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DYNAMIC OPTIMAL TRANSPORT ON NETWORKS

Martin Burger1, Ina Humpert2 and Jan-Frederik Pietschmann3,*

Abstract. We study a dynamic optimal transport problem on a network. Despite the cost for trans-
port along the edges, an additional cost, scaled with a parameter κ, has to be paid for interchanging
mass between edges and vertices. We show existence of minimisers using duality and discuss the rela-
tionship of the model to other metrics such as Fisher–Rao and the classical Wasserstein metric. Finally,
we examine the limiting behaviour of the model in terms of the parameter κ.
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1. Introduction

Transport on networks is an important problem that arises in many areas of science, e.g. traffic on road
networks [6], distribution of gas [2, 19], or transport of vesicles within neurites, [12, 13, 25, 30]. On the other
hand, there is the generic theory of optimal transport that describes how to move a given amount of mass at
the lowest cost (see for example the books of Villani [28, 29], Santambrogio [23] or the survey of Brasco [5] for
the necessary background) and its dynamic variant introduced by Benamou and Brenier [3].

In this paper, we aim to combine these notions by introducing a dynamic formulation of optimal transport
on a network, where mass is transported along edges but can also be stored in vertices.

In the classical theory of optimal transport the Wasserstein-distance of order p between two probability
measures µ1 and µ2 on Ω ⊂ Rn is defined by as

d(µ1, µ2)p := inf
p∈P(µ1,µ2)

∫
Ω×Ω

|x− y|p dp(x, y), (1.1)

where the symbol | · | denotes the Euclidean norm on Rn and P denotes the set of probability measures with
marginals µ1 and µ2.

Initially introduced as a numerical algorithm, Benamou and Brenier [3] introduced a dynamic version of the
optimal transport problem. They showed that calculating the Wasserstein distance is equivalent to minimising
an action functional representing the kinetic energy of curves connecting the two measures ρ1 and ρ2, subject
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to a constraint given by a continuity equation, i.e.

W 2
2 (ρ1, ρ2) := inf

(µt,Ft)

{∫ 1

0

∫
Ω

|Ft(x)|2

µt(x)
dxdt

∣∣∣ ∂tµt + div(Ft) = 0, µt|t=0,1 = ρ1, ρ2

}
,

where Ft denotes the flux and µt a curve in the space of probability measures. This formulation has the
additional merit that can be easily generalised, e.g. to include non-linear mobilities [7, 17]. One case which is
of particular interest here is when the initial and terminal measures ρ1 and ρ2 have different mass. Then, the
classical Wasserstein distance can be replaced by the Wasserstein–Fisher–Rao metric whose dynamic formulation
is given as

WFR2
κ(ρ0, ρ1) = inf

(γt,Gt,ft)

{∫∫
[0,1]×Ω

|Gt|2

2γt
dxdt+ κ2

∫∫
[0,1]×Ω

|ft|2

2γt
dxdt

s.t. ∂tγt + div Gt = f, γt|t=0,1 = ρ1, ρ2

}
,

(1.2)

for γt ∈ M+(Ω). This allows to compute distances between measures with different masses, see [8] for an
existence result. Recently it was shown that a static version in the spirit of (1.1) exits, see [9] for details. The
general theory that deals with probability measures of different mass is called unbalanced optimal transport and
was simultaneously introduced and studied in [8, 9, 11, 14–16, 21].

More recently, [20] introduced a new transportation model on the closure of a domain Ω that behaves
differently in the interior and on the boundary while allowing for interaction between these two. This setting
can be motivated if we think of Ω as a city with a ring road ∂Ω which can only be entered upon paying a
fee denoted by κ. The overall density of cars is then ρ = (ω, γ) ∈ M+(Ω) ×M+(∂Ω), where the first entry
corresponds to the cars in the inner city and the second entry to the those on the ring road. Informally, this
model is given as

W2
M(ρ0, ρ1) = inf

(ωt,γt,Ft,Gt,ft)

{∫∫
[0,1]×Ω

|Ft|2

2ωt
dxdt+

∫∫
[0,1]×∂Ω

|Gt|2

2γt
dxdt+ κ2

∫∫
[0,1]×∂Ω

|ft|2

2γt
dσdt

s.t
∂tωt + div Ft = 0 in Ω,

Ft · ν = ft in ∂Ω,
and ∂tγt + div Gt = ft in ∂Ω

}
,

(1.3)

where the initial concentration is defined by ρ0 = (ω0, γ0), the terminal concentration by ρ1 = (ω1, ρ1), Ft
denotes the momentum in Ω, Gt the momentum on ∂Ω and ft is the normal outflux ft = Ft · ν. Existence of
minimisers was shown based on duality. Understanding the one-dimensional model as a trivial network with
only one edges and two vertices (in spatial dimension one) serves as a starting point for our investigation.

In this work we introduce a dynamic formulation on a planar network. We identify edges with one-dimensional
intervals on which a classical action functional is minimized while at vertices, mass may be transferred onto
or off from a vertex by reaction terms as in the Fisher–Rao metric (1.2), rendering the transport problem on
each edge similar to (1.3). After the formulation of the problem, we show that it is well-defined again using
Fenchel–Rockafellar duality, and also analyse the asymptotic behaviour in terms of the cost parameter κ.

While our model is dynamic and allows for the storage of mass at the vertices, the static 1-Wasserstein
distance on metric graphs has been studies in [18]. In their work, the authors focus on a connection between
Kantorovich potentials and solutions of a p-Laplace problem. More recently in [10], the authors consider a similar
setting as ours, yet again without explicit dynamics at the vertices. They introduce a p-Wasserstein distance
in the spirit of Benamou and Brenier and show that, as in the classical setting, absolutely continuous curves
admit vector fields that solve the continuity equation. Using this characterisation of geodesics, they observe



DYNAMIC OPTIMAL TRANSPORT ON NETWORKS 3

that the entropy functional is not displacement convex. However, they are still able to characterise solutions to
a drift-diffusion-attraction equation as a gradient flow with respect to their distance.

This paper is organised as follows: In Section 2 we provide details on the network setting, in Section 3 we
introduce our model and show existence of minimisers by means of Rockafellar duality. Section 4 we discuss
the relationships of the distance-functional with other metrics as the Fisher–Rao and the classical Wasserstein-
metric. In the limit case, where the costs for transporting mass over the vertices diverges to infinity, we recover
that our distance converges either to infinity if masses are incompatible or to the classical Wasserstein-metric if
masses are compatible. In the Appendix we present a formal calculation of the first order optimality conditions.

2. Network setting

We consider a planar network where edges can be identified with one-dimensional intervals. We denote the
complete network by G = (V, E) with V = {V 1, . . . , V n} the set of vertices for n ∈ N and E = {E1, . . . , Em} the
set of edges for m ∈ N. Every vertex is defined via its coordinates in the two-dimensional space R2, i.e. V i ∈ R2

for every i ∈ {1, . . . , n} and every edge is homeomorphic to a one-dimensional, open interval. To each edge we
assign a starting and an end point and define two functions α, ω : E → V that assign to every edge its starting
or its end point thus determining an orientation. The functions ᾱ, ω̄ : {1, . . . ,m} → {1, . . . , n} map a given edge
the indices of the respective vertices. By Z(V i) we denote the indices of all edges originating or ending at V i

for i ∈ {1, . . . , n}, i.e.

Z(V i) =
{
j ∈ {1, . . . ,m} : α(Ej) = V i ∨ ω(Ej) = V i

}
.

Finally, for all (i, j) ∈ {(i, j) : i ∈ {1, . . . , n} and j ∈ Z(V i)} we denote by νi,j the outward normal vector of
edge j at the point where it is connected to vertex i. With this notation, νᾱ(j),j gives the normal at the starting
point of Ej . Moreover, we denote by M+(X) the set of non-negative bounded measures on a given space X
and more precisely the set of non-negative measures on the set of edges (vertices) by

M+(E) =M+(E1)× . . .×M+(Em),

M+(V) =M+(V 1)× . . .×M+(V n).

Since V i ∈ Rd, we have that each measure in M+(V) is of the form

n∑
i=1

ciδVi ,

and therefore we identify M+(V) with Rn+ from now on.

To formulate the dynamic optimal transport problem on the network let ρj0, ρ
j
1 ∈ M+(Ej), j = 1, . . . ,m

and γi0, γ
i
1 ∈ R, i = 1, . . . , n be given, and denote by ρ0ρ0ρ0 = (ρ1

0, . . . , ρ
m
0 ), ρ1ρ1ρ1 = (ρ1

1, . . . , ρ
m
1 ), the vector of all

concentrations on edges at time t = 0 and t = 1 and by γ0γ0γ0 = (γ1
0 , . . . , γ

n
0 ), γ1γ1γ1 = (γ1

1 , . . . , γ
n
1 ) the vectors of the

concentration on the vertices at time t = 0 and t = 1. Next, we define ΩE =
⋃m
j=1E

j as well as ΩV =
⋃n
i=1 V

i

and on the closed set ΩG = ΩV ∪ ΩE we define the measure that translates to the total density on the network
by

ςl =

m∑
j=1

ρjl +

n∑
i=1

γil , l ∈ {0, 1}, (2.1)

and make the assumption that our initial and final data (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) are such that ς0, ς1 ∈ P(ΩG) holds.
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Figure 1. Example of a network configuration with three edges E = {E1, E2, E3} and four

vertices V = {V 1, V 2, V 3, V 4}. The concentrations on Ej are given by ρjt for j ∈ {1, 2, 3} and
the concentration on the vertices is given by γit on V i with i ∈ {1, 2, 3, 4}. Labels of edges
and vertices are shown in black and concentrations on those are shown in blue. The index
set corresponding to the edges originating or ending at V 1 is given by Z(V 1) = {1, 2, 3} as
ω(E1) = α(E2) = α(E3) = V 1.

On every edge and every vertex, i.e. for every j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}, we consider the following
continuity equation on the network G

∂tρ
j
t + ∂xF

j
t = 0 in Ej , ∂tγ

i
t = f it on V i with f it =

∑
j∈Z(V i)

F jt (Vi) · νi,j , (2.2)

where F jt : Ej × (0, T ]→ R, f it (0, T ]→ R, the space derivative ∂xF
j
t is calculated with respect to the orientation

of the edge. We will give a rigorous definition of weak solution in the next section. A sketch of this situation is
shown in Figure 1. Note that as V is discrete, the time-dependent measures γit , f

i
t for i ∈ {1, . . . , n} are given

by

γit = C1(i, t)δV i , f it = C2(i, t)δV i

where δV i denotes the Dirac-measure at the vertex V i and C1(i, t), C2(i, t) ∈ R+ are time-dependent constants.
Thus, we identify the measures with their respective time-dependent constants while, by abuse of notation, still
writing γit and f it in the following.

For a given network concentration (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ∈M+(E)×M+(E)×M+(V)×M+(V) with ς0, ς1 ∈ P(ΩG),
we consider the minimisation-problem of an action being the combination of Wasserstein and the Fisher–Rao
terms

min
(ρtρtρt,FtFtFt,γtγtγt,ftftft)∈CE(ρ0ρ0ρ0,ρ1ρ1ρ1,γ0γ0γ0,γ1γ1γ1)


m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt+ κ2

n∑
i=1

∫
[0,1]

|f it |2

2γit
dt

 , (2.3)

where κ > 0 is a given constant and with

CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) =
{

(ρtρtρt,FtFtFt, γtγtγt, ftftft) that fulfil (2.2) and ρt=0ρt=0ρt=0 = ρ0ρ0ρ0, ρt=1ρt=1ρt=1 = ρ1ρ1ρ1, γt=0γt=0γt=0 = γ0γ0γ0, γt=1γt=1γt=1 = γ1γ1γ1

}
.
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In this setting - at least on a formal level - the total mass on the network is conserved as no mass may enter or
leave the system, i.e.

d

dt
Mass(G, t) =

d

dt

 m∑
j=1

∫
Ej
ρjt dx+

n∑
i=1

γit

 = 0

for every t ∈ [0, T ]. Moreover, for brevity we write ‖ρjt‖ = ‖ρjt‖L1(Ej) in the whole paper.

Remark 2.1 (Generalisations). a) An interesting generalisation of the current setting is the case where we
allow mass in- and outflow at the vertices of grad 1, i.e. the outer vertices that are only connected with
one edge.

b) The generalisation to a non-connected network with finite many connected components is possible but we
omit the proof for readability.

Remark 2.2 (Kantorovich formulation and limit problem). Another interesting question for further research
is a static formulation of both (1.3) and (2.3). For the first one, based on the explicit calculation of geodesics
in [20] between two point masses, one being located within the domain and one at the boundary, we conjecture
that (1.3) allows for a Kantorovich formulation with cost

c(x, y) =

{
1
2 |x− y|

2 x, y ∈ Ω or x, y ∈ ∂Ω,
1
2 |x− y|

2 + κ
√
|x− y|2 + κ2 + κ2 x ∈ Ω, y ∈ ∂Ω or x ∈ ∂Ω, y ∈ Ω.

(2.4)

Furthermore, one might ask if one starts with a standard optimal transport problem on domain Ω = I1 ∪ I2 and
let the size of I2 go to zero, is there an appropriate rescaling of the cost so that we obtain (1.3) in the limit?
This could be examined either on the level of optimality conditions or in the respective static solutions where
the limit cost would then need to be (2.4).

3. Transport model and existence of minimisers

In this section, we show existence of minimisers of (2.3), based on a duality argument and by extending the
strategy of [20] to the network setting.

3.1. Continuity equations and action functional

We introduce the notations

Q
Ej

:= [0, 1]× Ej , and QV i := [0, 1]× V i.

The precise notion of weak solution for the continuity equation (2.2) is given as follows.

Definition 3.1 (weak solution). Given (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ∈ M+(E)×M+(E)×M+(V)×M+(V), we denote by
CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) the set of measures (ρtρtρt,FtFtFt, γtγtγt, ftftft) which satisfy the continuity equation (2.2) in the following
weak sense

m∑
j=1

[ ∫∫
Q
Ej

(∂tϕt dρjt + ∂xϕt dF
j
t ) dt

]
−

n∑
i=1

ϕt(Vi)f
i
t

=

m∑
j=1

[ ∫
Ej
ϕ1 dρj1 −

∫
Ej
ϕ0 dρj0

] (3.1)
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for all test functions ϕt ∈ C1(ΩG × [0, 1]) and

n∑
i=1

[ ∫
[0,1]

∂tϕ
i
t γ

i
tdt
]

=

n∑
i=1

[ ∫
[0,1]

ϕit df
i
t

]
+

n∑
i=1

[
ϕi1γ

i
1 − ϕi0γi0

]
(3.2)

for all ϕi ∈ C1([0, 1]), i = 1, . . . , n denoting the test function corresponding to the vertex V i.

Remark 3.2. Note that as we are integrating over Ej , formally each continuity equation produces a boundary
term ϕt(ω(Ej))Fj · νω̄(j),j − ϕt(α(Ej))Fj · νᾱ(j),j . Summing over all equations this yields

m∑
j=1

(ϕt(ω(Ej))F
j
t (ω(Ej)) · νω̄(j),j + ϕt(α(Ej))F

j
t (α(Ej)) · νᾱ(j),j)

=

n∑
i=1

ϕt(Vi)
∑

j∈Z(Vi)

F jt (Vi) · νi,j =

n∑
i=1

ϕt(Vi)f
i
t ,

using the coupling of fluxes in (2.2) which is therefore incorporated in the weak formulation.

The continuity equation (2.2) can also be considered in the global sense, i.e. can be formulated as an equation
on the whole network. This results in:

Proposition 3.3. (global continuity equation) Let (ρtρtρt,FtFtFt, γtγtγt, ftftft) ∈ CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) and define by F̃ jt the trivial
extension of F jt on the whole network, i.e. F̃ jt = 0 on all other edges Ek with k 6= j, (the measures γ̃jt , f̃

i
t and

ρ̃jt are defined analogue). We define the following global variables

ςt =

m∑
j=1

ρ̃jt +

n∑
i=1

γ̃it , Ht =

m∑
j=1

F̃ jt and ht =

n∑
i=1

f̃ it .

Then, the existence of the global continuity equation{
∂tςt + ∂xHt = ht in ΩG × [0, 1],∑
j∈Z(V i) F

j
t · νi,j = f it in ΩV × [0, 1].

in the weak sense with initial (ρ0ρ0ρ0, γ0γ0γ0) and terminal data (ρ1ρ1ρ1, γ1γ1γ1) such that ς0, ς1 ∈ P(ΩG) for ς0, ς1 defined in
(2.1). This is a consequence of the existence of 3.1.

Proof. Choosing ϕit = ϕ|V i in (3.2) (where the pointwise restriction exists as ϕ ∈ C1(ΩG × [0, 1])) and summing
up (3.1) and (3.2), we recover the claimed weak formulation

∫∫
ΩG×[0,1]

∂tϕt d
( m∑
j=1

ρ̃jt +

n∑
i=1

γ̃it

)
+

∫∫
ΩG×[0,1]

∂xϕt d
( m∑
j=1

F̃ jt

)
−
∫∫
V×[0,1]

ϕt dht

=

∫∫
ΩG×[0,1]

ϕt d
( n∑
i=1

f̃ it

)
+

∫
G
ϕ1 d

( m∑
j=1

ρ̃j1 +

n∑
i=1

γ̃i1

)
−
∫
G
ϕ0 d

( m∑
j=1

ρ̃j0 +

n∑
i=1

γ̃i0

)

for all ϕt ∈ C1(ΩG × [0, 1]).

To rigorously define the minimisation of the action functional, we need the following definition.
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Definition 3.4 (generalised Lagrangian). For (a, b) ∈ R+ × R we define the action density

A(a, b) =


|b|2
2a if a > 0,
0 if (a, b) = (0, 0),

+∞ otherwise.

For aaa ∈ Rn, bbb ∈ Rn and ηηη = (ηηη1, . . . , ηηηn) ∈ R|Z(V 1)| × · · · × R|Z(V n)| with ηηηi = (ηi,j)j∈Z(V i), we also introduce
the extended action density as

Ā(aaa,bbb;ηηη) =

n∑
i=1

(
κ2A(ai, bi) +

{
0 if ai +

∑
k∈Z(V i) η

i,k = 0,

+∞ otherwise.

)
(3.3)

Let us remark that A(a, b) is convex in both variables, lower semi-continuous and 1-homogeneous. This allows
us to give a rigorous definition of the action functional.

Definition 3.5 (action functional). For µtµtµt = (ρtρtρt,FtFtFt;γtγtγt, ftftft), we define the action functional as

A(µtµtµt) :=

m∑
j=1

∫∫
Q
Ej

A
(dρjt

dθj
,

dF jt
dθj

)
dθj + κ2

n∑
i=1

∫ 1

0

A(γit , f
i
t ) dt, (3.4)

where θj are non-negative Borel reference measures such that |ρjt | � θj , |F jt | � θj . Since A is jointly
1-homogeneous, this definition does not depend on the choice of θj .

Note that this action functional is lower semi-continuous, see [4], Theorem 3.3. We now define the bounded
Lipschitz-distance between two measures ρj0, ρ

j
1 ∈ M+(Ej) on an edge and, respectively, for two measures

γi0, γ
i
1 ∈M+(V i) on a vertex, as

dBL,E(ρ
j
0, ρ

j
1) = sup

{∣∣∣ ∫
Ej

Φd(ρj1 − ρ
j
0)
∣∣∣ s.t. ‖Φ‖∞ + Lip(Φ) ≤ 1

}
,

dBL,V(γi0, γ
i
1) = |γi0 − γi1|,

where Φ: Ej → R is a Lipschitz-continuous function with Lip(Φ) denoting its Lipschitz-constant (again, by
abuse of notion we denote by γit a measure as well as the corresponding constant). It is well known that
the bounded Lipschitz-distance metrises the narrow convergence of probability measures. Let us continue by
summarising some properties of solutions to the continuity equation.

Proposition 3.6 (properties of solutions of continuity equations). Any admissible quadruple (ρtρtρt,FtFtFt;γtγtγt, ftftft) ∈
CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) can be disintegrated in time as

dρjt (x, t) = dρjt (x)dt

for all j ∈ {1, . . . ,m}. If the action functional A(ρtρtρt,FtFtFt, γtγtγt, ftftft) <∞ is finite, then we obtain the following:

(i) For every t, the measures ρjt , γ
i
t are non-negative for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Moreover, the total

mass ςt defined in (2.1) is conserved, i.e.

‖ςt‖ =

m∑
j=1

‖ρjt‖+

n∑
i=1

γit = 1, for almost every t ∈ [0, 1].
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(ii) For every j ∈ {1, . . . ,m} the Radon–Nikodym densities

ujt (x) :=
dF jt

dρjt
,

are well-defined dρjt almost everywhere and we obtain an alternative formulation of A(µtµtµt) as

A(ρtρtρt,FtFtFt;γtγtγt, ftftft) =
1

2

m∑
j=1

∫∫
Q
Ej

|ujt |2dρjt dt+
1

2

n∑
i=1

∫ 1

0

κ2 |f it |2

γit
dt

=
1

2

m∑
j=1

∫∫
Q
Ej

|ujt |2dρ
j
tdt+

1

2

n∑
i=1

∫ 1

0

κ2 |f it |2

γit
dt .

(iii) The curves t 7→ ρjt ∈ M(Ej) and t 7→ γit ∈ M(V i) are narrowly continuous for all i ∈ {1, . . . , n}, j ∈
{1, . . . ,m} and satisfy the bounded-Lipschitz estimate

m∑
j=1

d
BL,Ej

(ρjs, ρ
j
t ) +

n∑
i=1

dBL,V i(γ
i
s, γ

i
t) ≤ Cκ

√
A((ρtρtρt,FtFtFt;γtγtγt, ftftft))|t− s|

1
2 (3.5)

for every time s, t ∈ [0, 1] and the constant Cκ = 2
√

2(n+m) max{1, 1
κ}. In particular the initial/terminal

conditions are taken in the narrow sense, i.e.

lim
t→0

∫
Ej
φ(x) dρjt (x) =

∫
Ej
φ(x) dρj0(x), lim

t→1

∫
Ej
φ(x) dρjt (x) =

∫
Ej
φ(x) dρj1(x),

for all φ ∈ C0(Ej).

Proof. For (i) and (ii) we refer to Proposition 3.5 in [20]. For (iii) note that the bounded Lipschitz-distance
metrises the narrow convergence of measures, thus it suffices to establish equation (3.5). We only sketch the
proof for t 7→ ρjt , as the argument is similar for the curve t 7→ γit . For fixed Φ ∈ C1(G) we will estimate from
below the time derivatives of

ljt :=

∫
Ej

Φ(x) dρjt (x).

Using the weak form of the continuity equations and arguing as in Proposition 3.5 of [20] we obtain

m∑
j=1

∣∣∣dljt
dt

∣∣∣ ≤ ‖∂xΦ‖∞
m∑
j=1

∫
Ej
|ujt | dρ

j
t + ‖Φ‖∞

n∑
i=1

|f it | .

Next, we use the facts that

� ‖ujt‖L1(Ej ;dρ
j
t)
≤ ‖ujt‖L2(Ej ;dρ

j
t)

as well as ‖ρjt‖ ≤ 1 and γit ≤ 1 (using (i)),

�

n∑
i=1

√
ai ≤

√
n
( n∑
i=1

ai

) 1
2

for all ai ≥ 0, by Hölder’s inequality,
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to calculate

m∑
j=1

∣∣∣dljt
dt

∣∣∣ ≤ (‖∂xΦ‖∞ + ‖Φ‖∞
)( m∑

j=1

∫
Ej
|ujt | dρ

j
t +

n∑
i=1

|f it |
)

≤
√

2(n+m)
(
‖∂xΦ‖∞ + ‖Φ‖∞

)( m∑
j=1

∫
Ej
|ujt |2 dρ

j
t +

n∑
i=1

|f it |2
) 1

2

.

(3.6)

As ∫ 1

0

( m∑
j=1

∫
Ej
|ujt |2 dρ

j
t +

n∑
i=1

|f it |2
)

dt ≤ 2 max
{

1,
1

κ2

}
A(µtµtµt) <∞,

the expression on the right hand side of (3.6) is an element of L2(0, 1) and thus l is absolutely continuous. We
obtain

m∑
j=1

∣∣∣ ∫
Ej

Φ d(ρjt − ρjs)
∣∣∣ =

m∑
j=1

|ljt − ljs| ≤
m∑
j=1

∫ t

s

∣∣∣dljτ
dτ

∣∣∣ dτ ≤
m∑
j=1

∥∥∥dljt
dτ

∥∥∥
L2(0,1)

|t− s| 12

≤
√

2(n+m)
(
‖∂xΦ‖∞ + ‖Φ‖∞

)( m∑
j=1

∫∫
[0,1]×Ej

|ujt |2 dρ
j
tdt+

n∑
i=1

∫ 1

0

|f it |2 dt
) 1

2 |t− s| 12

≤ 2
√
n+m

(
‖∂xΦ‖∞ + ‖Φ‖∞

)( m∑
j=1

∫∫
[0,1]×Ej

|ujt |2

2
dρjtdt

+
1

κ2

n∑
i=1

∫ 1

0

κ2 |f it |2

2γi
dt
) 1

2 |t− s| 12

≤ 2
√
n+m

(
‖∂xΦ‖∞ + ‖Φ‖∞

)
max

{
1,

1

κ

}√
A(µtµtµt)|t− s|

1
2 .

Taking the supremum over all Φ with ‖Φ‖∞ + Lip(Φ) ≤ 1, we recover the desired estimate for the bounded
Lipschitz distance. Analogously we obtain the same inequality for γit , and thus the constant in the proposition
is given by

Cκ = 4
√
n+mmax

{
1,

1

κ

}
.

3.2. Duality and Existence

Definition 3.7. For any admissible network concentration (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) and µtµtµt ∈ CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1), we define
the quantity

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) := inf

µtµtµt∈CE(ρ0ρ0ρ0,ρ1ρ1ρ1,γ0γ0γ0,γ1γ1γ1)
A(ρtρtρt,FtFtFt;γtγtγt, ftftft). (3.7)

It will turn out in Proposition 3.13 that this quantity is even a distance but first of all we have to show that
it is always well-defined.
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Lemma 3.8. For every (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ∈ M+(E) ×M+(E) ×M+(V) ×M+(V) such that ς0, ς1 ∈ P(ΩG), the
quantity W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) is finite.

Proof. Let V k ∈ V be an arbitrary vertex. We will show that any element (ρ0, γ0ρ0, γ0ρ0, γ0) can be connected to (000, δV kδV kδV k)
with finite cost, where δV kδV kδV k = (0, . . . , δV k , . . . , 0) ∈ Rn denotes the concentration on the vertices with δ being the
Dirac-measure. By symmetry (000, δV kδV kδV k) can also be connected to any other (ρ1ρ1ρ1, γ1γ1γ1), thus connecting ρ0ρ0ρ0 with ρ1ρ1ρ1

with finite cost. As proven in Lemma 3.7 of [20], it is enough to show that this can be done in a finite number of
elementary steps with finite cost combined with a time re-scaling argument. As we assumed that our network is
finite and connected, the assertion follows from finitely many consecutive applications of Lemma 3.7 in [20].

Closely following to [9], we now proof existence of minimisers of (3.7) using a duality argument and the
Fenchel–Rockafellar theorem, see [26] or Theorem 31.1 in [27].

Theorem 3.9 (Fenchel–Rockafellar theorem). Let X1, X2 be normed vector spaces with topological duals X∗1 , X
∗
2

and L : X1 → X2 be a bounded linear operator with adjoint L∗ : X∗2 → X∗1 . Furthermore, let F : X1 → R∪{−∞}
and G : X2 → R ∪ {−∞} be two proper, concave functions. If there exists x ∈ X1 such that F(x) is finite and G
is continuous at y = Lx, then

sup
x∈X1

{F(x) + G(Lx)} = min
y∗∈X∗2

{−F∗(L∗y∗)− G∗(y∗)},

where F∗ denotes the Fenchel–Legendre conjugate of F , respectively G. Moreover, if there exists y∗ ∈ X∗2 , x ∈ X1

such that L∗y∗ ∈ ∂(−F)(x) and Lx ∈ ∂(−G∗)(y∗) then x achieves the sup and y∗ is a minimizer.

Next, we define two subsolution sets, one corresponding to the edges and one to the vertices,

SE :=
{

(α, β) ∈ R× R : α+
|β|2

2
≤ 0
}
,

SκV i :=
{

(a, b, ccc) ∈ R× R× R|Z(V i)| : a+
|b− 1

|Z(V i)|
∑
j∈Z(V i) cj |2

2κ2
≤ 0
} (3.8)

and the convex indicator functions of these sets

ιSE (α, β) :=

{
0 if (α, β) ∈ SE ,
+∞ otherwise,

and ιSκ
V i

(a, b, ccc) :=

{
0 if (a, b, ccc) ∈ SκV i ,
+∞ otherwise.

For given i, j, the variables α, β will be dual multipliers to ρjt , F
j
t and a will be dual to γit . The variable b will

be dual to f it and ccc will be dual to
∑
j∈Z(V i) F

j
t · νi,j . Their sum b −

∑
c translates to the fact that no mass

gets lost at a vertex. In the following we will take (α, β) = (∂tφ
j
t , ∂xφ

i
t) and (a, b, c) = (∂tψ

i
t, ψ, φ|V) for suitable

test functions φjt ∈ C1, ψit ∈ C1. Then, (∂tφ
j
t , ∂xφ

i
t) ∈ SE and ∂tψ

i
t, ψ, φ|V ∈ SκV i mean that φjt , ψ

i
t are (smooth)

sub-solutions of the Hamilton–Jacobi system

∂tφ
j
t +

1

2
|∂xφjt |2 ≤ 0 and ∂tψ

i
t +

1

2κ2

∣∣∣ψit − 1

|Z(V i)|
∑

j∈Z(V i)

φjt

∣∣∣2 ≤ 0, (3.9)

(see Appendix A for the derivation of the Hamilton–Jacobi equations by formal Lagrangian calculus). As in
Monsaingeon [20], this system of coupled Hamilton–Jacobi equations is invariant under the addition of a common
constant to ψit and φjt , j ∈ Z(V i). Consequently, the convex closed set SκV i is thus invariant under diagonal
shifts b+ k,ccc+ k, for every constant k ∈ R.
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Lemma 3.10. For (ρjt , F
j
t ) ∈ R+ × R, (γit , f it , ηitηitηit) ∈ R+ × R× R|Z(V i)| the convex conjugates ι∗SE and ι∗Sκ

V i
can

be identified with the generalised Lagrangians, i.e.

ι∗SE (ρjt , F
j
t ) = A(ρjt , F

j
t ) =


|F jt |

2

2ρjt
if ρjt > 0,

0 if (ρjt , F
j
t ) = (0, 0),

+∞ otherwise.

ι∗Sκ
V i

(γit , f
i
t , η

i
tη
i
tη
i
t) =


κ2 |fit |

2

2γit
if γit > 0 and f it +

∑
k∈Z(V i) η

i,k
t = 0,

0 if (γit , f
i
t +

∑
k∈Z(V i) η

i,k
t ) = (0, 0),

+∞ otherwise.

(3.10)

where ηi,1tη
i,1
tη
i,1
t = ηi,1t , . . . , η

i,Z(V i)
t denotes the vector of neighbouring edges originating or ending at the vertex V i. The

conditions f it +
∑
k∈Z(V i) η

i,k
t = 0 reflects by duality the invariance of SκV i under diagonal shifts b+ kC,ccc+ kC

discussed in the previous paragraph. An alternative version of (3.10) in terms of the extended action is given by

n∑
i=1

ι∗SV i (γ
i
t , f

i
t , η

i
tη
i
tη
i
t) =

n∑
i=1

κ2A(γit , f
i
t ) +

{
0 if f it +

∑
k∈Z(V i) η

i,k
t = 0,

+∞ otherwise.
= Ā(γtγtγt, ftftft, ηtηtηt). (3.11)

The proof of this lemma uses calculations similar to those in Lemma 5.17 of [23]. In particular note that the

normalisation factor 1
|Z(V i)| that appears in the definition of SκV i yields the constraint f it +

∑
k∈Z(V i) η

i,k
t = 0.

As a next step we will define the concept of recession functions that will be needed in the following duality
theorem:

Definition 3.11 (recession function [22], Chap. 4). Let T be an arbitrary set. A function f∞ on [0, T ]×Rn is
called recession-function of a function f∗ : [0, T ]× Rn → R1 ∪ {+∞}, if

f∞(t, w) = lim
ε→+∞

[f∗(t, x∗ + εw)− f∗(t, x∗)]/ε

whenever x∗ ∈ Rn satisfies f∗(t, x∗) <∞.

Note that we wrote f∗ to emphasise that this function will be a convex conjugate of a function f in the
following. The fact that convex-conjugates f∗(t, ·) are lower semi-continuous, convex and not identically to +∞,
implies that f∞(t, ·) is a well-defined, lower continuous, positively homogeneous, convex function from Rn to
R ∪ {+∞}, vanishing at 0, see Section 8 in [27].

To improve the readability of the following duality theorem, we define the space

C :=
[
C1(Q

E
1)× . . .× C1(QEm)

]
×
[
C1(QV 1)× . . .× C1(QV n)

]
(3.12)

and for φjt ∈ C1(Q
Ej

), ψit ∈ C1(QV i), φtφtφt = (φ1
t , . . . , φ

m
t ),ψtψtψt = (ψ1

t , . . . , ψ
n
t ) we define the primal functional

J κ(φtφtφt,ψtψtψt) :=

m∑
j=1

∫
Ej

(
φj1dρ

j
1 − φ

j
0 dρ

j
0

)
+

n∑
i=1

(ψi1γ
i
1 − ψi0γi0)

+

m∑
j=1

∫∫
Q
Ej

ιSĒj (∂tφ
j
t , ∂xφ

j
t ) dxdt−

n∑
i=1

∫ 1

0

ιSκ
V i

(∂tψ
i
t, ψ

i
t, φt|V i) dt.

These definitions enable us to prove the duality theorem:
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Theorem 3.12 (Duality theorem). Given admissible (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) we have the duality

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) = sup

C
J κ(φtφtφt,ψtψtψt) (3.13)

where inf = min is attained in (3.7).

Proof. With ∂tψtψtψt = (∂tψ
1
t , . . . , ∂tψ

n
t ) etc., we start by defining the unfolding operator

L : C → Range(L)

(φtφtφt,ψtψtψt) 7→
(
∂tφtφtφt, ∂xφtφtφt; ∂tψtψtψt,ψtψtψt, (φtφtφt

1, . . . ,φtφtφt
n)
)
.

with

φtφtφt
i =

(
φjt

∣∣∣
V i

)
j∈Z(V i)

. (3.14)

As pointwise restriction and differentiation are continuous operations, the unfolding operator is continuous for
the natural topology on C and

Range(L) =
[
C(Q

E
1)× . . .× C(QEm)

]2
×
[
C(QV 1)× . . .× C(QV n)

]
×
[
C1(QV 1)× . . .× C1(QV n)

]
×
[
[C1(QV 1)]|Z(V 1)| × . . .× [C1(QV n)]|Z(V n)|

]
.

With these definitions, we can express the primal problem as

sup
(φtφtφt,ψtψtψt)∈C

{
F(φtφtφt,ψtψtψt) + G(L(φtφtφt,ψtψtψt))

}
with

F(φtφtφt,ψtψtψt) =

m∑
j=1

∫
Ej

(
φj1 dρ

j
1 − φ

j
0 dρ

j
0

)
+

n∑
i=1

(
ψi1γ

i
1 − ψi0γi0

)
and

G(L(φtφtφt,ψtψtψt)) = −
m∑
j=1

∫∫
Q
Ej

ιSĒj (∂tφ
j
t , ∂xφ

j
t ) dxdt−

n∑
i=1

∫ 1

0

ιSκ
V i

(∂tψ
i
t, ψ

i
t, φt|V i) dt.

Note that F(φtφtφt,ψtψtψt), defined on the product space C, is a sum of functions that are linear continuous with respect
to their corresponding variables. Moreover, each ιSĒj is convex, proper and l.s.c., so both F and G are concave,
proper and upper semi-continuous functionals on C. To apply the Fenchel–Rockafellar theorem, we need a pair
(φtφtφt,ψtψtψt) such that G(L(φtφtφt,ψtψtψt)) is continuous at L(φtφtφt,ψtψtψt) and F(φtφtφt,ψtψtψt) is finite. An example for such a pair is
given by φtφtφt = −111t,ψtψtψt = −t, as

F(−111t,−t) =

m∑
j=1

∫
Ej
−dρj1 +

n∑
i=1

−γi1 <∞ and

G(L(−111t,−t)) = −
m∑
j=1

∫∫
Q
Ej

ιSĒj (−1, 0) dxdt−
n∑
i=1

∫ 1

0

ιSκ
V i

(
− 1,−t,−1t

)
dt = 0,
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where G is continuous at G(L(−111t,−t)) as G(L(−111t± ε,−t± ε)) = 0 for ε� 1. This pair is clearly a solution
of the Hamilton–Jacobi equations (3.9).

Thus, the Fenchel–Rockafellar theorem 3.9 guarantees that

sup
C
J κ(φtφtφt,ψtψtψt) = inf

µ̂tµ̂tµ̂t∈C∗

{
−F∗(−L∗µ̂tµ̂tµ̂t)− G∗(µ̂tµ̂tµ̂t)

}
, (3.15)

where −F∗ = (−F)∗,−G∗ = (−G)∗ are the Fenchel–Legendre (convex) conjugates of the convex functional
−F ,−G, respectively, and L∗ : (Range(L))∗ → C∗ is the adjoint operator of the unfolding operator L and the
target dual space identifies to

(Range(L))∗ =
[
M(Q

E
1)× . . .×M(QEm)

]2
×
[
M(QV 1)× . . .×M(QV n)

]3
with elements denoted by

µ̂tµ̂tµ̂t = (µ̂Etµ̂Etµ̂Et , µ̂Vtµ̂Vtµ̂Vt) = (ρtρtρt,FtFtFt;γtγtγt, ftftft, ηηη) ∈ (Range(L))∗. (3.16)

Similar to Theorem 2 in [20], one can show that

−F∗(−L∗µ̂tµ̂tµ̂t) = sup
φtφtφt,ψtψtψt∈C

{
F(φtφtφt,ψtψtψt)− 〈µ̂tµ̂tµ̂t, L(φtφtφt,ψtψtψt)〉(Range(L))∗,Range(L)

}
(3.17)

=

0 if

{∑m
j=1 ∂tρ

j
t + ∂xF

j
t = 0 in Ej with F jt · νi,j = −ηi,jt and ρj |t=0,1 = ρj0,1,∑n

i=1 ∂tγ
i
t = f it on V i with γi|t=0,1 = γi0,1,

+∞ otherwise,

(3.18)

where α(Ej) denotes the initial vertex of Ej , ω(Ej) its terminal vertex and the equations and initial-
terminal/boundary conditions should be understood in the integral sense as in Definition 3.1. Moreover, for
a generic element ζtζtζt = (αtαtαt,βtβtβt;atatat, btbtbt, ctctct) ∈ Range(L), we compute

−G∗(µ̂tµ̂tµ̂t) = sup
ζtζtζt∈Range(L)

{
〈µ̂tµ̂tµ̂t, ζtζtζt〉(Range(L))∗,Range(L) + G(ζtζtζt)

}
= sup

(αtαtαt,βtβtβt)

{
m∑
j=1

∫∫
Q
Ej

αjt dρ
j
t +

m∑
j=1

∫∫
Q
Ej

βjt · dF
j
t −

m∑
j=1

∫∫
Q
Ej

ιSĒj (αjt , β
j
t ) dxdt

}

+ sup
(atatat,btbtbt,ctctct)

{
n∑
i=1

∫ 1

0

aitγ
i
t dt+

n∑
i=1

∫ 1

0

bitf
i
t dt+

n∑
i=1

∫ 1

0

cccit · ηηηit dt−
n∑
i=1

∫ 1

0

ιSκ
V i

(ait, b
i
t, ccc

i
t) dt

}
,

where cccit are defined as cccit in (3.14), we used that (αtαtαt,βtβtβt) and (atatat, btbtbt, ctctct) are uncoupled. Moreover, as each
summand is uncoupled to the other others, we obtain

=

m∑
j=1

sup
(αjt ,β

j
t )

{∫∫
Q
Ej

αjt dρ
j
t +

∫∫
Q
Ej

βjt · dF
j
t −

∫∫
Q
Ej

ιSĒj (αjt , β
j
t ) dxdt

}

+

n∑
i=1

sup
(ait,b

i
t,ccc
i
t)

{∫ 1

0

aitγ
i
t dt+

∫ 1

0

bitf
i
t dt+

∫ 1

0

cccit · ηηηit dt−
∫ 1

0

ιSκ
V i

(ait, b
i
t, ccc

i
t) dt

}
.
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Applying Theorem 5 in [22] allows us to interpret the previous equation as a sum of two convex conjugates and
switch the operations of convex conjugation with the integration. Next, exploiting lemma 3.10 we obtain

−G∗(µ̂tµ̂tµ̂t) =

(
m∑
j=1

∫∫
Q
Ej

A
(dµ̂Ej

dLjE

)
dLEj +

m∑
j=1

∫∫
Q
Ej

A∞
(dµ̂Ej

dµ̂SEj

)
dµ̂SEj

)
+

∫
[0,1]

A(µ̂Vtµ̂Vtµ̂Vt) dt.

Here, LEj denotes the space-time Lebesgue measure on Ej for a given edge. The measures µ̂SEj , µ̂
S
V i are any

non-negative measures dominating the singular parts of |µ̂Ej |, |µ̂V i | and A∞ denotes the recession function of
A. Since A is 1-homogeneous, its recession function is A∞ = A, see definition 3.11 and [27], Corollary 8.5.2.
Then, we can write

−G∗(µ̂tµ̂tµ̂t) =

m∑
j=1

∫∫
Q
Ej

A
(dµ̂Ej

dλEj

)
dλEj +

∫
[0,1]

Ā(µ̂Vtµ̂Vtµ̂Vt)dt

for any dominating measure λEj � |µ̂Ej |. Now we introduce a different segmentation for µ̂tµ̂tµ̂t and replace the
notation given in (3.16) by

µ̂tµ̂tµ̂t = (µEtµEtµEt ,µVtµVtµVt , ηtηtηt) := (ρtρtρt,FtFtFt;γtγtγt, ftftft;ηtηtηt)

in order to relate −G∗(µ̂tµ̂tµ̂t) to the action functional (3.4). With this choice (and by (3.11)) we obtain

−G∗(µ̂tµ̂tµ̂t) =

m∑
j=1

∫∫
Q
Ej

A
(dµEj

dλEj

)
dλEj +

n∑
i=1

∫
[0,1]

A(µV i) dt+

n∑
i=1

{
0 if f it +

∑
k∈Z(V i) η

i,k
t = 0

+∞ otherwise

= A(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) +

n∑
i=1

{
0 if f it +

∑
k∈Z(V i) η

i,k
t = 0

+∞ otherwise .

(3.19)

Combining (3.15), (3.17) and (3.19) yields the correct flux conditions
∑
j∈Z(V i) F

j
t · νi,j = f it (since F jt · νi,j =

−ηi,jt from −F∗(−L∗µ̂tµ̂tµ̂t) < +∞ and f it +
∑
j∈Z(V i) η

i,j
t = 0 from −G∗(µ̂tµ̂tµ̂t) < +∞), we end up with the claimed

duality

sup
C
J κ(φtφtφt,ψtψtψt) = inf

µtµtµt∈CE(ρ0ρ0ρ0,ρ1ρ1ρ1,γ0γ0γ0,γ1γ1γ1)
A
(
µtµtµt) =W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1).

This completes the proof as W2
κ is finite as shown in Lemma 3.8 and the Fenchel–Rockafellar theorem assures

that the supremum in (3.13) is attained.

As expected the functional W2
κ forms a metric. Using Theorem 3.12 and Prop. 3.6 (iii), the proof of the

following proposition is analogue to Proposition 3.10 in [20].

Proposition 3.13 ([20], Prop. 3.10). The quantity W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1), defined in 3.7, is a distance on P(G), i.e.

the set of probability measures on the network G.

4. Limiting cases and relationship to other metrics

In this section we want to explore the influence of κ on the transport problem putting special emphasis on
the limiting case κ→∞. This case translates to fact that the costs for transporting mass over the vertices goes
to infinity.
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The first step is to analyse the relationship between our metric W2
κ and some other metrics on the graph.

There are several special metrics we can consider, e.g. separate metrics on edges and nodes. Above we have
already introduced the bounded Lipschitz distances on edges and nodes. The simplest case related to our metric
is the Fisher–Rao metric FRκ on nodes, i.e.,

FR2
κ(γ0, γ1γ0, γ1γ0, γ1) := minAFR = min

{
n∑
i=1

∫ 1

0

κ2 |f it |2

2γit
dt s.t. ∂tγ

i
t = f it in V i

}
.

Existence of minimisers for the Fisher–Rao distance is given in Theorem 3.1 of [8] which allows us to write ‘min’
instead of ‘inf’.

If the masses in the edges are compatible, i.e. ‖ρj0‖ = ‖ρj1‖, for j = 1, . . . ,m, we can also consider the the
classical Wasserstein distance on each edge W2

Ej as the problem completely decouples to

m∑
j=1

W2
Ej (ρ

j
0, ρ

j
1) =

m∑
j=1

min

{∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt s.t.

∂tρ
j
t + ∂xF

j
t = 0 in Ej ,

F jt · νi,j = 0 in ∂Ej

}
. (4.1)

In the case of incompatible masses on individual edges, but compatible overall edge mass, i.e.∑
j

‖ρj0‖ =
∑
j

‖ρj1‖

we can introduce a Wasserstein metric on the edges only which, at the nodes, are connected via Kirchhoff’s law,
i.e.

W2
E(ρ0, ρ1ρ0, ρ1ρ0, ρ1) = min

{
m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt s.t.

∂tρ
j
t + ∂xF

j
t = 0 in Ej ,∑

j∈Z(V i) F
j
t · νi,j = 0 in ∂Ej ,

}

The existence of a minimizer can be shown analogous to the original Wasserstein metric, since Kirchhoff’s
law directly allows a weak formulation of the constraint equation on the whole network of edges. Note that for
comparison the original distance with κ = 0,

W2
0 (ς0, ς1) := min

{∫∫
G×[0,1]

|H|2

2ς
dxdt s.t.

∂tς + ∂xH = h in ΩG × [0, 1],∑
j∈Z(V i) F

j
t · νi,j = f it in ΩV × [0, 1].

}
,

with ς0, ς1 defined in (2.1) and H,h as in Proposition 3.3.

Proposition 4.1 (Sandwich theorem adapted to Proposition 5.1 in [20]). For any admissible initial and terminal
network concentrations (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1), it holds that

(i) FR2
κ(γ0, γ1γ0, γ1γ0, γ1) ≤ W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ,

(ii)

m∑
j=1

d
BL,Ej

(ρjs, ρ
j
t ) +

n∑
i=1

dBL,V i(γ
i
s, γ

i
t) ≤ CκWκ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) and

if the node masses are compatible, i.e. γ0γ0γ0 = γ1γ1γ1,

(iii) W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≤ W2

E(ρ0, ρ1ρ0, ρ1ρ0, ρ1) .
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Proof. (i) As proven in Theorem 3.12, we know that W2
κ geodesics exist and we pick any geodesic µ̂tµ̂tµ̂t =

(µ̂Eµ̂Eµ̂E , µ̂Vµ̂Vµ̂V ) = (ρtρtρt,FtFtFt;γtγtγt, ftftft, ηηη) connecting ρ0ρ0ρ0 and ρ1ρ1ρ1 and by definition A(µ̂tµ̂tµ̂t) =W2
κ holds. For i ∈ {1, . . . , n}

each component µV i of the vector µ̂Vµ̂Vµ̂V solves the continuity equations ∂tγ
i
t = f it , thus connecting γi0 and

γi1 on V i, and is therefore admissible for the action AFR of the Fisher–Rao metric. Thus

FR2
κ(γ0, γ1γ0, γ1γ0, γ1) = min

µ̂Vµ̂Vµ̂V ′
AFR(µ̂Vµ̂Vµ̂V

′) ≤ AFR(µ̂Vµ̂Vµ̂V ) ≤ A(µ̂tµ̂tµ̂t) =W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ,

which shows the assertion.
(ii) Applying Theorem 3.12, we choose a geodesic µtµtµt ∈ CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1). By Proposition 3.6 (iii) we obtain

m∑
j=1

d
BL,Ej

(ρjs, ρ
j
t ) +

n∑
i=1

dBL,V i(γ
i
s, γ

i
t) ≤ Cκ

√
A(µtµtµt)|t− s|

1
2 = CκWκ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)|t− s| 12 .

(iii) Pick an interior Wasserstein geodesic (ρtρtρt,FtFtFt) and the trivial boundary geodesic (γ0γ0γ0,000). Together these
geodesics form a solution of the generalised continuity equation in the sense of Definition 3.1. Consequently,
µtµtµt := (ρtρtρt,FtFtFt, γtγtγt,000) forms an admissible candidate in 3.7 and we obtain

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≤ A(µtµtµt) =W2

E(ρ0, ρ1ρ0, ρ1ρ0, ρ1) .

We can also show that, unless the initial and final mass on the vertices is zero, every geodesic is such that for
every edge with unequal initial and final mass, the mass of at least one of the attached vertices must change.

Proposition 4.2. For any admissible initial and terminal network concentrations (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) such that
γ0γ0γ0 = γ1γ1γ1 6= 0. Then for every edge j with ρj0 6= ρj1 either f ᾱ(j) or f ω̄(j) must be nonzero.

Proof. We argue by contradiction and use that the dual potentials (φtφtφt,ψtψtψt) are (smooth) subsolutions of the
Hamilton–Jacobi equations (3.9) and satisfy the relations

F jt

ρjt
= ∂xφ

j
t and κ2 f

i
t

γit
= ψit −

1

|Z(Vi)|
∑

j∈Z(Vi)

φjt ,

for i = 1, . . . , n. Fix and edge j∗ ∈ {1, . . . ,m} with ρj0 6= ρj1 and assume f
ᾱ(j∗)
t = 0 as well as f

ω̄(j∗)
t = 0 for a.e.

t ∈ (0, 1). This implies, for i∗ ∈ {ᾱ(j∗), ω̄(j∗)}, that γi
∗

t = C with C > 0 due to γi
∗

0 = γi
∗

1 6= 0. Together with

0 = κ2f i
∗

t = γi
∗

t

ψi∗t − 1

|Z(Vi∗)|
∑

j∈Z(Vi∗ )

φjt

 , (4.2)

this yields ψi
∗

t − 1
|Z(Vi∗ )|

∑
j∈Z(Vi∗ ) φ

j
t = 0. Inserting this into (3.9) yields ∂tψ

i∗

t = 0 and, differentiating (4.2) in

time, we obtain

0 = ∂t
∑

j∈Z(Vi∗ )

φjt =
1

2

∑
j∈Z(Vi∗ )

|∂xφjt |2.

Therefore the fluxes F jt vanish for all edges j connected to either one of the two vertices ᾱ(j∗) and ω̄(j∗).

In particular F j
∗

t · νi∗,j∗ = 0 for i∗ ∈ {ᾱ(j∗), ω̄(j∗)} meaning that on j∗, the continuity equation has no-flux

boundary conditions. This is a contradiction to ρj
∗

0 6= ρj
∗

1 .
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Proposition 4.3 (adapted to [20], Prop. 6.1). For fixed (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) the map κ 7→ W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) is non-

decreasing.

Proof. Note that the set of smooth subsolutions

Sκ :=

{
(φtφtφt,ψtψtψt) ∈ C :

m∑
j=1

∂tφ
j
t +

1

2
|∂xφjt |2 ≤ 0 and

n∑
i=1

∂tψ
i
t +

1

2κ2

∣∣∣ψit − 1

|Z(V i)|
∑

j∈Z(V i)

φjt

∣∣∣2 ≤ 0

}

is non-decreasing in κ. The monotonicity immediately follows from the duality in Theorem 3.12, i.e.

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) = sup

(φtφtφt,ψtψtψt)∈Sκ

{ m∑
j=1

∫
Ej

(
φj1 dρ

j
1 − φ

j
0 dρ

j
0

)
+

n∑
i=1

ψi1γ
i
1 − ψi0γi0

}
.

Now, let us finally discuss the limit case κ→∞. In this case, transporting mass over the vertices becomes more
and more costly and, intuitively, we expect that in the limit transporting mass over the vertices is prohibited.

In more detail, we recover two interesting scenarios depending on the initial concentration and the terminal
concentration on the network. The first scenario is the case where the masses are incompatible, i.e. ‖ρj0‖ 6= ‖ρ

j
1‖

for one 1 ≤ j ≤ m or γi0γ
i
0γ
i
0 6= γi1γ

i
1γ
i
1 for a given 1 ≤ i ≤ n. More precisely, this means that there exists at least one

edge or one vertex where the corresponding initial mass is different than the terminal one. As mass cannot be
transported over the vertices, we expect that the distance functional W2

κ goes to infinity in this case. In the
second scenario the masses are compatible. As we shall see, the distance functional will converge to a sum of
classical Wasserstein metrics on each edge. In order to proof this assumption, we will need a lemma for each
scenario. We start with the lemma for the incompatible scenario:

Lemma 4.4 (adapted to [20], Prop. 6.2). For any initial and terminal network concentrations (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)
and any geodesic (ρtρtρt,FtFtFt;γtγtγt, ftftft), there holds

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≥ κ2

2

n∑
i=1

‖f it‖2 ≥
κ2

2

n∑
i=1

∣∣∣γi1 − γi0∣∣∣2 .
Proof. Applying Theorem 3.12 allows us to choose a geodesic µ̂tµ̂tµ̂t = (ρtρtρt,FtFtFt;γtγtγt, ftftft, ηtηtηt) from ρ0ρ0ρ0 to ρ1ρ1ρ1 and by
definition we obtain

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) = A(µtµtµt) ≥

κ2

2

n∑
i=1

∫ 1

0

|f it |2

γit
dt ≥ κ2

2

n∑
i=1

(∫ 1

0

f it dt
)2

=
κ2

2

n∑
i=1

‖f it‖2 .

where we used Proposition 3.6 (ii), i.e. γit ≤ ‖ς‖ = 1, as ς is a probability measure, and Jensen’s inequality. The
continuity equation ∂tγ

i
t = f it finally controls the mass difference as (again using Jensen)

‖f it‖ ≥
∣∣∣ ∫ 1

0

1 df it

∣∣∣ Def. 3.1
=

∣∣∣γi1 − γi0∣∣∣ .

The following result helps to solve weighted optimisation problems and will be applied in the proof of the
next proposition in the case of compatible masses:
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Lemma 4.5 ([20], Lem. 6.3). Let K be a compact set, take f, g : K → R+ ∪ {+∞} two proper, lower semi-
continuous functions, and consider

hκ(x) := f(x) + κ2g(x), κ > 0.

Assume that for all κ there is a minimiser xκ ∈ K of hκ. Then as κ → +∞ any cluster point x∗ of {xκ}
minimises f in argmin g.

Proposition 4.6 (adapted to [20], Thm. 6). For fixed (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) we obtain

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) →

κ→ +∞

{
W2
E(ρ0ρ0ρ0, ρ1ρ1ρ1) if γ0γ0γ0 = γ1γ1γ1,

+∞ otherwise,
(4.3)

Let moreover µtµtµt
κ = (ρtρtρt

κ,FtFtFt
κ;γtγtγt

κ, ftftft
κ) be any W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)-geodesic. If the node masses are compatible, i.e.
γ0γ0γ0 = γ1γ1γ1, ‖ρj0‖ = ‖ρj1‖ for all j ∈ {1, . . . ,m} then up to a subsequence

(ρtρtρt
κ,FtFtFt

κ)→ (ρtρtρt,FtFtFt), and ‖fκt ‖ → 0

where (ρtρtρt,FtFtFt) is a W2
E -geodesic .

Proof. For incompatible node masses, i.e.γ0γ0γ0 6= γ1γ1γ1, we conclude from Lemma 4.4 that

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) →

κ→+∞
+∞ .

In the case of compatible node masses, we can apply Proposition 4.1 and Lemma 4.4 to control the boundary
flux term via

n∑
i=1

‖fκ‖2 ≤ 2

κ2
W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≤ 2

κ2
W2
E(ρ0ρ0ρ0, ρ1ρ1ρ1)→ 0.

To control the momentum FFFκ, we observe from Proposition 4.1 that any geodesic satisfies

1

2

m∑
j=1

∫∫
Ej×[0,1]

|F j,κt |2

ρj,κt
dxdt ≤ W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≤ W2
E(ρ0ρ0ρ0, ρ1ρ1ρ1) (4.4)

uniformly in κ > 0. With FtFtFt
κ = ututut

κρtρtρt
κ and using Jensen’s inequality

‖FtFtFtκ‖2 =

m∑
j=1

(∫∫
Ej×[0,1]

|uκt |dρκt
)2

≤
m∑
j=1

∫∫
Ej×[0,1]

|uκt |2 dρκt =

m∑
j=1

∫∫
Ej×[0,1]

|F j,κt |2

ρj,κt
dxdt .

Therefore FtFtFt
κ is bounded by ‖FtFtFtκ‖ ≤ W2

E(ρ0ρ0ρ0, ρ1ρ1ρ1) = C using (4.4), where C does not dependent on κ. Moreover
ρtρtρt
κ,ωtωtωt

κ ≤ 1, and the geodesic µtµtµt
κ is bounded.

Our aim now is to apply Lemma 4.5, so we need compactness which is guaranteed by Prokhorov’s Theorem: In
a Polish space, bounded measures are tight (G is a Polish space as a closed subset of the Polish space R2 ). Thus

we can apply Prokhorov’s theorem and we obtain the narrow compactness (ρtρtρt
κ
t ,FtFtFt

κ
t ;γtγtγt

κ
t , ftftft

κ
t )
∗
⇀ (ρtρtρt,FtFtFt;γtγtγt,000)

up to subsequences, and we only have to proof that the limit (ρtρtρt,FtFtFt) is a W2
E -geodesic.

We now use Lemma 4.5 and set K to be the set of all geodesics for all values of κ > 1, which is narrowly
compact by the previous discussion and because the linear continuity equations (3.1) and (3.2) are stable under
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narrow limits. The functions

f(c,ftftft) :=
1

2

m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

ρjt
dxdt and g(ρtρtρt,FtFtFt, γtγtγt, ftftft) :=

1

2

n∑
i=1

∫ 1

0

f it
2

γit
dt

are convex, proper, semi-continuous w.r.t. the narrow convergence of measures [4], Theorem 3.3, and geodesics

are minimisers of A = f + κ2g. The definition of
fit

2

γit
in the extended sense implies that the minimisers of g

are solutions of the continuity equations (3.1) and (3.2) of the form µtµtµt = (ρtρtρt,FtFtFt;γtγtγt,000) and assign the value∫∫ fit
2

γit
= 0 to g. This set of solutions of CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) with f it = 0 obviously identifies with the whole set of

pairs (ρtρtρt,FtFtFt) of independent solutions of ∂tρ
j
t + ∂xF

j
t for all j with Kirchhoff’s law

∂tγ
i
t =

∑
j∈Z(V i)

F jt · νi,j = 0

at the boundary. Consequently, the limit-geodesic (ρtρtρt,FtFtFt) is a geodesic for W2
E .

Finally, let us analyse the convergence in distance (4.3). Applying Proposition 4.1 (iii) and the lower semi-

continuity of the actions with (ρtρtρt
κ,FtFtFt

κ)
∗
⇀ (ρtρtρt,FtFtFt) gives that

lim sup
κ→+∞

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ≤ W2

E(ρ0ρ0ρ0, ρ1ρ1ρ1) =

m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt ≤ lim inf

κ→+∞

m∑
j=1

∫∫
Ej×[0,1]

|F j,κt |2

2ρj,κt
dxdt

≤ lim inf
κ→+∞

(∫∫
Ej×[0,1]

|F j,κt |2

2ρκt
dxdt+

∫ 1

0

κ2 |f
j,κ
t |2

2γκt
dt
)

= lim inf
κ→+∞

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1),

where we used that (ρtρtρt
κ,FtFtFt

κ;γtγtγt
κ, ftftft

κ) is a geodesic in the last equality. Thus, lim inf = lim sup = lim in the
previous chain of inequalities, which finishes the proof.

5. Gradient flows

Given the metric structure it appears natural to study corresponding gradient flows, which opens various
questions for future research beyond the scope of this paper. Here we will only provide a formal derivation of
the gradient flow equations for energy functionals of the form

E(ρρρ,γγγ) =

m∑
j=1

Gj(ρj) +

n∑
j=1

Hi(γi). (5.1)

The gradient flow structures can be derived in a standard way from a minimizing movement scheme, as in
[1, 24], which constructs a time-discrete sequence (ρρρτ,k, γγγτ,k), k ∈ N, whose iterates are obtained by minimizing
the functional

1

2τ
W2
κ(ρρρτ , ρρρτ,k−1, γγγτ , γγγτ,k−1) + E(ρρρτ , γγγτ )

with respect to (ρρρτ , γγγτ ) for a given pair (ρρρτ,k−1, γγγτ,k−1), By a formal limit procedure this yields that the gradient
flow satisfies the transport problem with fluxes

F jt = ρjt∂xφ
j
t
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f it = κ−2γit(ψ
i
t −

1

|Z(Vi)|
∑

j∈Z(Vi)

φjt )

and dual potentials

φjt = −G′j(ρ
j
t ), ψit = −H′i(γit).

This implies that the gradient flows are of the form

∂tρ
j
t = ∂x(ρjt∂xG′j(ρ

j
t ))

∂tγ
i
t = −κ−2γit(H′i(γit)−

1

|Z(Vi)|
∑

j∈Z(Vi)

G′j(ρ
j
t ))

with the Kirchhoff condition∑
j∈Z(Vi)

ρjt∂xG′j(ρ
j
t ) · νi,j = κ−2γit(H′i(γiT )− 1

|Z(Vi)|
∑

j∈Z(Vi)

G′j(ρ
j
t ))

and the continuity

G′j(ρ
j
t ) = G′k(ρkt ) ∀j, k ∈ Z(Vi).

A surprising effect of the coupling condition is the one-sided coupling of the variations of the edge energies,
whose trace appears in the vertex equations. On the other hand we have the standard form as in Wasserstein
gradient flows on the edges.

Example 5.1. Let us consider the standard case of a drift-diffusion equation on the edges, i.e.

Gj(ρj) =

∫
Ej

(ρj log ρj + ρjWj) dx

with some potential Wj , and some cost on the vertex concentrations Hi(γi) = hi(γ
i).

∂tρ
j
t = ∂xxρ

j
t + ∂x(ρjtW

′
j)

∂tγ
i
t = −κ−2γit(h

′
i(γ

i
t)−

1

|Z(Vi)|
∑

j∈Z(Vi)

(1 + log ρjt +Wj))

with the Kirchhoff condition∑
j∈Z(Vi)

(∂xρ
j
t + ρjtWj) · νi,j = κ−2γit(〈′i(γiT )− 1

|Z(Vi)|
∑

j∈Z(Vi)

(1 + log ρjt +Wj)).

The continuity condition in the vertices becomes log ρjt +Wj = log ρkt +Wk, which can be reformulated as the
linear transmission condition

ρjte
Wj = ρkt eWk ∀j, k ∈ Z(Vi).
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Appendix A. Formal derivation of the first order optimality
conditions

Based on the Lagrange calculus we present a formal derivation of the optimality conditions of (2.3) which
include the Hamilton–Jacobi equations already introduced in (3.9).

Using the notation φtφtφt = (φ1
t , . . . , φ

m
t ) as well as ψtψtψt = (ψ1

t , . . . , ψ
n
t ) and λtλtλt = (λ1

t , . . . , λ
n
t ), we introduce the

Lagrange functional

L
(
ρtρtρt, γtγtγt,FtFtFt, ftftft,φtφtφt,ψtψtψt,λtλtλt

)
=

m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt+ κ2

n∑
i=1

∫
[0,1]

|f it |2

2γit
dt+

m∑
j=1

∫∫
Ej×[0,1]

(∂tρ
j
t + ∂xF

j
t )φjt dxdt

+

n∑
i=1

∫ 1

0

(∂tγ
i
t − f it )ψit dt+

n∑
i=1

∫ 1

0

(f it −
∑

j∈Z(V i)

F jt (Vi)νi,j)λ
i
t dt

=

m∑
j=1

∫∫
Ej×[0,1]

|F jt |2

2ρjt
dxdt+ κ2

n∑
i=1

∫
[0,1]

|f it |2

2γit
dt+

m∑
j=1

∫∫
Ej×[0,1]

(−ρjt∂tφ
j
t − F

j
t ∂xφ

j
t ) dxdt

+

m∑
j=1

∫
Ej

(ρj1φ
j
t (x, 1)− ρj0φ

j
t (x, 0)) dx+

n∑
i=1

m∑
j∈Z(Vi)

∫ 1

0

F jt (Vi)νijφ
j
t dt

+

n∑
i=1

∫ 1

0

(−γit∂tψit − f itψit) dt+

n∑
i=1

(γi1ψ
i
t(1)− γi0ψit(0))

+

n∑
i=1

∫ 1

0

(f it −
∑

j∈Z(V i)

F jt (Vi)νi,j)λ
i
t dt.

Calculating the gradient of L into direction ϕϕϕ = [ϕρtϕρtϕρt ,ϕFtϕFtϕFt ,ϕftϕftϕft ,ϕγtϕγtϕγt ] yields

∇ρtρtρt,FtFtFt,ftftft,γtγtγtL[ϕϕϕ]

=

m∑
j=1

∫∫
Ej×[0,1]

(
− |F

j
t |2

2(ρjt )
2
− ∂tφjt

)
ϕρjt

dxdt+

m∑
j=0

∫
Ej

(ϕρjt
(x, 1)φjt (x, 1)− ϕρjt (x, 0)φjt (x, 0)) dx

+

m∑
j=1

∫∫
Ej×[0,1]

(F jt
ρjt
− ∂xφjt

)
ϕF jt

dxdt+

n∑
i=1

∑
j∈Z(Vi)

∫ 1

0

(φjt + λit)ϕF it νij dt

+

n∑
i=1

∫ 1

0

(
κ2 f

i
t

γit
− ψit + λit

)
ϕfit dt

+

n∑
i=1

∫ 1

0

(
− κ2 |f it |2

2(γit)
2
− ∂tψit

)
ϕγit dt+

n∑
i=1

(ϕγi1ψ
i
t(1)− ϕγi0ψ

i
t(0)) .

Choosing the direction ϕϕϕ = [000,ϕFtϕFtϕFt ,000,000] s.t. F it νij = 0 for all i ∈ {0, . . . , n}, j ∈ Z(Vi) as well as ϕϕϕ = [000,000,ϕftϕftϕft ,000]
and setting the respective derivative to zero we obtain

F jt

ρjt
− ∂xφjt = 0 and κ2 f

i
t

γit
= ψit − λit,
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for j = 1, . . .m and i = 1, . . . n. From ϕϕϕ = [000,ϕFtϕFtϕFt ,000,000] s.t. F it νij = 0 s.t. ϕF it νij = ϕF it νij′ for all j, j′ ∈ Z(Vi)
we have

λit = − 1

|Z(Vi)|
∑

j∈Z(Vi)

φjt , i = 1, . . . , n.

Finally, the choices ϕϕϕ = [ϕρtϕρtϕρt ,000,000,000], supported in the interior, as well as ϕϕϕ = [000,000,000,ϕγtϕγtϕγt ] result in the equations

∂tφ
j
t +

1

2
|∂xφjt |2 = 0, and ∂tψ

i
t +

1

2κ2

∣∣∣∣∣∣ψit − 1

|Z(Vi)|
∑

j∈Z(Vi)

φjt

∣∣∣∣∣∣
2

= 0.

This corresponds exactly to (3.9).
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[15] M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and
geodesic curves. SIAM J. Math. Anal. 48 (2016) 2869–2911.
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