(
h̄1
))
ρ1

a , ρaΔ

)
L2(C)

.

Applying the Hölder and then the Young inequality on the right-hand side terms we obtain

1

2
∂t

∥∥ρaΔ

∥∥2
L2(C) + ηa

∥∥∇CρaΔ

∥∥2
L2(C,R3)

� k

2

(∥∥ρiΔ

∥∥2
L2(C) + ∥∥ρaΔ

∥∥2
L2(C)

)
+ 1

2

∥∥∥(rϑ

(
h̄2
)

− rϑ

(
h̄1
))∥∥∥2

L6(C)

∥∥∥ρ1
a

∥∥∥2

L3(C)
+ 1

2

∥∥ρaΔ

∥∥2
L2(C) .

(4.15)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 21

We add (4.15) and (4.14) leaving out all non-negative terms on the left-hand sides:

1

2

(
∂t

∥∥ρaΔ

∥∥2
L2(C) + ∂t

∥∥ρiΔ

∥∥2
L2(C)

)
� 1

2

∥∥∥(rϑ

(
h̄2
)

− rϑ

(
h̄1
))∥∥∥2

L6(C)

∥∥∥ρ1
a

∥∥∥2

L3(C)

+ 1

4ε

∥∥∥(rϑ

(
h̄1
)

− rϑ

(
h̄2
))∥∥∥2

L4(C)

∥∥∥ρ1
a

∥∥∥2

L2(C)

+ k

2

(∥∥ρiΔ

∥∥2
L2(C) + ∥∥ρaΔ

∥∥2
L2(C)

)
+ 1

4ε

∥∥∥rϑ

(
h̄2
)∥∥∥2

L4(C)

∥∥ρaΔ

∥∥2
L2(C)

+1

2

∥∥ρaΔ

∥∥2
L2(C) .

The Grönwall inequality now implies

∥∥ρaΔ

∥∥2
L2(C) (t)+ ∥∥ρiΔ

∥∥2
L2(C) (t) � C(ηi, C,ϑ , Lr)

ˆ t

0
e(t−s)C(k,C,ηi)

∥∥rϑ (h̄2)
∥∥2

L4(C)
∥∥h̄Δ

∥∥2
L6(C)

∥∥∥ρ1
a

∥∥∥2

L3(C)
ds.

We multiply the inequality by e−βt and insert e−βseβs under the right-hand side time integral:

e−βt
(∥∥ρaΔ

∥∥2
L2(C) (t)+ ∥∥ρiΔ

∥∥2
L2(C) (t)

)
� C(ηi, C,ϑ , Lr)e

TC(k,C,ηi)
∥∥rϑ (h̄2)

∥∥2
L∞([0,T],L4(C)) ·

·e−βt
ˆ t

0
eβse−βs

∥∥h̄Δ
∥∥2

L6(C)

∥∥∥ρ1
a

∥∥∥2

L3(C)
ds

� C(ηi, C,ϑ , Lr)e
TC(k,C,ηi)

∥∥rϑ (h̄2)
∥∥2

L∞([0,T],L4(C)) ·

· ∣∣h̄Δ∣∣ 2
L∞([0,T],L6(C))

ˆ t

0
eβ(s−t)

∥∥∥ρ1
a

∥∥∥2

L3(C)
ds

� C(ηi, C,ϑ , Lr)e
TC(k,C,ηi)

∥∥rϑ (h̄2)
∥∥2

L∞([0,T],L4(C)) ·

· ∣∣h̄Δ∣∣ 2
L∞([0,T],L6(C))

(ˆ t

0
e2β(s−t) ds

) 1
2
(ˆ t

0

∥∥∥ρ1
a

∥∥∥4

L3(C)
ds

) 1
2

.

Due to the a priori bounds on ρ1
a and the interpolation mentioned in Remark 4.4 we know that

(ˆ t

0

∥∥∥ρ1
a

∥∥∥4

L3(C)
ds

) 1
2 =

∥∥∥ρ1
a

∥∥∥2

L4([0,T],L3(C))

is also bounded. Hence, choosing β large enough (depending only on problem data and T), we obtain
the claimed contractive estimate. �
Theorem 4.10 (i) Given any T > 0 Problem 4.1 has a unique weak solution in KT .

(ii) Therefore, given the fact that the bounds in KT include only problem data, Problem 4.1 is well
posed in terms of the definition of Hadamard.
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22 P. WERNER ET AL.

Proof. Let T > 0 arbitrarily chosen and define KT as above. It is clear that KT is closed in XT × YT ×
YT . The fixed point operator FT maps KT into itself according to Lemma 4.7. Furthermore, FT is a
contraction due to Lemmas 4.8 4.9, so the Banach fixed point theorem applies on FT and guarantees the
existence of (h, ρa, ρi) such that FT(h, ρa, ρi) = (h, ρa, ρi) what immediately implies that (h, ρa, ρi) is a
weak solution of Problem 4.1. Banach’s fixed point theorem also guarantees uniqueness of such a fixed
point, so the weak solution is unique. �

5. Stationary solutions

In this section we deal with solutions
(
h, ρa, ρi

)
of Problem 4.1 with ∂th

a. e.= ∂tρa
a. e.= ∂tρi

a. e.= 0,
which we call stationary solutions. From now on we only consider the case where a (·, ·) is coercive (cf.
Remark 3.3) and ξ , h∗ and p0 shall be time independent. As pointed out in Remark 3.3 the coercivity
requirement puts restrictions on the spontaneous mean curvature, i.e., H0 ∈ (−∞, − 4

R ) ∪ (0, ∞).
Physically speaking this means that we either consider a membrane whose natural tendency is to form
a concave shape (negative curvature) with a curvature of an absolute value of at least 4

R or a strictly
convex shape (positive curvature). Apart from this all assumptions on the parameters are the same as in
the previous section. The associated stationary problem reads:

Problem 5.1 (Stationary variational problem). Find h ∈ H2(C), ρa, ρi ∈ H1 (C, [0, ∞)) such that it
holds

κ
(
ΔCh,ΔCϕ

)
L2(C) + γ

(∇Ch, ∇Cϕ
)

L2(C,R3)
+ λ (h,ϕ)L2(C) = − (

ξρah,ϕ
)

L2(C) + (
p0,ϕ

)
L2(C) (5.1a)

ηa

(∇Cρa, ∇Cσa

)
L2(C,R3)

= k
(
ρi, σa

)
L2(C) − (

rϑ (h) ρa, σa

)
L2(C) (5.1b)

ηi

(∇Cρi, ∇Cσi

)
L2(C,R3)

= −k
(
ρi, σi

)
L2(C) + (

rϑ (h) ρa, σi

)
L2(C) (5.1c)

for all ϕ ∈ H2(C), σa, σi ∈ H1(C).

5.1 Basic properties

Lemma 5.2 Let h and ρa be parts of a solution to Problem 5.1. If ρa � 0 a.e., then‖h‖L2(C) is bounded
by a constant depending only on κ , γ , λ, p0 and the domain C.

Proof. Testing (5.1a) with h we obtain

κ
∥∥ΔCh

∥∥2
L2(C) + γ

∥∥∇Ch
∥∥2

L2(C,R3)
+ λ ‖h‖2

L2(C) + (
ξhρa, h

)
L2(C) = (

p0, h
)

L2(C) .

Due to the coercivity assumption on a (·, ·) we stated at the beginning of the section we further have

α ‖h‖2
H2(C) + (

ξρah, h
)

L2(C) � 1

4ε

∥∥p0

∥∥2
L2(C) + ε ‖h‖2

L2(C)

for some α > 0. Choosing ε small enough (depending on C and κ , γ , and λ) such that ε ‖h‖2
L2(C)

may
be absorbed on the left-hand side we derive

α̃ ‖h‖2
H2(C) � 1

4ε

∥∥p0

∥∥2
L2(C)

with α̃ > 0. Since α also depends only on C, κ , γ and λ the claim now directly follows. �
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The special structure of (5.1b) and (5.1c) also gives the following:

Lemma 8 Let ρa, ρi ∈ H1(C0) be parts of a solution to Problem 5.1. Then

ηaρa + ηiρi = ρ0

for ρ0 ∈ [0, ∞).

Proof. Testing (5.1b) and (5.1c) with the same σ ∈ C∞
c (C) and adding both we get(

ηa∇Cρa + ηi∇Cρi, ∇Cσ
)

L2(C,R3)
= 0.

On closed Riemannian manifolds all weak solutions of this problem are smooth and only differ up to a
constant. Therefore,

ηaρa + ηiρi = ρ0 a.e.

for a constant ρ0 ∈ [0, ∞) since ρa, ρi � 0 a.e. �
With the previous results we are in the position to state the following observation:

Lemma 5.3 Let h be part of a solution to Problem 5.1 with non-negative linker densities. If p0 is
pointwise a.e. large enough, then there exists a set M with two-dimensional Hausdorff measure non-
zero such that (h(x)− h∗) �M> 0 for a.e. x ∈ C.

Proof. Choose an arbitrary function p0 ∈ L2(C, [0, ∞)) and consider the problem of finding hs ∈
H2(C), for s ∈ [0, ∞), such that

κ
(
ΔChs,ΔCϕ

)
L2(C)+γ

(∇Chs, ∇Cϕ
)

L2(C,R3)
+λ (hs,ϕ

)
L2(C)+

ρ0

ηa

(
ξhs,ϕ

)
L2(C) = s

(
p0,ϕ

)
L2(C) (5.2)

for all ϕ ∈ H2(C), where ρ0 is the constant of Lemma 8. We note, hs a. e.= sh1, which directly implies

sup
x∈C

hs(x) = s sup
x∈C

h1(x).

Assume h1 � 0. Testing (5.2) with h1 we find
∥∥h1

∥∥
H2(C) � 0, so h1 a. e.= 0, which is no solution to (5.2).

Therefore, there exists x ∈ C such that h1(x) > 0, so supx∈C h1 > 0.
Since hs is continuous, there exists x∗ ∈ C such that hs(x∗) = supx∈C hs(x). Choose s∗ large enough

such that hs∗(x∗) > h∗; then, we have a ball Bδ(x
∗) ⊆ C (in the induced subtopology of C), δ > 0,

where hs∗(x) > h∗, x ∈ Bδ(x
∗), which is a set of non-zero two-dimensional Hausdorff measure.

Now assume h being part of a stationary solution to Problem 5.1 with pressure s∗p0 and being lower
or equal h∗ almost everywhere. Then (5.1c) becomes

ηi

(∇Cρi, ∇Cσi

)
L2(C,R3)

+ k
(
ρi, σi

)
L2(C) = 0,

so ρi
a. e.= 0. Consequently, ηaρa

a. e.= ρ0 for some ρ0 � 0 (cf. Lemma 8). Therefore, h fulfils (5.2) for s∗.
However, this contradicts the observation h �Bδ(x∗)> h∗ made above and the claim must be true. �
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Elimination and reconstruction of the inactive linker density Motivated by Lemma 8, we introduce
two auxiliary variational problems, which are parametrized by m0 (recall Lemma 4.1) or ρ0, respectively,
such that for every stationary solutions of Problem 4.1 there is an auxiliary problem that is fulfilled by it
and whose solutions allow for construction of a solution of Problem 5.1. In case ηa � ηi we will employ

Problem 5.4 (Auxiliary problem). Let m0 ∈ [0, ∞). Find h ∈ H2(C) and ρa ∈ H1(C) such that

a (h,ϕ)+ (
ξhρa,ϕ

)
L2(C) = (

p0,ϕ
)

L2(C) (5.3a)

ba

(
ρa, σ

) +
((

kηa

ηi
+ rϑ (h)

)
ρa, σ

)
L2(C)

= k

|C|
(((

ηa

ηi
− 1

) ˆ
C
ρa dx + m0

)
, σ

)
L2(C)

(5.3b)

for all ϕ ∈ H2(C) and σ ∈ H1(C).

In case ηi > ηa, we will use

Problem 5.6 (Auxiliary problem). Let ρ0 ∈ R. Find h ∈ H2(C) and ρa ∈ H1(C) such that

a (h,ϕ)+ (
ξhρa,ϕ

)
L2(C) = (

p0,ϕ
)

L2(C) (5.4a)

ba

(
ρa, σ

) +
((

kηa

ηi
+ rϑ (h)

)
ρa, σ

)
L2(C)

= k

ηi

(
ρ0, σ

)
L2(C) (5.4b)

for all ϕ ∈ H2(C) and σ ∈ H1(C).

Lemma 5.5 (i) For all stationary solutions (h, ρa, ρi) of Problem 4.1 with total linker mass m0 Problem

5.6 is fulfilled with ρ0 = ηi
|C|

((
ηa
ηi

− 1
) ´

C ρa dx + m0

)
(and therefore also Problem 5.4).

(ii) In case ηi � ηa all solutions (h, ρa) of Problem 5.4 (with parameter m0) can be extended to a
solution (h, ρa, ρi) of Problem 5.1 such that ηaρa +ηiρi ≡ const and

´
C ρa + ρi dx = m0. If ρa � 0 a.e.,

then ρi � 0 a.e.
(iii) In case ηi > ηa all solutions (h, ρa) of Problem 5.6 (with parameter ρ0) can be extended to a

solution (h, ρa, ρi) of Problem 5.1 such that ηaρa + ηiρi ≡ ρ0 If ρa � 0 a.e., then ρi � 0 a. e.

Proof. (i) Let h, ρa and ρi be stationary solutions of Problem 4.1. According to Lemma 4.1 it holds

m0 =
ˆ

C
ρa + ρi dx. (5.5)

Additionally, due to Lemma 8, we have

ρ0 = ηaρa + ηiρi. (5.6)

Inserting (5.5) into the integrated version of (5.6) gives an equation for ρ0:

ρ0 = 1

|C|
(
ηa

ˆ
C
ρa dx + ηi

ˆ
C
ρi dx

)
= 1

|C|
(
ηa

ˆ
C
ρa dx + ηi

(
m0 −

ˆ
C
ρa dx

))
= ηi

|C|
(
ηa

ηi

ˆ
C
ρa dx + m0 −

ˆ
C
ρa dx

)
= ηi

|C|
((

ηa

ηi
− 1

) ˆ
C
ρa dx + m0

)
.
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Inserting this expression and ρi = 1
ηi
(ρ0 − ηaρa ) into (5.1b) we get

ηa

(∇Cρa, ∇Cσa

)
L2(C) +

((
kηa

ηi
+ rϑ (h)

)
ρa, σa

)
L2(C)

= k

|C|
((

ηa

ηi
− 1

) ˆ
C
ρa dx + m0

) ˆ
C
σa dx.

(ii) Now let
(
h, ρa

)
be a solution of Problem 5.4. Choose

ρ0 = ηi

|C|
((

ηa

ηi
− 1

) ˆ
C
ρa dx + m0

)
and set

ρi = 1

ηi

(
ρ0 − ηaρa

)
.

We know

ηa

(∇Cρa, ∇Cσa

)
L2(C) +

((
kηa

ηi
+ rϑ (h)

)
ρa, σa

)
L2(C)

= k

ηi
ρ0

ˆ
C
σa dx,

so

ηa

(∇Cρa, ∇Cσa

)
L2(C) + (

rϑ (h) ρa, σa

)
L2(C) = k

ηi

((
ρ0 − ηaρa, σa

)
L2(C)

)
= k

(
ρi, σa

)
L2(C)

and ρa satisfies (5.1b). We further calculate the following:

∇Cρi = ∇C

(
1

ηi

(
ρ0 − ηaρa

)) = −∇C

(
ηa

ηi
ρa

)
,

so

ηi∇Cρi = −ηa∇Cρa.

and ρi fulfils (5.1c).
A small computation shows

ˆ
C
ρa + ρi dx =

ˆ
C

1

ηi

(
ρ0 − ηaρa

) + ρa dx = |C|
ηi
ρ0 +

(
1 − ηa

ηi

) ˆ
C
ρa dx = m0.

Furthermore, if ρa � 0 a.e., then a standard maximum principle guarantees non-negativity of ρi.
(iii) The reconstruction of ρi is just the same as in (ii) with ρ0 being directly given. �

Remark 5.6 In the case ηi > ηa the total linkers’ mass is given by

m0 =
ˆ

C
ρa + 1

ηi

(
ρ0 − ηaρa

)
dx =

ˆ
C

(
1 − ηa

ηi

)
ρa + 1

ηi
ρ0 dx.
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26 P. WERNER ET AL.

It is not hard to see that
|C|
ηi
ρ0 � m0 � |C|

ηa
ρ0

(the latter inequality being due to
´
C ρa dx � 1

ηa

´
C ρ0 dx) implying that there are stationary solutions

with arbitrary small (but non-negative) or arbitrary large mass. We conjecture existence of stationary
solutions for all non-negative masses m0. However, it is not clear how a surjective map from ρ0 to m0
can be defined—not even a continuous map, so the mean value theorem is not directly applicable; hence,
a rigorous argument is still missing.

5.2 Fixed point argument

Theorem 5.7 There exists a solution (h, ρa, ρi) to Problem 5.1 with ρa, ρi � 0 a.e.

Proof. 1.) Let ηa � ηi. According to Lemma 5.5, it is sufficient to prove existence of solutions (h, ρa)

of Problem 5.4 where ρa � 0 a.e.
Fix m0 � 0 and let

K =
{ (

h, ρa

) ∈ L∞(C)× L1(C)

∣∣∣∣ ‖h‖L∞(C) � C
∥∥p0

∥∥
L2(C) ,

0 � ρa a. e.,
ˆ

C
ρa dx � m0

}
,

where C is a constant depending on the constant in Lemma 5.2 and the embedding constant of H2(C)
cont
↪→

L∞(C). K is clearly convex and bounded. K is also closed: let
(
hn, ρn

a

)
n∈N be a sequence in K that

converges in L∞(C)× L1(C). Hence, for all n ∈ N,

ˆ
C
ρn

a dx � m0,

and, as L1(C)-convergence implies convergence of the integrals
´
C ρ

n
a dx

n→∞−→ ´
C ρa dx, the inequality

it preserved in the limit. Furthermore, for all x ∈ C and all ε > 0,

ˆ
Bε(x)

ρn
a dξ � 0,

so, due to L1(C)-convergence, ˆ
Bε(x)

ρa dξ � 0

which finally gives (using the Lebesgue point property)

ρa � 0 a.e.

We now define

F : K → H2(C)× H1(C) ⊆ L∞(C)× L1(C)
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(based on Problem 5.4) with
(
h, ρa

) = F
(
h̄, ρ̄a

)
being the functions satisfying

a (h,ϕ)+ (
ξhρ̄a,ϕ

)
L2(C) = (

p0,ϕ
)

L2(C) (5.7a)

ba

(
ρa, σ

) +
((

kηa

ηi
+ rϑ

(
h̄
))
ρa, σ

)
L2(C)

= k

|C|
((

ηa

ηi
− 1

) ˆ
C
ρ̄a dx + m0

) ˆ
C
σ dx (5.7b)

for all ϕ ∈ H2(C) and all σ ∈ H1(C).
It holds F(K) ⊆ K: in order to show non-negativity of ρa, we test (5.7b) with

(
ρa

)−:

ηa

∥∥∥∇C

(
ρa

)−∥∥∥2

L2(C)
+ kηa

ηi

∥∥∥(ρa

)−∥∥∥2

L2(C)
� − k

|C|
((

ηa

ηi
− 1

) ˆ
C
ρ̄a dx + m0

)ˆ
C

(
ρa

)− dx.

By assumption ηa � ηi and the right-hand side is always � 0, which implies
(
ρa

)− = 0 a.e. The
appropriate a priori bound of ρa is obtained by testing (5.7b) with 1 and leaving out the gradient term
on the left-hand side:

kηa

ηi

ˆ
C
ρa dx � k

((
ηa

ηi
− 1

) ˆ
C
ρ̄a dx + m0

)
� k

((
ηa

ηi
− 1

)
m0 + m0

)
.

Dividing both sides by k ηa
ηi

leads to the claimed bound. The bound of h follows directly with the non-
negativity of ρ̄a and Lemma 5.2.

F is continuous: let
(
h̄n, ρ̄a

n
)

n∈N be a sequence that converges in K. Take an arbitrary subsequence
F
(
h̄nk , ρ̄a

nk
) = (

hnk , ρnk
a
)
. We have the a priori bound∥∥hnk

∥∥
H2(C) � (D (C, κ , γ )+ 1)

∥∥p0

∥∥
L2(C)

immediately by Lemma 5.2. We also observe

k

|C|
((

ηa

ηi
− 1

) ˆ
C
ρ̄a dx + m0

) ˆ
C
ρnk

a dx ≤ k2η2
a

4εη2
i

m2
0 + ε

( 
C
ρnk

a dx

)2

≤ k2η2
a

4εη2
i

m2
0 + ε

 
C

(
ρnk

a

)2 dx.

We can choose ε small enough such that ε
|C| <

kηa
ηi

, so ε
ffl
C

(
ρ

nk
a
)2 dx can be absorbed on the left-

hand side of (5.7b), which gives a uniform bound of
∥∥ρnk

a
∥∥

H1(C). So by weak compactness, there are

subsequences hnk� , ρ
nk�
a , h̄nk� , ρ̄

nk�
a such that the integrals in (5.7) converge and we have for the limits

F
(
h̄, ρ̄a

) = (
h, ρa

)
. (5.8)

Due to unique solvability of (5.7), h̄ and ρ̄a are the same limits for all subsequences h̄nkl and ρ̄a
nkl ,

respectively, so hn and ρn
a converge to F(h̄, ρ̄a). However, this implies that F is continuous.

F(K) is relatively compact: choose a sequence
(
hn, ρn

a

) = F
(
h̄n, ρ̄a

n
)
. From the previous

calculations, we have a bound of
∥∥ρn

a

∥∥
H1(C) and know that ‖hn‖H2(C) is bounded a priori. The compact

embeddings H1(C)
comp
↪→ L1(C) and H2(C)

comp
↪→ L∞(C) directly give us a convergent subsequence(

hnk , ρnk
a
)

in L∞(C)× L1(C).
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28 P. WERNER ET AL.

With these properties of K and F, Schauder’s fixed point theorem applies, so F has a fixed point
in K. This fixed point (h, ρa) is a solution of Problem 5.4, which then may be extended to a solution
(h, ρa, ρi) of Problem 5.1 due to Lemma 5.5.

2.) In case ηa < ηi, the proof is similar: we choose ρ0 > 0 and set

K =
{ (

h, ρa

) ∈ L∞(C)× L1(C)

∣∣∣∣ ‖h‖L∞(C) � C
∥∥p0

∥∥
L2(C) ,

0 � ρa a.e.,
ˆ

C
ρa dx � |C|

ηa
ρ0

}
and define

F : K → H2(C)× H1(C) ⊆ L∞(C)× L1(C)

(based on Problem 5.6) with
(
h, ρa

) = F
(
h̄, ρ̄a

)
being the functions satisfying

a (h,ϕ)+ (
ξhρ̄a,ϕ

)
L2(C) = (

p0,ϕ
)

L2(C)

ba

(
ρa, σ

) +
((

kηa

ηi
+ rϑ

(
h̄
))
ρa, σ

)
L2(C)

= k

ηi
ρ0

ˆ
C
σ dx

for all ϕ ∈ H2(C) and all σ ∈ H1(C). �

5.3 Local exponential stability of non-critical stationary solutions

In this section we will be concerned with the local stability of stationary solutions for a specific ripping

interpolation function rϑ (h) =
(

h−h∗
ϑ

)+
for solutions below the critical height h∗. We are going to make

a linearized stability argument using nonlinear semigroup theory (for an introduction see, e.g., Barbu,
1976). Note that, due to Lemma 5.2, there are stationary solutions h < h∗ a.e. for sufficiently small p0.

Without loss of generality we set ξ
a. e.= 1. Observe that the operator

L : H1
mvf(C) → L2

mvf(C)

x �→ L
(
xνC

) · νC
is invertible as it is linear and its kernel is zero-dimensional (to see this, one may test with x and use the
positive definiteness of L).

In the following we will be concerned with a strong version of Problem 4.1:

Problem 5.8 Find h ∈ H1
(
[0, T], H2(C)

) ∩ L2([0, T], H6(C)) and ρa, ρi ∈ H1
(
[0, T], L2(C)

)∩
L2([0, T], H2(C)) such that

∂t

⎛⎝ h
ρa
ρi

⎞⎠ = A
(
h, ρa, ρi

) + F
(
h, ρa, ρi

) + G (5.10)
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with the operator

A : H6(C)× H2(C)× H2(C) → H2(C)× L2(C)× L2(C)

(
h, ρa, ρi

) �→
⎛⎝L−1 (−κΔ2

Ch + γΔCh + λh
)

ηaΔCρa
ηiΔCρi

⎞⎠ ,

which is densely defined and closed, the nonlinearity

F : H6(C)× H2(C)× H2(C) → H6(C)× H2(C)× H2(C)

(
h, ρa, ρi

) �→
⎛⎝ −L−1 (hρa

)
kρi − rϑ (h) ρa−kρi + rϑ (h) ρa

⎞⎠
and inhomogeneity

G : C → [0, ∞), x �→
⎛⎝L−1p0(x)

0
0

⎞⎠ ,

for initial data ρa(0, ·), ρi(0, ·) ∈ L2(C, [0, ∞)), h(0, ·) ∈ H2(C) and p0 ∈ H1(C).

Remark 5.9 Well posedness of this problem follows with sufficient regularity of initial data and
the inhomogeneity almost by standard techniques as presented, e.g., in Evans (2002, Chapter 7):
Using a Galerkin approach we take existing solutions h, ρa, ρi of Problem 4.1 and express them with
eigenfunctions

(
wk

)
k∈N of ΔC constituting a Schauder basis of L2(C). We obtain the projections

hm(t, ·) = ∑m
k=0 ak(t)wk, ρm

a (t, ·) = ∑m
k=0 bk(t)wk and ρm

i (t, ·) = ∑m
k=0 ck(t)wk. The projected height

equation is (
L(∂th

mνC),ϕνC
)

L2(C) + a
(
hm,ϕ

) = − (
πm(hρa),ϕ

)
L2(C) + (

pm
0 ,ϕ

)
L2(C)

for ϕ ∈ span{w1, . . . , wm}, where πm is the projection into span{w1, . . . , wm}. We differentiate in time
and test by ∂th

m. Integrating in time then gives an energy estimate of the L2([0, T], H2(C)) norm of
∂thm (the nonlinearity on the right-hand side is uniformly controlled due to the already established a
priori bounds of the solutions). L2(C) regularity for ∂tρa and ∂tρi is established by testing the projected
equations with ∂tρ

m
a and ∂tρ

m
i , respectively. Control of the nonlinearities also helps with establishing

increased spatial regularity.
This result makes us confident that existence theory of (4.1) might as well be developed using

nonlinear semigroups.

Lemma 5.10 A stationary solution to Problem 5.8 is locally exponentially stable iff it is an
exponentially stable stationary solution to the corresponding linearized system (see below).

Proof. Due to Desch & Schappacher (1986, Theorem 2.1) the claim follows if we can show
differentiability in H2(C)× L2(C)2 of the nonlinear C0 semigroup generated by A + F.
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Applying Theorem 3.3 in Jamal et al. (2014), it is sufficient to show Fréchet differentiability of
F in H2(C) × L2(C) × L2(C) on a sufficiently small ball around a stationary solution

(
h, ρa, ρi

)
with

h < h∗ a.e. and the Lipschitz continuity of the derivative therein. Indeed, its Fréchet derivative is

d

d
(
h, ρa, ρi

)F
(
hΔ, ρaΔ, ρiΔ

) =
⎛⎝L−1 (−ρahΔ − hρaΔ

)
kρiΔ−kρiΔ

⎞⎠
for

(
h, ρa, ρi

) ∈ Br(h, ρa, ρi), r > 0, where r is chosen sufficiently small such that h < h∗ a.e. (This is

possible because H2(C)
cont
↪→ L∞(C).)

Note, as L−1 is linear and bounded, we may drop it in the following calculations without loss of
generality. Consider for

(
hΔ, ρaΔ, ρiΔ

)
the difference quotient∥∥(h + hΔ

) (
ρa + ρaΔ

) − hρa − ρahΔ − hρaΔ

∥∥
H2(C)

‖h‖H2(C)×L2(C)×L2(C)
+∥∥k

(
ρi + ρiΔ

) − rϑ
(
h + hΔ

) (
ρa + ρaΔ

) − kρi + rϑ (h)
(
ρa

) − kρiΔ

∥∥
L2(C)

‖h‖H2(C)×L2(C)×L2(C)
+∥∥−k

(
ρi + ρiΔ

) + rϑ
(
h − hΔ

) (
ρa + ρaΔ

) + kρi − rϑ (h) ρa + kρiΔ

∥∥
L2(C)

‖h‖H2(C)×L2(C)×L2(C)
.

After straightforward simplifications we obtain∥∥hΔρaΔ

∥∥
H2(C)

‖h‖H2(C)×L2(C)×L2(C)
+ 2

∥∥rϑ
(
h + hΔ

) (
ρa + ρaΔ

)∥∥
L2(C)

‖h‖H2(C)×L2(C)×L2(C)
.

(Since h < h∗ a.e., rϑ (h) vanishes a.e.) Again, we use the imbedding H2(C)
cont
↪→ L∞(C) to conclude

that if hΔ is small enough, h + hΔ < h∗ a.e., so the last term vanishes and all together the difference

quotient goes to zero as (hΔ, ρaΔ, ρiΔ)
H2(C)−→ 0; hence, F is Fréchet differentiable. �

For a stationary solution
(
h, ρa, ρi

)
of Problem 5.8 with ρa, ρi � 0 a. e. and with mass´

C ρa + ρi dx = m0 and h̄ < h∗ a.e., the linearized system of Problem 5.8 is declared as

Problem 5.11 Find hΔ ∈ H1
(
[0, T], H2(C)

) ∩ L2([0, T], H6(C)) and ρaΔ, ρiΔ ∈ H1
(
[0, T], L2(C)

) ∩
L2([0, T], H2(C)) such that

∂t

⎛⎝ hΔ
ρaΔ
ρiΔ

⎞⎠ = A
(
hΔ, ρaΔ, ρiΔ

) + d (F)| h,ρa,ρi

(
hΔ, ρaΔ, ρiΔ

)
or, equivalently,

∂t(hΔ)+ L−1
(
κΔ2

ChΔ − γΔChΔ + λhΔ

)
= −L−1 (ρahΔ + hρaΔ

)
(5.11a)

∂t(ρaΔ)− ηaΔCρaΔ = kρiΔ (5.11b)
∂t(ρiΔ)− ηiΔCρiΔ = −kρiΔ (5.11c)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 31

with initial values

hΔ(0) = h0 − h, ρaΔ(0) = ρ0
a − ρa, ρiΔ(0) = ρ0

i − ρi, (5.12)

such that ρ0
a , ρ0

i � 0.

We start by showing that the inactive linkers decay exponentially:

Lemma 5.12 Let ρiΔ ∈ H2(C) be part of a triple solving Problem 5.11. Then,∥∥ρiΔ(t)
∥∥

L2(C) � exp (−ωt)
∥∥ρiΔ(0)

∥∥
L2(C)

for ω ∈ (0, ∞).

Proof. The operator

A : H2(C) −→ L2(C), u �→ −ηiΔCu + ku

is self-adjoint and its resolvent Rλ(A) is bounded by 1
λ+k∧ηi

for all λ > −k∧ηi: we have the energy

estimate k ∧ ηi ‖u‖2
H1(C)

� ηi

(∇Cu, ∇Cu
)

L2(C) + k (u, u)L2(C) = ci(u, u), so the bilinear form ci +
λ (u, u)L2(C) is coercive for all λ > −k∧ηi, so ci(u,ϕ)+ λ (u,ϕ)L2(C) = (f ,ϕ)L2(C) has unique solution

for all f ∈ L2(C). As u = Rλ(A)f we have the estimate
∥∥Rλ(A)f

∥∥
L2(C) � 1

λ+k∧ηi
‖f ‖L2(C).

Therefore, σ(A) ⊆ (−∞, −k]. So A generates an analytic semigroup T (Engel & Nagel, 2000, p.
105, Corollary 3.7). This also implies the growth bound of the solution ρiΔ(t) = T(t)ρiΔ(0) (Renardy
& Rogers, 2004, p. 416, Theorem 12.33). �

Despite equations (5.11b) and (5.11c) looking very symmetric their decaying behaviour is not. To
show exponential decay for the active linkers we require an additional condition: the initial values
(5.12) to be chosen such that

´
C ρ

0
a + ρ0

i dx = m0, so
´
C ρaΔ + ρiΔ dx = 0, which we call the mass

conservation property.

Lemma 5.13 Let ρaΔ be part of a triple solving Problem 5.11. Then,∣∣∣∣ˆ
C
ρaΔ dx

∣∣∣∣ � D exp (−ωt)

where ω > 0 is the same as in Lemma 5.12 and D ∈ (0, ∞).

Proof. From the mass conservation property we have
ˆ

C
ρaΔ + ρiΔ dx = 0,

so, using Lemma 5.12, we find∣∣∣∣ˆ
C
ρaΔ dx

∣∣∣∣ �
ˆ

C

∣∣ρi

∣∣ dx � D′ ∥∥ρi

∥∥
L2(C) � D exp (−ωt)

for D′, D ∈ (0, ∞). �
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32 P. WERNER ET AL.

For
∥∥ρaΔ(t, ·)

∥∥
L2(C) we have at least a time-uniform bound:

Lemma 5.14 Let ρaΔ be part of a triple solving Problem 5.11. Then ρaΔ is bounded in ‖·‖L2(C)
uniformly for all t ∈ [0, ∞).

Proof. The operator

B : H2(C) → L2(C), ρaΔ �→ −ηaΔCρaΔ

is self-adjoint and its resolvent Rλ(B) is bounded by 1
λ

for λ > 0. Therefore, σ(B) ⊆ (−∞, 0] and so it
generates a strongly continuous (even analytic) semigroup bounded by 1. As ρaΔ solves (5.11b), it has
representation as

ρaΔ(t) = T(t)ρaΔ(0)+ k
ˆ t

0
T(s − t)ρiΔ(s) ds,

where T is the semigroup generated by B. Consequently,

∥∥ρaΔ(t)
∥∥

L2(C) �
∥∥ρaΔ(0)

∥∥
L2(C) + k

ˆ t

0
exp(−ωs)

∥∥ρi(0)
∥∥

L2(C) ds,

so we finally have

∥∥ρaΔ(t)
∥∥

L2(C) �
∥∥ρaΔ(0)

∥∥
L2(C) − k

∥∥ρi(0)
∥∥

L2(C)

ω
(exp(−ωt)− 1) .

�
Combining these lemmas we even find exponential decay for the active linkers:

Lemma 5.15 Let ρaΔ be part of a triple solving Problem 5.11. Then∥∥ρaΔ

∥∥
L2(C) � Ea exp

(−αat
)

for αa, Ea ∈ (0, ∞).

Proof. Test (5.11b) with ρaΔ to get

1

2
∂t

∥∥ρaΔ

∥∥2
L2(C) + ηa

∥∥∇CρaΔ

∥∥2
L2(C) = k

(
ρiΔ, ρaΔ

)
L2(C) .

Next, we apply Poincaré’s inequality (Neumann type) and Young’s inequality (the modulus ε is specified
below):

1

2
∂t

∥∥ρaΔ

∥∥2
L2(C) � k2

4ε

∥∥ρiΔ

∥∥2
L2(C) + ε

∥∥ρaΔ

∥∥2
L2(C) − ηa

Π

∥∥∥∥ρaΔ −
 

C
ρaΔ dx

∥∥∥∥2

L2(C)
, (5.13)

where Π is the appropriate Poincaré constant. Observe, due to Lemma 5.13, that∣∣∣∣∣
∥∥∥∥ρaΔ −

 
C
ρaΔ dx

∥∥∥∥
L2(C)

− ∥∥ρaΔ

∥∥
L2(C)

∣∣∣∣∣ �
∥∥∥∥ 

C
ρaΔ dx

∥∥∥∥
L2(C)

� C1 exp (−ωt)
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for a constant C1 � 0. Therefore,∥∥∥∥ρaΔ −
 

C
ρaΔ dx

∥∥∥∥
L2(C)

= ∥∥ρaΔ

∥∥
L2(C) + δ(t)

with |δ(t)| � C2 exp (−ωt) for some C2 � 0. Squaring the terms, it follows

∥∥∥∥ρaΔ −
 

C
ρaΔ dx

∥∥∥∥2

L2(C)
= ∥∥ρaΔ

∥∥2
L2(C) + 2δ(t)

∥∥ρaΔ

∥∥
L2(C) + δ(t)2,

so, as
∥∥ρaΔ

∥∥
L2(C) is bounded (cf. Lemma 5.14), we have

∥∥∥∥ρaΔ −
 

C
ρaΔ dx

∥∥∥∥2

L2(C)
= ∥∥ρaΔ

∥∥2
L2(C) + ζ(t)

with |ζ(t)| � C3 exp (−ωt) for some C3 � 0.
Substitution into (5.13) gives

1

2
∂t

∥∥ρaΔ

∥∥2
L2(C) � k2

4ε

∥∥ρiΔ

∥∥2
L2(C) +

(
ε − ηa

Π

) ∥∥ρaΔ

∥∥2
L2(C) − ηa

Π
ζ(t)

� C4

(
k2

4ε

∥∥ρiΔ(0)
∥∥2

L2(C) + ηa

Π

)
exp (−ωt)+

(
ε − ηa

Π

) ∥∥ρaΔ

∥∥2
L2(C) ,

where C4 � 0.

Set E(ε) = 2C4

(
k2

4ε

∥∥ρiΔ(0)
∥∥2

L2(C) + ηa
Π

)
, β(ε) = 2

(
ε − ηa

Π

)
and apply Gronwall’s inequality:

∥∥ρaΔ

∥∥2
L2(C) �

∥∥ρaΔ(0)
∥∥2

L2(C) exp (β(ε)t)+
ˆ t

0
E(ε) exp (−ωs) exp (β(ε)(t − s)) ds

= ∥∥ρaΔ(0)
∥∥2

L2(C) exp (β(ε)t)+ exp (β(ε)t)
ˆ t

0
E(ε) exp (− (ω + β(ε)) s) ds.

The parameter ε is still free, and we choose it such that −ω < β(ε) < 0. With Ea = ∥∥ρaΔ(0)
∥∥2

L2(C) +´ t
0 E(ε) exp (− (ω + β(ε)) s) ds and αa = −β(ε) the claim follows. �

The last step to showing local exponential stability of Problem 5.2 is showing exponential decay of
the height difference:

Lemma 5.16 Let hΔ be part of a triple solving Problem 5.11. Then∥∥hΔ
∥∥

H2(C) � Eh exp
(−αht

)
for Eh,αh ∈ (0, ∞).
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34 P. WERNER ET AL.

Proof. First, we observe that for stationary solutions with h < h∗ a.e., there are no inactive linkers,
i.e., ρi

a. e.= 0. (This can can be seen in the last paragraph of the proof to Lemma 5.3: since rϑ (h) = 0,
the right-hand side of the inactive linkers equation is zero and therefore testing with ρi shows that∥∥ρi

∥∥2
H1(C) = 0.) This has the critical implication that ρa is constant in space (see Lemma 8). Second,

recall that the operator L is positive and self-adjoint, so we have positive square root S2 = L. We apply
L on both sides of (5.11a) and test with hΔ. Then, we make use of Young’s inequality and leave out the
terms of the bilinear form on the left-hand side

1

2
∂t

∥∥ShΔ
∥∥2

L2(C) �
(−ρa + ε

) ∥∥hΔ
∥∥2

L2(C) + 1

4ε

∥∥h
∥∥2

L∞(C)
∥∥ρaΔ

∥∥2
L2(C)

� β(ε)
∥∥ShΔ

∥∥2
L2(C) + E(ε) exp

(−2αat
)

,

where E(ε) = E2
a

∥∥h
∥∥2

L∞(C)

4ε and β(ε) = Ξ−1(ε − ρa).
Application of Grönwall’s inequality leads to

∥∥ShΔ
∥∥2

L2(C) (t) � 2
∥∥S

(
hΔ(0)

)∥∥2
L2(C) exp (β(ε)t)+

ˆ t

0
E(ε) exp(−2αas) exp(β(ε)(t − s)) ds

= 2
∥∥S

(
hΔ(0)

)∥∥2
L2(C) exp (β(ε)t)+ exp(β(ε)t)

ˆ t

0
E(ε) exp(−(2αa + β(ε))s) ds.

As in the proof of Lemma 5.15 we choose ε such that −2αa < β(ε) < 0. Going back to (5.11a) we find

a
(
hΔ, hΔ

)
� −1

2
∂t

∥∥ShΔ
∥∥2

L2(C) − ρa

∥∥hΔ
∥∥2

L2(C) (t)+ ∥∥h
∥∥

L∞(C) (t)
∥∥ρaΔ

∥∥
L2(C) (t)

∥∥hΔ
∥∥

L2(C) (t).

We see that the right-hand side consists only of exponentially decaying terms, which gives the decay
rate for hΔ in ‖·‖H2(C). �
Theorem 5.17 Every stationary solution

(
h, ρa, ρi

)
of Problem 5.8 with h < h∗ a.e. is locally

exponentially stable under disturbance that fulfils the mass equality condition, i.e., a solution
(
h, ρa, ρi

)
of Problem 5.8 in a sufficiently small neighbourhood of

(
h, ρa, ρi

)
with

´
C ρ

0
a + ρ0

i dx = ´
C ρa + ρi dx

converges exponentially fast in time to
(
h, ρa, ρi

)
.

Proof. The linearized problem of Problem 5.8 in a sufficiently small neighbourhood around
(
h, ρa, ρi

)
is Problem 5.11. Due to Lemma 5.10 we only need to show exponential stability of Problem 5.11 in
zero. However, this follows from the results in Lemmas 5.12, 5.15 and 5.16 and we are finished. �

6. Singular limits

We are going to have a closer look at stationary solutions in the limit ϑ ↘ 0. This way we also rediscover
the model of Lim et al. (2012) as specialization of our model. Henceforth, we restrict to the special

disconnection rate rϑ (h) =
(

h−h∗
ϑ

)+
.
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6.1 Singular limit of the stationary system

Theorem 6.1 Let
(
hϑ , ρϑa , ρϑi

)
be a solution to Problem 5.1 for the parameter ϑ . For every (ϑn)n∈N with

limn→∞ ϑn = 0 there exists a subsequence
(
ϑnk

)
k∈N with hϑnk

H2(C)
⇁ h0, ρ

ϑnk
a

H1(C)
⇁ ρ0

a and ρ
ϑnk
i

H1(C)
⇁ ρ0

i
such that

a
(

h0,ϕ
)

= −
(
ξh0ρ0

a ,ϕ
)

L2(C)
+ (

p0,ϕ
)

L2(C) (6.1a)

ba

(
ρ0

a , σa

)
= k

(
ρ0

i , σa

)
L2(C)

− (
r0, σa

)
L2(C) (6.1b)

bi

(
ρ0

i , σi

)
= −k

(
ρ0

i , σi

)
L2(C)

+ (
r0, σi

)
L2(C) (6.1c)

for all ϕ ∈ H2(C), σa, σi ∈ Cc(C), where r0 ∈ rca(C). (We identify a Radon measure and its density
function w.r.t. the Lebesgue measure in the following.) Moreover,(

h∗ − h0
)+

r0 = 0 (6.2)

a.e.

Proof. Let
(
ϑn

)
n∈N be a zero sequence. Lemma 8 and the non-negativity of solutions of Problem 5.1

(cf. Theorem 5.7) implies boundedness of ‖ρϑn
a ‖L∞(C) and ‖ρϑn

i ‖L∞(C) independent of ϑn. By testing

(5.11b) with ρϑn
a we derive an H1(C) bound on ρϑn

a uniformly w.r.t. ϑn (the critical term including rϑn

can be dropped due to its non-positivity). We employ Lemma 8 again; this time to see that ηa∇Cρ
ϑn
a =

−ηi∇Cρ
ϑn
i and conclude that the H1(C) norm of ρϑn

i is as well bounded uniformly w.r.t. ϑn. Lemma 5.2
assures the boundedness of

∥∥hϑn
∥∥

H2(C) independently of ϑn.

In H1(C)2 the theorem of Banach–Alaoglu gives us a weakly convergent subsequence
(
ρ
αn
a , ραn

i

)
n∈N

to
(
ρ0

a , ρ0
i

) ∈ H1(C)2 as well as going to another subsequence
(
hβn

)
n∈N of (hαn)n∈N does in H2(C).

We use the Rellich–Kondrachov theorem to single out another subsequence
(
ρ
γn
a
)

n∈N converging in
L2(C) to ρ0

a (since weak convergence in H1(C) implies weak convergence in L2(C) to the same limit).
Analogously, we have convergence of a subsequence

(
hδn

)
n∈N to h0 in L2(C), which includes another

subsequence
(
hζn

)
n∈N converging pointwise to h0.

Due to weak convergence

a
(
hζn ,ϕ

) n→∞−→ a
(

h0,ϕ
)

for any ϕ ∈ H2(C). Moreover,∣∣∣∣(h0ρ0
a − hζnρζn

a ,ϕ
)

L2(C)

∣∣∣∣ �
∣∣∣∣(h0

(
ρ0

a − ρζn
a

)
,ϕ

)
L2(C)

∣∣∣∣ +
∣∣∣∣(ρζn

a

(
h0 − hζn

)
,ϕ

)
L2(C)

∣∣∣∣
�

∥∥∥h0
∥∥∥

L∞(C)

∥∥∥ρ0
a − ρζn

a

∥∥∥
L2(C)

‖ϕ‖L2(C) +
∥∥∥h0 − hζn

∥∥∥
L2(C)

∥∥ρζn
a ϕ

∥∥
L2(C) ,

so we have (
hζnρζn

a ,ϕ
)

L2(C)
n→∞−→

(
h0ρ0

a ,ϕ
)

L2(C)

and (6.1a) holds.
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To retrieve (6.1b) and (6.1c) test (5.1b) with a smoothed signum Sε ∈ H1(C) of ρa with Sε
H1(C)−→

sgn ◦ ρζn
a . We then have

(∇Cρ
ζn
a , ∇CSε

)
L2(C) +

(
rζn

(
hζn

)
ρζn

a , Sε

)
L2(C)

= k
(
ρ
ζn
i , Sε

)
L2(C)

.

Therefore, (
rζn

(
hζn

)
ρζn

a , Sε

)
L2(C)

� C1

(∥∥ρζn
a

∥∥
H1(C)

∥∥Sε
∥∥

H1(C) +
∥∥∥ρζn

i

∥∥∥
L2(C)

∥∥Sε
∥∥

L2(C)

)
for a constant C1 > 0. So in the limit ε → 0 we get the estimate∥∥∥rζn

(
hζn

)
ρζn

a

∥∥∥
L1(C)

� C2

for a constant C2 > 0 due to the a priori bound on ρa and ρi. This implies weak-�-convergence

in rca(C) of a subsequence rζnk

(
hζnk

)
ρ
ζnk
a to a Radon measure r0 ∈ rca(C). As hζnk and h∗ are in

L∞(C),
(

h∗ − hζnk

)+
rζnk

(
hζnk

)
ρ
ζnk
a ∈ rca(C) and

(
h∗ − hζnk

)+
rζnk

(
hζnk

)
ρ
ζnk
a weak-�-converges to(

h∗ − h0
)+

r0 in rca(C). We observe that

supp

((
h∗ − hζnk

)+) ∩ supp
(

rζnk

(
hζnk

))
= ∅,

so (
h∗ − hζnk

)+
rζnk

(
hζnk

)
ρ
ζnk
a = 0

and
(
h∗ − h0

)+
r0 = 0. �

6.2 Model without diffusion

We now turn to the system (5.1) with ηa = ηi = 0, which will lead us to a model of Lim et al. (2012) in
the Γ -limit ϑ → 0. Recall, that a sequence of functionals Fn : X → R, n ∈ N, defined on a topological
space Γ -converges to a functional F : X → R iff

(i) For all x ∈ X and xn
n→∞−→ x, lim infn→∞ Fn(xn) � F(x) and

(ii) For all x ∈ X there exists xn
n→∞−→ x such that lim supn→∞ Fn(x) � F(x).

Vanishing diffusivities have not been treated in our previous existence proofs for the time-dependent
or stationary case. We attack this issue by reducing the system (5.1) to minimizing an energy functional.
In this order we choose a function ρ ∈ H1(C), ρ � 0 a.e., and formally substitute ρi = ρ − ρa into
(5.1b). This way we obtain the following:

r

(
h − h∗

ϑ

)
ρa = k

(
ρ − ρa

) ⇐⇒ ρa = kρ

k + r
( h−h∗

ϑ

) = gϑ ◦ h, (6.3)
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where gϑ : R → R, x �→ kρ

k+r
(

x−h∗
ϑ

) . Inserting into (5.1a) we have only one equation left:

a (h,ϕ)+ (
hgϑ ◦ h,ϕ

)
L2(C) = (

p0,ϕ
)

L2(C) , (6.4)

whose solutions are the critical points of the following energy functional

Jϑ : H2(C) → R

Jϑ (h) = 1

2
a (h, h)+

ˆ
C

ˆ h(x)

0
sgϑ (s) ds dx −

ˆ
C

p0(x)h(x) dx.

Lemma 6.2 There exists a minimizer of Jϑ .

Proof. This functional is coercive in the H2(C) norm:

1

2
a (h, h)−

ˆ
C

p0(x)h(x) dx � C1 ‖h‖2
H2(C) − 1

4ε

∥∥p0

∥∥2
L2(C) − ε ‖h‖2

L2(C) ,

C1 > 0, and we choose ε smaller enough for ε ‖h‖2
L2(C)

to be absorbed by C1 ‖h‖2
H2(C)

.

Set A(h) = 1
2 a (h, h) and B(h) = ´

C

´ h(x)
0 sgϑ (s) ds dx + F(h), where

F : H2(C) → R, h �→ −
ˆ

C
p0(x)h(x) dx.

Note that A is weakly lower semicontinuous in H2(C). We show that B is weakly continuous in H2(C),
so A + B is weakly lower semicontinuous in H2(C).

B is continuous in Cb(C): take a sequence
(
hn

)
n∈N converging in Cb(C) to h. Now observe that for

all δ > 0, there exists an N ∈ N such that for all n � N, it holds∣∣∣∣∣
ˆ

C

ˆ h(x)

0
sgϑ (s) ds dx −

ˆ
C

ˆ hn(x)

0
sgϑ (s) ds dx

∣∣∣∣∣ � |C| sup
x∈C

∣∣∣∣∣
ˆ h(x)

hn(x)
sgϑ (s) ds

∣∣∣∣∣
� |C| sup

x∈C

∣∣∣∣∣
ˆ h(x)

h(x)±δ
sgϑ (s) ds

∣∣∣∣∣ ,

so ˆ
C

ˆ hn(x)

0
sgϑ (s) ds dx

n→∞−→
ˆ

C

ˆ h(x)

0
sgϑ (s) ds dx.

Conclusively, B(hn) → B(h) for n → ∞.

Since H2(C)
comp
↪→ Cb(C), for every sequence

(
hn

)
n∈N converging weakly in H2(C) to h, we may

take from every subsequence a subsubsequence
(
hnk

)
k∈N that converges in Cb(C) to h′. It holds h′ a. e.= h

as weak convergence in H2(C) implies weak convergence in L2(C) and convergence in Cb(C) implies

(strong) convergence in L2(C). So with the previous result B(hn)
n→∞−→ B(h). �
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With this lemma we have proven that for every ρ ∈ H1(C), ρ � 0 a. e., we find a minimizer h of
Jϑ with which we may then define ρa = gϑ ◦h, and further ρi = ρ−ρa such that (h, ρa, ρi) solves (5.1)
with vanishing diffusivities. It is easily checked that the constructed linker densities are non-negative.

Lemma 6.3 For ϑ ↘ 0 the energy functional Jϑ Γ -converges to

J0 (h) = 1

2
a (h, h)+

ˆ
C

g0(x) dx −
ˆ

C
p0(x)h(x) dx,

where g0(x) = ρ
2 min{h(x)2, (h∗)2}.

Proof. As the other terms in Jϑ are independent of ϑ we only need to consider the functional

Gϑ : H2(C) → R, h �→
ˆ

C

ˆ h(x)

0
sgϑ (s) ds dx.

It is first shown that from any (ϑn)n∈N → 0 and any (hn)n∈N that converges in H2(C) to h a
subsequence such that Gn

(
hn

) → G0 (h) can be singled out. (For the sake of notational simplicity,
we abbreviate Gϑn

= Gn and gϑn
= gn.)

In this order, rewrite

ˆ
C

ˆ hn(x)

0
sgn(s) ds dx −

ˆ
C

ˆ h(x)

0
sg0(s) ds dx =

(ˆ
C

ˆ hn(x)

0
sgn(s) ds dx −

ˆ
C

ˆ h(x)

0
sgn(s) ds dx

)

+
(ˆ

C

ˆ h(x)

0
sgn(s) ds dx −

ˆ
C

ˆ h(x)

0
sg0(s) ds dx

)
.

We take a subsequence such that hnk
converges in Cb(C) to h. For any δ > 0 consider a sufficiently large

k such that ∣∣∣∣∣
ˆ

C

ˆ hnk (x)

0
sgnk

(s) ds dx −
ˆ

C

ˆ h(x)

0
sgnk

(s) ds dx

∣∣∣∣∣ �
ˆ

C

∣∣∣∣∣
ˆ h(x)

h(x)±δ
sgnk

(s) ds

∣∣∣∣∣ dx

�
ˆ

C

ˆ h(x)

h(x)−δ
sgnk

(s) ds dx.

This term converges to zero for δ → 0 since
∥∥gnk

∥∥
L∞(C) is uniformly (in k) bounded. Now consider

ˆ
C

ˆ h(x)

0
sgn(s) ds dx =

ˆ
{x∈C | h(x)�h∗ }

ˆ h(x)

0
ρs ds dx +

ˆ
{x∈C | h(x)>h∗ }

ˆ h∗

0
ρs ds dx

+
ˆ
{x∈C | h(x)>h∗ }

ˆ h(x)

h∗
sgn(s) ds dx.
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 39

Due to the monotonicity of r, gn(s)monotonically decreases to zero and gn � g1 ∈ L1(C), the monotone
convergence theorem applies, so the last term converges to zero for n → ∞. Therefore,

ˆ
C

ˆ h(x)

0
sgn(s) ds dx

n→∞−→
ˆ
{x∈C | h(x)�h∗ }

ρ

2
h(x)2 dx +

ˆ
{x∈C | h(x)>h∗ }

ρ

2

(
h∗)2 dx

= G0 (h) .

Take any clustering point of Gn

(
hn

)
and a subsequence Gnk

(
hnk

)
converging to it. Using the previous

result we single out another subsequence that converges to G0 (h), which has to be the clustering point,
so G0 (h) � lim infn→∞ Gϑn

(
hn

)
.

Choosing an arbitrary h and taking the sequence hn = h converging to it the previous considerations
also lead to G0 (h) � lim supn→∞ Gn

(
hn

)
and the claimed Γ -limit is shown. �

Lemma 6.4 The Euler–Lagrange equation of J0 is given by

κΔ2
Ch − γΔCh + λh + ρhH

(
1 − h

h∗

)
= p0

for all h ∈ H4(C) with H(x) =
{

0 x � 0

1 x > 0
being the Heaviside function.

Proof. Let h be a stationary point of J0, i.e., d
dε

(
J0 (h + εv)

)∣∣
0 = 0 for all v ∈ H2(C). Take an

arbitrary v ∈ H2(C) and consider ε > 0 small enough such that h < h∗ a.e. implies h + εv � h∗ a.e.
Then calculate

d

dε

(ˆ
C

min{(h(x)+ εv(x))2 ,
(
h∗)2} dx

)∣∣∣∣ 0

= d

dε

(ˆ
{x∈C|h(x)<h∗ }

(h(x)+ εv(x))2 dx

)∣∣∣∣∣ 0 + d

dε

(ˆ
{x∈C|h(x)�h∗ }

(
h∗)2 dx

)∣∣∣∣∣ 0

=
ˆ
{x∈C|h(x)�h∗ }

d

dε

(
(h(x)+ εv(x))2

)∣∣∣ 0 dx = 2
ˆ
{x∈C|h(x)�h∗ }

h(x)v(x) dx

= 2
ˆ

D
h(x)H

(
1 − h(x)

h∗

)
v(x) dx.

The other derivatives are standard and the claim follows. �
We may summarize the results of this section as follows:

Theorem 6.5 (i) For a total mass density ρ� 0 and a ripping parameter ϑ> 0, any minimizer h of Jϑ

constitutes a (variational) solution to Problem 5.1 for ηa = ηi = 0 together with some ρa, ρi ∈ H1(C).
(ii) Sending ϑ to zero minimizers of Jϑ converge to variational solutions of the model of

Lim et al. (2012), cf. p. 2, Equation (2) therein.
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Proof. (i) Take any ρ and ϑ . Existence of minimizers of Jϑ is guaranteed by Problem 6.2. As critical
points the minimizers solve (6.4). Defining ρa according to (6.3) and ρi = ρ − ρa we get solutions of
Problem 5.1 for ηa = ηi = 0.

(ii) Follows directly from Lemma 6.3 and Lemma 6.4. �

7. Numerical examples

In this section we discuss results from numerical simulations of the parabolic PDE system we analysed
in the previous sections. The predicted bleb size after a typical bleb formation time is compared against
heights observed by biologists. Furthermore, we investigate the role of the critical pressure defined in
Lim et al. (2012) for static systems in the case of our time-dependent PDE system.

7.1 Parameters and initial conditions

As the tabular Table 1 suggests, quite a lot parameters of our model have already been assessed and
discussed in the literature. The interested reader may consult the given sources and the references therein
as a thorough treatment of these parameters is not in the scope of this work. Nevertheless, the choice
of γ requires a comment: we decided to follow Lim et al. (2012)and Alert & Casademunt (2016) and
set H0 = 0. Despite their choice of κ = 2 · 10−19 J and γ = −2 · 10−6 we stay consistent with our
computations in Section 3.3, p. (10) and take γ ∼ − κ

R2 .
In correspondence to Alert & Casademunt (2016) we choose the linker density ρa(0, ·) to be

1014 m−2 and start with ρi(0, ·) = 0, accordingly.

7.2 Discretization

The computations were done on a rectangle C = [−0.49π , 0.49π ] × [0, 2π ] being an approximation of
the parameter space of the transformation

S :
[
−π

2
,
π

2

]
× [0, 2π) → ω2

R

(θ ,φ) �→ (R cos(θ) cos(φ), R cos(θ) sin(φ), R sin(θ))T

Table 1 Parameter configuration

Parameter Symbol Value Unit Source

Damping constant c 5 · 10−3 Pasm−1 (Alert & Casademunt, 2016, p. 1879)
Membrane bending rigidity κ 2 · 10−19 J Dai & Sheetz (1999)
Surface tension γ −4 · 10−9 Nm−1 see text
Linker spring constant ξ 10−4 Nm−1 Alert & Casademunt (2016)
Linker diffusivities ηa = ηi 10−6 m2 s−1 Jacobson et al. (2019)
Reconnection rate k 104 s−1 Rognoni et al. (2012)
Critical linkers length h∗ 10−9 m Lim et al. (2012)
Cortex radius R 10−5 m Charras & Paluch (2008)
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 41

onto the 2-sphere ω2
R ⊆ R

3 in three dimensions with radius R. The boundary [−0.49, 0.49] × {0} ∪
[−0.49, 0.49] × {2π} is chosen to be periodic and at {−0.49} × [0, 2π ] ∪ {0.49} × [0, 2π ] we employ
homogeneous Neumann boundary conditions. This domain approximation is a simple approach towards
the singularities at the poles of ω2

R and there are other more elaborate methods like surface finite
elements (cf. Dzuik & Elliott, 2013) which can handle such problems. However, we will show that
we can in fact recover established results and conclude that this approach is sufficient for studying the
bleb height near the equator. The fluid influence is neglected for simplicity setting L = cI.

In order to avoid a H2(C) trial space, but to stick with conformal Galerkin methods, we use a standard
splitting of theΔ2 operator with boundary conditions for h andΔh by introducing w = −Δh. This leads
to the following system:

c∂th − κΔw + γw = −ξρah + p0

w +Δh = 0

∂tρa − ηaΔρa = kρi − rϑ (h) ρa

∂tρi − ηiΔρi = −kρi + rϑ (h) ρa.

In the Galerkin approximation, we employ Lagrangian P1 finite elements conforming with the trial
space H1(C) for h, w, ρa and ρi. The mesh width is denoted by Δx. In this configuration we obtain a
semidiscretization of the form

cM∂th
Δx + κAwΔx + γMwΔx = b

(
ρa
Δx, hΔx) + Mp0

Δx

MwΔx − AhΔx = 0

M∂tρa
Δx + ηaAρa

Δx = kMρi
Δx − qϑ

(
hΔx, ρa

Δx)
M∂tρi

Δx + ηiAρi
Δx = −kMρi

Δx + qϑ
(
hΔx, ρa

Δx)
with a matrices M, A ∈ R

(N,N), where N is the number of interior nodes and the corresponding basis
functions

{
ϕi |i ∈ {1, . . .N}} defined there and

b
(
ρa
Δx, hΔx) =

((
ξρa

ΔxhΔx,ϕi

)
L2(C)

)
i∈{1,...,N} ,

qϑ
(
hΔx, ρa

Δx) =
((
ρa
Δxrϑ (h

Δx),ϕi

)
L2(C)

)
i∈{1,...,N} .

For implementation of this spatial discretization we used the FEM solver Netgen/NGSolve (https://
ngsolve.org, Schöberl, 2014).
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Fig. 2. Bleb formation over time. The development of a bleb as a height function with respect to the cortex (which is modelled
by a sphere of radius 10−5 m) is shown at several points in time (normalized with respect to 30 s) as reaction to an applied pressure
that is constant in time. (For details see p. 169.)

Discretization in time is achieved by applying a semi-implicit Euler scheme with time step size
τ > 0 and time points 0 = t1 < t2 < · · · < tk < tk+1 < · · · < T , n ∈ N:

cτ−1M
(

hΔx,k+1 − hΔx,k
)

+ κAwΔx,k+1 + γMwΔx,k+1 = b
(
ρa
Δx,k+1, hΔx,k+1

)
+ Mp0

Δx (7.3a)

MwΔx,k+1 − AhΔx,k+1 = 0 (7.3b)

τ−1M
(
ρa
Δx,k+1 − ρa

Δx,k
)

+ ηaAρa
Δx,k+1 = kMρi

Δx,k+1 − qϑ

(
hΔx,k, ρa

Δx,k+1
)

(7.3c)

τ−1M
(
ρi
Δx,k+1 − ρ

Δx,k
i

)
+ ηiAρi

Δx,k+1 = −kMρi
Δx,k+1 + qϑ

(
hΔx,k, ρa

Δx,k+1
)

. (7.3d)

To cope with the implicit terms and the nonlinearities, we use Newton’s fixed point iteration.

7.3 Scenarios

For all the simulations we will discuss in the following the parameters of the PDE are as in Fig. 1. The
typical expansion time for a bleb to nucleate is about 30 s (Charras & Paluch, 2008), so we normalized
the simulation time with respect to this reference quantity. The cortex is modelled (as before in the
analytic part) as a sphere with radius R = 10−5 m (Charras & Paluch, 2008). Nucleation of a bleb We
are interested in the (maximal) height of the bleb that is nucleated after this time. It has been observed
that the typical height of blebs is about 2μm, cf. Charras & Paluch (2008).
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A PDE MODEL FOR BLEB FORMATION AND INTERACTION 43

Fig. 3. Maximal height difference. The maximum of the height function difference of two preceding time points is plotted
against time (normalized with respect to 30 s). (For details see remark 7.1.)

Fig. 4. Maximal heights after 30 s against the applied pressure. The maximal height that is reached after t = 30 s (black
circles) is plotted against a time-constant pressure (abscissa) that has been applied. The green line is a linear function with
parameters a ∼ 6.38 · 10−11, b ∼ 0 that goes through the first two data samples exactly. The blue labels are the critical pressure
p∗

0 = 16Pa and the critical height h∗ = 10−9 m. (For details see p. 175).

We prescribe a pressure as the function x �→ 103 e
− d(x,m)

2r2 Pa, where d is the geodesic distance
between the argument x ∈ S2 and a midpoint m ∈ S2 and r controls the width of the pressure pulse.
The pressure is constant in time. The scaling ϑ of the disconnection rate rϑ (h) is still free. A parameter
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Table 2 Fitting errors (RMS)

Pressure (in Pa) RMS

2 0
4 4.47 · 10−17

6 3.27 · 10−17

8 3.50 · 10−17

10 3.09 · 10−17

12 3.28 · 10−17

14 3.16 · 10−17

16 2.99 · 10−17

18 2.85 · 10−14

20 1.11 · 10−13

22 2.40 · 10−13

24 4.18 · 10−13

26 6.45 · 10−13

28 9.17 · 10−13

30 1.23 · 10−12

...
...

120 5.98 · 10−11

The tabular shows the root-mean-squared residual errors of the Marquardt–Levenberg
algorithm for fitting a linear function into the data sets of the intervals [0, x], where x is
the pressure value of the corresponding line. The blue marked lines exhibit a significant
jump in the RMS. As the critical pressure was determined before to be 16Pa this
consolidates the hypothesis that above the critical pressure there is a qualitative change
in the bleb development. (For details see p. 175).

study shows that with ϑ = 1.1 · 10−12, we may achieve a bleb height of 1.57 · 10−7, which is about one
tenth of the experimentally observed bleb height. With a more elaborate view on the protein distribution
at the membrane and especially their behaviour after the critical height h∗ is passed, one may achieve
better results. For some time points we plotted the membrane height as a heat map on the cortex, see
Fig. 2.

Remark 7.1 Considering the difference between the maximal height of every time step (see Fig. 3)
there seems to be numerical indication of a stability property like that rigorously shown in Section 5.3,
which does not apply in this case as H0 = 0 and a (·, ·) is not coercive.

Critical pressure Lim et al. (2012) consider a bleb to form when the the membrane height reaches above
the critical height h∗ (on a certain interval I ⊆ R) and linker bonds are broken in response. According
to this notion of a bleb in their static model they define the critical pressure to be the greatest pressure
below which the membrane height is beneath the critical height everywhere. We adopt this notion to our
(dynamic) model in the sense that the critical pressure p∗

0 is the greatest value below which the maximal
height of the membrane is beneath the critical height after the nucleation phase of 30 s which is driven
by the pressure function

p0(x) = p∗
0 · e

− d(x,m)
2r2 Pa.
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Passing the critical height triggers the linker disconnection process.
By applying the pressure as previously described and increasing the pressure in steps of 2Pa we

plotted the maximal height after the nucleation phase against the pressure, see Fig. 4. Considering a
linear function through the first two data samples gives evidence that the data samples do not grow
linearly at least not on the whole pressure range; up to a pressure of about 60Pa linear growth seems
to be a good description. We hypothesize that there is a change in the growing behaviour and that
this change occurs at the critical pressure. To give some evidence for this we successively fitted linear
functions (with the gnuplot implementation of the Marquardt–Levenberg algorithm) to the data sets of
the pressure intervals [0 : q], q ∈ {2, . . . , 120}, and assessed the root mean square residuum (RMS),
see Fig. 2. We notice that until 16Pa there is very little change in the RMS. From 16Pa to 18Pa
there is a specifically large increase of the RMS (three orders of magnitude). Afterwards, the RMS
increases readily. Taking a look at, Fig. 4, we see that 16Pa happens to be the critical pressure which
substantiates our hypothesis that reaching the critical pressure triggers a major change in the bleb growth
behaviour.

8. Conclusion

We derived a PDE model by balancing the bending, stretching and linker forces coming from
the variational derivative of an extended Helfrich energy functional with the stress at the
interface between the cytosol and the extracellular fluid. Based on the restriction of only small
membrane displacement normal to the cortex we could derive a gradient flow describing the
membrane height normal to the cell cortex. Additionally, linker kinetics were incorporated with
reaction–diffusion equations where we also introduced the concept of inactive linkers to include
the phenomenon of cortex disruption. To our knowledge this effect cannot be modelled with
any other model.

For the resulting system we established global-in-time existence and uniqueness of weak solutions
by applying the Banach fixed point theorem. The stationary case can also be treated with a fixed point
argument, which uses the Schauder fixed point theorem, to establish existence. However, we do not have
results about uniqueness or at least classification of stationary solutions.

The a priori estimates used in the stationary solution existence proof could be exploited for passing
to the limit in the rescaling parameter of the disconnection rate, ϑ ↘ 0. We observed that the model of
Lim et al. (2012) could be rediscovered this way. The existence of a singular limit in the time-dependent
case remains an interesting open question for future research.

Finally, let us mention that so far the model is purely mechanistic and ignores any interaction with
external and cell-internal signalling. In particular, the interaction of bleb formation with polarization
of protein distributions influencing the mechanical properties will become important in order to fully
understand cell migration by blebbing.
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Appendix A. Dirichlet-to-Neumann operator of the stationary Stokes problem

We define the Neumann-to-Dirichlet operator for the stationary Stokes problem

μ
(
J (u) , J (ϕ)

)
L2(D,R(3,3))

− (p, ∇ · ϕ)L2(D) = (
f , γM(ϕ)

)
L2(M)

(∇ · u, q)L2(D) = 0

γΓ (u) = 0

γM(u) = g

(A.1)

with u,ϕ ∈ H1(D), p, q ∈ L2(D), and g ∈ H1
γ0σ

(
M,R3

)
, f ∈ L2

γ0σ

(
M,R3

)
, where

H1
γ0σ

(
M,R3

)
=

{
u ∈ H1

(
M,R3

) ∣∣∣∣ˆ
M

uνM dx = 0

}
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as function
DN : H1

γ0σ

(
M,R3

)
→ L2

γ0σ

(
M,R3

)
mapping g to f .

Remark A.1 For the Stokes problem with mean-value-free pressure p and no restriction on the
Neumann data f , the well posedness of this operator follows from (Fabes et al., 1988, Theorem 4.15).
However, a unique solution of the above problem is then easily defined by setting p̃ = p+ffl

M f ·νM dσ 2.

We further have the following properties

Lemma A.2

(i) DN is self-adjoint and positive definite.

(ii) There exists a positive definite operator S : L2
γ0σ
(M,R3) → L2

γ0σ
(M,R3) such that S2 = DN

on the domain of DN.

(iii) DN is continuous from the ‖·‖H1(M) topology of its domain to the ‖·‖L2(M) topology of its
range.

Proof. (i) We may express the Dirichlet-to-Neumann operator as

DN =
{
(g, f ) ∈

(
L2
γ0σ

(
M,R3

))2
∣∣∣∣ ∃u ∈ H

3
2
σ (M), γM(u) = g : ∀ϕ ∈ H

3
2
σ (M) :

μ
(
J(u), J (ϕ)

)
L2(D) = (

f , γM(ϕ)
)

L2(M)

}
.

By form methods (as used e.g. in Fujita et al., 2001, Chapter 7), the claim follows from the coercivity,
continuity and symmetry of (u,ϕ) �→ (J(u), J(ϕ))L2(D).

(ii) We refer to Sebestyén & Tarcsay (2017, Theorem 2.3).
(iii) This can be directly derived from Fabes et al. (1988, Theorem 4.15) and the continuity of the

trace operator. �

Appendix B. Existence and uniqueness of solutions for the height equation

Lemma B.1 There is exactly one h ∈ L2([0, T], H2
mvf(C)) ∩ H1

(
[0, T], H1

mvf(C)
)

satisfying(
L
(
∂thνC

)
,ϕνC

)
L2(C) + a (h,ϕ) = (f (t),ϕ)L2(C) (B.1)

with
a (h,ϕ) = κ

(
ΔCh,ΔCϕ

)
L2(C) + γ

(∇Ch, ∇Cϕ
)

L2(C,R3)
+ λ (h,ϕ)L2(C)

for almost every t ∈ [0, T) and all ϕ ∈ H2(C), where f ∈ C([0, T), L2(C) and h(0) = h0 ∈ L2
0(C).

Proof. We argue by a Petrov–Galerkin-type approximation:
(1) Let

(
ϕi

)
i∈N be an orthonormal Schauder basis of L2(C) with eigenvalues (λi)i∈N (sorted

ascendingly) consisting of eigenfunctions of the Laplace–Beltrami operator ΔC (due to the divergence
theorem and ∂C = ∅, the eigenfunctions ϕi, i � 2, are mean value free; for a spectral theorem on
Riemannian manifolds cf. Lablée, 2015, Theorem 4.3.1). For m ∈ N we set hm(t, x) = ∑m

i=2 hi(t)ϕi(x)
and fm(t, x) = ∑m

i=1 fi(t)ϕi(x). Formally inserting into (B.1) and testing with ϕj, j ∈ {1, . . . , m} we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/4/1/tnaa001/5824022 by U

niv Augsburg user on 15 February 2023



A PDE MODEL FOR BLEB FORMATION AND INTERACTION 49

obtain the finite-dimensional system for the coefficient vectors hm = (
hi

)
i∈{2,...,m} and right hand side

f
m

=
(

fj

)
j∈{1,...,m}:

Mh′
m + κA2hm + γAhm + λhm = f

m
, (B.2)

where A = diag
(
λ2, . . . , λm

)
and M = ((L(ϕiνC),ϕjνC)L2(C))j∈{1,...,m},i∈{2,...,m}. Due to the symmetry

and positive definiteness of L((·)νC · νC in L2(C) (see Lemma A.2) the columns of M are linearly
independent (M without its last line would be invertible), and well-posedness of (B.2) complemented
by the initial condition h(0) = h0,m = ((h0,ϕj)L2(C))j∈{2,...,m} follows by multiplying with the Moore-

Penrose pseudo left inverse (MTM)−1MT and the Picard–Lindelöf theorem.
(2) Multiplying (B.2) by hm = (

0, hi

)
i∈{2,...,m} in the Euclidean scalar product we obtain(

L(h′
m), hm

)
L2(C) + κ

(
ΔChm,ΔChm

)
L2(C) + γ

(∇Chm, ∇Chm

)
L2(C,R3)

+ λ
(
hm, hm

)
L2(C) = (

f , hm

)
L2(C) .

Leaving out a
(
hm, hm

)
(non-negative term, cf. Remark 3.3) and applying the Cauchy–Schwartz

inequality on the right we arrive at

(
L(h′

m), hm

)
L2(C) � 1

2

∥∥fm
∥∥2

L2(C) + 1

2

∥∥hm

∥∥2
L2(C) � 1

2

∥∥fm
∥∥2

L2(C) + θ−1

2

∥∥Shm

∥∥2
L2(C)

with L = S2. We recall the continuity of L (see Lemma A.2) and observe
(
L(h′

m), hm

)
L2(C) =

1
2

d
dt

∥∥Shm

∥∥2
L2(C). By applying the Grönwall inequality we find the bound

θ
∥∥hm

∥∥2
H1(C) (t) �

∥∥Shm

∥∥2
L2(C) (t) �

∥∥Sh0,m

∥∥2
L2(C)

etθ−1 +
ˆ t

0

∥∥fm
∥∥2

L2(C) (s)e
(t−s)θ−1

ds.

Since h0,m and fm are bounded uniformly in L2(C) and L2([0, T], L2(C)) w.r.t. m, respectively, so is
hm in L∞ (

[0, T], H1(C)
)
. Not leaving out a

(
hm, hm

)
, but integrating in time and using the previously

achieved bound, we may further bound
∥∥ΔChm

∥∥2
L2([0,T],L2(C)) uniformly w.r.t. m, eventually giving a

bound on hm in L2([0, T], H2(C)) uniformly w. r. t. m. Multiplying (B.2) by h′
m = (0, h′

i(t))i∈{2,...,m} in
the scalar product sense, we see

θ
∥∥h′

m

∥∥2
H1(C) �

(
L(h′

m), h′
m

)
L2(C) �

∣∣a (
hm, h′

m

)∣∣ +
∣∣∣(fm, h′

m

)
L2(C)

∣∣∣ .

With Young’s inequality, integration in time and the previous bounds we obtain a bound of h′
m in

L2([0, T], H1(C)) uniformly w.r.t. m. All together there is a subsequence with indices mk such that h′
mk

weakly converges in H1(C) to h′ ∈ H1
mvf(C), L(h′

mk
) converges weakly in L2(C) to L(h′), hmk

weakly
converges in H2(C) to h ∈ H2

mvf(C) and fmk
weakly in L2(C) to f for almost every t ∈ [0, T). Uniqueness

follows with the linearity of the equation. �
Corollary B.2 (i) There is exactly one h ∈ L2([0, T], H2(C)) ∩ H1

(
[0, T], H1

mvf(C)
)

satisfying(
L
(
∂thνC

)
,ϕνC

)
L2(C) + a (h,ϕ) = (f (t),ϕ)L2(C)

for almost every t ∈ [0, T) and all ϕ ∈ H2(C), where f ∈ C([0, T), L2(C)) and h(0) = h0 ∈ L2(C).
(ii) The mean value

ffl
C h dx is constant in time.
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Proof. (i) Let f̃ = f − λ
ffl
C h0 dx and h̃0 = h0 − ffl

C h0 dx. Then consider the solution h̃ of (B.1) with
initial data h̃0 and right-hand side f̃ . Set h = h̃ + ffl

C h0 dx and observe(
L
(
∂thνC

)
,ϕνC

)
L2(C) + a (h,ϕ) =

(
L
(
∂th̃νC

)
,ϕνC

)
L2(C)

+ κ
(
ΔCh̃,ΔCϕ

)
L2(C)

+ γ
(
∇Ch̃, ∇Cϕ

)
L2(C)

+ λ

(
h̃ +

 
C

h0 dx,ϕ

)
L2(C)

= λ

( 
C

h0 dx,ϕ

)
L2(C)

+
(

f̃ ,ϕ
)

L2(C)

= (f ,ϕ)L2(C) ,

so h is a solution as claimed.
(ii)

ffl
C h0 dx is constant in time and this is by construction the mean value of h. �

Appendix C. Taylor approximation of the Dirichlet-to-Neumann operator

We want to show that the Dirichlet-to-Neumann operator DNt : H1(M(t)) → L2(M(t)) can be
approximated by DN0 : H1(M0) → L2(M0) in the sense that for h = δ̂h and ψ = δψ̂ , it holds

ˆ
M(t)

DNt

([
∂thνM0

]
X

)
· [ψνM0

]
X

dx =
ˆ

M0

DN0

(
∂thνM0

) · ψνM0
dx + o(δ3)

for ψ ∈ H1(M0).
Take u1 and u2 as parts of solutions of stationary Stokes problems being continuously differentiable

such that

μ
(
J(u1), J(ϕ)

)
L2(D,R(3,3))

−
(

p1, ∇ · ϕ
)

L2(D)
=
ˆ

M(t)
DNt

([
∂thνM0

]
X

)
· γM(t)(ϕ) dx (C.1)

and

μ
(
J(u2), J(ϕ)

)
L2(D,R(3,3))

−
(

p2, ∇ · ϕ
)

L2(D)
=
ˆ

M0

DN0

(
∂thνM0

) · γM0
(ϕ) dx. (C.2)

Subtract (C.1) and (C.2) and choose ϕ as the velocity of a solution of a Stokes problem on D with
Dirichlet boundary data ψνM0

on M0,
[
ψνM0

]
X

on M(t) and zero on the rest of the boundary, which
is possible under the assumption that M(t) ∪ M0 is sufficiently regular.

μ
(
J (ũ) , J (ϕ)

)
L2(D,R(3,3))

=
ˆ

M(t)
DNt

([
∂thνM0

]
M(t)

)
· [ψνM0

]
X

dx

−
ˆ

M0

DN0

(
∂thνM0

) · ψνM0
dx.

According to Cattabriga (1961, p. 311), J (ũ) and J (ϕ) may be bounded by their Dirichlet boundary
data. For x ∈ M(t), x0 ∈ M0 such that x = x0 + ∂th(x0)νM0

(x0), we have

u2(x) = u2(x0)+ (
x − x0

) · ∂x−x0

(
u2
)∣∣∣ x0

+ o
(∥∥x − x0

∥∥2
2

)
. (C.3)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article/4/1/tnaa001/5824022 by U

niv Augsburg user on 15 February 2023



A PDE MODEL FOR BLEB FORMATION AND INTERACTION 51

By choice u2(x) = u1(x0), so

u2(x) = u1(x0)+ (
x − x0

) · ∂x−x0

(
u2
)∣∣∣ x0

+ o
(∥∥x − x0

∥∥2
2

)
(C.4)

and therefore
ũ(t, x) = (

x − x0

) · ∂x−x0
(u2)

∣∣∣ x0
+ o

(∥∥x − x0

∥∥2
2

)
. (C.5)

As u2(x0) = [
∂th(t, x0)

]
X

= δ
[
∂t̂h(t, x0)

]
X

, u2 = o(δ) in a sufficiently small neighbourhood of x0, and
so ∂x−x0

(u2)
∣∣

x0
= o(δ). With

∥∥x − x0

∥∥
2 = o(δ) we have ‖ũ(t, x)‖2 = o(δ2). As the boundary data of ϕ

is of order δ the claim follows.

Appendix D. Differential geometry

This section contains basic differential geometric formulae which are eventually used for calculating the
shape derivatives in Section 3.3.

Theorem D.1 (Transport theorem for surfaces, Barrett et al., 2020, Theorem 32). Let G(Γs; s ∈ I) be
a smooth evolving hypersurface in R

n and f : G(Γs; s ∈ I) → R a function with existing material
derivative. Then,

d

ds

(ˆ
Γs

f (s, ·) dσ n−1
)∣∣∣∣ r =

ˆ
Γr

∂◦
s (f )| r + f r∇Γs

· Vr dσ n−1.

Lemma D.2 (Barrett et al., 2020, Lemma 37). Let G(Γs; s ∈ I) be a smooth evolving manifold in R
n

with normal fields
(
νs

)
s∈I . It holds

∂◦
s (νs)|r = − (∇Γr

Vr)T
νr.

Some simple algebraic observations:

Lemma D.3 Let Γ be an orientable differentiable real submanifold with normal field ν and f : Γ → R
m

a function with existing tangential Jacobian. Further, PΓ = l − ν ⊗ ν. It holds,

∇Γ fPΓ = ∇Γ f (D.1)

PΓ

(∇Γ f
)T = (∇Γ f

)T (D.2)(∇Γ f
)T
PΓ : ∇Γ g = (∇Γ f

)T : ∇Γ g. (D.3)

An analogue of the Schwarz theorem for tangential gradients

Lemma D.5 (Barrett et al., 2020, Lemma 15). Let Γ ⊆ R
n be a differentiable, orientable real

submanifold with normal field ν and f : Γ → R a function with existing tangential derivatives up
to second order.

∇2
Γ (f )− ∇2

Γ (f )
T = ν ⊗ (∇Γ ν∇Γ f

) − (∇Γ ν∇Γ f
) ⊗ ν

This implies

Corollary D.6 (Barrett et al., 2020, Lemma 16). Let Γ be a differentiable orientable real submanifold
with normal field ν and mean curvature H. It holds,

ΔΓ ν = ∇Γ H − ν∇Γ ν : ∇Γ ν.
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D.1 Commutator rules

Lemma D.7 (Commutator rule for the tangential gradient, Barrett et al., 2020, Lemma 38). Let X :
I × R

n → R
n+k, for an interval I ⊆ R, be parametrizations of n-dimensional manifolds Γs with an

associated material derivative ∂◦
s and velocity fields Vr = ∂s (X(s, ·))| r◦ (X(r, ·))−1. Let f : G(Γs; s ∈

I) → R be sufficiently regular. It holds

∂◦
s

(∇Γs
f
)∣∣

r = ∇Γr

(
∂◦

s (f )
∣∣

r

) +
(
∇Γr

Vr − 2JΓr
(Vr)

)
∇Γr

f .

A similar rule exists for the tangential divergence:

Lemma D.8 (Commutator rule for the tangential divergence, Barrett et al., 2020, Lemma 38). Let X :
I × R

n → R
n+k, for an interval I ⊆ R, be parametrizations of n-dimensional manifolds Γs with an

associated material derivative ∂◦
s and velocity fields Vr = ∂s (X(s, ·))| r◦ (X(r, ·))−1. Let f : G(Γs; s ∈

I) → R
n be sufficiently regular. It holds

∂◦
s

(∇Γs
· f
)∣∣

r = ∇Γr
· ∂◦

s (f )
∣∣

r +
(
∇Γr

Vr − 2JΓr
(Vr)

)
: ∇Γr

f .

We can now derive a commutator rule for the Laplace–Beltrami operator:

Lemma D.9 (Commutator rule for the Laplace–Beltrami operator). Let G(Γs; s ∈ I), I ⊆ R, be a smooth
evolving manifold and f : G(Γs; s ∈ I) → R a function with tangential derivatives up to order two whose
material derivative exists and let f be material differentiable itself. It holds,

∂◦
s (ΔΓs

(f ))
∣∣

r = ΔΓr
(∂◦

s (f )
∣∣

r)+
(

∇Γr
·
((

∇Γr
Vr − 2JΓr

(Vt)
)T

))
· ∇Γr

f

+ 2
(
∇Γr

Vr − (∇Γr
Vr)T − PΓr

∇Γr
Vr

)
: ∇2

Γr
f

+ ∇Γr
Vr : νr ⊗ (

Hr∇Γr
f
)

.

Proof. Commute two times:

∂◦
s

(
ΔΓs

f
)∣∣

r = ∂◦
s

(∇Γs
· ∇Γs

f
)∣∣

r
(1)= ∇Γr

· (∂◦
s

(∇Γs
f
)∣∣

r

) +
(
∇Γr

Vr − 2JΓr
(Vr)

)
: ∇2

Γr
f

(2)= ∇Γr
·
(
∇Γr

(
∂◦

s (f )| r

) +
(
∇Γr

Vr − 2JΓr

(
Vr))∇2

Γr
f
)

+
(
∇Γr

Vr − 2JΓr

(
Vr)) : ∇2

Γr
f

(3)= ΔΓr

(
∂◦

s (f )| r

) +
(

∇Γr
·
(
∇Γr

Vr − 2JΓr
(Vr)

)T
)

· ∇Γr
f

+
(
∇Γr

Vr − 2JΓr
(Vr)

)
:
(
∇2
Γr

f
)T

+
(
∇Γr

Vr − 2JΓr

(
Vr)) : ∇2

Γr
f
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−
(
∇Γr

Vr − 2JΓr
(Vr)

)
:
(
Hr∇Γr

f
) ⊗ νr

+
(
∇Γr

Vr − 2JΓr
(Vr)

)
: νr ⊗ (

Hr∇Γr
f
)

(5)= ΔΓr

(
∂◦

s (f )| r

) +
(

∇Γr
·
(
∇Γr

Vr − 2JΓr
(Vr)

)T
)

· ∇Γr
f

+ 2
(
∇Γr

Vr − (∇Γr
Vr)T

)
:
(
∇2
Γr

f
)

− 2
(
PΓ∇Γr

Vr) : ∇2
Γr

f

+
(
∇Γr

Vr − 2JΓr
(Vr)

)
: νr ⊗ (

Hr∇Γr
f
)

(6)= ΔΓr

(
∂◦

s (f )| r

) +
(

∇Γr
·
(
∇Γr

Vr − 2JΓr
(Vr)

)T
)

· ∇Γr
f

+ 2
(
∇Γr

Vr − (∇Γr
Vr)T − PΓ∇Γr

Vr
)

: ∇2
Γr

f

+ ∇Γr
Vr : νr ⊗ (

Hr∇Γr
f
)

(1): Lemma D.8 (2): Lemma D.7 (3): ∇ · (Av) = (∇ · AT
) · v + A : (∇v)T (4): Lemma D.5 (Schwarz for

tangential gradients) (5):(
∇Γr

Vr − 2JΓr

(
Vr)) : ∇2

Γr
f =

(
∇Γr

Vr − PΓr
∇Γr

Vr − (∇Γr
Vr)T

PΓr

)
: ∇2

Γr
f

= ∇Γr
Vr : ∇2

Γr
f − PΓr

∇Γr
Vr : ∇2

Γr
f − (∇Γr

Vr)T
PΓr

: ∇2
Γr

f

=
(
∇Γr

Vr − (∇Γr
Vr)T

)
: ∇2

Γr
f − PΓr

∇Γr
Vr : ∇2

Γr
f

and(
∇Γr

Vr − 2JΓr

(
Vr)) :

(
Hr∇Γr

f
) ⊗ νr =

(
∇Γr

Vr − PΓr
∇Γr

Vr − (∇Γr
Vr)T

PΓr

)
:
(
Hr∇Γr

f
) ⊗ νr

= tr
((∇Γr

Vr)T (
Hr∇Γr

f
) ⊗ νr

)
+ tr

((∇Γr
Vr)T

PΓr

(
Hr∇Γr

f
) ⊗ νr

)
+ tr

(
PΓr

∇Γr
Vr (Hr∇Γr

f
) ⊗ νr

)
= 0

by using cyclic shifting. (6):(
∇Γr

Vr − 2JΓr

(
Vr)) : νr ⊗ (

Hr∇Γr
f
) =

(
∇Γr

Vr − PΓr
∇Γr

Vr − (∇Γr
Vr)T

PΓr

)
: νr ⊗ (

Hr∇Γr
f
)

= ∇Γr
Vr : νr ⊗ (

Hr∇Γr
f
)

by the same arguments as in (5). �
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Appendix E. Derivatives

E.1 Material derivative of the mean curvature

Lemma E.1 (Barrett et al., 2020, Lemma 39). Let G(Γs; s ∈ I) be an orientable, smooth evolving
manifold. We then have

∂◦
s (H)

∣∣
0 = −ΔΓ Vν +ΔΓ ν · Vτ − Vν |H|2.

E.2 Second-order derivative of the integral of the mean curvature

Lemma E.2 Let G(Γs; s ∈ I), I ⊆ R, be a smooth evolving hypersurface in n dimensions. It holds,

d2

ds2

(ˆ
Γs

Hs dσ n−1
)∣∣∣∣ r =

ˆ
Γr

−∂◦
s

(
Vs
ν

)∣∣
r|Hr|2 + 2Vr

ν tr
(
Hr∇Γr

((∇Γr
Vr)T

νr

)
+Hr (∇Γr

Vr)T
PΓr

Hr
)

+
(
−ΔΓr

Vr
ν + ∇Γr

Hr · Vr
τ − Vr

ν |Hr|2
)

∇Γr
Vr
ν

+ Hr
(
∇Γr

· (∂◦
s

(
Vs
ν

)∣∣
r

) +
(
∇Γr

Vr − 2JΓr

(
Vr)) : ∇Γr

Vr
)

+
(
−Vr

ν |Hr|2 + Hr∇Γr
· Vr

ν

)
∇Γr

· Vr dσ n−1.

Proof.

d2

ds2

(ˆ
Γs

Hs dσ n−1
)∣∣∣∣ r

(1)= d

ds

(ˆ
Γs

−ΔΓs
Vs
ν +ΔΓs

νs · Vs
τ − Vs

ν

∣∣Hs
∣∣ 2 + Hs∇Γs

· Vs dσ n−1
)∣∣∣∣ r

(2)= d

ds

(ˆ
Γs

−ΔΓs
Vs
ν+

(
∇Γs

Hs − νs

∣∣Hs
∣∣ 2
)
·Vs
τ−Vs

ν

∣∣Hs
∣∣ 2+Hs∇Γs

·Vs dσ n−1
)∣∣∣∣ r

(3)= d

ds

(ˆ
Γs

−ΔΓs
Vs
ν − Vs

ν

∣∣Hs
∣∣ 2 + Hs∇Γs

· Vs
ν dσ n−1

)∣∣∣∣ r

(4)= d

ds

(ˆ
Γs

−Vs
ν

∣∣Hs
∣∣ 2 + Hs∇Γs

· Vs
ν dσ n−1

)∣∣∣∣ r

=
ˆ
Γr

− ∂◦
s

(
Vs
ν

)∣∣
r

∣∣Hr
∣∣ 2 − Vr

ν ∂
◦
s

(∣∣Hs
∣∣ 2
)∣∣∣ r

+ ∂◦
s (H

s)
∣∣

r∇Γr
· Vr

ν + Hr∂◦
s

(∇Γs
· Vs

ν

)∣∣
r

+
(
−Vr

ν

∣∣Hr
∣∣ 2 + Hr∇Γr

· Vr
ν

)
∇Γr

· Vr dσ n−1

(5)=
ˆ
Γr

−∂◦
s

(
Vs
ν

)∣∣
r

∣∣Hr
∣∣ 2 + 2Vr

ν tr
(
Hr∇Γr

((∇Γr
Vr)T

νr

)
+Hr (∇Γr

Vr)T
PΓr

Hr
)
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+ ∂◦
s (H

s)
∣∣

r∇Γr
· Vr

ν + Hr∂◦
s

(∇Γs
· Vs

ν

)∣∣
r

+
(
−Vr

ν

∣∣Hr
∣∣ 2 + Hr∇Γr

· Vr
ν

)
∇Γr

· Vr dσ n−1

(6)=
ˆ
Γr

− ∂◦
s

(
Vs
ν

)∣∣
r

∣∣Hr
∣∣ 2 + 2Vr

ν tr
(
Hr∇Γr

((∇Γr
Vr)T

νr

)
+ Hr (∇Γr

Vr)T
PΓr

Hr
)

+
(
−ΔΓr

Vr
ν + ∇Γr

Hr · Vr
τ − Vr

ν

∣∣Hr
∣∣ 2
)

∇Γr
· Vr

ν

+ Hr
(
∇Γr

· (∂◦
s (V

s
ν)
∣∣

r

) +
(
∇Γr

Vr − 2JΓr

(
Vr)) : ∇Γr

Vr
)

+
(
−Vr

ν

∣∣Hr
∣∣ 2 + Hr∇Γr

· Vr
ν

)
∇Γr

· Vr dσ n−1

(1): Lemma E.1
(2): Corollary D.6
(3): integration by parts
(4): divergence theorem for manifolds without boundary
(5): see Elliott et al. (2017)
(6): Lemma E.1 and commutator rule for tangential divergence (Lemma 26) �
Corollary E.3 In case Vs = hν ◦ (Xs)−1 we have

d2

ds2

( ˆ
Γs

Hs dσ n−1
)∣∣∣∣0 =

ˆ
Γ

2h tr

(
H∇2

Γ h + hH3
)

− hHΔΓ h − 3h2H|H|2

+ H∇Γ h · ∇Γ h + h2H3 dσ n−1

We write V0 = V, etc.

Proof.

d2

ds2

(ˆ
Γs

Hs dσ n−1
)∣∣∣∣ 0

(1)=
ˆ
Γ

−∂◦
s

(
Vs
ν

)∣∣
0|H|2 + 2Vν tr

(
H∇Γ

((∇Γ V
)T
ν
)

+ H
(∇Γ V

)T
PΓH

)
+

(
−ΔΓ Vν + ∇Γ H · Vτ − Vν |H|2

)
∇Γ · Vν

+ H
(∇Γ · (∂◦

s

(
Vs
ν

)∣∣
0

) + (∇Γ V − 2JΓ (V)
)

: ∇Γ V
)

+
(
−Vν |H|2 + H∇Γ · Vν

)
∇Γ · V dσ n−1

(2)=
ˆ
Γ

2Vν tr
(
H∇Γ

((∇Γ V
)T
ν
)

+ H
(∇Γ V

)T
PΓH

)
−

(
ΔΓ Vν + Vν |H|2

)
∇Γ · Vν

+ H
((∇Γ V − 2JΓ (V)

)
: ∇Γ V

)
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+
(
−Vν |H|2 + H∇Γ · Vν

)
∇Γ · V dσ n−1

(3)=
ˆ
Γ

2h tr
(
H∇Γ

((
ν ⊗ ∇Γ h + hH

)T
ν
)

+ H
(
ν ⊗ ∇Γ h + hH

)T
PΓH

)
−

(
ΔΓ h + h|H|2

)
hH

+ H
((
ν ⊗ ∇Γ h − hH

)
:
(
ν ⊗ ∇Γ h + hH

))
+

(
−h|H|2 + hH2

)
hH dσ n−1

(4)=
ˆ
Γ

2h tr
(
H∇2

Γ h + hH3
)

− hH
(
ΔΓ h + h|H|2

)
+ H

(
∇Γ h · ∇Γ h − h2|H|2

)
+ hH

(
−h|H|2 + hH2

)
dσ n−1

=
ˆ
Γ

2h tr
(
H∇2

Γ h + hH3
)

− hHΔΓ h − 3h2H|H|2 + H∇Γ h · ∇Γ h + h2H3 dσ n−1

(1): Lemma 29 (2): as Vs ◦ Xs is independent of s and (note X = IΓ )

∂◦
s

(
Vs
ν

)∣∣
0 = ∂s(hν · νs ◦ (

II ,X
s))∣∣ 0 = hν · ∂s(νs ◦ (

II ,X
s) |0)

= hν · (∇x(ν̄) ∂s(X
s)
∣∣

0

)
= hν · (∇Γ (ν) ∂s(X

s)
∣∣

0

)
= h∂s (X

s)
∣∣

0 ·
((∇Γ ν)T

ν
)

= 0

due to the symmetry of ∇Γ ν.
(3): we have

∇Γ V = ∇Γ (hν) = ν ⊗ ∇Γ h + hH

and

∇Γ · V = ∇Γ · (hν) = ∇Γ h · ν + h∇Γ · ν = hH,

as well as

PΓ∇Γ V = (l − ν ⊗ ν)
(
ν ⊗ ∇Γ h + h∇Γ ν

) = ν ⊗ ∇Γ + h∇Γ ν − ν ⊗ ∇Γ h

−hν ⊗
(
∇Γ νTν

)
= hH,
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which implies
(∇Γ V

)T
PΓ = hH, so

2JΓ (V) = PΓ∇Γ V + (∇Γ V
)T
PΓ = 2hH.

(4): observe

∇Γ
((
ν ⊗ ∇Γ h + hH

)T
ν
)

= ∇Γ (∇Γ h ⊗ νν) = ∇2
Γ h

and (
ν ⊗ ∇Γ h + hH

)T
PΓ = ∇Γ h ⊗ νPΓ + hH

= ∇Γ h ⊗ ν − ∇Γ h ⊗ νν ⊗ ν + hH

= hH

and (
ν ⊗ ∇Γ h − hH

)
:
(
ν ⊗ ∇Γ h + hH

) = ν ⊗ ∇Γ h : ν ⊗ ∇Γ h + ν ⊗ ∇Γ h : hH

− hH : ν ⊗ ∇Γ h − h2|H|2

= tr
(∇Γ h ⊗ νν ⊗ ∇Γ h

) − h2|H|2

= ∇Γ h · ∇Γ h − h2|H|2 �
Corollary E.4 In case Vs = hν ◦ (Xs)−1 and Γ is a sphere with radius R in R

3 we have

d2

ds2

(ˆ
Γs

Hs dσ n−1
)∣∣∣∣0 = 2

R

ˆ
Γ

∇Γ h · ∇Γ h dσ 2

Proof.

d2

ds2

(ˆ
Γs

Hs dσ n−1
)∣∣∣∣0 =

ˆ
Γ

2h tr

(
H∇2

Γ h + hH3
)

− hHΔΓ h − 3h2H|H|2

+ H∇Γ h · ∇Γ h + h2H3 dσ n−1

(1)=
ˆ
Γ

2h tr

(
1

R
PΓ∇2

Γ h + h
1

R3PΓ

)
− h

2

R
ΔΓ h − h2 6

R3 tr

(
PΓ

)

+ 2

R
∇Γ h · ∇Γ h + h2 8

R3 dσ n−1

(2)= 2

R

ˆ
Γ

h tr

(
∇2
Γ h

)
dσ 2 − 2

R

ˆ
Γ

hΔΓ h dσ 2 +
(

4

R3 − 12

R3 + 8

R3

) ˆ
Γ

h2 dσ 2

+ 2

R

ˆ
Γ

∇Γ h · ∇Γ h dσ 2

= 2

R

ˆ
Γ

∇Γ h · ∇Γ h dσ 2
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(1): H = 2
R and H = 1

RPΓ . (2): tr

(
PΓ

)
= trI3 − trν ⊗ ν = 3 − ∑

i ν
2
i = 3 − |ν|2 = 2 and cyclic

shifting of PΓ in the trace �

E.3 Second-order derivative of the surface area

Lemma E.5 Let G(Γs; s ∈ I), I ⊆ R, be a smooth orientable evolving hypersurface in R
n, n ∈ N. It

holds,

d2

ds2

(ˆ
Γs

1 dσ 2
)∣∣∣∣0 =

ˆ
Γ

∇Γ ·
(
∂◦

r (V
r)

∣∣∣∣0) +
(

∇Γ V − 2JΓ

(
V

))
: ∇Γ V +

(
∇Γ · V

)2

dσ 2.

Proof. Apply the surface transport theorem (Theorem D.1) two times

d

dr

(
d

ds

(ˆ
Γs

1 dσ 2
)∣∣∣∣r)∣∣∣∣0 = d

dr

( ˆ
Γr

∇Γr
·Vr dσ 2.

)∣∣∣∣0 =
ˆ
Γ

∂◦
r (∇Γr

· Vr)|0 +
(

∇Γ · V

)2

dσ 2.

Then use the commutator rule for the tangential divergence (Lemma D.8):

ˆ
Γ

∂◦
r (∇Γr

· Vr)|0+
(
∇Γ ·V

)2

dσ 2 =
ˆ
Γ

∇Γ · (∂◦
r (V

r)|0)+
(
∇Γ V− 2JΓ

(
V

))
:∇Γ V +

(
∇Γ ·V

)2

dσ 2.

�
Corollary E.6 In case Xs = x + shν, where x ∈ Γ and h : Γ → R

n, we get

d2

ds2

( ˆ
Γs

1 dσ n−1
)∣∣∣∣0 =

ˆ
Γ

∇Γ h · ∇Γ h − h2|H|2 + h2H2 dσ n−1.

Proof. We use

d2

ds2

( ˆ
Γs

1 dσ n−1
)∣∣∣∣0 =

ˆ
Γ

(
ν ⊗ ∇Γ h − hH

)
:

(
ν ⊗ ∇Γ h + hH

)
+ h2H2 dσ n−1

=
ˆ
Γ

∇Γ h · ∇Γ h − h2|H|2 + h2H2 dσ n−1.

�

E.4 Derivative of the Willmore energy

Lemma E.7 Let G(Γs; s ∈ I), I ⊆ R, be a smooth orientable evolving hypersurface in R
n, n ∈ N. It

holds,

d

ds

(
1

2

ˆ
Γs

(Hs)2 dσ 2
)∣∣∣∣0 =

ˆ
Γ

−VνΔΓ Hs − Vν |∇Γ νΓ |2 − 1

2
VνH3 dσ 2.
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Proof.

d

ds

(
1

2

ˆ
Γs

(Hs)2 dσ 2(x)

)∣∣∣∣0 (1)=
ˆ
Γ

H∂◦
s (H

s)

∣∣∣∣0 + 1

2
H2∇Γ ·V dσ 2

(2)=
ˆ
Γ

H

(
−ΔΓ Vν +ΔΓ νΓ · Vτ − Vν |∇Γ νΓ |2

)
+ 1

2
H2∇Γ ·Vd σ 2(x)

(2)=
ˆ
Γ

H

(
−ΔΓ Vν +

(
∇Γ H − νΓ∇Γ νΓ : ∇Γ νΓ

)
· Vτ

− Vν |∇Γ νΓ |2
)

+ 1

2
H2∇Γ ·

(
VννΓ + Vτ

)
d σ 2(x)

(3)=
ˆ
Γ

−VνΔΓ H − Vν |∇Γ νΓ |2 + 1

2
VνH3 dσ 2.

(1): Theorem D.1 (2): see Elliott et al. (2017) (3): Corollary D.6 (4): integration by parts �
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