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In 1986, D. Blessenohl and K. Johnsen (1986, J. Algebra 103, 141-159) proved
that for any finitc extension E/F of Galois fields therc exists a complete normal
basis generator w of E/F, which means that w simultaneously generates a normal
basis for E over every intermediate field of E/F. In a recent monograph by the
author (1997, “Finite Ficlds: Normal Bases and Completely Free Elements,”
Kluwer Academic, Boston) a theory is developed which allows the study of module
structures of Galois fields as extensions with respect to various subficlds and which
led to an cxploration of the structure of complete normal basis generators as well
as explicit and algorithmic constructions of these objects. In the present paper we
continue the development of that theory by providing various structural results: the
Complete Decomposition Theorem, the Complete Product Theorem, a Theorem
on Simultancous Generators, and a Uniqueness Theorem.  © 2001 Academic Press
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1. GALOIS FIELDS UNDER THE COMPLETE POINT
OF VIEW

We consider a Galois field F = GF(g) and work in a fixed algebraic

closure F of F. For cach finite field extension K over F there is a ring
homomorphism of the polynomial ring K[x] to the ring End (F) of

K-vector space endomorphisms, mapping 4 to h(oy), where o :y =y

denotes the Frobenius automorphism of F over K (and |K| the cardinality

of K). By defining

hogw =h(og)(w) (h€K[x],w€EF), (1.1)

470



CYCLOTOMIC MODULES 471

F is equipped with the structure of a K[x]-module. For simplicity, a
K[x]-submodule of F, ie., a og-invariant K-subspace of F, is called a
K-module. The finite K-modules can be described easily as the subsets of
F which are annihilated by a certain class of polynomials of K[x] (see
[Hal, Sect. 8]): to any monic # € K[x] which is not divisible by the
polynomial x there corresponds the finite K-module My , which is the
kernel of the K-endomorphism A(ay) on F, i.e.,

My ={v€Fihogv=0)

is the set of roots of the |K|-linearized polynomial belonging to A (see Lidl
and Niederreiter [LiNi, Chap. 3, Sect. 4]). Conversely, every finite K-mod-
ule is of that form.

Itisa fundamental result of the theory of Galois fields that every finite

E. rmndiila 13 fr at K
A~-MOGWe 18 CyCiid, 1.E., iTe€ On One generaior as a K-module (See [I"Ial,

Sects. 3, 7, and 8]). Any v € F satisfying My , = K[x]e, v is called a
K-generator of My ,. The K-generators of My , can also be described in
terms of polynomials in K[x]. We therefore have to introduce the notion
of orders: for w € F, the K-order of w is defined to be the monic
polynomial / € K[x] of least degree such that [, w = 0; it is denoted by
Ordg(w).! Now, the minimal polynomial of M, , (with respect to oy) is

1 ¢t
equal to 4 and the K-dimension of M, , is equal to the degree of A.

Therefore, the K-generators of My , are exactly the elements of F whose

K-order is equal to & (see [Hal, Theorem 8.4]). Moreover, the number of
K-generators of M, , is equal to ¢(h), which is defined to be the

number of units in K[x]/hK[x].

The case where & = x™ — 1 (for some integer m > 1) is of particular
interest: the corresponding K-module is the unique m-dimensional exten-
sion of K in F, say L, and the K-generators of L are exactly those
elements of L whose conjugates under the Galois group of L /K build a
K-basis for L over K, i.e., a normal basis of L /K. A K-generator of L is
therefore also called normal in L over K or free in L over K. We conclude
that the cyclicity of the modules M, , generalizes the classical Normal
Basis Theorem, which for extensions of arbitrary Galois fields was first
proved by Hensel [He] in 1888.

In the present paper we are concerned with the particular class of
cyclotomic modules over the field F (the precise definition is given in
Section 2) which includes the class of finite extensions of F. Cyclotomic
modules are F-modules which usually are equipped with further module

VIf Q is the cardinality of K, we shall also usc the term Q-order of w and write Ord,(w).
This is well-defined as for each power g" of g there is exactly one subficld of F w1th
cardinality g”.
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structures arising from finite extensions of F, and it is our aim to study
these modules under the complete point of view, i.e., by considering all

these structures simultaneously. To make this precise we provide the
fallawine definitian

A1 YY llls MW LLILIV L.

DEerFINITION 1.1, The coefficient field of an (arbitrary) F-module M is
the set of { € F such that {M C M.

It M=M, (with g € F[x] being monic and indivisible by x), then the
coefficient field of M is in fact a finite field extension of F, which
throughout is denoted by F,. In terms of g, the coefficient field F, is
recognized as follows (see [Hal, Sect. 11]): let d > 1 be the largest integer
such that g is of the form f(x?) (for some f & F[x]); then F, is the
unique d-dimensional extension of F in F.

DEFINITION 1.2. Let g € F[x] be monic and indivisible by x. Then the
F-dimension k(g) = k;(g) = [F,: F] of F, over F is called the module
character of M. , over F.

The latter terminology is motivated by the fact that for each intermedi-
ate field K of F, over F (i.e., for each divisor d of «(g)), the set M, ,

carries the structure of a K-module. Moreover, see again [Hal, Sect. 11],
as a K-module, M , is equal to My / ir:x), where f is the monic
polynomial in F[x] such that g = f(x*®)). Now, recalling that for each K
the set My , is cyclic as K-module, it is natural to ask whether there exist

elements which simultaneously are K-generators for various K. The an-
swer Is very satisfying: for each g, the module M = M, _ is completely
cyclic in the following sense (a proof of Theorem 1.3 is glven in [Hal, Sect.
12)).

THEOREM 1.3. Let M C F be a finite F-module. Then there exist elements
v in M such that K[x]eg v = M for all intermediate fields K of F, over F.

Each such element is therefore called a complete generator for M, , over F.

Throughout, we denote by €%(g) the set of complete generators of
M, , over F, and by ¢;(g) the cardinality of Q(g).

Again, the case g =x" — 1 (where n > 1 is some integer) is of particu-
lar interest. Then F, = My , and F, is equal to the unique n-dimensional

extension over F, say E. Moreover, the complete generators for E are
exactly those elements which simultaneously generate a normal basis for F

over every intermediate field K of E/F. Those elements are therefore
called completely normal in E over F or completely free in E over F. For
arbitrary extensions of Galois fields the existence of completely free
elements was first proved by Blessenohl and Johnsen [BlJo] in 1986. We
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e that Theorem 1.3 gene
Basis Theorem of Blessenohl and Johnsen.

In Hachenberger [Hal] we started the development of a structure theory
for completely free elements which in particular led to explicit construc-
tions of those objects for arbitrary extensions of Galois fields.’ In the
present paper, we shall extend the structure theory of [Hal] by providing

results on complete generators for the class of cyclotomzc modules (see
Nafinitinn 2 1) An antline of the main

UVLIALLLL Ll ‘-: edJe 4311l UMlLllllWw UL 1.11\.« AL

2. CYCLOTOMIC MODULES, AN OUTLINE

Throughout, let F = GF(q) and p be the characteristic of F. In contrast
to the well-known function ¢, (the g-analogue of Euler’s totient function)

M c
the complete version ¢f is extremely difficult to handle, because, by

definition, its evaluation requires the study of all submodule-lattices of an
F-module corresponding to the divisors of its module character. In general,
difficulties may arise already when seeking to handle simultaneously two
module structures (see [Hal, Sect. 14]). For the class of cyclotomic mod-
ules we shall here prove a product formula for ¢f which translates into a
decomposition of the corresponding sets of complete generators.

DerFINITION 2.1. Let k,¢ > 1 be integers, where k is not divisible by p,
and let g = <I>k(x‘) where @, € F[x] denotes the kth cyclotomic polyno-
mial. Then g is called a suztable polynomial over F. The corresponding

F-module M , is called a cyclotomic module over F.
b

Throughout we shall frequently use the basic properties of suitable
polynomials from Section 10 in [Hall. By [Hal, Proposition 18.2], the

module character of g = ®,(x’) (i.e., the module character of the

sponding F-module M ) is equal to

" u(k)’

where v(k) denotes the square-free part of k. In the present paper it is
our aim to characterize an arbitrary complete generator of a cyclotomic
module in terms of a decomposition of the corresponding suitable polyno-
mial. A decomposition A of g over F is simply a set of monic pairwise

2 v
1nc CX[S[CDCC 0]' completely normal elements dlb() hoids for finite Galois LXlLH&lUIlb of

infinite ficlds (see {BlJo]). A proof of the latter fact was first given by Faith [Fal.
3 In fact, one can derive from [Hal] a deterministic polynomial time (in log|F{and [E : F])
algorithm which finds a completcly free element in E/F, once an irreduciblc monic

Fosolynomial of degree . rl;
‘pUi_yllUllllﬂl Ul u\«sl ll_4 - 1 ] ID Elvvll
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relatively prime polynomials with coefficients from F such that g =
[T5c 48, whence My , = &, _, M; ;. The decomposition A is called suit-

able, if each 8 € A is suitable. We seek to find suitable decomposmons A
of g such that the set 7(g) of complete generators for M, , over F is

decomposed as

with the right hand side being the set of all sums X5 _,w; with w; €
Q5(8) for each 6 € A. In that case one has

¢r(8) = STEIA br(8)-

DEFINITION 2.2. A suitable decomposition A of a suitable polynomial
g € F[x]is called agreeable over F, if Q5(g) = L, ,Q%(8). If additionally
|A| > 2 then A is called non-trivial.

The main difficulty in finding non-trivial agreeable decompositions A
lies in the fact that the module character of the component & of A is a
proper divisor of the module character of g: if 2~ = ®(x*) is a suitable
polynomial which divides g = ®,(x’), then Is divides k¢ and there is a
divisor 7 of ¢ such that [ = k7. Therefore, by (2.1), x(h) divides «(g) and
equality holds if and only if 7 =1 and s = ¢, whence & = g (see also the
proof of Proposition 18.7 in [Hal]). Consequently, the agreeability of a
non-trivial decomposition A of g implies that complete generators for g
can be recognized by considering the simpler problem of finding arbitrary
complete generators for every é in A, as for each such 6 one needs to
consider only the intermediate fields between F and F; where F is a
proper subfield of F,.

PR VN

ExamPLE 23. Let F = GF(2). Then A = {x — 1,®,, ®,, D,(x?), D,}
is an agreeable decomposition of x% — 1 over F (as will be explained
below, this is an application of the Complete Decomposition Theorem).
The module characters of the parts are equal to 1, 1, 3, 3, and 3,
respectively, while the module character of x® — 1 is equal to 63. There-
fore, the six module structures of GF2%) = Mg e, can effectively be
handled by considering at most two module structures occurring on the
components of the above agreeable decomposition A.

We shall now describe a procedure how agreeable decompositions can
be obtained (see also [Hal, Sect. 18]). Let therefore g = ®,(x’) be as
above. To each prime divisor r # p of ¢ which is prime to k, there is
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associated a canonical decomposition of g, namcly,
A (8) = {5(¢8), &(8)}, (2.2)
where
8,(g) = Pu(x"7) and  £(g) = P (x"7). (2.3)

By (2.1), we have

«(5.8) = (e e)), (2.4

e., the module character of each component of A (g) is a maximal
divisor of the module character of g. Since the module structure of M ,

with respect to fields K such that F C K C F; ,, = F, ,) C F, is induced

by the K-module structures of My ; ,, and M _ ., in the decomposition

Mg o = Mg 5, @ MF, e(s) On€ has

c( o)
FA& )

N

Q5(8,(8)) + Q5(e(8))- (2.5)
Next, let ¢’ be the largest divisor of ¢ which is prime to p, let R be the
largest power of r dividing ¢, and let ord,,,,(g) be the multiplicative order
of g modulo the square-free part of k#' (ie., ord,,.(q) is the least
positive integer d such that g¢ — 1 is divisible by v(k#')). Under the
assumption that ord,,(k, )(q) is not divisible by R, it is proved in Section 19

~ 1.1 S T e O

OI [rlalj [ﬂd[ Q \g} \bec \L L}} is in ldLL an dgrcedvlc UCbumpUblUU[l Ul ;4
over F; i.e., equality holds in (2.5). Now, one of the main results of the
present paper is that the latter number theoretical condition, namely that
ord, . (q) is not divisible by R, is also necessary for A (g) to be agreeable
over F (the latter was conjectured in [Hal, p. 113]). Summarizing, we have
the following structure theorem on complete generators for cyclotomic
modules (which extends the Decomposition Theorem of [Hal, p. 111].

CoMPLETE DECOMPOSITION THEOREM (CDT). Let g = ®,(x') be a
suitable polynomial over F = GF(q), let r # p be a divisor of t which does not
divide k, and let R be the largest power of r dividing t. Moreover, let t' be the
largest divisor of t which is prime to p. Then A (g) is agreeable over F if and
only if ord,,(q) is not divisible by R

ExAMpPLE 2.3 (Continued). We demonstrate that A = {x — 1, ®,, D,
®,(x*), @y} is an agreeable decomposition of x* — 1 over F = GF(2).
Starting with g =x* — 1 and r = 7, (CDT) implies that {x° — 1, ®,(x”)}

is agreeable over F. Next, apply (CDT) to x* — 1 with r = 3 to obtaln that
I 3 1 d)Vic aoreashle aver F We may q] cn annlv (CDT) tn ‘r7(v9\ “rlﬂr\

L’ ‘.l’g) 19 asx\/vauxv VWL £ . YV A LRL )’ owv (‘I.Pl.lly A S Sy BR A
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r = 3 and see that {®,(x?), D} is agreeable over F. Finally, (CDT) can be
applied once more (to x* — 1 again with r = 3) to obtain that {x — 1, ®,}
is agreeable. All together, this proves the agreeability of A. Observe that

(TYTY hamn t bn arnnlind tn {'fl7{v ) I'(l th » o 2 ag nrdd [’)\ — A ¢ chivicihla

A3 L Oy ) \,auuG o al}l}ll\‘du v L1y 7 J Ad U1U21\A’} — U 1D Jlyvisiuilo
by 3.
Of course, the proof of the necessity of the number theoretical condition

in (CDT) (once more, that ord, ,(g) is not divisible by R) is far from

being trivial, as, by contradiction, under the assumption that R divides
ord,,{(q), we have to determine complete generators for w5, and

M. . .y respectively, whose sum behaves badly in the sense that it does
not give a complete generator for My, .. The proof of that part of (CDT)

can only be finished in Section 5 of the present paper. It will require two
preliminary results which are also of individual interest.

For the first tool, the Complete Product Theorem, we have to introduce a
binary operation on certain suitable polynomials.® Assume that m, n, s, >

1 are integers such that ms and st are relatively prime, and such that nm
ic not divicihle hv n Then

LS 11UV ULV ISAULIW Yy - iiivia

D, (x*)* D, (x") =D, (x). (2.6)

CoMpPLETE PropucTt THEOREM (CPT). As above, let ms and nt be
relatively prime and nm be indivisible by p. Let a = ®,(x*) and B = ®,(x")
and assume that u € My, and v € My 5. Then the following assertions are
equivalent.

(1) ue€ Q%a) and v € Q5L(B),
2 uv € Q%(a* B).

The implication (1) = (2) of (CPT) is already proved in Section 25 of
[Hal]. By (2.1) we have

k(e B) = x(a)x(B), (27)
whence (1) = (2) provides an important tool for determining complete
generators (see [Hal, Chap. VI] for more details). In Section 3 of the

AN

present paper we shall prove the implication (2) = (1).

ExampLE 2.3 (Continued). We consider again the extension E =
GF(Q2%) over F = GF(2). Let 7 be any primitive 27th root of unity, let ¢
be a root of x” + x*> + 1,and { a root of x” + x + 1 (both polynomials are
irreducible over F). Then, using results of Chapter VI of [Hal], it holds

* In order to avoid confusion with the scalar multiplication defined in (1.1), instcad of © in
[Hall, we here prefer the notation .
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u=n+n"+ 02+ 9°%eQi(d,),
=n+n°+ 0+ 0% eQu(D,),
W=+ L€ Qu(D.).

An application of (CDT) shows that 1 + u € Q%(®,(x?)) and applications
of (CPT) show that w(1 + u) € Q5(®,(x*)) and that wu € Q5(dy;). Thus,
by the agreeability of the decomposition A of x® — 1 given above, we
have that 1 + u + v + w(l + ) + wv is completely free in E over F.

The second tool which is necessary to complete the proof of (CDT) is
the Theorem on Simultaneous Generators (TSG), a technical result which is
postponed to Section 4

Ty Qantinn A whirh ic tha lagt mart ~AF th
FUSIRG IV LU E U Wlll\.d.l 15 Lilv 1asti lJaJ.l. WL il

discuss our decomposition model which is based on the class of cyclotom
modules and (CDT). Recall that in Example 2.3, we have obtained the
agreecable decomposition A = {x — 1, ®,, Dy, ®.(x?), D} of x¥ — 1 over
GF(2) by applying (CDT) several times, and we have mentioned that A
cannot be refined by a further application of (CDT). In Section 6, we will
prove that, for any suitable polynomial, a recursive application of (CDT)

rrrrr Ite i o smianes aoraaahla dacamnncitinn o whirh (OTYTY fannat ha
IUVOUILS 111 G u!uquc asl\/\raul\/ U\/\/UIIIPUDILIUII lU Wlll\/ll A/ 1) valllivuL U\J

c¢hall rthar
1

"mraga arnayr o o
l}l wouil t}(l.l}\.zl Yyo o;xau J. ur I. vl
ic

applied anymore, no matter in which order the various primes r have been
chosen in the course of applying (CDT) (the validity of the latter result is
mentioned in [Hal, p. 113], but a proof is not given there). In summary, we
can say that, under the complete point of view, (CDT) provides a tool
which produces a unique agreeable decomposition into components which,
within our model, are irreducible.

Wa finally chall ramarlk that fAar canara
YYU liidudy oSiialr lvliaillR ulatr 1ul gllitia

are suitable decompositions which are not obtained through a recursive
application of (CDT). For example,

A= {q’m s @5_31(3;3), (IJ3_31(x2) ) @2_31(x5), q’30-31} (2.8)

is such a decomposition of g = ®,,(x*): one easily checks that for each
prime divisor r of ¢t = 30 there exists a A, € A such that ged(h,, §,(g)) # 1
and ged(h,, £,(g)) # 1.

Q1

P

itahla
sullavic

e~y T - & e

3. THE COMPLETE PRODUC

In the present section we will prove the Complete Product Theorem
(CPT). As mentioned in Section 2, the implication (1) = (2) is already
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shown in [Hal, Sect. 25], whence we concentrate on the proof of the
implication (2) = (1). The latter is essentially based on the following
proposition.

ProprOSITION 3.1. Let m,n,s,t > 1 be integers such that the characteris-
tic p of F does not divide mn and assume that ms and nt are relatively prime.
Let a = @,(x*) and B = ®,(x') and assume that u € My , and v € My 4.

T tho £ ” Als
tert e j()uurv;’ng assertions are et?htu'utcna

(i) Ord;(u) = a and Ord(v) = B,
(i) Ordp(uww) = a* B =d,,(x%).
Proof. Again, the implication (i) = (ii) is provided in Section 25 of
[Hal], whence we restrict our attention to the part (ii) = (i). Assume
therefore that Ord (uv) = a » B, where u € My , and v € M, ;.

Since ms and nt are relatively prime, there are integers i and j such
that

ims = 1 mod nt and jnt = 1 mod ms.

With @ = @, (x*) the module M, , is contained in the ms-dimensional
extension of F whence o;"°(y) =y for all y € M, , and therefore

ai™(y) = op(y) forall y e My _,,. (3.1)

Analogously, with 8 = @ (x’) the module M, r, g Is contained in the nt-di-
mensional extension of F whence of'(y) =y for all y € M, , and
therefore

aims(y) = ap(y)  forally € M, ,. (3.2)

Now, take elements u, € M, , and v, € My ;5 such that Ord.(u,) = «

and Ord.(v,) = B. Then there exist polynomials A and p in F[x] such
that u = Aegu, and v = pweopv, (see (1.1) for the definition of the

operator o ). Using (3.1) and (3.2) we obtain

uv = (Aepug)(popvy) = ()\(’Cim)%r uo)( p(x) o Uo)’

and once more with (3.1) and (3.2), one can show that

uv = (A(x") (X)) o (g05).

Now, by the validity of the implication (i) = (ii) we have Ord (u,v,) =
a * B, while by assumption Ord(uv) = a * B. We therefore conclude that
the polynomials A(x*)u(x"™*) and a * B = @, (x*') are relatively prime.
In order to prove (ii) = (i), we assume by "contradiction that A and
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a=®,(x*) or w and B have a common root and show then that
AMx™yu{x'™*) and a = B also must have a root in common. It suffices to
assume that ged(A, @) # 1, the case ged( i, B) # 1 being similar.

Given that ged(A, ) # 1 there exists an element € F such that
A(¢) =0and £’ is a primitive mth root of unity. We show that there is an

element € F such that Mn’") = 0 and n* is a primitive mnth root of
unity, whence 7 is a root of @, (x*') = a * B. Take therefore an element
v € F with v/"" = {, whence (v*')/* = {* is a primitive mth root of unity
and the multiplicative order of v* is of the form md where d divides nj
and d is indivisible by the characteristic p of F. Next, let U be the
multiplicative group of all elements ¢ in F such that & = 1. Then
U = {y*|u € U} contains all roots of unity of multiplicative order divid-
ing jnt/ged(jnt, st) = nj. Thus, taking & € U such that (£v)* = £°v* isa
primitive mnth root of unity yields that n = év is a common root of « * ,B

nt nt ims
and M/ \ (Qnrl therefore also of A LAY 1) whence gver}tbgp

aililua ju\a [+SSLU NN n,\n 7 AR A J7s VYR

proved. |

We are now able to settle the implication (2) = (1) of (CPT): let
a—m{v\onr]ﬂ——-(ﬁ{vt\lpfncﬂ/f nnr‘n Al Qnd

A J dalliu T XL \A ) AWl A& — iT72 CLLiING h Fagss ALl
P n > F,a F,B>

('Dm
N
o
=

accnm
QoL

uv is a complete generator for M, . ;. Recall from (2.7) that the
t

character k == k(a * B) of M .z is equal to k(a)x(B). Le
divisor of wl ) and let K be the g-dimensional extension of F.

LIVIDUL Kl ang 181 & aimmensional exiension of

assumption on uv, the K-order of uv is equal to

q)v(mn)(xx/a) = a * B5
where

& = D, (x V7).

Since a is relatively prime to nt, the polynomial B is a divisor of
®,(x*) = B(x?) and therefore B(o7Xv) =0 whence v € My ,. Since

irntine ~F [Rt{ S papen

fiii“ihfu i< 1V1K , anl appuuauuu O1 rlupumuuu 3 1 \LU K, o ﬁi‘ld 13)
shows that « has K-order (i.c., q“-order) equal to @ (and v has K-order
B). Since this holds for all divisors a of x(a), the element u is a complete
generator for My . By a similar reasoning one shows that v is a complete
generator for M. ,, and therefore (CPT) is proved. |

Az

A SATYTYR AT OOT7 T rm
4. A 1RACEURKEIVI UN JS1MIULL

In the present section we provide the second important tool for the
proof of the Complete Decomposition Theorem. We therefore have to
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mtroduce a generalization of the notion of a complete generator. Let g be
a suitable polynomial over F = GF(g) and let N and L be subfields of the
coefficient field F, of My , such that F € N C L (see Definition 1.1 and
the discussion thereafter). Then w € M. , is called an [ L /N l-generator of
Mg ,, if w simultaneously is a K-generator for M,  for every intermedi-

ate field K of L/N.

THEOREM ON SIMULTANEOUS GENERATORS (TSG). Ler g = @, (x),
where k > 1 is not divisible by p. Let r # p be a prime divisor of t which does
not divide k, and let R be the maximal power of r dividing t. Finally, let L be
the subfield of F, having degree t over F and let K be the subfield of F, having

degree t /r over F.
Assume that ord,(q) is divisible by t.

Then there exist [ K/Fl-generators ws and w, of My s, and My _ .,

respectively, such that w == ws + w, has not L-order ®, and therefore is not
an [ L /Fl-generator of M. |,

Proof. Let f be an irreducible F-divisor of ®, and A an irreducible
L-divisor of f. We first concentrate on the subspace M = M, = Mg /.

of My , which is an N-module for each intermediate field N of L /F. For
each such N, let g, be the irreducible N-divisor of @, which is divisible
lae: L cnd hisl Aigidag T ~ +nnall o et otioace Fonne Qb3

vy 7t aind WILiCil Qividcs j 111C11 1cx,a.uiug LllC llULallUll 110111 OCbllUll 1 UIC

assumption that ord,(q) is divisible by ¢ implies

[E:N]-1

En = 1_[ 0'1\1}(85)

j=0

whenever N and FE are fields such that F € N € E ¢ L. Moreover, if
v; €M has L-order h = g;, then (by an application of [Ha2, Theorem
2.2]) for all intermediate fields N of L/F, the N-order of v, is equal to
gn(xZ M) (the assumption on ord,(q) is crucial for the latter because
this indicates that L is contained in the splitting field of @, over F). Now,
as in the assertion of the theorem, let K be the maximal subfield of index
r in L and define

[K:F]—-1

we= ), od(u). (4.1)

j=0

We claim that for every 1ntermed1ate field N of K/F, the N-order of w
eaual to f{Y[L N]\ 1.e.. that w. rf(/p1-npnprafnr of M. In order

b s dewey iU 7Y xu u LAx/ &£ 1121 Qeua + 211 Lu

2]
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(N:F1-1[K:N]-1

W, = Z O_I!'[N:F]+i(vf)
i=0 j=0

[N:F1-1 ([K:N]]

= Z o )y Uf\]i(Uf))-

j=0

As k > 1, for each intermediate field N of K over F, the polynomials
(KN~ 1) /(x — 1) and g, (x** ")) are relatively prime (the latter one is
the N-order of ¢,). Thus, Lemma 7.4 in [Hal] implies that s Ni- ’(v )
likewise has N-order gy (x5 V), Now, for different i,i' € {0,1,...,[N: F]
— 1} the polynomials o(g,(x!“*¥1)) and a}'(gN(x{L:N 1)) are relatively
prime. Therefore (see once more Theorem 8.6 in [Hal]), the N-order of w;,
is equal to

[N:F]-1
[T oi(gn(x" 7)) =gp(xt:M) = f(x2:1),
i=0
and this proves the claim.
However, by (4.1) and the assumption that v, has L-order equal to A, it

; K:F 71 i
holds that the L-order of ‘V‘V'f is eq‘\lal to I_I’i' 0 I {rl"\ The latter

polynomial is a proper divisor of f, whence w; is not an L-generator of M,
and hence no [ L /F]-generator.

Next, we repeat this construction for all F-divisors f of ®,, and let
w = 2w, Using Theorem 12.2 of [Hal], we obtain that w is a [K/F}-
generator of M, but not an [ L /F]-generator, as the L-order of w is not
equal to ®,. We finally decompose M into My 5,y ® Mg (., and con-

sider the corresponding decomposition wy + w, of w. By construction,
using again Theorem 12.2 in [Hal], we have that w; is a [ K/F ]-generator

of My 5 and w, is a [K/Fl-generator of M . . This completes the

~F 4+l s ¢ |
UL LllC lllCUlUlll | ]

5. THE COMPLETE DECOMPOSITION THEOREM

We are now prepared to finish the proof of the Complete Decomposi-
tion Theorem (CDT) by establishing its necessary part, i.e., by proving that

the number theoretical condition “ord,(¢g) is not divisible by R” is

necessary for the decomposition A, (g) to be agreeable.” Recall that the

5 Throughout, we use the notation as in the assertion of (CDT). In particular, g = ®,(x*) is
a suitable polynomial and p is the characteristic of the underlying field F = GF(q).
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sufficient part of (CDT), i.c., the sufficiency of “ord,,(¢) is not divisible
by R” for A,(g) to be agreeable, was already proved in [Hal, Sect. 19]. In
fact, during the subsequent proof of the necessary part we shall apply the
sufficient part of (CDT) in various situations. We proceed in several steps.

Step 1. Reduction to the case where ¢ is not divisible by p. Let t = 7
where 7 is not divisible by p, whereas 7 is a power of p. Let A = ®,(x7).
We show that if A,(A) is not agreeable, then A,{g) is not agreeabie.
Observe first that g = A*(x™ — 1) (see (2.6)). Let

a=056(A)=d,(x7) and B =g (A) = D (x7F),

and assume that A (A) = {a, B} is not agreeable over F = GF(q). Then
there exist elements u, € Q(a) and u; € Q%(B) such that u = u, + u,
is not a complete generator of My , over F. Let v € Q4(x™ — 1); then,
according to the Complete Product Theorem (CPT), w; == u v € Q%(8,(g))
and w, = uzv € Q(e,(g). If w = w; + w, would be a complete genera-
tor of M, , over F, then, again by (CPT), u would be a complete
generator of M, , over F. This however contradicts the assumption and

finishes the analysis of Step 1.

From now on we assume that ¢ is not divisible by p. Since R divides

nrd (A)Y and R ic the nower of a nrime it ic clear that dividec ard ( 4)
L (kl)\"ll ClLINE 4% 10 LiIW YUVVUl vi a lJl. LIV, IL 13 wivdAl wiial 4y uilviuvo Ulu;\‘j/

for some prime divisor s # r of kt. We have to distinguish the cases where
s divides k and s divides ¢, respectively.

Step 2. Assume that s divides ¢. Let S be the largest power of s
d1v1dmg t and write ¢ = TRS. Then g = p* u where p:=x® — 1 and
@, (x7).
Step 2a. Reduction to the case where g = p. We show that if A ( p)
is not agreeable, then A, (g) is not agreeable.

Let o ==x*®/" — 1 and B = ®y(x%) and assume that A (p) = {«, B}
is not agreeable over F. Choose u, € Q%(a) and uz; € Q%(B) such that
u:=u,+ug is not a complete generator of My , over F, and let v €
Q%(w). Then wy == u v is a complete generator of M; 5 o over F and
we = ugl is a complete generator of My ., over F, for otherwise u
would be a complete generator of M , over F, which contradicts the
assumption.

Step 2b. Proof of the assertion for g = p. We proceed via induction
on the exponent of s in S. Assume first that s = S. Let

a=xR""-1 and B=®, and y:=@(xF).

Applying the sufficient part of (CDT) twice shows that {«, B, v} is agree-
able over F. However, by (TSG) in Section 4, which yields an assertion on
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comnlete oeneratore in the current gituation (~) is not aosreeable for v
\ﬂulllt’lv‘v evllvl CALVIA LD AL V1AW WA L WAL L UIU““&A\JAA, l—lr\ ] 7 A ki “bl WAL AN ANSA ’
over F, since there exist complete generators y of M, F 5.(y) over Fand z
of My, over F such that y + z does not have ¢ R.order @,. Now, let
a € Q%(a) and b € Q%(B). The gR-order of a + b +y + z is not equal
to x* — 1. But, as

ad,(v) = (x%/7 = 1) - (x"/7)
gives an agreeable decomposition of x**/” — 1 (by the sufficient part of
(CDT)), it »olds that a + y € Q5(x*R/7 — 1). Similarly,

Be(v) = Q- D (x")

is an agreeable decomposition of ®j(x*) over F, whence b + z € {1}
(®L(x*)). We therefore conclude that (x3%/7 — 1) - ®4(x*) is not agree-
able for x*® — 1 over F.

We assume next that S is divisible by s*. Let
a=xR/"5/s -1  and B = ®y(x3/),
and
n = (I’S(XR/r) and { o Dgp.

By induction, {a, B} is not agreecable over F. Thus, there exist complete
generators g and b over F for £~ F-modules corresponding to a and S,
respectively, such that a + b is not a complete generator for the F-module
corresponding to x®%/% — 1. Let x +y be the decomposition of a com-
plete generator for My 4 S according to the decomposition {n, {} =
A (®(xR)). Now, as {«, n} is agreeable over F (this is an application of

l—lr ‘.I.'S l‘UVV as lu’ f’j lO a wwauUilvw UvVLwlr 4 ULLLLD I Qi utll.)ll\-autl\}lj

the sufficient part of (CDT) to 6 = x3%/” — 1 with s as prime), a + x is a
complete generator for M. 5 over F. Similarly, { 8, {} is agreeable over F,
whence b + z is a complete generator for M, . over F, where & = ®p(x*).
By construction, however, a + b + x + y is not a complete generator for g
over F. This finishes Step 2b and Step 2.

Step 3. Assume that s divides k. Let § be the largest power of s
dividing k& and write k = «S. Let t = 7R, p == ®(x%), and p = O (x7).
Then p * u = g. Again, we break up the analysis into two further steps.

Step 3a. Reduction to the case where g = p. We show that if A ( p)
is not agreeable, then A, (g) is not agreeable.
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Let a = ®g(x"/") and B = ®g,. Assume that u, € Qi(a) and u; €
Q5(B), whereas u = u, + uy is not a complete generator for M,  over
F. If v € Qf(uw), then ws == w1, v and w, == uzv are complete generators
for the F-modules corresponding to a * u =8 and B * pu = &, respec-
tively. However, an application of (CPT) shows that w = w; + w, is not a
complete generator of M , over F.

Step 3b. Assume that g = p. Observe first that s is different from 2,
as R d1v1des e = ord (q). Further, the multiplicative order of ¢ modulo §
is of the form es®, where s divides S/s. Let o = 5!“/2l. An application of
Lemma 20.4 in [Hal] shows that ordy ,,(q) is divisible by Ro. Let L and

K be the subfields of F, with degrees Ro and oR/r over F, respectively.
Viewing g as ®; ,,(x*7), an application of (TSG) in Section 4 shows that
there exist [ K /F }-generators wy; and w, for the F-modules corresponding
to § == ®(x?/") and & = Dy, rcspec,uvely, such that w = wy; + w, does
not have g®’-order ®g, , and therefore is not an [L/F]-generator of

M ,. We claim that w; and w, even are complete generators of M, ; and
M, ., respectively, and this finishes the analysis of Step 3.

In order to prove the claim, it remains to show that for each divisor d of
p
R /r and each divisor b # 1 of S/(s0) the g?®?-order of w; is equal to
q ) q
D /oy (x7/0D) and the g% -order of w, is equal t0 B g/ (ypay WE

know that the g?“-order of w, is equal to Dsry/(ray Since s does not

divide the multiplicative order of ¢ modulo (SR) /(o bd) (this relies on the
choice of o) the desired result for w,_ follows as an application of Lemma
15.3 of [Hal). Similarly, the g““-order of wj is equal to the polynomial
@, (xR/147), which decomposes as 11,z rPes .- According to this
decomposition, we split up wy as X w,, the eth component having q""-order

D¢ Jo Now, an application of Lemma 15.3 of [Hal] to each component of
that decomposition in combination with Theorem 8.6 of [Hal] yields the
desired result for ws. This all together finishes the proof of (the necessary

part of) the Complete Decomposition Theorem. ||

6. THE DECOMPOSITION MODEL, A DISCUSSION

In this final section we study some properties of our decomposition
model which is based on the Complete Decomposition Theorem (DCT)
and the class of cyclotomic modules.

We have already argued after Definition 2.2 that if A = ®,(x°) is a
suitable polynomial dividing g = ®,(x"), then Is divides kt and there is a
d1v1sor T of ¢t such that ! = kr. Using this (and propertles of suitable

n 10 of [Hal)) one can show that if 2 is a maximal
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suitable divisor of g (which of course means that there exists no suitable
polynomial f different from /4 and g which divides g and which is divisible
by h), then there exists a prime divisor r of ¢ which does not divide k such
that one of the following cases occurs:

(1) r = p is the characteristic of F and h = ®,(x'/"), i.e., h” = g;
(2) r is distinct from p and A = §(g) or h = £,(g).

Nimsmrnn b Qoandsnan

The latter remotivates our approacn in Section 2.

Now, given a suitable polynomial g over F, we shall show that there is
obtained a unique (finest) agreeable decomposition of g by a recursive
application of (CDT) (as indicated in Example 2.3), no matter in which
order the various primes r have been chosen in the course of applying
(CDT). For this purpose, we define the agreeable decomposition tree T'(g)
over F as follows: the first layer I', consists of the single set {g}; given the
ith layer I, (i = 1), the (i + 1)st layer consists exactly of those sets H for
which there exists a set C in I', a suitable polynomial ¢ = ®(x*) € C, and
a prime divisor r # p of s such that H = (C\{c}) U A,(c), where A,(c) is
agreeable for ¢ over F (the latter property can efficiently be checked with
(CDT)). Moreover, C and H are connected by a directed arc C — H.

UNIQUENESS THEOREM (UT).  Given a suitable polynomial g over F, then
the agreeable decomposition tree 1'(g) over F has a unique sink, i.e., the layer
with highest index consists of a single set Z, which is the unique set in T'(g)
from which no arc leaves. Moreover, for every arc C — H in T'(g) there exists
a path from C to Z which starts in C —» H.

Proof. We may assume that k& and ¢ are relatively prime (see [Hal,
Sect. 10]. The assertion of the theorem is true if ¢ has only one prime
divisor r which is different from p, since in that case, F(g) consists of a
path. The general assertion is proved by induction on the number of
distinct prime divisors r # p of ¢t counted with multiplicity. Assume there-
fore that 1'(g) has two different sinks X and Y. Choose two paths from {g}
to X and Y, respectively, starting with the arcs {g} — A,(g) and {g} —
A (g), respectively, where r and s are prime divisors of ¢, different from p.
By induction, X is the union of the unique sinks of I'(5,(g)) and I'(¢,(g)),
while Y is the union of the two unique sinks of I'(§,(g)) and I'(¢,(g)). Of
course, r # s for otherwise X =Y. Thus, the decompositions A {(6,(g)),
A (g(g), A(8,(g)), and A (g(g)) entirely are agreeable over F, and
these sets give rise to the sets 2 = A (5,(g)) UA(g(g)) and O =
A(8,(g) U A (g(g)) in the layer T, of I'(g). The crucial point is that
3, = 0, which follows easily from (2.2) and (2.3). Therefore, by using a path
through X and by applying the induction hypothesis to each of the four
members of 3 shows that X = Y. Because of this contradiction, everything

is proved. |
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We have already mentioned at the end of Section 2 that for general
suitable polynomials g there are suitable decompositions which do not
occur in the agreeable decomposition tree of g (as defined above).
However, in view of the efficiency of the presented results, our model
seems to be the most natural one. It is certainly hopeless to try to
characterize the set of complete generators of cyclotomic modules in terms
of a decomposition as for instance in (2.8).
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