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Abstract
Weprovide a numerical realization of anoptimal control problem for pedestrianmotion
with agents that was analyzed in Herzog et al. (Appl. Math. Optim. 88(3):87, 2023).
The model consists of a regularized variant of Hughes’ model for pedestrian dynamics
coupled to ordinary differential equations that describe the motion of agents which
are able to influence the crowd via attractive forces. We devise a finite volume scheme
that preserves the box constraints that are inherent in the model and discuss some of
its properties. We apply our scheme to an objective functional tailored to the case of
an evacuation scenario. Finally, numerical simulations for several practically relevant
geometries are performed.

Keywords Crowd motion · Nonlinear transport · Eikonal equation · ODE-PDE
coupling · Optimal control · Finite volume · Projected gradient descent
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1 Introduction

Withmore andmore people living in highly populated areas, themodelling, simulation
and control of (large) pedestrian crowds is an important field of research. In this work,
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we study the optimal control problem for a regularized version of Hughes’ model for
pedestrian motion [28]. In our approach, the (continuous) crowd can be controlled
by a fixed small number of agents that can attract people in their vicinity. In terms
of the model, this corresponds to an additional potential term centered at the agents
positions. In a previous work [25], we already studied the well-posedness and opti-
mality conditions of this problemwhile here, we focus on a numerical implementation
of the control problem and extensive numerical examples. In particular, we provide
and analyze a finite volume scheme that preserves the box constraints inherent in our
problem.

To introduce the model, we fixΩ ⊂ R
2 to be a bounded domain withC4-boundary

∂Ω . Furthermore T > 0 is an arbitrary time horizon and QT := (0, T ) × Ω and
�T = (0, T ) × ∂Ω denote the space-time cylinder and its lateral boundary, respec-
tively. The boundary is decomposed into two parts: ∂ΩD representing the exits and
∂ΩW the part where the domain is constrained by walls. For theoretical purposes (reg-
ularity of solutions) we assume ∂ΩD∩∂ΩW = ∅meaning that both boundary parts are
separated from each other, see Fig. 1. In a similar way we define �D = (0, T )× ∂ΩD

and �W = (0, T ) × ∂ΩW .
The unknown variables in our system of equations are the density of the crowd
ρ : QT → R+, a potential specifying the current time to escape φ : QT → R. In addi-
tion, there are M agents which may influence the motion of the crowd via attractive
forces. Their positions are denoted by xi : (0, T ) → R

2, i = 1, . . . , M . In addition,
each agent is able to regulate the strength bywhich it acts on the crowd. This is encoded
in the intensities ci : (0, T ) → R+, i = 1, . . . , M . We remark that for an agent to
control the strength of its action on the crowd is, in most scenarios, not very realistic.
Thus one may argue that either a constant strength or the ability to turn attraction on
and off for each agent are more plausible choices. However, our experiments show
that the first option does not yield very satisfactory results. The second version, on
the other hand, would lead to a mixed-integer programming problem and is much
more challenging, both from the analysis and the computational point of view. Thus
we think that a variable intensity as a first approximation of this more complicated
scenario is reasonable and postpone the discrete case to future work. Both the agent
trajectories and interaction strength are summarized in a vector x = (x1, . . . , xM )�
and c = (c1, . . . , cM )�, respectively.

The mathematical equations describing the movement of a pedestrian crowd
influenced by agents then read as follows. For given agent movement directions
u = (u1, . . . , uM )� with ui ∈ L∞(0, T ; R

2) the unknowns ρ, φ, x are related to
each other by means of

∂tρ − ∇ · (ρ β(ρ, φ, x, c)) = εΔρ in QT , (1.1a)

−δ1 Δφ + |∇φ|2 = 1

f (ρ)2 + δ2
in QT , (1.1b)

ẋi (t) = f (ρ(t, xi (t))) ui (t) for t ∈ (0, T ), i = 1, . . . , M .

(1.1c)
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Moreover, we impose the boundary conditions

−(
ε ∇ρ + ρ β(ρ, φ, x, c)

) · n = γ ρ, φ = 0 on �D,
(
ε ∇ρ + ρ β(ρ, φ, x, c)

) · n = 0, ∇φ · n = 0 on �W,
(1.2)

as well as the initial conditions

ρ(0, ·) = ρ0 in Ω, xi (0) = xi,0 for i = 1, . . . , M . (1.3)

Here, ε, δ1, δ2 > 0 are regularization parameters and the corresponding terms in the
system are needed to guarantee a certain regularity for the solution, see Theorem 2.1.

The domain Ω is sufficiently large such that xi (t) ∈ Ω on [0, T ] for i = 1, . . . , M
and t ∈ [0, T ] if |ui (t)| ≤ 1.

Let us briefly discuss themeaning of the respective terms: Equation (1.1a) states that
pedestrians are transported according to the velocity fieldβ, see (2.1) below,while also
performing (little) randommotion encoded by the Laplacian of ρ. The second equation
(1.1b) is a modified and regularized Eikonal equation whose solution is the distance
to the closest exit, mitigating areas of high density via the term on the right-hand side.
Here, the additional diffusion accounts for the fact that pedestrians do not know their
environment exactly. Then, (1.1c) governs the motion of the agents, whose speed is
also influenced by the surrounding pedestrian density. The function f : [0, 1] → [0, 1]
is a density-velocity rule, chosen in such a way that f (ρ) determines the maximum
velocity an individual canmove if the density in its current position isρ.We choose f to
be monotonically decreasing meaning that higher densities lead to slower movements.
The velocity field β will reflect the fact that pedestrians are, on the one hand, trying
the minimize their exit time which amounts to a drift term in the direction of ∇φ and
on the other hand, they are attracted by the agents which is realized by additional
attractive potentials whose center depends on the agents’ positions x. This results
in a velocity which is the sum of two terms. Furthermore, to account for the effect
that the velocity will deteriorate in regions of high density, it will be modified by an
additional multiplicative factor f (ρ). As in the equations for the motion of the agents,
f is monotonically decreasing and becomes zero at a given maximal density.
The boundary conditions (1.2) allow for an outflow with velocity γ on parts of the

boundary (�D) while no-flux conditions on the remaining parts are to be interpreted
as walls (�W ). A detailed description of the involved non-linearities will be given
in the next section, but we also refer to [25] for more details on the model and the
regularizing terms.

Analytical properties of the unregularized Hughes’ model introduced in [28] (i.e.
ε = δ1 = δ2 = 0 in (1.1)), without control, are difficult because of the low regularity
of∇φ that appears on a set depending on the solution ρ of the first equation, but see [3,
4, 21]. Thus, regularized variants have been considered, see [19] for an instance where
ε = 0 but δ1, δ2 �= 0. In fact, the result there is obtained as a vanishing viscosity limit
ε → 0. There are also a number of extensions and variants of the model, aiming to
understand additional properties, make it more realistic, or consider different settings
like graphs, see [9, 13, 14, 16, 18].
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Control of systems bymeans of a small number of agents has received lots of interest
recently, both on a discrete level (i.e. one considers a large system of ODEs for the
motion of individuals coupled to a small number of equations for the agents), see [11,
26], but also for coupled PDE-ODE systems [1, 2]. Let us emphasize that whenever
PDEs are coupled to ODEs in such a fashion that the solution of the PDE needs to
evaluated at the solution of the ODE (as in (1.1c)), regularity is needed. While in our
case, this is obtained by the additional diffusion in (1.1a), when hyperbolic models
for the transport of pedestrian are considered, an additional regularization in the ODE
is needed, see, e.g., [6–8]. Finally, let us mention that the ODE-ODE and PDE-ODE
perspectives are closely related by means of the so-called mean field limits when the
number of agents tends to infinity, see [10, 31] and also the recent overview on control
of crowds [5].

For the numerical discretization of (1.1a), we employ, as we think of the parameter
ε being small, a finite volume scheme for the spatial discretization, which may also
be interpreted as a discontinuous Galerkin scheme. In combination with the Lax-
Friedrichs numerical fluxes the scheme is stable and preserves the bounds 0 ≤ ρ ≤
1 inherent in our model. Such structure-preserving discretizations of PDEs gained
much attention, e.g., in the context of chemotaxis problems [22–24, 29, 30, 33]. The
previouslymentioned articles differ also in the choice of the time-stepping scheme. For
the treatment of (1.1) wewill use an implicit-explicit finite difference scheme,whereas
the diffusion-related terms are established implicitly and the convection-related terms
explicitly. The equation (1.1b) is discretized with standard linear finite elements and
for (1.1c) we employ a backward Euler scheme.

The paper is organized as follows: In Sect. 2 we give a precise definition of our
problem and recall the analytical results from [25]. In Sect. 3 we provide a numer-
ical discretization scheme in space and time and analyze some of its properties, in
particular, we show that it preserves physical bounds of the density of pedestrians.
Corresponding optimization algorithms are discussed in Sect. 3.5 and Sect. 4 finally
provides the results of our numerical experiments.

2 The continuous optimal control problem

Let us motivate the remaining quantities arising in the system of equations. The
function f : [0, ρmax] → R is a density-velocity relation and is assumed to be
W 3,∞(R) ∩ Cc(R) with f (0) = 1 and f (ρmax) = 0 with ρmax denoting the maximal
density. A usual choice is

f (ρ) = ξ

(
1 − ρ

ρmax

)

with a cutoff function ξ ∈ C∞
c (−1, 2) satisfying ξ ≡ 1 on (0, 1). Obviously, a

higher density leads to a lower velocity. Throughout the article we set ρmax = 1. The
movement direction of the crowd described by the function−β(ρ, φ, x, c) ismodelled
as follows. The primary interest of the crowd is to move either towards the closest
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emergency exit, this is the direction −∇φ. This is mitigated by the attraction of close
by agents which is the direction −∇φK , where is an agent potential defined by

φK (x, c; t, x) :=
M∑

i=1

ci (t) K
(
x − xi (t)

)
.

Here, K (x) = k(|x |), k ∈ W 3,∞(R) is a radially symmetric function and ci ∈
H1(0, T ), i = 1, . . . , M , are time-dependent intensity functions. Typical choices
for attractive agent potentials are either the bump function

k(r) =
{
exp

(− R2

R2−r2
)
, if r < R,

0, otherwise

with attraction radius R > 0, or the Morse potential

k(r) = e−2 a (r−ra) − 2 e−a (r−ra)

with certain parameters a, ra > 0, realizing a repulsion in the near and an attraction
in the far range of the agents. This is useful to avoid a high density very close to the
respective agent. We refer to [12] for a more detailed discussion on potentials in the
context of flocking problems. In the experiments of this article the Morse potential
was used as the resulting pedestrian behavior seems more realistic.

These considerations yield a velocity field defined as follows

β(ρ, φ, x, c) = v0 f (ρ) h(∇(φ + φK (x, c))) with h(x) = m̃in{1, |x |} x

|x | , (2.1)

where m̃in is a continuously differentiable approximation of the minimum function
resulting in h being a smoothed projection into the unit ball in R

2, and the factor f (ρ)

again links the allowedmovement speed to the current density, this is, |β(ρ, φ, x, c)| ≤
v0 f (ρ) in QT .

We briefly introduce the function spaces used in the sequel, see also [17]. For a
domain Ω ⊂ R

2 we denote by Wk,p(Ω), k ∈ N0, p ∈ [1,∞], the usual Sobolev
spaces and by Wk−1/p,p(Γ ) for k ≥ 1 the corresponding trace spaces which may
be equipped with the Sobolev-Slobodetskij norm. Furthermore, we write Hk(Ω) =
Wk,2(Ω). Special spaces incorporating already boundary conditions are H1

D(Ω) =
{v ∈ H1(Ω) : v|∂ΩD ≡ 0} andW 2,p

DN (Ω) := {v ∈ W 2,p(Ω) : v|∂ΩD = 0, ∂nv|∂ΩW =
0}. For time-dependent functions v : [0, T ] → X for some Banach space X we define

L p(0, T ; X) := {v : (0, T ) → X |
∫ T

0
‖v(t)‖p

X dt < ∞}, p ∈ [1,∞),

as well as

Ws,p(0, T ; X) := {v : (0, T ) → X | ∂�
t v ∈ L p(0, T ; X), 0 ≤ � ≤ s}, s ∈ N0, p ∈ [1, ∞).
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For the application we have in mind the following spaces

Wr ,s
p (QT ) := L p(0, T ;Wr ,p(Ω))∩Ws,p(0, T ; L p(Ω)), p ∈ [1,∞), r , s ∈ N0,

are of interest which are equipped with the natural norms

‖v‖Wr ,s
p (QT ) :=

(
‖v‖p

L p(0,T ;Wr ,p(Ω))
+ ‖v‖p

Ws,p(0,T ;L p(Ω))

)1/p
.

Spaces with non-integer r and s are defined as interpolation spaces.
In a previous work [25], a global (in time) well-posedness and regularity result for

(1.1)–(1.3) was established. Furthermore, optimality conditions for related optimal
control problems where this system occurs as a constraint were derived. For conve-
nience of the reader we briefly summarize the most important results needed in the
present article.

First, there holds the following existence and regularity result:

Theorem 2.1 Assume that ρ0 ∈ W 3/2,4(Ω) and fix T > 0. Given arbitrary
agent movement directions u = (u1, . . . , uM )T ∈ L∞(0, T ; R

2)M and intensities
c = (c1, . . . , cM ) ∈ H1(0, T )M, there exists a unique strong solution (ρ, φ, x)

to (1.1)–(1.3) which satisfies, for any 2 < p < ∞, ρ ∈ W 2,1
p (QT ) and φ ∈

L∞(0, T ;W 2,p(Ω)). The agent trajectories xi , i = 1, . . . , M are absolutely con-
tinuous. Moreover, the a priori estimate

‖ρ‖W 2,1
p (QT )

+ ‖φ‖L∞(0,T ;W 2,p(Ω)) ≤ C‖ρ0‖W 1,p(Ω),

holds with C > 0 depending only on the domain, the bounds for the coefficients and
the respective kernel.

Theprevious result allows todefine anoperator, the so-called control–to–state operator,

S : Q → Y, q := (u, c) �→ S(q) = y := (ρ, φ, x)

with control and state spaces

Q := U × C := L∞(0, T ; R
2)M × H1(0, T )M ,

Y := W 2,1
p (QT ) ×

(
L∞(0, T ;W 2,p

DN (Ω)) ∩ W 1,p(0, T ;W 1,p(Ω))
)

× W 1,s(0, T ; R
2)M

for s =
(
1
2 − 1

p

)−1
. Furthermore we define the set of admissible controls

Qad := {(u, c) ∈ Q : |ui (t)| ≤ 1, 0 ≤ ci (t) ≤ 1 f.a.a. t ∈ (0, T ) and all i = 1, . . . , M}.
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The optimal control problem we study in this article reads

Minimize J ( y; q) :=
∫

Q̃T

eν t ρ(t, x)dx dt − μ

M∑

i=1

∫ T

0
ln(B(xi (t))) dt

+ α1

2 T

M∑

i=1

‖ui‖2H1(0,T ;R2)
+ α2

2 T

M∑

i=1

‖ci‖2H1(0,T )
(2.2a)

subject to y := (ρ, φ, x) = S(q), (2.2b)

q := (u, c) ∈ Qad. (2.2c)

The objective functional J aims at a fast evacuation of the crowd. By the factor
eν t higher densities at a later time are penalized more. The parameter ν > 0 adjusts
the urgency of the evacuation. We observe the density in Q̃T = I × Ω̃ where Ω̃ ⊂ Ω

is a subregion which the pedestrians must leave. We use the temporal H1-norm of
the agent movement directions and the intensities as a regularization to guarantee the
smoothness required in Theorem 2.1. The regularization parameters α1, α2 > 0 are
arbitrary but positive.

The fourth term in the objective is a barrier used to avoid that the agents walk
through walls. The barrier function B ∈ H1

D(Ω) is the weak solution of the singularly
perturbed problem

−δ4ΔB + B = 1 in Ω, (2.3a)

B = 0 on ∂Ω. (2.3b)

The barrier function − ln(B(xi (t))) tends to infinity if dist(xi (t), ∂Ω) → 0 for some
t ∈ [0, T ]. For xi (t) ∈ intΩ there holds limμ→0 μ ln(B(xi (t))) = 0. Here we choose
μ > 0 to be fixed but small.

The control constraint (u, c) ∈ Qad guarantees that the agents do not move faster
than the density in their current position allows and that the intensity is bounded by
reasonable values.

We have the following well-posedness result and necessary optimality condition.

Theorem 2.2 There exists at least one global solution ( y, q) ∈ Y × Qad of (2.2).
Furthermore, each local minimizer ( y, q) ∈ Y×Qad, y = (ρ, φ, x), q = (u, c), of

(2.2) fulfills for all directions in the tangential cone at (u, c), namely δq = (δu, δc) ∈
TQad (u, c),

∫

Q̃T

eν t δρ(t, x)dx dt + α1

T
u, δuH1(0,T ;R2)M + α2

T
(c, δc)H1(0,T )M

− μ

M∑

i=1

∫ T

0

∇B(xi (t))� δxi (t)

B(xi (t))
dt ≥ 0,
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with y = S(u, c) and δ y = (δρ, δφ, δx) = S′(u, c) (δu, δc) characterized by the
system

∂tδρ − εΔδρ − ∇ ·
(

δρ β(ρ, φ, x, c) + ρ

(
∂β(ρ, φ, x, c)
∂(ρ, φ, x, c)

(δρ, δφ, δx, δc)
))

= 0,

(2.4a)

−δ1 Δδφ + 2∇φ · ∇δφ + 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
δρ = 0, (2.4b)

δ̇xi − v0 f ′(ρ(·, xi ))
(∇ρ(·, xi )Tδxi + δρ(·, xi )

)
ui = v0 f (ρ(·, xi )) δui , (2.4c)

for i = 1, . . . , M, together with the boundary conditions (1.2) and homogeneous
initial conditions

δρ(0, ·) = 0 and δxi (0) = 0, i = 1, . . . , M . (2.5)

The proof of the theorem above is very close to those of Theorem 3.8 and Theorem 4.4
[25]. The main difference is that the model in [25] only allows to control the velocity u
of the agents, yet not their strength c. As for the existence proof, this does not impose
any additional difficulty due to the uniform L∞-boundedness of c as a consequence of
the embedding H1 ↪→ L∞ in one spatial dimension. For the differentiability result,
one has to add the derivatives with respect to c, yielding an additional term in (2.4a)
that, however, can be estimated similarly to the remaining terms.

3 Discretization of the state equation

In this section we introduce the numerical scheme used to compute approximate solu-
tions of the forward system (1.1)–(1.3). To this end, we introduce a semi-implicit
time-stepping scheme and use a finite volume discretization for the density function
ρ and continuous Lagrange finite elements for the potential function.

3.1 Space discretization

For the spatial discretization of the system (1.1)–(1.3) we define a family of geo-
metrically conforming triangular meshes {Th}h>0. For each T ∈ Th we denote by
hT = diam(T ) the element diameter and by ρT the diameter of the largest inscribed
ball in T . The mesh parameter is then h = maxT∈Th hT . The mesh family is assumed
to be shape regular meaning that there is a constant κ > 0 such that hT /ρT ≤ κ for
all T ∈ Th and all h > 0. By F i

h we denote the set of interior element edges, by Fbd
h

the boundary edges and write Fh := F i
h ∪ Fbd

h . Furthermore, to each edge F ∈ Fh

we associate the normal vector nF which is pointing outward in case of a boundary
edge and has a fixed orientation in case of an interior edge.

We propose a finite volume scheme for the transport equation. As we use the finite
element package FEniCSfor our implementation, we use a notation which is rather
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usual for discontinuous Galerkin discretizations, see [20] for an overview. The finite-
dimensional function spaces are defined by

Vh = {v ∈ L∞(Ω) : v|T ∈ P0(T ) for all T ∈ Th, },
Wh = {v ∈ C(Ω) : v|T ∈ P1(T ) for all T ∈ Th}, Wh,D := Wh ∩ H1

D(Ω),

wherePk(T ) denotes the space of polynomials on T of degree not larger than k ∈ N0.
For a function v : Ω → R, we define interface averages and jumps in the following
way

{v}F := 1

2
(v|T1 + v|T2), �v�F := v|T1 − v|T2 , ∀F ∈ F i

h,

where T1, T2 ∈ Th are chosen in such a way that nF = n∂T1 |F = −n∂T2 |F .
In order to discretize the system (1.1) we use discontinuous approximations for ρ

and continuous ones for φ. The unknowns in our semi-discrete scheme are

ρh(t) ∈ Vh, φh(t) ∈ Wh,D, x1(t), . . . , xM (t) ∈ R
2, c1(t), . . . , cM (t) ∈ R

for all t ∈ [0, T ]. The approximate transport direction is then given by

βh(ρh, φh, x, c) := f (ρh) h(∇φh + φK (x, c))

with

φK (x, c; t, x) :=
M∑

j=1

c j (t) K (x − xi (t)).

The semi-discretization of (1.1a) then reads Find ρh : [0, T ] → Vh with ρh(0) =
projVh (ρ0) and

(∂tρh(t), vh)Ω+a(ρh(t), vh)+b(βh)(ρh(t), vh) = 0 ∀vh ∈ Vh, t ∈ (0, T ). (3.1)

Here, projVh : L2(Ω) → Vh is some projection operator, (·, ·)Ω is the standard L2(Ω)-
inner product and the bilinear forms are defined by

a(ρh, vh) = ε
∑

F∈F i
h

∫

F
τF �ρh��vh�ds +

∑

F∈Fbd
h

χ∂ΩDγ

∫

F
ρh vhds (3.2a)

b(βh)(ρh, vh) = −
∑

F∈F i
h

∫

F
(ρh βh)

∗
F �vh� ds. (3.2b)

The parameter τF is defined by

τF := 1

|xT1 − xT2 |
,

where xT is the intersection of the orthogonal edge bisectors of T ∈ Th . The term
τF �ρh��vh�with vh = χT for some T ∈ Th approximates the diffusive flux∇ρh ·n∂T

123



    4 Page 10 of 26 J.-F. Pietschmann et al.

over the edge F ⊂ T . The bilinear form b establishes the convective flux β ρ · n∂T .
As numerical flux function (·)∗, we choose the Lax-Friedrichs flux, see [32], defined
by

(ρh β)∗F = {ρh β}F · nF − η

2
�ρh�F . (3.3)

The stabilization parameter η ∈ R is specified later. For the closely related chemotaxis
model such an approach has been sucessfully applied in [24, 30]. Of course, also other
flux functions are possible, e.g., the central upwind flux [22].

The Eikonal equation (1.1b) is discretized in space using standard linear Lagrange
elements which yields

δ1
(∇φh(t),∇wh

)
Ω
+(|∇φh(t)|2, wh

)
Ω

=
(

1

f (ρh(t))2 + δ2
, wh

)

Ω

∀wh ∈ Wh,D.

(3.4)
In our numerical experiments we used the Newton solver integrated in FEniCS. The
Jacobian is established by automatic differentiation.

The ordinary differential equations for the agent trajectories (1.1c) dependon a point
evaluation ρ(t, xi (t)) of a function which is discontinuous in the discrete setting. In
particular, this term would not be differentiable with respect to xi (t). As a remedy, we
use instead of a point evaluation, see also [6], the following regularization

ρh(t, xi (t)) ≈ ηxi (t) ∗ ρh(t), with ηxi (t) := δxi (t)

δxi (t) ∗ 1
,

where ∗ stands for the convolution integral δx0 ∗ v = ∫
Ω

δx0 v dx of the functions
v ∈ L1(Ω) and some kernel function δx0 ∈ C∞(R2). An obvious choice is the
regularized Dirac delta function

δx0(x) := 1

2π ζ
e− ‖x−x0‖2

2 ζ

with small locality parameter ζ > 0. Note that for ζ → 0 there holds δx0 ∗ v → v(x0)
for any v ∈ C(Ω). Furthermore, the regularized Dirac delta fulfills

∫
R2 δx0dx = 1 for

arbitrary x0 ∈ R
2. The discretized ordinary differential equation then reads

ẋi (t) = v0 f
(
ηxi (t) ∗ ρh(t)

)
ui (t), n = 1, . . . , N (3.5)

and initial conditions xi (0) = xi,0.

3.2 Time discretization

For the temproal discretization we cover the time interval [0, T ] by an equidistant
grid Iτ := {tn}Nn=0 with grid points tn := n τ and grid size τ := T /N . The spatial
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and temporal discretization parameters are summarized in σ = (h, τ ). Moreover, we
define the space of grid functions

Hτ (V ) = {v : Iτ → V },

with V an arbitrary linear space. If V is again a function space containing functions
v : Ω → R we write v(tn) = v(tn, ·). The functions ρh , φh , xi , ui and ci arising in
the semi-discrete equations (3.1), (3.4) and (3.5) are approximated by grid functions

ρσ ∈ Hτ (Vh), φσ ∈ Hτ (Wh,D), ui,σ , xi,σ ∈ Hτ (R
2), ci,σ ∈ Hτ (R)

for i = 1, . . . , M . For brevity we write for n = 0, . . . , N

ρn
h := ρσ (tn, ·), φn

h := φσ (tn, ·), xni := xi,σ (tn), uni := ui,σ (tn)

and for the transport vector we use

βn
h = βh(ρ

n
h , φn

h , xn, cn).

We replace the temporal derivative by a difference quotient and use a semi-implicit
time-stepping scheme,more precisely, the diffusion-related terms are evaluated implic-
itly and the convection-related terms explicitly. This yields the fully discrete system

(ρn+1
h , vh)Ω + τ a(ρn+1

h , vh) = (ρn
h , vh)Ω − τ b(βn

h )(ρn
h , vh), (3.6a)

δ1(∇φn
h ,∇wh)Ω + (|∇φn

h |2, wh)Ω =
(

1

f (ρn
h )2 + δ2

, wh

)

Ω

, (3.6b)

xn+1
i − xni = τ v0 f

(
ηxn+1

i
∗ ρn+1

h

)
un+1
i , (3.6c)

for all test functions vh ∈ Vh ,wh ∈ Wh,D and indices i = 1, . . . , M , n = 0, . . . , N−1.
Furthermore, the initial conditions are established by means of:

ρ0
h = projVh (ρ0), x0i = xi,0, i = 1, . . . , M .

Note that the system of equations (3.6) completely decouples and we can compute
each variable after the other, in the following order

ρ0
h , x

0 �→φ0
h �→ρ1

h �→ x1 �→φ1
h �→ . . . �→ρN−1

h �→ xN−1 �→ φN−1
h �→ ρN

h �→ xN .

(3.7)

3.3 Quality of discrete solutions

In this section we study some basic properties for the solutions of (3.6). In particular,
it is of interest whether the physical bounds observed for the solution of the continuous
system (1.1)–(1.3) are transferred to the discrete setting.
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The basis functions of the finite element space Vh are denoted by {χT }T∈Th defined
by χT |T ′ ≡ δT ,T ′ for all T , T ′ ∈ Th . Note that by a slight abuse of notation we use
the elements of Th as indices here. Introducing the matrices M = (mT ,T ′)T ,T ′∈Th ,
A = (aT ,T ′)T ,T ′∈Th and Bn = (bnT ,T ′)T ,T ′∈Th with entries

mT ,T ′ =
{

|T |, if T = T ′,
0, otherwise,

(3.8a)

aT ,T ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
∑

F∈FT ∩F i
h

τF |F | + γ
∑

F∈FT ∩Fbd
h

|F |, if T = T ′,

−ε τF |F |, if T �= T ′ and F := ∂T ∩ ∂T ′ �= ∅,

0, otherwise,

(3.8b)

bnT ,T ′ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

2

∑

F∈FT ∩F i
h

(∫

F
βn
h |T · n∂T ds − η |F |

)
, if T = T ′,

−1

2

(∫

F
βn
h |T ′ · n∂T ds + η |F |

)
, if T �= T ′ and F = ∂T ∩ ∂T ′ �= ∅,

0, otherwise,

(3.8c)

allows to rewrite the system of equations (3.6a) as

(M + τ A) �ρn+1 = (M − τ Bn) �ρn . (3.9)

Here, �ρn , n = 0, . . . , N , are the vector representations of ρn
h with respect to the basis

{χT }T∈Th . Note that the matrix Bn depends also on �ρn .

Theorem 3.1 The numerical scheme (3.6a) is mass conserving in the following sense.
Assuming that γ = 0 holds, i. e., there are no-flux boundary conditions present at all
boundary parts ∂ΩD and ∂ΩW, the solution ρσ fulfills

∫

Ω

ρn
hdx =

∫

Ω

projVh (ρ0)dx ∀n = 0, 1, . . . , N .

Proof The assertion is trivially fulfilled for n = 0 as the initial condition is estab-
lished by ρ0

h = projVh (ρ0). In matrix-vector notation the assertion is equivalent to
�1�M �ρn+1 = �1�M �ρn . This follows from (3.9) after using

�1�A �ρn+1 =
∑

T∈Th

∑

T ′∈Th
aT ,T ′ρn+1

T ′ = 0

and
�1�Bn �ρn =

∑

T∈Th

∑

T ′∈Th
bT ,T ′ρn

T ′ .
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In this expression, the stabilization terms (the ones multiplied with η) cancel out.
Furthermore, after sorting terms in the sum by the edges F ∈ F i

h and denoting by
TF,1, TF,2 the two triangles meeting in F , we obtain the terms

�1�Bn �ρn = −1

2

∑

F∈F i
h

∫

F

(
βh |TF,1 n∂TF,1 ρTF,1 + βh |TF,2 n∂TF,1 ρTF,2

+βh |TF,2 n∂TF,2 ρTF,2 + βh |TF,1 n∂TF,2 ρTF,1

)
ds = 0.

The last step follows due to n∂TF,2 = −n∂TF,2 which implies �1�Bn �ρn = 0. ��
Theorem 3.2 Choose η = 1 in (3.3) and denote by κ > 0 the maximal aspect ratio of
the mesh family Th, see Sect. 3.1. Let τ be chosen to satisfy the CFL condition

τ ≤ π

3 κ2 min
T∈Th

hT . (3.10)

If furthermore, there holds projVh (ρ0) ∈ [0, 1] a.e. in Ω and βn
h = (1 − ρn

h )Φn with
|Φn| ≤ 1, n = 0, . . . , N, the solutions of (3.6) fulfill for all n = 0, . . . , N

ρn
h (x) ∈ [0, 1] f.a.a. x ∈ Ω.

Proof The diagonal entries of (M + τ A) are all positive and the off-diagonal entries
are non-positive. Moreover, one easily concludes the strict diagonal dominance, this
is, ∑

T ′∈Th
T ′ �=T

|mT ,T ′ + τ aT ,T ′ | < mT ,T + τ aT ,T .

This implies that (M+τ A) is anM-matrix and consequently, the inverse (M+τ A)−1

exists and fulfills (M + τ A)−1 ≥ 0.
Let n ∈ N0 be fixed and assume that ρn

h (x) ∈ [0, 1] for almost all x ∈ Ω . We show
ρn+1
h ≥ 0 by confirming that the right-hand side of (3.9) has non-negative entries

only. Assuming that ρn
T ≥ 0, T ∈ Th , we show that the entries of (M − τ Bn) are

non-negative as well. The entries on the diagonal have the form

|T | + τ

2

∑

F∈FT ∩F i
h

∫

F
(βn

h |T · n∂T − 1) ds ≥ |T | − τ |∂T |,

where the first step follows from the assumption (2.1) implying |βn
h | ≤ 1. To estimate

further we take the geometric mesh quantities and the shape regularity hT ≤ κ ρT into
account and arrive at

|T |
|∂T | ≥ π ρ2

T

3 hT
≥ π hT

3 κ2 ≥ τ,
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where the last step is the CFL condition (3.10). The previous two estimates confirm
(mT ,T − τ bnT ,T ) ≥ 0 for all T ∈ Th . The remaining entries in the matrix, namely
(mT ,T ′ − τ bnT ,T ′) with F = ∂T ∩ ∂T ′ �= ∅, have the form

τ

2

∫

F
(βn

h |T ′ · n∂T + 1) ds ≥ 0.

The non-negativity follows again from |βn
h | ≤ 1. Combining the previous arguments

provides the lower bound ρn+1
h ≥ 0.

To show the upper bound we rearrange the equation system (3.9) in the form

(M + τ A) (�1 − �ρn+1) = M (�1 − �ρn) + τ Bn �ρn + τ A �1. (3.11)

We may rewrite the transport term using ρn
h βn

h = (1 − ρn
h ) β̃n

h with β̃n
h = ρn

h Φ. In
(3.11) we reformulate the expression involving Bn by means of

[Bn �ρn]T = −
∑

F∈FT ∩F i
h

∫

F

(
{(1 − ρn

T ) β̃n
h }F · nF + 1

2
�1 − ρn

h �

)

F
�χT �F ds

= −1

2

∑

F∈FT ∩F i
h

∫

F
(β̃n

h |T · n∂T + 1) ds · (1 − ρn
T )

− 1

2

∑

F∈FT ∩F i
h

∫

F
(β̃n

h |TF · n∂T − 1) ds · (1 − ρn
TF )

=: [B̃n(1 − �ρn)]T .

with TF ∈ Th\{T }, TF ∩ T = F . With the same arguments like above one can show
that the entries of M + τ B̃n are non-negative and together with 1− �ρn ≥ 0, A �1 ≥ 0
and the M-matrix property of M + τ A we arrive at the desired bound 1− �ρn+1 ≥ 0.��

3.4 The discrete optimal control problem

Next, we study a discrete version of the optimal control problem (2.2). The control and
state variables are grid functions in time and thus, we introduce the discrete H1(0, T )-
inner product for functions uτ , vτ : {tn}Nn=0 → V , with V some Hilbert space,

(uτ , vτ )H1(0,T ;V ),τ := τ

N∑

n=0

(
un, vn

)
V×V + τ−1

N−1∑

n=0

(
un+1 − un, vn+1 − vn

)
V×V .
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This induces the norm‖uτ‖2H1(0,T ;V ),h
:= (uτ , uτ )H1(0,T ;V ),h . For the discrete control

space we obtain

Uσ := {uσ = (u1,σ , . . . , uM,σ ) : ui,σ ∈ Hτ (R
2) for i = 1, . . . , M}

Cσ := {cσ = (c1,σ , . . . , cM,σ ) : ci,σ ∈ Hτ (R) for i = 1, . . . , M},
Qσ := Uσ × Cσ ,

and the admissible set by

Uσ,ad := {uσ ∈ Uσ : |uni | ≤ 1, i = 1, . . . , M, n = 0, . . . , N },
Cσ,ad := {cσ ∈ Cσ : 0 ≤ cni ≤ 1, i = 1, . . . , M, n = 0, . . . , N },
Qσ,ad := Uσ,ad × Cσ,ad.

The discrete state space is defined by

Yσ := Hτ (Vh) × Hτ (Wh,D) × Hτ (R
2)M .

With these definitions, the discrete optimal control problem related to (2.2) reads as

Minimize Jσ ( yσ , qσ ) = τ

N∑

n=1

eν tn

∫

Ω

ρn
h (x) dx − μτ

M∑

i=1

N∑

n=1

ln(ηxni ∗ Bh)

+ α1

2 T

M∑

i=1

‖ui,σ ‖2H1(0,T ),τ
+ α2

2 T

M∑

i=1

‖ci,σ ‖2H1(0,T ),τ

(3.12a)

subject to yσ := (ρσ , φσ , xσ ) = Sσ (qσ ), (3.12b)

qσ := (uσ , cσ ) ∈ Qσ,ad, (3.12c)

where is Bh ∈ Wh the finite element approximation of (2.3) with first-order Lagrange
elements. Furthermore, Sσ is the solution operator of (3.6). Note that, in order tomain-
tain the differentiability of the barrier term with respect to xni , we use a regularization
of the point evaluation of the nonsmooth function Bh , compare also (3.6c).

We may write the control problem (3.12) in the more compact reduced form

jσ (qσ ) := Jσ (Sσ (qσ ), qσ ) → min! subject to qσ ∈ Qσ,ad. (3.13)

To deduce a necessary optimality condition we apply the Lagrange formalism. The
Lagrange function

Lσ : Yσ × Qσ × Yσ → R
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coupling the discrete state equation (3.6) reads

Lσ (ρσ , φσ , xσ ; uσ , cσ ; λρ,σ , λφ,σ , λx,σ ) = Jσ (ρσ , φσ , xσ ; uσ , cσ )

−
∫

Ω

(ρ0
h − projVh (ρ0)) λ0ρ,h dx

−
N−1∑

n=0

(∫

Ω

(ρn+1
h − ρn

h ) λn+1
ρ,h dx + τ a(ρn+1

h , λn+1
ρ,h ) − τ b(βn

h )(ρn
h , λn+1

ρ,h )

)

−
N−1∑

n=0

τ

(
δ1

∫

Ω

∇φn
h · ∇λnφ,h dx+

∫

Ω

|∇φn
h |2 λnφ,h dx−

∫

Ω

1

f (ρn
h )2+δ2

λnφ,h dx

)

−
M∑

i=1

(

(x0i − xi,0)
� λ0x,i +

N−1∑

n=0

(
xn+1
i − xni − τ f (ηxn+1

i
∗ ρn+1

h ) un+1
i

)�
λn+1
x,i

)

.

To shorten the notation we write λσ := (λρ,σ , λφ,σ , λx,σ ). The adjoint equation
system determining these variables for a given control and state is

λnρ,h ∈ Vh : ∂Lσ

∂ρn
h

( yσ , qσ ,λσ )δρh = 0 ∀δρh ∈ Vh, n = 0, . . . , N , (3.14a)

λnφ,h ∈ Wh,D : ∂Lσ

∂φn
h

( yσ , qσ ,λσ )δφh= 0 ∀δφh ∈ Wh, n = 0, . . . , N − 1,

(3.14b)

λnxi ∈ R
2 : ∂Lσ

∂xni
( yσ , qσ ,λσ )δxi = 0 ∀δxi ∈ R

2, n = 0, . . . , N (3.14c)

for i = 1, . . . , M . Note that this can be interpreted as a coupled system involving a
parabolic PDE and an ODE that run backward in time. We use the automatic differen-
tiation feature in FEniCS in our implementation. As the forward system completely
decouples in each time step, so does the adjoint system and we can compute step by
step:

λN
x,h �→ λN

ρ,h �→ (λN
φ,h) �→ . . . �→ λ0x,h �→ λ0ρ,h �→ λ0φ,h .

With the adjoint states at handwe can assemble the derivatives of the reduced objective
(3.13) and end up with the following optimality condition for (3.12):

Theorem 3.3 (Necessary optimality condition) Let ( yσ , qσ ) ∈ Yσ ×Qσ,ad be a local
solution of (3.12). Then, there exists λσ ∈ Yσ fulfilling (3.14) and

α1 (uσ,i , vσ,i − uσ,i )H1(0,T ;R2),τ + α2 (cσ,i , dσ,i − cσ,i )H1(0,T ),τ

+ τ

N∑

n=1

( f (ηxni ∗ ρn
h ) λnxi , v

n
i − ui

n)R2 + τ

N−1∑

n=0

∂(b(βn
h )(ρn

h , λn+1
ρ,h ))

∂cni
(dni − cni ) ≥ 0 (3.15)

for all test functions rσ := (vσ , dσ ) ∈ Qσ,ad and all i = 1, . . . , M.
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Proof It is well-known that the variational inequality j ′σ (qσ )(rσ − qσ ) ≥ 0 for rσ ∈
Qσ,ad is necessary for qσ being a local minimizer of (3.13). Taking into account the
equivalence

j ′σ (qσ )δqσ = ∂L
∂qσ

( yσ , qσ ,λσ )δqσ if λσ solves (3.14)

yields the variational inequality (3.15). ��

Our solution algorithm is based on a projected gradient algorithm and it remains to
establish a representation of the gradient of jσ .

The derivative of the objective (3.12a) towards some direction δqσ = (δuσ , δcσ ) ∈
Q reads

j ′σ (qσ )δqσ =
M∑

i=1

(
α1(ui,σ , δui,σ )H1(0,T ),τ + α2(ci,σ , δci,σ )H1(0,T ),τ

+ τ

N∑

n=1

f (ηxni ∗ ρn
h ) δuni

�
λnxi + τ

N−1∑

n=0

∂
(
b(βn

h )(ρn
h , λn+1

ρ,h )
)

∂cni
δcni

)
.

To obtain a representation of the H1(0, T ), τ -gradient of jσ with respect to uσ and
cσ , we introduce the grid functions zi,σ : {tn}Nn=0 → R

2 and di,σ : {tk}Nn=0 → R,
i = 1, . . . , M solving

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

τ 2

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ IN+1×N+1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

z0i
z1i
z2i
.
.
.

zN−1
i
zNi

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

0
− f (ρ1

h (x
1
i ))λ

0
xi− f (ρ2

h (x
2
i ))λ

1
xi

.

.

.

− f (ρN−1
h (xN−1

i ))λN−2
xi− f (ρN

h (xN
i ))λN−1

xi

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

(3.16a)

and

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1

τ2

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

+ IN+1×N+1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

d0i
d1i
d2i
.
.
.

dN−1
i
dNi

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

−∂c0i
b(β0

h )(ρ0h , λ1
ρ,h)

−∂c1i
b(β1

h )(ρ1h , λ2
ρ,h)

−∂c2i
b(β2

h )(ρ2h , λ3
ρ,h)

.

.

.

−∂
cN−2
i

b(βN−2
h )(ρN−2

h , λN−1
ρ,h )

−∂
cN−1
i

b(βN−1
h )(ρN−1

h , λN
ρ,h)

0

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

(3.16b)
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for i = 1, . . . , M . By a simple calculation we then confirm

(zi,σ , δui,σ )H1(0,T ;R2),τ =
N∑

n=1

f (ηxni ∗ ρn
h ) δuni

�
λnxi ,

(di,σ , δci,σ )H1(0,T ),τ =
N−1∑

n=0

∂
(
b(βn

h )(ρn
h , λn+1

ρ,h )
)

∂cni
δcni

We write zσ = (z1,σ , . . . , zM,σ ) ∈ U and dσ = (d1,σ , . . . , dM,σ ) ∈ C and get the
following representation of the gradient of jσ :

∇uσ jσ (qσ ) = α1 uσ + zσ , (3.17a)

∇cσ jσ (qσ ) = α2 cσ + dσ . (3.17b)

This allows an implementation of a projected gradient method which we discuss in
the following section.

3.5 Optimization algorithms for the discretized problem

For a solution of the discretized optimal control problem 3.12 we propose a projected
gradient algorithm. In this procedure, for a given initial control q(0) = (u(0), c(0)) ∈
Q, the new iterates are successively computed by means of

u(k+1)
σ = Πu

ad

(
u(k)

σ − s(k) ∇uσ jσ (q(k)
σ )

)
, (3.18a)

c(k+1)
σ = Πc

ad

(
c(k)σ − s(k) ∇cσ jσ (q(k)

σ )
)

, (3.18b)

with Πu
ad : Uσ → Uσ,ad and Πc

ad : Cσ → Cσ,ad the H1(0, T ), τ projections onto the
admissible sets Uσ,ad and Cσ,ad, respectively, this is,

Πu
ad(uσ ) := argmin

vσ ∈Uσ,ad

1

2
‖uσ − vσ ‖2H1(0,T ;R2),τ

, (3.19a)

Πc
ad(cσ ) := argmin

dσ ∈Cσ,ad

1

2
‖cσ − dσ ‖2H1(0,T ),τ

. (3.19b)

A formula for the gradient of jσ has been derived in the previous section already,
see (3.17). The step length parameter s(k) > 0 is obtained by an Amijo line search
[27, Section 2.2.2.1] and must fulfill the sufficient decrease condition

jσ
(
Πad

(
q(k)

σ − s(k) ∇ jσ (q(k)
σ )

))

≤ jσ (q(k)
σ ) − d

s(k)
‖q(k)

σ − Πad

(
q(k)

σ − s(k) ∇ jσ (q(k)
σ )

)
‖2Qσ

(3.20)
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with a decrease parameter d ∈ (0, 1)which is usually small (e.g., 10−4). A reasonable
stopping criterion for the projected gradient algorithm is

‖q(k)
σ − Πad

(
q(k)

σ − ∇ jσ (q(k)
σ )

)
‖Qσ

≤ 10−3.

It remains to discuss the realization of the projection operators and we propose a
primal dual active set strategy that may also be considered as semismooth Newton
method. Note that the operators Πad are semismooth, see [15]. The evaluation of the
projection operator Πu

ad : Uσ → Uσ,ad requires to solve the optimization problem
(3.19a). The unknowns (assuming M = 1 and omitting the agent’s index i for a while)
are the coefficients of the functions Uσ � Πad(uσ ) = wσ � �w ∈ R

(N+1)×2 for
some given Uσ � uσ � �u ∈ R

(N+1)×2. We switch to a matrix-vector notation and
define

wn :=
(

wn
1

wn
2

)
:= wσ (tn), �w j := (w0

j , . . . , w
N
j )�, j = 1, 2,

as well as the matrix A ∈ R
(N+1)×(N+1) on the left-hand side of the linear system

(3.16) inducing the discrete H1(0, T ), τ -norm.
The Lagrangian for (3.19) reads

L( �w1, �w2, �λ) = 1

2

2∑

i=1

( �wi − �ui )�A( �wi − �ui ) − 1

2
λ� (

| �w|2∗ − �1
)

,

with | �w|2∗ = (|w0|2, . . . , |wN |2)�. The Karush-Kuhn-Tucker system for (3.19) then
reads

A ( �wi − �ui ) − �λ · �wi = 0 i = 1, 2,

1

2

(
| �w|2∗ − �1

)
≤ 0, �λ ≥ 0,

1

2
�λ · (| �w|2∗ − 1) = 0,

where · is the component-wise multiplication of two vectors. We reformulate the com-
plementarity condition by means of a nonsmooth equation and arrive at the following
equivalent form of the KKT system

F( �w1, �w2, �λ) :=
⎡

⎣
A ( �w1 − �u1) − �λ · �w1

A ( �w2 − �u2) − �λ · �w2
�λ − max{0,− 1

2 (| �w|2∗ − �1) + �λ}

⎤

⎦ = 0. (3.21)

This nonlinear system can be solved iteratively by a semismooth Newton method.
Given is an initial pair (�u(0), �λ(0)). Successively, one computes the active and inactive
set

A(k) := {n ∈ {0, . . . , N } : − 1

2
(|wn|22 − 1) + λn > 0},

I(k) := {0, . . . , N } \ A(k),
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solves the Newton system

⎡

⎢
⎣

A − D�λ(k) 0 −D �w(k)
1

0 A − D�λ(k) −D �w(k)
2

DA(k) D �w(k)
1

DA(k) D �w(k)
2

DI(k)

⎤

⎥
⎦

⎡

⎣
�δw1
�δw2
�δλ

⎤

⎦ = −
⎡

⎢
⎣

A ( �w(k)
1 − �u1) − �λ(k) · �w(k)

1

A ( �w(k)
2 − �u2) − �λ(k) · �w(k)

2�λ(k) − max{0, − 1
2 (| �w(k)|2∗ − �1) + �λ(k)},

⎤

⎥
⎦

with the diagonal matrices D�v = diag(�v) for �v ∈ R
N+1 and DM = diag(χM) for

M ⊂ {0, . . . , N }, and performs the Newton update

�w(k+1) = �w(k) + �δw, �λ(k+1) = �λ(k) + �δλ.

This procedure is repeated for k = 0, 1, . . . until some termination criterion, e. g.,
‖F( �w1, �w2, �λ)‖ < tol, is fulfilled.

4 Numerical experiments

This section is devoted to numerical experiments. To establish the discretized system
(3.12) the finite element library FEniCSwas used, complemented by a Python imple-
mentation of the projected gradient method from (3.18) and the Armijo step size rule
from (3.20). The computational meshes were created by the mesh generator mshr
integrated in FEniCS.

4.1 Example 1

In a first numerical test we solve the problem Equation (2.2) in the domainΩ depicted
in Fig. 1 with the following parameters.

T = 9 nT = 300 α1 = α2 = 5 · 10−2 γ = 10 ζ = 10−2 μ = 5 · 10−2

ε = 10−5 δ1 = 0.2 δ2 = 0.1 δ3 = 10−2 δ4 = 0.1 tol = 10−2.

The initial density ρ0 is the sum of 6 Gaussian bells, see also Fig. 1a. The subdomain
Ω̃ where densities are penalized is chosen to cover the regionwithin thewalls.Without
any controlled agents,most of the peoplewill squeeze through the 2 smaller emergency
exits in the south and north while the large exit in the east is rarely used. To improve
the evacuation 3 agents were introduced. The initial control (u, c) was chosen in such
a way that the agent moves straight to the right outside of the room having a constant
the intensity. The projected gradient method reached the desired tolerance after 4372
iterations. The Armijo parameter was halved until (3.20) is fulfilled and the initial
Armijo parameter in the subsequent iteration was chosen according to

s0(k) = s(k−1) · min{1.5, 1.1 · max{1, res2(k−1) / res2(k)}},
with res(k) = ‖q(k)

σ − Πad(q(k)
σ − ∇ jσ (q(k)

σ ))‖Qσ
.
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Fig. 1 Solution of the problem from Sect. 4.1 at different time slices (vertical lines in f). The colored back-
ground represents the density ρ; the dots are the agent positions; the black curves are the agent trajectories

This provides the possibility tomoderately increase the step sizewhile at the same time
avoiding too many iterations in the Armijo loop. By this choice at most 2 functional
evaluations per iteration are necessary.

In Fig. 2 we compared the results of the optimized evacuation with the uncontrolled
case, meaning that no agents are present resulting in a crowd motion where each
individual is aiming at the closest emergency exit. For most individuals in the crowd
the small side exits are the closest and the large exit in the east is rarely used. An
interesting observation is that the total number of individuals, m(t) = ∫

Ω̃
ρ(t, x) dx ,

is smaller in the uncontrolled case in the early stage but afterwards the controlled
evacuation becomes much better. This is preferred by the objective due to the
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Fig. 2 Comparison between controlled and uncontrolled case: Plot of the total mass m(t) := ∫
Ω̃ ρ(t, x)dx

against time and solution of the uncontrolled system at different time points

weight function eν t penalizing high densities at later time stronger than at an earlier
time.

4.2 Example 2

In a second example we consider the domain illustrated in Fig. 3. The initial density is
concentrated near the slit in thewall on the left-hand side. In an uncontrolled evacuation
scenario the majority of the people would leave the domain through this slit causing
a massive congestion leading to a very slow evacuation of the crowd. The model and
algorithm parameters chosen in the current example are as follows:

T = 12 nT = 300 α1 = α2 = 5 · 10−2 γ = 10 ζ = 10−2 μ = 5 · 10−2

ε = 10−5 δ1 = 0.2 δ2 = 0.1 δ3 = 10−2 δ4 = 0.1 tol = 10−2.

The tolerance was reached after 3889 iterations. This example shows that the evac-
uation can be significantly improved by using two agents with optimized trajectory
and intensity. Interesting is, that the intensity is non-zero only in the time interval
t ∈ (0, 3). The agents attract the people leading them sufficiently far away from the
slit in the west and then they stop influencing the crowd. When being sufficiently far
away from the slit the people find the way to the larger exits in the north and south on
their own by using the movement direction determined by the potential φ.
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Fig. 3 Solution of the problem from Sect. 4.2 at different time slices (vertical lines in e) and intensity of the
agents

4.3 Example 3

In a third example we consider a square-shaped room with exits in the south, east
and north. The computational results are illustrated in Fig. 4. The exits have different
widths. The model and algorithm parameters are chosen as follows:

T = 10 nT = 300 α1 = α2 = 5 · 10−2 γ = 10 ζ = 10−2 μ = 5 · 10−2

ε = 10−5 δ1 = 0.2 δ2 = 0.1 δ3 = 10−2 δ4 = 0.1 tol = 10−2.

The initial density is concentrated near the small exit and without a control of the
crowd motion most of the people are blocking each other while squeezing through
this small exit. Two agents were added in this scenario with the aim attracting the
people in such a way that more of them find the other two exits in the north and east.
The optimization algorithm reached the desired tolerance after 9283 iterations. The
computed agent trajectories are quite short. It is interesting to observe that in the time
interval t ∈ (0, 2) the agents just go to an optimal position sufficiently close to the
crowd and attract them in the time interval t ∈ (2, 5), leading some of the people to
the center of the room. At this point the agents drive their intensity to zero meaning
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Fig. 4 Solution of the problem from Sect. 4.3 at different time slices (vertical lines in e) and intensity of the
agents

that they stop influencing the crowd. However, when being sufficiently far away from
the critical exit the people find the route to the less used exits on their own due to the
movement rule determined by the potential φ.
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