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Abstract
Wediscuss the control of a human crowdwhose dynamics is governed by a regularized
version of Hughes’ model, cf. Hughes (Transp Res Part B: Methodol 36(6):507–
535, 2002. https://doi.org/10.1016/s0191-2615(01)00015-7). We assume that a finite
number of agents act on the crowd and try to optimize their paths in a given time
interval. The objective functional can be general and it can correspond, for instance,
to the desire for fast evacuation or to maintain a single group of individuals. We
provide an existence and regularity result for the coupled PDE-ODE forward model
via an approximation argument, studydifferentiability properties of the control-to-state
map, establish the existence of a globally optimal control and formulate optimality
conditions.
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1 Introduction

The starting point of this work is Hughes’ model for the movement of a (large) crowd
of pedestrians introduced in [37]. Its unknowns are the density ρ = ρ(t, x) and the
potential φ = φ(t, x) functions for x ∈ Ω ⊂ R

2 and t ∈ (0, T ). With the space-time
cylinder denoted by QT := (0, T ) × Ω , the model reads

∂tρ − ∇ · (ρ f (ρ)2 ∇φ) = 0 in QT , (1.1a)

|∇φ| = 1

f (ρ)
in QT . (1.1b)

In the simplest case, the model is supplemented with homogeneous Dirichlet bound-
ary conditions for φ and ρ. Due to the hyperbolic nature of the first equation, the
boundary conditions for ρ have to be posed in a suitable sense (i. e., on a generalized
inflow part involving the function f ). While many models for pedestrian dynamics
are microscopic in the sense that they provide constitutive laws for the motion of each
pedestrian (e. g., systems of ODEs or cellular automata or the social force model, cf.
[5, 14, 35]), Hughes’ model starts from a macroscopic approach. It is based on the
following three assumptions:

(i) The velocity v of the pedestrians is determined by the density ρ of the surround-
ing pedestrian flow and the behavioral characteristics of the pedestrians only.
Denoting the movement direction by u ∈ R

2 there holds

v = f (ρ) u, |u| = 1,

where f (ρ) is a non-increasing function that attains the value one at ρ = 0, is
positive for 0 < ρ < 1 and zero at ρ = 1. It models the effect that the larger the
surrounding density, the slower the individual motion becomes.

(ii) Pedestrians have a common sense of the task (called potential φ), i. e., they aim
to reach their common destination by

u = − ∇φ

|∇φ| .

(iii) Pedestrians seek tominimize their (accurately) estimated travel time, but modify
their velocity to avoid high densities. The potential is thus a solution of the
Eikonal equation

|∇φ| = 1

f (ρ)
.

Combining these rules yields the model (1.1). For brevity we write

˜β(ρ, φ) := f (ρ)2 ∇φ. (1.2)

Due to the previous explanations it is clear that −˜β(ρ, φ)|(t,x) is the direction of the
individuals in the point (t, x) ∈ QT .
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Fig. 1 Illustration of a possible
domain Ω and the boundary
parts ∂ΩO and ∂ΩW. The gray
region is excluded from Ω

Ω

∂ΩW

∂ΩO

The analysis of this system is quite involved since the derivative of φ, being the
viscosity solution to (1.1b), has jump discontinuities on a set that depends on ρ and is
not known a priori. Since we are going to consider optimal control problems, we shall
focus on a regularized version of the forward model (1.1), given by

∂tρ − ∇ · (ρ ˜β(ρ, φ)) = ε Δρ in QT , (1.3a)

−δ1 Δφ + |∇φ|2 = 1

f (ρ)2 + δ2
in QT . (1.3b)

Here ε, δ1 and δ2 are positive and fixed regularization parameters. The model is sup-
plemented with initial conditions

ρ(x, 0) = ρ0(x) in Ω (1.4)

and mixed boundary conditions

−(ε ∇ρ + ρ ˜β(ρ, φ)) · n = η ρ, φ = 0 on ΣO,

(ε ∇ρ + ρ ˜β(ρ, φ)) · n = 0, ∇φ · n = 0 on ΣW,
(1.5)

where we assume that the boundary consists of parts which act as “walls” ∂ΩW not
allowing the pedetrians to traverse, and a “truncation” or “outer boundary” ∂ΩO, at
which pedestrians can exit with a given outflow velocity η > 0. We assume ∂ΩO ∪
∂ΩW = ∂Ω and ∂ΩO ∩ ∂ΩW = ∅ and set ΣW := (0, T ) × ∂ΩW and ΣO :=
(0, T ) × ∂ΩO. An example domain is illustrated in Fig. 1.

Remark 1.1 (On the regularizations (I)) As multiple regularisations are carried out, let
us briefly discuss their meaning in terms of modeling and mathematical necessity.

δ1: The elliptic regularization in the Eikonal equation (1.3b) is such that in the limit
δ1 → 0, we would recover the unique viscosity solution. For δ1 = 0,∇φ becomes
discontinuous on a set that depends on ρ. In this situation, existence for the original
Hughes’ model is only known in one spatial dimension which would be a serious
limitation for our application.
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δ2: While δ2 prevents blow-up of the right hand side in (1.3b), setting δ1 = 0, its effect
on the modulus of the velocity |˜β(ρ, φ)| is as follows: For δ2 = 0, one obtains
|˜β(ρ, φ)| = f (ρ) while otherwise one has

|β(ρ, φ)| = f (ρ)2

δ2 + f (ρ)
= f (ρ)

f (ρ)

δ2 + f (ρ)
.

As δ2, the behavior of |β(ρ, φ)| is essentially unchanged except for values of ρ

that are close to one (i.e. when f (ρ) becomes very small). On the other hand, due
to the properties of f , at ρ = 1, |β| vanishes and thus this modification is not
effective in the dynamics.

ε: The additional diffusion added to the evolution equation of the density serves
two purposes. First, as we will see below, it allows for a continuous solution.
This is essential as we will couple the system to an additional ODE later on
that requires point evaluation of ρ. From the modeling point of view, the term
introduces additional randomness in the motion of the pedestrians that seems a
very reasonable addition to the directed motion of the convection term.

1.1 Optimal Control Problem

Our optimal control problem is based on the following scenario. We assume that there
is a small, given number M > 0 of agents (guides), who are able to locally influence
the motion of pedestrians in their vicinity. Think, for instance, of tourist guides or
marked security personnel at large sports events. The i-th agent’s position is described
by a function xi (t) ∈ R

2, i = 1, . . . , M , and the interaction is modeled by a radially
symmetric and decreasing kernel K (x) = k(|x |), which enters (1.3a) as an additional
potential given by

φK (x; x) =
M

∑

i=1

K (x − xi (t)) =
M

∑

i=1

k(|x − xi (t)|). (1.6)

Here and throughout, x = x(t) = (x1(t), . . . , xM (t))T is the function collecting all
agent positions. Furthermore, we need to modify the model to insure that the maximal
velocity of the crowd is still normalized to the velocity model f (ρ) despite the agents’
presence. Indeed, for the unregularized model,

f (ρ)2|∇φ| = f (ρ)

holds. When φ is replaced by φ + φK , this is no longer true. Thus we explicitly
normalize the transport direction, i. e., instead of (1.2), we define the transport velocity
by

β(ρ, φ, x) := f (ρ) h(∇(φ + φK (x; ·))). (1.7)
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Here, h is a smoothed projection onto the unit ball. Throughout this article we will use

h( y) = minε{1, | y|} y
| y|

with minε a fixed smooth approximation of the minimum function.

Remark 1.2 (On the regularizations (II)) We emphasise that the regularisation of the
function h serves no mathematical purpose (in fact, all of our analysis works without
it) but is rather needed to preserve the crucial property of our model that the direction
of motion is determined by a vector with unit length while the speed of motion is
solely determined by the surrounding density via the function f (ρ).

We assume that the agents move with maximal possible velocity towards a pre-
scribed directions ui (t) ∈ R

2, i = 1, . . . , M , which act as control in the system.
Since the agents are also part of the crowd, their effective velocity will depend on the
surrounding density in the same way as it does for all other individuals in the crowd.
We therefore assume |ui (t)| ≤ 1 and the law of motion for the agents will be

ẋi (t) = f (ρ(t, xi (t))) ui (t), i = 1, . . . , M, (1.8)

where ρ is a suitable extension of ρ from Ω to R2 which will be detailed later. While
this extension is necessary to ensure the existence of solutions since the agents may
leave the domainΩ onwhich ρ is defined, the precise choice of the extension is clearly
irrelevant in terms of modeling. Notice also that the ODE (1.8) does not prevent agents
from walking through walls or to attract people from behind a wall. The first issue can
be avoided by imposing additional state constraints in an optimal control problem.
The second issue can be avoided when assuming the wall thickness to be larger than
the agents’ attraction radius.

The complete forward system which we are going to consider finally reads

∂tρ − ∇ · (ρ β(ρ, φ, x)) = ε Δρ in QT , (1.9a)

− δ1 Δφ + |∇φ|2 = 1

f (ρ)2 + δ2
in QT , (1.9b)

ẋi (t) = f (ρ(t, xi (t))) ui (t) for t ∈ (0, T ), i = 1, . . . , M, (1.9c)

together with initial condition (1.4) on ρ and

xi (0) = xi,0 for i = 1, . . . , M, (1.10)

as well as boundary conditions (1.5).
The aim of the present paper is to investigate several optimal control problems for

this coupled system.We seek an optimal control function u such that the solution triple
y = (ρ, φ, x) is optimal in a certain sense. Depending on the application in mind it
remains to define a suitable objective functional. We particularize the following two
examples:
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– Minimal evacuation time: In this case one seeks to minimize the time required for
the evacuation of a room. The exits where individuals can leave the domain are
located at the truncation boundary ∂ΩO which is sufficiently far away from the
actual domain of interest. As time-optimal control problems with PDEs are rather
challenging, see, e. g., [6, 40, 47, 52], we consider a simpler but closely related
model. We fix a reasonably large final time T > 0 and minimize

J (ρ, φ, x; u) := c1

∫

Ω

ρ(T , x) dx

+ c2

∫ T

0

∫

Ω

t ρ(t, x) dx dt + α

2T

M
∑

i=1

‖ui‖2H1(0,T )
(1.11)

with weighting parameters c1, c2 > 0 and a regularization parameter α > 0.
The first term in J penalizes individuals remaining in the room at time T . The
second term encourages individuals to leave the room as early as possible. The
last terms provides the required regularity for the control variables, so that the
forward system (1.9) is well-defined. From the modeling point of view, these
terms also avoid unrealistic trajectories of the agents.

– Optimal binding of a crowd: In some applications it might be desired to keep the
group of individuals together, i. e., trying to maintain a single group during an
evacuation. This is also motivated by a similar approach which has been used to
model the repulsive interaction of dogs in a flock of sheeps, see [13]. To this end,
we define the center of mass and variance of ρ as

Eρ(t) := 1

M(t)

∫

Ω

xρ(t, x) dx and Vρ(t) := 1

M(t)

∫

Ω

ρ|x − Eρ(t)|2 dx,

with total mass M(t) = ∫

Ω
ρ(t, x) dx . A crowd is optimally kept together when

the functional

J (ρ, φ, x; u) := 1

2T

∫ T

0
Vρ(t) dt + α

2T

M
∑

i=1

‖ui‖2H1(0,T )
(1.12)

is minimized.

Clearly, it is also possible to use a combination of the objective functionals (1.11) and
(1.12).

1.2 RelatedWork

We briefly review the literature regarding the analysis of the original Hughes model
and related optimal control problems.

A first contribution on existence of solutions for the Hughes model in the one-
dimensional case is [26]. There it was shown, starting from the regularized version
(1.3), that in the limit ε → 0 a suitable unique entropy solution ρ exists. The proof
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is based on a vanishing viscosity argument and Kruzkov’s doubling of variables tech-
nique to show uniqueness. The results were complemented by more detailed studies
on the unregularized problem, also numerically. For instance generalizations to higher
spatial dimensions can be found in [18], even for a slightly more general class of
models. Further articles examine Riemann-type solutions to the unregularized prob-
lem; see [3, 4, 28] in one spatial dimension. As far as modeling is concerned, slightly
different models were derived in [12] based on a mean field games approach. In [16],
a modified approach using multiple local potentials φi instead of one global potential
φ is introduced, removing the possibly unrealistic assumption that every pedestrian
has complete information of the entire crowd. Moreover, in [15], a discrete pedestrian
model in a graph network is studied. Further complex scenarios based on a regularized
version of Hughes’ model are investigated in [19, 25].

From a broader perspective, the optimal control of (1.9) falls into the class of the
optimal control of coupled ODE-PDE systems. Such problems, with models from a
range of different applications have been analyzed, for instance, in [17, 36, 38, 39, 51].
We want to mention a few contributions dealing with optimal control of coupled PDE-
ODE models in the context of pedestrian dynamics. In [30, 31] the feedback control
in a multi-agent system is considered aiming at an optimization of the dynamics of
a population. The individuals are either followers or leaders and the interaction is
modeled by an ODE system. Moreover, the authors study also the limit case where the
number of followers tends to infinity, which results in a couples system of ODEs and
a PDE of Vlasov type. A similar approach is studied in [1]. Therein, the interaction
between individuals is a short range retraction and a long range attraction. While
leaders are not visible to the remaining crowd, they still influence it by taking part in
these interactions. Then an optimal control problem arises as an external force acts
on the leaders. The authors also consider, in the limit of many individuals (grazing
interaction limit), macroscopic Boltzmann type equations for this interaction, while
the number of leaders remains fixed and finite. Furthermore, in [13] external agents
act as control. Again, they start from a microscopic ODE model and subsequently
obtain a continuous model for the uncontrolled population by means of a mean field
limit. For a general overview on interacting particle systems and control, we refer the
reader to [46].

Closer to our approach is the work of [7]. There, a system of hyperbolic conserva-
tion laws for the density of different pedestrian groups is coupled to ODEs accounting
for agents. Due to the low regularity of solutions to the hyperbolic equations, a regu-
larization in the ODEs, similar to Lemma 3.6 in our case, is used. See also [8, 9] for
a similar approach in different settings. Also related to our approach are the studies
[20, 21] where evacuation is optimized by shape optimization of obstacles in a room.
A more detailed survey on the control of several models for pedestrian dynamics can
be found in [2]. Finally, we want to mention our proceeding article [45] where we
develop a numerical solution approach for our model based on a structure preserving
finite volume method and a projected gradient algorithm.

This paper is organized as follows. In Sect. 2 we collect the required notation,
introduce some assumptions and state a precise existence and uniqueness result for
the regularized system (1.9). The full forward system involving also the ordinary
differential equation (1.8) is investigated in Sect. 3 and the linearized forward system
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in Sect. 4. The latter is required to establish the differentiability of the control-to-state
map, which in turn is the basis of optimality conditions. Based on this we discuss
the optimal control problem in Sect. 5 and derive first-order necessary optimality
conditions. The presentation of numerical results will be postponed to a forthcoming
publication.

2 Mathematical Preliminaries

Let us first state the assumptions on the domain and data.

(A1) Ω ⊂ R
2 is an open, bounded domain with C4-boundary ∂Ω .

(A2) There exist two measurable sets ∂ΩO, ∂ΩW ⊂ ∂Ω s. t. ∂ΩO ∪ ∂ΩW = ∂Ω

and ∂ΩO ∩ ∂ΩW = ∅. Moreover, ∂ΩO has positive measure with respect to
the Lebesgue measure on ∂Ω .

(A3) The initial density satisfies ρ0 ∈ W 3/2,4(Ω) and 0 ≤ ρ0 ≤ 1 a.e. in Ω .
(A4) There holds f ∈ W 3,∞(R) ∩ Cc(R) with f (0) = 1, f (1) = 0 and f (ρ) > 0

for all ρ ∈ [0, 1).
Moreover, we require some assumptions on the potential functions (1.6) of the

agents, which depend on the kernel K .

(K1) The kernel K : R2 → R is radially symmetric, i. e., K (x) = k(|x |), where
k : [0,∞) → R is nonnegative and decreasing.

(K2) The kernel satisfies K ∈ W 3,∞(R2).

Finally, we consider an assumption on the velocity controls of the agents.

(C1) There holds ui ∈ L∞(0, T ;R2) and ‖ui‖L∞(0,T ) ≤ 1 for i = 1, . . . , M .

Throughout this articlewe frequently exploit the boundedness andLipschitz continuity
of the functions K , f , h and g(x) := x f (x) and its derivatives. When doing so, we
denote the bounds and Lipschitz constants by CK , C f , Ch , Cg and LK , L f , Lh , Lg ,
respectively.

Remark 2.1 (Assumptions)

(i) Our results extend to the case d = 3 upon adopting the Sobolev embeddings
used in several places.

(ii) Assumption (A2) essentially means that the door and wall parts of the boundary
“do not meet”, i. e., we do not consider a truly mixed boundary value problem
in order to avoid technical conditions ensuring sufficient regularity of solutions.
(A2) can be replaced, e. g., in two spatial dimensions, by suitable angle condi-
tions on the points where the two parts of the boundary meet. The interested
reader is referred to results in [33].

(iii) The optimal regularity for the initial datum ρ0 is the Besov space B2−2/p
pp (Ω);

see [22].
(iv) While in Assumption (A4) f is defined on all of R, as far as the modeling is

concerned, only f |[0,1] is relevant. Indeed, we will later see that the solution to
(1.9a) satisfies 0 ≤ ρ ≤ 1.
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(v) A reasonable choice in (K1) and (K2) is the kernel function

K (x − xi (t)) =
{

s exp
(

− R2

R2−|x−xi (t)|2
)

, if |x − xi (t)| < R,

0, otherwise,
(2.1)

where s > 0 is an intensity factor and R > 0 is related to an attraction radius.

Notations. The space-time cylinder and its lateral surface are denoted by QT :=
(0, T )×Ω andΣT = (0, T )×∂Ω , respectively. The boundary surface can be divided
into

ΣO,T = (0, T ) × ∂ΩO and ΣW,T = (0, T ) × ∂ΩW.

The (Frobenius) inner product of two matrices A, B ∈ R
n×n is denoted by

A : B := trace(ATB) =
n

∑

i, j=1

ai j bi j .

The Jacobian of a function h : R2 → R
2 is denoted by Dh and the Hessian of a

function u : R2 → R is denoted by ∇2u. Furthermore, ϕγ ∈ C∞
c (R2) is a standard

mollifier, see, e. g., Ch. 4.4 in [11], i. e., a function satisfying

suppϕγ ⊂ Bγ (0) and
∫

R2
ϕγ dx = 1. (2.2)

Note that
‖ f − ϕγ ∗ f ‖C(Ω) → 0 as γ → 0 (2.3)

for every continuous function f ∈ C(Ω), cf. Prop. 4.21 in [11].
Finally, we introduce the subspace of H1(Ω) incorporating the Dirichlet boundary

conditions as
H1
D(Ω) := {v ∈ H1(Ω)|v = 0 a.e. on ∂ΩO}

and, for p ∈ [1,∞], we denote the subspace of W 2,p(Ω) fulfilling the boundary
conditions (1.5) by

W 2,p
ND (Ω) := {v ∈ W 2,p(Ω)|v = 0 a.e. on ∂ΩO,∇v · n = 0 a.e. on ∂ΩW}.

For time-dependent functions we introduce, for p ∈ (1,∞) and r , s ∈ N0, the
spaces

Wr ,s
p (QT ) := L p(0, T ;Wr ,p(Ω)) ∩ Ws,p(0, T ; L p(Ω)),

equipped with the natural norm
(

‖·‖p
L p(0,T ;Wr ,p(Ω))

+ ‖·‖p
Ws,p(0,T ;L p(Ω))

)1/p
. Spaces

with non-integral r and s are defined, as usual, as (real) interpolation spaces. Of
particular interest in our application is the space W 2,1

p (QT ) with p > d = 2, which
fulfills the embedding

W 2,1
p (QT ) ↪→ C([0, T ];W 1,p(Ω)) ↪→ C(QT ). (2.4)
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This is needed in order to allow point evaluations of the density ρ, required in the
ordinary differential equation (1.9c). Finally, for functions from the Hölder space
C1,α(Ω) we introduce the norm

‖u‖C1,α(Ω) := ‖u‖C1(Ω) + max|β|=1
|Dβu|C0,α(Ω),

where |u|C0,α(Ω) = sup
x =y∈Ω

|u(x) − u(y)|
|x − y|α .

In the following we collect some important properties of the function spaces used in
this article.

Lemma 2.2 For each θ ∈ [0, 1], p ∈ (1,∞)and0 ≤ s < r , the continuous embedding

W 1,p(0, T ;Ws,p(Ω)) ∩ L p(0, T ;Wr ,p(Ω)) ↪→ W θ,p(0, T ;W θ s+(1−θ) r ,p(Ω)).

holds.

Proof See Lemma 4.3 in [24].

Similarly as above we define the Sobolev spaces

Wr ,s
p (ΣT ) := L p(0, T ;Wr ,p(∂Ω)) ∩ Ws,p(0, T ; L p(∂Ω))

on the lateral boundary ΣT = (0, T ) × ∂Ω of the space-time cylinder QT .
The following trace theorem is proved in [22, Lem. 3.5]; see also Sect. 2 in [23]:

Lemma 2.3 For p > 1, the trace operators

γ0 : W 2,1
p (QT ) → W 2−1/p,1−1/(2p)

p (ΣT ),

γ1 : W 2,1
p (QT ) → W 1−1/p,1/2−1/(2p)

p (ΣT )

defined by γ0ρ = ρ|ΣT
and γ1ρ = ∇ρ ·nΣT are bounded and have a continuous right

inverse.

Recall the differential equation (1.8), where an extension to R
2 of the density func-

tion ρ is used. For theoretical purposes we will use an extension operator fulfilling the
following result from Lemma 6.37 in [32]:

Lemma 2.4 Let α ∈ (0, 1) be a fixed number. There exists a linear, continuous exten-
sion operator

E : C1,α(Ω) → C1,α(R2)

such that

‖E f ‖C1,α(R2) ≤ CE ‖ f ‖C1,α(Ω) and ‖E f ‖L∞(R2) ≤ CE,∞‖ f ‖L∞(Ω),

holds for all f ∈ C1,α(Ω). For brevity we will write f := E f .
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3 Analysis of the Forward System

This section is devoted to showing the existence of strong solutions to the forward
system (1.9) with boundary and initial conditions (1.4), (1.5), (1.10). We proceed in
two steps. First we provide auxiliary results on equation (1.9b) as well as on linear
parabolic equations. Then we prove existence of solutions to the complete forward
system.

3.1 Preliminary Results

First, we study the regularized Eikonal equation (1.9b).

Lemma 3.1 For given ρ̃ : QT → R consider the equation

−δ1 Δφ + |∇φ|2 = 1

f (ρ̃)2 + δ2
in QT ,

with boundary conditions (1.5). We have:

(i) If ρ̃ ∈ C([0, T ]; L2(Ω))∩H1(0, T ; H1(Ω)∗), then there exists a unique strong
solution which satisfies φ ∈ L∞(0, T ;W 2,p

ND (Ω)) ∩ H1(0, T ; H1(Ω)) for all
2 ≤ p < ∞. Moreover, the a priori estimates

‖φ‖L∞(0,T ;W 2,p(Ω)) ≤ ˜Cφ and ‖φ‖H1(0,T ;H1
D(Ω)) ≤ ˜Cφ ‖ρ̃‖H1(0,T ;H1(Ω)∗)

(3.1)
hold with a positive constant ˜Cφ depending on p, δ1, δ2, Ω and T only.

(ii) If ρ̃ ∈ W 2,1
p (QT ) holds, the strong solutionφ additionally belongs toW 4,1

p (QT )

and satisfies the a priori estimate

‖φ‖W 1,p(0,T ;W 2,p(Ω)) ≤ Cφ ‖ρ̃‖W 2,1
p (QT )

, (3.2)

with a constant Cφ depending on p, δ1, δ2, Ω and T only.
(iii) For any ρ̃1, ρ̃2 ∈ C([0, T ]; L2(Ω)), the corresponding solutions φ1 and φ2

satisfy the Lipschitz estimate

‖φ1(·, t) − φ2(·, t)‖W 2,2(Ω) ≤ ̂Cφ ‖ρ̃1(·, t) − ρ̃2(·, t)‖L2(Ω) (3.3)

for all t ∈ [0, T ], with ̂Cφ depending on p, δ1, δ2, Ω and T only.

From now on we shall use the definition Cφ := max{˜Cφ,Cφ, ̂Cφ}.
Proof We first show assertion (i). Note that due to the continuity of ρ̃ in time it makes
sense to define, for fixed t ∈ [0, T ], the function

qt (x) := 1

δ21

1

f (ρ̃(t, x))2 + δ2
. (3.4)
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By assumption (A4) on f we then have qt ∈ L∞(Ω).
Step 1: Existence. First note that an application of the transformation

ψ(t, ·) = e−φ(t,·)/δ1 − 1 (3.5)

to (1.9b) yields for all t ∈ [0, T ] the linear problem

−Δψ(t, ·) + qt ψ(t, ·) = −qt (·) in Ω,

ψ(t, ·) = 0 on ∂ΩO,

∂nψ(t, ·) = 0 on ∂ΩW.

(3.6)

As qt ∈ L∞(Ω) and qt > 0 a.e. in Ω , the Lax-Milgram lemma yields for every
t ∈ [0, T ] the existence of a unique weak solution ψ(t, ·) ∈ H1

D(Ω) and the estimate

‖ψ(t, ·)‖H1(Ω) ≤ C ‖qt‖L2(Ω).

Elliptic regularity theory (see for instance Theorem 3.17 in [49]) then impliesψ(t, ·) ∈
W 2,q(Ω) for any 2 ≤ q < ∞, and there holds

‖ψ(t, ·)‖W 2,q (Ω) ≤ C ‖qt‖Lq (Ω) =: Cφ (3.7)

for t ∈ [0, T ]. For given x ∈ Ω , the function t �→ qt (x) belongs to L∞(0, T )

again by (A4). Taking the supremum over 0 ≤ t ≤ T yields the regularity ψ ∈
L∞(0, T ;W 2,q(Ω)). Formally differentiating equation (3.6) with respect to time we
see that ∂tψ satisfies

−Δ∂tψ(t, ·) + qt∂tψ(t, ·) = −(1 + ψ(t, ·))(∂t qt ) in Ω.

Using its definition and the fact that ρ̃ ∈ H1(0, T ; H1(Ω)∗), the derivative of qt (x)
with respect to time is an element of L2(0, T ; H1(Ω)∗). Therefore, Sect. 2.2.2, Corol-
lary, p. 99 in [49] (after replacing ∂t qt (x) by a continuous in time approximation and
passing to the limit) yields the existence of ∂tψ ∈ L2(0, T ; H1(Ω)) with

‖∂tψ‖L2(0,T ;H1(Ω)) ≤ C ‖∂t ρ̃‖L2(0,T ;H1(Ω)∗). (3.8)

Step 2: Strict lower bound. In order to invert (3.5) and obtain a solution to (1.9b),
we need to ensure that ψ > −1 holds. This follows from Theorem 4 in [43], provided
that we can show ψ ≥ −1, ‖ψ‖L∞(QT ) < ∞ and Hölder continuity of ψ(t, ·) for
a.a. t ∈ (0, T ). The last two assertions are a direct consequence of the embeddings
W 2,p(Ω) ↪→ L∞(Ω) and W 2,p(Ω) ↪→ C0,1/2(Ω) as p ≥ 2 and we are in dimen-
sion 2, combined with (3.7). To show the first part we choose φ = (ψ + 1)−, i. e., the
negative part of ψ + 1, as test function in the weak formulation of (3.6) and obtain

∫

Ω

|∇(ψ(t, ·) + 1)−|2 dx +
∫

Ω

qt (x)(ψ + 1)2− dx = 0.
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Since qt is strictly positive, this implies that (ψ +1)− = 0 holds a.e. in Ω . Thus there
exists a positive constant Cψ s. t.

ψ ≥ Cψ > −1 a.e. in Ω.

We can therefore invert the transformation (3.5) and conclude that the solution of
(1.9b), (1.5) fulfills the desired regularity, as the regularity is unaffected by the
transformation (using ψ ∈ L∞(0, T ; L∞(Ω)) and ψ > −1). This ends the proof
of assertion (i). To conclude (ii) we only have to show the additional regularity
∂tψ ∈ L p(0, T ;W 2,p(Ω)) which follows under the assumption ρ̃ ∈ W 2,1

p (QT ) and
standard elliptic regularity theory, see [49, Theorem 3.17].

Similarly, in case ρ̃ ∈ W 2,1
p (QT ) we obtain ∂tψ ∈ L p(0, T ;W 2,p(Ω)), which

gives the desired estimate.
Step 3: Lipschitz estimate. To show (iii), denote by qt,1, qt,2 the respective coef-

ficients for ρ̃1 and ρ̃2 as in (3.4) and, analogously, let ψ1 and ψ2 be the respective
solutions to (3.6). Then ψ = ψ1 − ψ2 satisfies

−Δψ(t, ·) + qt,1(x) ψ(t, ·) = (1 − ψ2(t, ·)) qt (x) in Ω,

ψ(t, ·) = 0 on ∂ΩO,

∂nψ(t, ·) = 0 on ∂ΩW,

(3.9)

for t ∈ [0, T ]with qt = qt,1−qt,2. Noting that qt is Lipschitz continuous as a function
of ρ̃ (due to (A4)) and applying the a priori estimate (3.7) to (3.9) yields

‖ψ(t, ·)‖W 2,2(Ω) ≤ C ‖qt‖L2(Ω) ≤ C ‖ρ̃1(t, ·) − ρ̃2(t, ·)‖L2(Ω),

where we used the boundedness of (1−ψ2(t, ·)) in L∞(Ω) and, again,W 2,p(Ω) ↪→
L∞(Ω) and (3.7). This implies (iii) and completes the proof.

To obtain the desired W 2,1
p (QT )-regularity of the density function ρ we will need

the following lemma taken from [22] but adopted to our notation.

Lemma 3.2 Let assumptions (A1)–(A4) hold, p ∈ [2,∞) and ε > 0. Suppose
that c ∈ L p(QT ), b ∈ L p(0, T ; L∞(Ω)), r ∈ W 1−1/p,1/2−1/(2p)

p (ΣT ) and ρ0 ∈
W 2−2/p,p(Ω) are given. Then the problem

∂tρ − εΔρ + b · ∇ρ = c in QT ,

ε∇ρ · n = r on ΣW,T ,

ρ = 0 on ΣO,T ,

ρ(0) = ρ0 in Ω

admits a unique strong solution ρ ∈ W 2,1
p (QT ) depending continuously on the input

data c, r and ρ0.

Proof See Theorem 2.1 in [22].
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Finally, we need the following regularity result for p = 2 with flux boundary
conditions.

Lemma 3.3 Given h ∈ H1(0, T ; H1(Ω)) ∩ L∞(QT ), g ∈ L∞(R) and ρ0 ∈ H1(Ω),
the variational problem

∫

QT

∂tρ ξ dx dt + ε

∫

QT

∇ρ · ∇ξ dx dt −
∫

QT

g(ρ) h · ∇ξ dx dt

= −η

∫

ΣT

χ∂ΩO ρ ξ dsx dt for all ξ ∈ L2(0, T ; H1(Ω)) (3.10)

has a unique solution ρ ∈ L∞(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω)) with ρ(0) = ρ0.

The proof mainly uses standard methods but since, to the best of the authors’ knowl-
edge, a proof matching our boundary conditions is not available in the literature, we
included it into Sect. A.

Next we define our notion of solution for the ODE (1.9c).

Definition 3.4 Fix 2 < p < ∞ and ρ ∈ W 2,1
p (QT ). Then for given f and u satisfying

assumptions (A4) and (C1) and an initial value x0 ∈ R
2 we say that x : [0, T ] → R

2

is a solution to
ẋ(t) = f (ρ(x(t), t)) u(t), (3.11)

if it is absolutely continuous, satisfies (3.11) for a.a. t ∈ [0, T ] and x(0) = x0.

We have the following result about the existence of a solution of (3.11).

Lemma 3.5 For given 2 < p < 4, u ∈ L∞(0, T ;R2) satisfying assumption (C1) and
ρ ∈ W 2,1

p (QT ), there exists a unique, absolutely continuous solution x : [0, T ] → R
2

to (3.11) satisfying x(0) = x0. Furthermore, x ∈ W 1,∞(0, T ) holds. For ρ1, ρ2 ∈
W 2,1

p (QT ), the corresponding solutions x1 and x2 satisfy

‖x1 − x2‖L∞(0,T ;R2) ≤ Cs ‖ρ1 − ρ2‖L∞(QT ), (3.12)

where the constant Cs depends on u, T , CE, CE,∞ and the Lipschitz constants of f
and ρ.

Proof First note that ρ ∈ L p(0, T ;W 2,p(Ω)) ↪→ L p(0, T ;C1,α(Ω)), for some α >

0, so that the application of the extension operator from Lemma 2.4 is well-defined.
Since also f is Lipschitz continuous with Lipschitz constant L f by assumption (A4),
the function f (ρ(t, x)) satisfies the Carathéodory conditions (see Definition A.1 in
the Appendix) and thus there exists a solution in the sense of Definition 3.4; see Ch. I,
Theorem 5.1 in [34]. Furthermore, as we also have ρ ∈ L p(0, T ;C0,1(R2)), we obtain
with Cu := ‖u‖L∞(0,T ), Cρ(t) = ‖ρ(t)‖W 2,p(Ω), and the property Cρ ∈ L p(0, T )

that

| f (ρ(t, x)) − f (ρ(t, y))| ≤ L f |ρ(t, x) − ρ(t, y)| ≤ L f ‖ρ(t)‖C1,α(R2) |x − y|
≤ L f CE ‖ρ(t)‖C1,α(Ω) |x − y|
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≤ L f ,E,ρ(t) |x − y| for a.a. t ∈ [0, T ] and all x, y ∈ R
2, (3.13)

where L f ,E,ρ(t) := L f CE C∞ Cρ(t) and with C∞ the embedding constant for
W 2,p(Ω) ↪→ C1,α(Ω). The estimate (3.13) implies uniqueness by Ch. I, Thm. 5.3 in
[34]. The additional regularity x ∈ W 1,∞(0, T ;R2) is a consequence of the bound-
edness in L∞(0, T ;R2) of the right-hand side of (3.11). To establish the stability
estimate we show

|x1(t) − x2(t)| ≤
∫ t

0
| f (ρ1(s, x1(s))) − f (ρ2(s, x2(s)))| |u(s)| ds

≤
∫ t

0
| f (ρ1(s, x1(s))) − f (ρ1(s, x2(s)))| |u(s)| ds

+
∫ t

0
| f (ρ1(s, x2(s))) − f (ρ2(s, x2(s)))| |u(s)| ds

≤
∫ t

0
Cu L f ,ρ,E(s) |x1(s) − x2(s)| ds + L f Cu CE CE,∞ t ‖ρ1 − ρ2‖L∞(Qt ),

where we used that the extension E is also continuous with respect to the L∞-norm.
An application of Gronwall’s inequality in integral form then yields, for t ∈ (0, T ),

|x1(t) − x2(t)| ≤ L f Cu CE CE,∞ t ‖ρ1 − ρ2‖L∞(QT ) exp

(∫ t

0
Cu L f ,ρ,E(r) dr

)

≤ Cs(u, L f , L f ,ρ,E,CE,CE,∞, T ) ‖ρ1 − ρ2‖L∞(QT ).

Next, we state an existence and stability result for a regularized version of (3.11).
Note that the following result requires less regularity for the density function ρ.

Lemma 3.6 Fix 2 < p < ∞ and ρ ∈ C([0, T ]; L2(Ω)). Then for given u ∈
L∞(0, T ), f satisfying assumption (A4) and (C1), and every γ > 0, there exists,
a unique, absolutely continuous solution x : [0, T ] → R

2 to

ẋ(t) = f ((ϕγ ∗ ρ)(t, x(t))) u(t) (3.14)

satisfying x(0) = x0 ∈ R
2 and x ∈ W 1,∞(0, T ). Here, ϕγ is a standard mollifier

as in (2.2) and ∗ denotes the convolution w.r.t. to the x-variable. Furthermore, for
ρ1, ρ2 ∈ C([0, T ]; L2(Ω)), the corresponding solutions x1 and x2 satisfy

|x1(t) − x2(t)| ≤ C1 T eC2 t ‖ρ1 − ρ2‖L∞(0,T ;L2(Ω)), (3.15)

where the constants C1,C2 depend on u, γ , CE, CE,∞ and the Lipschitz constants of
f and ρ1, ρ2.

Proof As f andϕγ ∗ ρ areLipschitz continuous (see assumption (A4) andLemmaA.2),
the function f ((ϕγ ∗ ρ)(t, x)) satisfies the Carathéodory conditions of Definition 3.4

123



87 Page 16 of 44 Applied Mathematics & Optimization (2023) 88 :87

and thus there exists a solution in the sense of Definition 3.4; see Ch. I, Thm. 5.1 in
[34]. In particular there exists a positive function L f ,γ,E > 0 such that

| f ((ϕγ ∗ ρ)(t, x)) − f ((ϕγ ∗ ρ)(t, y))| ≤ L f ,γ,E ‖ρ(t, ·)‖L1(Ω) |x − y| (3.16)

for a.a. t ∈ [0, T ] and all x, y ∈ Ω . This implies uniqueness by Ch. I, Thm. 5.3 in
[34].

To show the stability estimate (3.15) we proceed as in the proof of Lemma
Lemma 3.5, employ the estimate (3.16), Young’s inequality for convolutions ‖ϕγ ∗
ρ‖L∞(Ω) ≤ ‖ϕγ ‖L2(Ω) ‖ρ‖L2(Ω), and obtain

|x1(t) − x2(t)| ≤
∫ t

0
| f ((ϕγ ∗ ρ1)(s, x1(s))) − f ((ϕγ ∗ ρ2)(s, x1(s)))||u(s)| ds

+
∫ t

0
| f ((ϕγ ∗ ρ2)(s, x1(s))) − f ((ϕγ ∗ ρ2)(s, x2(s)))||u(s)| ds

≤ L f Cu,E ‖ϕγ ‖L2(Ω) t ‖ρ1 − ρ2‖L∞(0,T ;L2(Ω))

+ L f ,γ,E Cu ‖ρ2‖L∞(0,T ;L2(Ω))

∫ t

0
|x1(s) − x2(s)| ds.

Then, (3.15) follows from the Gronwall Lemma.

We continue with the following Lipschitz estimate for the transport term in (1.9a),
which is needed in the theorem right after the next.

Lemma 3.7 Given ρ1, ρ2 ∈ C([0, T ]; H1(Ω)), φ1, φ2 ∈ L∞(0, T ;W 2,p(Ω)) and
x1, x2 ∈ L∞(0, T ;R2) the function β(ρ, φ, x) satisfies the Lipschitz inequality

‖ρ1 β(ρ1, φ1, x1) − ρ2 β(ρ2, φ2, x2)‖L2(QT )

≤ Lβ

(‖ρ1 − ρ2‖L2(QT ) + ‖∇φ1 − ∇φ2‖L2(QT ) + ‖x1 − x2‖L∞(0,T ;R2)M
)

,

where Lβ depends on the Lipschitz and boundedness constants of f , h and K .

Proof We define g(ρ) = ρ f (ρ) and write ρi β(ρi , φi , xi ) = g(ρi ) h(∇(φi +
φK (xi ; ·))), i = 1, 2. Using the Lipschitz continuity of g, h and φK we obtain

‖ρ1 β(ρ1, φ1, x1) − ρ2 β(ρ2, φ2, x2)‖L2(0,T ;L2(Ω))

≤ Lg ‖ρ1 − ρ2‖L2(QT ) ‖h(∇(φ1 + φK (x1; ·)))‖L∞(QT )

+ Cg Lh(‖∇(φ1 − φ2)‖L2(QT ) + LφK ‖x1 − x2‖L∞(0,T ;R2)M ).

3.2 Existence for the Full Forward System

We are now in a position to show the following existence and uniqueness result.

Theorem 3.8 Let assumptions (A1), (A2), (A3) (A4), (K1), (K2) (C1) hold and fix 2 <

p < ∞. Then for any given control u = (u1, . . . , uM )T ∈ L∞(0, T ;R2)M and any
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T > 0, there exists a unique solution (ρ, φ, x) to (1.9) with initial and boundary con-
ditions (1.4), (1.5), (1.10) which satisfies ρ ∈ W 2,1

p (QT ), φ ∈ L∞(0, T ;W 2,p(Ω))

and x is a solution to (1.9c) in the sense of Definition 3.4. Moreover, the a priori
estimate

‖ρ‖W 2,1
p (QT )

+ ‖φ‖L∞(0,T ;W 2,p(Ω)) ≤ C‖ρ0‖W 1,p(Ω),

holds with C depending only on the domain, the bounds for the coefficients and the
respective kernel.

The structure of (1.9a)–(1.9b) is very similar to chemotaxis models with volume
filling, see for instance [44], except for the additional nonlinearity of the squared gra-
dient term in (1.9b), which can, however, be handled using Lemma 3.1. Therefore,
the existence and uniqueness of solutions can be proved using Banach’s fixed point
theorem, similar to, e. g., Thm. 3.1 in [27]. The main issue in our situation is the addi-
tional coupling to the system of ODEs (1.9c), which requires ρ to be regular enough
to allow point evaluations. Our strategy is to introduce an additional regularization in
(1.9c) in order to be able to perform the fixed point argument in the relatively “large”
space C([0, T ]; L2(Ω)). We then show additional regularity and pass to the limit to
recover the original system.

Proof The proof consists of two parts. First we show existence with (1.9c) replaced
by the regularized version (3.14). Then, we perform the limit γ → 0 to recover the
original problem.

Step 1: Fixed point argument: We consider the fixed-point operator

S : C([0, T ]; L2(Ω)) → C([0, T ]; L2(Ω)), ρ̃ �→ ργ , (3.17)

where, for fixed γ > 0, ργ is the unique weak solution to the system

∂tργ − ∇ · (ρ̃ β(ρ̃, φγ , xγ )) = ε Δργ in QT , (3.18)

− δ1 Δφγ + |∇φγ |2 = 1

f (ρ̃)2 + δ2
in QT , (3.19)

ẋi,γ (t) = f ((ϕγ ∗ ρ̃)(t, xi,γ (t))) ui (t) for t ∈ [0, T ], i = 1, . . . , M (3.20)

subject to the boundary conditions

ε ∇ργ · n = −ρ̃ β(ρ̃, φγ , xγ ) · n − η ργ χ∂ΩO on ΣT .

The boundary conditions for φ and the initial conditions for all variables are as in (1.5)
and (1.4), (1.10), respectively. The equation for ργ is understood in the weak sense,
i. e.,

∫

Ω

∂tργ ξ dx + ε

∫

Ω

∇ργ · ∇ξ dx = −
∫

Ω

ρ̃ β(ρ̃, φγ , xγ ) · ∇ξ dx −η

∫

∂ΩO

ργ ξ dsx

(3.21)
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for all ξ ∈ H1(Ω) and a.a. t ∈ [0, T ]. Applying Lemma 3.3 with g(ρ) = ρ f (ρ) and
h = h(∇(φγ + φK (xγ ; ·))) shows that there exists a unique weak solution

ργ ∈ L∞(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω)) ↪→ C([0, T ]; L2(Ω)).

Choosing ρ itself as a test function in the weak formulation (3.21) yields, after an
application of theweightedYoung’s inequalitywith parameter ε/2, the trace inequality
for H1-functions, and an integration in time, the a priori estimate

‖ργ ‖C([0,T ];L2(Ω)) ≤ C(‖ρ̃ β(ρ̃, φγ , xγ )‖L2(0,T ;L2(Ω)) + ‖ρ0‖L2(Ω))

≤ C(
√

T |Ω| + ‖ρ0‖L2(Ω)),

where we used |ρ̃ β(ρ̃, φγ , xγ )| ≤ 1.
Next, we show that S is a contraction. Let ρ̃1, ρ̃2 ∈ C([0, T ]; L2(Ω)) be arbitrary.

The corresponding densities, potentials and agent positions are denoted by ργ,1, ργ,2,
φγ,1, φγ,2 and xγ,1, xγ,2, respectively. Using Lemma 3.7 we have

‖ργ,1 − ργ,2‖C([0,T ];L2(Ω))

≤ ‖ρ̃1 β(ρ̃1, φγ,1, xγ,1) − ρ̃2 β(ρ̃2, φγ,2, xγ,2)‖L2(0,T ;L2(Ω))

≤ Lβ(‖ρ̃1 − ρ̃2‖L2(0,T ;L2(Ω)) + ‖∇(φγ,1 − φγ,2)‖L2(0,T ;L2(Ω))

+ ‖xγ,1 − xγ,2‖L∞(0,T )M ). (3.22)

Applying Lemmas 3.1 and 3.6 to the second and third terms on the right-hand side,
respectively, yields

‖ργ,1 − ργ,2‖C([0,T ];L2(Ω)) ≤ C max{√T , T eC2 T } ‖ρ̃1 − ρ̃2‖C([0,T ];L2(Ω)).

Thus, we can again find T small enough so that S is a contraction and Banach’s
fixed point theorem asserts the existence of a unique solution.

The box constraints 0 ≤ ργ ≤ 1 a.e. in QT follow by applying Lem. 3 in [27], i. e.,
by testing with smoothed versions of the positive part of ρ − 1 and −ρ, respectively.
In view of these uniform estimates a standard continuation argument yields existence
for arbitrary T > 0.

So far we have shown

ργ ∈ L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗) ∩ L∞(QT ),

since the fixed-point satisfies the weak formulation (3.21). Note in particular that
ργ is bounded in L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗) ∩ L∞(QT ) by a constant
independent of γ . Furthermore, we denote the corresponding potential and agent
trajectories by

φγ ∈ L∞(0, T ;W 2,p(Ω)) ∩ H1(0, T ; H1(Ω)), xγ ∈ W 1,∞(0, T )M .
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Step 2: Additional regularity: To shorten the notation we write the nonlinear term
in the form

ργ β(ργ , φγ , xγ ) = g(ργ ) h(Φγ )

with g(ργ ) := ργ f (ργ ) and Φγ := ∇(φγ + φK (xγ ; ·)). From the product rule we
obtain the following representation for the divergence,

∇ · (ργ β(ργ , φγ , xγ )) = g′(ργ )∇ργ · h(Φγ ) + ργ f (ργ )∇ · h(Φγ ).

Freezing the nonlinear terms allows us to understand (3.18) as a linear equation of the
form

∂tργ − ε Δργ + b(t, x) · ∇ργ + c(t, x) ργ = 0 in QT ,

ε∇ργ · n = r on ΣT ,

ρ(0) = ρ0 in Ω

(3.23)

with
b(t, x) := g′(ργ ) h(Φγ ) ∈ L p(0, T ; L∞(Ω)),

c(t, x) := f (ργ )∇ · h(Φγ ) ∈ L p(QT ),
(3.24)

and
r(t, x) := −g(ργ ) h(Φγ ) · n − η ργ χ∂ΩO ∈ W κ,κ/2

p (ΣT ) (3.25)

with κ = 1 − 1/p. It remains to show the regularity claimed for b, c and r . Again,
this follows from the Hölder inequality and the regularity already shown for ργ , φγ ,
xγ . Together with the product and the chain rule this leads to

‖b‖L∞(QT ) ≤ ‖g′‖L∞(R) ‖h‖L∞(R2) ≤ Cb, (3.26)

‖c‖L p(QT ) ≤ ‖ f ‖W 1,∞(R) ‖Dh‖W 1,∞(R2)(‖φγ ‖L∞(0,T ;W 2,p(Ω)) + CφK ) ≤ Cc.

(3.27)

Note that Cb and Cc are independent of γ as, in particular, φγ can be bounded inde-
pendently of ργ and thus of γ . To show the required regularity for r we proceed as
follows. First, we show the estimates

‖∂xi (g(ργ ) h(Φγ ))‖L2(QT )

≤ C (‖g‖L∞(R) ‖Dh‖L∞(R2×2)‖∇2(φγ + φK (xγ ; ·))‖L2(ΩT )

+ ‖g′‖L∞(R)‖∇ργ ‖L2(QT )‖h‖L∞(R2)) ≤ C (3.28)

for i = 1, 2, as well as

‖∂t (g(ργ ) h(Φγ ))‖L2(QT )

≤ C (‖g‖L∞(R)‖Dh‖L∞(R2×2)‖∂t∇(φγ + φK (xγ ; ·))‖L2(QT )

+ ‖g′‖L∞(R)‖∂tργ ‖L2(QT )‖h‖L∞(R2)) ≤ C . (3.29)
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This follows from the regularity already shown for ργ , φγ (see Lemma 3.1) and xγ

(see Lemma 3.6). With these considerations we conclude

−g(ργ ) h(Φγ ) − η ργ χ∂ΩO ∈ W 1,1
2 (QT ) ↪→ W 1,1/2

2 (QT ).

This allows us to apply the trace Lemma 2.3, which provides

‖r‖
W 1/2,1/4

2 (ΣT )
≤ Cr . (3.30)

Collecting the properties (3.26)–(3.30) an application of Thm. 2.1 in [22] and
Lemma 3.1 implies

ργ ∈ W 2,1
2 (QT ) and φγ ∈ L∞(0, T ; H3(Ω)) ∩ H1(0, T ; H1(Ω)).

We can even further improve the regularity of ργ . Analogous to (3.28) and (3.29)
we show

‖∂xi (g(ργ ) h(Φγ ))‖L p(QT ) + ‖∂t (∂xi g(ργ ) h(Φγ ))‖L2(0,T ;L p(Ω)) ≤ C

and together with the trace Lemma 2.3 we deduce

r ∈ L p(0, T ;W 1,p(Ω)) ∩ W 1,2(0, T ; L p(Ω))

↪→ W 1,1/2
p (QT ) ↪→ W 1−1/p,1/2−1/(2p)

p (ΣT ).

This, (3.26) and (3.27) allow a further application of Thm. 2.1 in [22] with p ≤ 4,
from which we infer the desired regularity

ργ ∈ W 2,1
p (QT ).

The functions ργ , φγ and xγ are thus a strong solution of the system

∂tργ − ∇ · (ργ β(ργ , φγ , xγ )) = ε Δργ in QT , (3.31)

− δ1 Δφγ + |∇φγ |2 = 1

f (ργ )2 + δ2
in QT , (3.32)

ẋi,γ = f ((ϕγ ∗ ργ )(·, xi,γ (·))) ui in [0, T ], i = 1, . . . , M (3.33)

that satisfy the boundary and initial conditions pointwise almost everywhere.
Step 3: Limit γ → 0: In order to recover a solution to (1.9), it remains to pass to

the limit γ → 0 in (3.31)–(3.33). As a first step in this direction, note that b(t, x),
c(t, x) and r(t, x) defined in (3.24) and (3.25) are bounded independently of γ . Thus,
understanding (3.31) as the linear equation (3.23) we obtain the following estimate,
uniformly in γ ,

‖ργ ‖W 2,1
p (QT )

≤ C .
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This implies the existence of a sequence γk with γk → 0 that

ργk⇀ρ in W 2,1
p (QT ) and ργk → ρ in L p(0, T ;W 1,p(Ω)), (3.34)

where the second convergence is a consequence of the Aubin-Lions lemma,
Thm. II.5.16 in [10].As,moreover,φγ is also uniformlybounded in L p(0, T ;W 2,p(Ω))

by Cφ , we also have

D2φγk⇀D2φ in L p(0, T ; L p(Ω;Rd×d)),

φγk → φ in L p(0, T ;W 1,p(Ω)),
(3.35)

where the second convergence follows from Lemma A.3. We omit the index k in the
following to shorten the notation. Passing to the limit γ → 0, in the sense of distri-
butions, in equation (1.9b) yields the validity of this equation also for the limit values
φ and ρ. As for (1.9c), denote by xi (t) the solution of ẋi (t) = f (ρ(xi (t), t)) ui (t),
t ∈ [0, T ], and xi (0) = xi,0, with ρ denoting the limit from (3.34). Arguing similarly
as in Lemma 3.6 and using |ui (t)| ≤ 1 for a.a. t ∈ (0, T ) we obtain

|xi (t) − xi,γ (t)|
≤

∫ t

0
| f (ρ(s, xi (s))) − f ((ϕγ ∗ ργ )(s, xi,γ (s)))| ds

≤
∫ t

0
| f (ρ(s, xi (s))) − f (ρ(s, xi,γ (s)))| ds

+
∫ t

0
| f (ρ(s, xi,γ (s))) − f ((ϕγ ∗ ρ)(s, xi,γ (s)))| ds

+
∫ t

0
| f ((ϕγ ∗ ρ)(s, xi,γ (s))) − f ((ϕγ ∗ ργ )(s, xi,γ (s)))| ds

≤
∫ t

0
L f ,ρ,E(s) |xi (s) − xi,γ (s)| ds

+ L f (t ‖ρ − ϕγ ∗ ρ‖C([0,T ]×Ω) + √
t ‖ϕγ ‖L1(Ω) ‖ρ − ργ ‖L2(0,T ;L∞(Ω))).

As ‖ϕγ ‖L1(Ω) = 1, another application of Gronwall’s inequality yields

|xi (t) − xi,γ (t)|
≤ C L f (t ‖ρ − ϕγ ∗ ρ‖C([0,T ]×Ω) + √

t ‖ρ − ργ ‖L2(0,T ;L∞(Ω)))

· exp
(∫ t

0
L f ,ρ,E(s) ds

)

,

and due to (2.3), (3.34) we see that as γ → 0, the right-hand side converges to 0 and
thus

xi,γ (t) → xi (t) for every t ∈ (0, T ), i = 1, . . . , M . (3.36)
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Next, we pass to the limit in (3.31). The convergence of the linear terms is a direct
consequence of (3.34). For the convection term we note that it can be written as

∇ · (ργ β(ργ , φγ , xγ )) = ∇ · (g(ργ ) h(Φγ ))

= g′(ργ ) ∇ργ · h(Φγ ) + g(ργ ) Dh(Φγ ) : ∇2(φγ + φK (xγ ; ·)).

As both ργ and h are uniformly bounded, the convergences (3.34), (3.35) and (3.36)
imply

∇ · (ργ β(ργ , φγ , xγ ))⇀∇ · (ρ β(ρ, φ, x)) in L p(QT ).

It remains to pass to the limit in the boundary conditions. The trace Lemma 2.3
implies that ε ∇ργ ·n is bounded in L p(ΣT ) and thus converges weakly. The compact

embedding W 2−1/p,1−1/(2p)
p (ΣT ) ↪→ L p(ΣT ) implies the convergences

ρ|ΣT
→ ρ|ΣT

and ∇φγ |ΣT
→ ∇φ|ΣT

in L p(ΣT ),

so that using the uniform boundedness of both ργ and h as well as (3.36) we conclude

ε ∇ργ · n + ργ β(ργ , φγ , xγ ) · n⇀ε ∇ρ · n + ρ β(ρ, φ, x) · n in L p(ΣT ).

Thus, the weak limit of ργ , namely ρ, is the strong solution of (1.9) with boundary
conditions (1.5). This completes the proof.

The previous theorem allows us to introduce the solution operator

S : U → Y, u �→ S(u) := (ρ, φ, x)

of (1.9) with boundary conditions (1.5) and initial conditions x(0) = x0 and ρ(·, 0) =
ρ0. The control and state spaces are

U := L∞(0, T ;R2)M ,

Y := W 2,1
p (Q) × (L∞(0, T ;W 2,p

ND (Ω)) ∩ W 1,p(0, T ;W 1,p(Ω))) × W 1,s(0, T ;R2)M

with 1/s = 1/2+1/p. Later, the operator S is referred to as control-to-state operator.
We conclude this sectionwith an auxiliary result required later to show the existence

of global solutions to an optimal control problem.

Lemma 3.9 The operator S : U → Y is weakly sequentially continuous.

Proof Given a weakly convergent sequence (un)n∈N ⊂ U with un⇀u one has to
show that the corresponding states (ρn, φn, xn) = S(un) converge weakly in Y to
(ρ, φ, x) = S(u). This follows from the same arguments as those in step 3 of the
proof of Theorem 3.8, together with the uniqueness of solutions.

123



Applied Mathematics & Optimization (2023) 88 :87 Page 23 of 44 87

4 The Linearized System

In order to prove necessary optimality conditions for the optimal control problems
introduced later, we investigate the differentiability of the control-to-state operator S.
The desired results follow from the implicit function theorem applied to the equation
e( y, u) = 0with y = S(u) = (ρ, φ, x). Here, e corresponds to the strong formulation
of our forward system (1.9a)–(1.9c), more precisely, there holds

e : Y × U → Z

with

Z = L p(QT ) × W 1−1/p,1/2−1/(2p)
p (ΣW) × W 2(1−1/p),p(Ω)

×(L∞(0, T ; L p(Ω)) ∩ W 1,p(0, T ;W 1,p(Ω)∗)) × W 1,s(0, T ;R2)M

defined by

e1( y, u) := ∂tρ − ε Δρ − ∇ · (ρ β( y))

e2( y, u) := (ε∇ρ + ρ β( y)) · n + χ∂ΩO η ρ

e3( y, u) := ρ(0) − ρ0 (4.1)

e4( y, u) := −δ1 Δφ + |∇φ|2 − 1

f (ρ)2 + δ2

e5,i ( y, u)(t) := xi (t) − xi,0 −
∫ t

0
f (ρ(s, xi (s))) ui (s) ds, i = 1, . . . , M .

Notice that from here on we write β( y) in place of β(ρ, φ, x). Recall that p ∈ (2, 4)
is a fixed number and the integrability index s of the space of agent trajectories is
chosen such that 1

s = 1
2 + 1

p .

Lemma 4.1 Let y = (ρ, φ, x) ∈ Y and defineΦ := ∇(φ+φK (x; ·)). Then a constant
Ch > 0 exists such that

‖h(Φ)‖L∞(QT ) + ‖h(Φ)‖L∞(0,T ;W 1,p(Ω)) + ‖∂t h(Φ)‖L p(QT ) ≤ Ch

‖Dkh(Φ)‖L∞(QT ) + ‖Dkh(Φ)‖L∞(0,T ;W 1,p(Ω)) ≤ Ch, k = 1, 2.

Note that
Dh( y) = χ{| y|≤1},ε id

is a smoothed characteristic function. Moreover, the functions h and Dkh, k =
1, 2, are Lipschitz continuous. In particular, for any two vector fields Φ1, Φ2 ∈
L∞(0, T ;W 1,p(Ω)) there holds

‖∇ · (Dh(Φ1) − Dh(Φ2))‖L∞(0,T ;L p(QT ))

≤ Ch(1 + ‖DΦ1‖L∞(QT ))‖DΦ1 − DΦ2‖L∞(0,T ;L p(Ω)). (4.2)
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Proof The result follows directly from the regularity properties of h.

To shorten the notation we also introduce the following constants,

Cρ := ‖ρ‖W 2,1
p (QT )

, Cφ := ‖φ‖L∞(0,T ;W 2,p(Ω)) + ‖φ‖W 1,p(0,T ;W 1,p(Ω)),

Cx := ‖x‖W 1,s (0,T ), (4.3)

whose boundedness is guaranteed due to assumptions (A4), (K1), (K2) and (C1).
We confirm the assumptions of the implicit function theorem in the following

lemmas.

Lemma 4.2 The operator e : Y × U → Z is continuously Fréchet differentiable.

Proof We start with equation e1. Again, we write the nonlinear term in the form

ρ β( y) = g(ρ) h(Φ) with Φ = ∇(φ + φK (x; ·)).

For given (ρ, φ, x) ∈ Y and (ρ̃, ˜φ, x̃) ∈ Y , Taylor’s formula with integral remainder
yields

e1(ρ + ρ̃, φ, x; u) − e1(ρ, φ, x; u)

= ∂t ρ̃ − εΔρ̃ − ∇ · (g′(ρ) ρ̃ h(Φ)) −
∫ 1

0
∇ · [(g′(ρ + s ρ̃) − g′(ρ)) ρ̃ h(Φ)] ds,

e1(ρ, φ + ˜φ, x; u) − e1(ρ, φ, x; u)

= −∇ · (g(ρ) Dh(Φ)∇˜φ) −
∫ 1

0
∇ · [g(ρ)(Dh(˜Φφ) − Dh(Φ))∇˜φ] ds,

e1(ρ, φ, x + x̃; u) − e1(ρ, φ, x; u)

= ∇ · (g(ρ) Dh(Φ)∇2K (· − xi ) x̃i )

+
∫ 1

0
∇ · (g(ρ)[Dh(˜Φx)∇2K (· − xi − s x̃i ) − Dh(Φ)∇2K (· − xi )]̃xi ) ds,

for x̃ = (0, . . . 0, x̃i , 0, . . . 0)T, i = 1, . . . , M .
In the above equations we used the notation ˜Φφ = ∇(φ + s ˜φ + φK (x; ·)) and

˜Φx = ∇(φ + φK (x + s x̃; ·)). In the following we derive bounds for the remainder
terms (the terms depending nonlinearly on ρ̃, ˜φ and x̃ in the above equations), which
we denote by r1,ρ(ρ̃), r1,φ(˜φ) and r1,xi (̃x), i = 1, . . . , M .

First, we apply the product rule, the Hölder inequality and the embedding
W 2,1

p (QT ) ↪→ L∞(QT ), where we denote by C∞ the maximum of the embedding
constant and 1. These arguments yield

‖r1,ρ(ρ̃)‖L p(QT )

≤
∫ 1

0

(

[‖(g′′(ρ + s ρ̃) − g′′(ρ))‖L∞(QT )‖∇ρ‖L p(QT )
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+ s ‖g′′(ρ + s ρ̃)‖L∞(QT )‖∇ρ̃‖L p(QT )] · ‖ρ̃‖L∞(QT )‖h(Φ)‖L∞(QT )

+ ‖g′(ρ + s ρ̃) − g′(ρ)‖L∞(QT )

· (‖∇ρ̃‖L p(QT ) ‖h(Φ)‖L∞(QT ) + ‖ρ̃‖L∞(QT )‖∇ · h(Φ)‖L p(QT ))
)

ds

≤ Cg Ch(Cρ + 3C∞) ‖ρ̃‖2
W 2,1

p (QT )
= o(‖ρ̃‖W 2,1

p (QT )
). (4.4)

Second, to show differentiability with respect to φ we confirm

r1,φ(˜φ) =
∫ 1

0

[

g′(ρ)∇ρ(Dh(˜Φφ) − Dh(Φ))∇˜φ

+ g(ρ)(s ∇ · (Dh(˜Φφ) − Dh(Φ)) · ∇˜φ + (Dh(˜Φφ) − Dh(Φ)) : ∇2
˜φ)

]

ds.

With theHölder inequality, the Lipschitz properties of Dh and D2h, in particular (4.2),
and the usual embeddings we can show

‖r1,φ(˜φ)‖L p(QT ) ≤ Cg Ch C∞ (Cρ + 2) ‖˜φ‖2L∞(0,T ;W 2,p(Ω))

= O(‖˜φ‖L∞(0,T ;W 2,p(Ω))).

Third, we derive an estimate for r1,xi (̃x) with x̃ = (0, . . . , 0, x̃i , 0, . . . , 0). We use
the notation φK = φK (x; ·) and ˜φK = φK (x + s x̃; ·) as well as Ki = K (· − xi ) and
˜Ki = K (· − xi − s x̃i ), reformulate the remainder term by applying the product and
chain rule and obtain

r1,xi (̃xi )

≤
∫ 1

0

(

|g′(ρ)∇ρ| (|Dh(˜Φx)| |∇2Ki − ∇2
˜Ki | + |Dh(˜Φx) − Dh(Φ)| |∇2Ki |)

+ g(ρ)
[

|∇ · Dh(˜Φx)| |∇2
˜Ki − ∇2Ki | + |Dh(˜Φ)||∇3

˜Ki − ∇3Ki |
+ |∇3Ki | |Dh(˜Φx) − Dh(Φ)| + |∇2Ki | |∇ · (Dh(˜Φx) − Dh(Φ))|

])

|̃xi | ds.

Here, |·| is an arbitrary vector, matrix or tensor norm, depending on the argument.
With theHölder inequality, the regularity of (ρ, φ, x), in particular ρ ∈ W 2,1

p (QT ) ↪→
L∞(0, T ;W 1,p(Ω)) ∩ L p(0, T ;W 1,∞(Ω)), and the Lipschitz properties of h and K
we deduce

‖r1,xi (̃x)‖L p(QT ) ≤ Cg (Cρ + 4)Ch CφK 2 (1 + CφK )‖x̃i‖2L∞(0,T ;R2)

= o(‖x̃i‖L∞(0,T ;R2)).

The differentiability of e2 can be shownwith similar arguments. The Taylor formula
yields

e2(ρ + ρ̃, φ, x; u) − e2(ρ, φ, x; u)
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= (ε∇ρ̃ + ρ̃ β( y)) · n + χ∂ΩO η ρ̃

+ g′(ρ) ρ̃ h(Φ) · n +
∫ 1

0
(g′(ρ + s ρ̃) − g′(ρ)) ρ̃ h(Φ) · n ds,

e2(ρ, φ + ˜φ, x; u) − e2(ρ, φ, x; u)

= g(ρ) Dh(Φ)∇˜φ · n +
∫ 1

0
g(ρ)(Dh(˜Φφ) − Dh(Φ))∇˜φ · n ds,

e2(ρ, φ, x + x̃; u) − e2(ρ, φ, x; u)

= −g(ρ) Dh(Φ)∇2K (· − xi ) x̃i · n

−
∫ 1

0
g(ρ)(Dh(˜Φx)∇2K (· − xi − s x̃i ) − Dh(Φ)∇2K (· − xi )) x̃i · n ds,

and it remains to estimate the remainder terms, i. e., the last terms on the right-hand
sides of the previous equations. We abbreviate these terms by r2,ρ(ρ̃) · n, r2,φ(˜φ) · n
and r2,x (̃x) · n, respectively.

First, we show ‖r2,ρ(ρ̃) · n‖
W 1−1/p,1/2−1/(2p)

p (ΣT )
= o(‖ρ̃‖W 2,1

p (QT )
). We wish to

apply the trace Lemma 2.3, for which we have to show the required time and space
regularity of the extension onto QT . First, note that there holds

‖r2,ρ(ρ̃)‖L p(0,T ;W 1,p(Ω)) = o(‖ρ̃‖W 2,1
p (QT )

), (4.5)

which can be concluded from the same arguments as in (4.4). Moreover, for the time
derivative we show

∂t r2,ρ(ρ̃) =
∫ 1

0

(

[(g′′(ρ + sρ̃) − g′′(ρ)) ∂tρ + s g′′(ρ + sρ̃) ∂t ρ̃]ρ̃ h(Φ)

+ (g′(ρ + s ρ̃) − g′(ρ)) (∂t ρ̃ h(Φ) + ρ̃ ∂t h(Φ))
)

ds

and with the usual arguments we obtain for s−1 = 2−1 + p−1

‖r2,ρ(ρ̃)‖W 1,s (0,T ;L p(Ω)) ≤ C∞ Cg Ch (3 + Cρ) ‖ρ̃‖2
W 2,1

p (QT )
= o(‖ρ̃‖W 2,1

p (QT )
).

(4.6)
With the estimates (4.5) and (4.6), the embedding

L p(0, T ;W 1,p(Ω)) ∩ W 1,s(0, T ; L p(Ω)) ↪→ W 1,1/2
p (QT ) (4.7)

and the trace Lemma 2.3 we deduce

‖r2,ρ(ρ̃) · n‖
W 1−1/p,1/2−1/(2p)

p (ΣT )
= o(‖ρ̃‖W 2,1

p (QT )
),

which implies the differentiability of e2 with respect to ρ.
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To show an estimate for r2,φ(˜φ) ·n we proceed in a similar fashion. With analogous
arguments we deduce the estimates

‖∂xi r2,φ(˜φ)‖L p(QT ) ≤ C ‖∇˜φ‖2L∞(0,T ;W 1,p(Ω))
,

‖∂t r2,φ(˜φ)‖Ls (0,T ;L p(QT )) ≤ C
(

Cρ ‖∇˜φ‖2L∞(QT ) + ‖∂t∇˜φ‖L p(QT ) ‖∇˜φ‖L∞(QT )

)

and exploit again (4.7) to arrive at

‖r2,φ(˜φ)‖
W 1−1/p,1/2−1/(2p)

p (ΣT )
= O(‖˜φ‖L∞(0,T ;W 2,p(Ω)) + ‖˜φ‖W 1,p(0,T ;W 1,p(Ω))),

which confirms the differentiability of e2 w.r.t. φ.
An analogous procedure is used to deduce an estimate for the remainder term

r2,x (̃x) · n. For each direction x̃ = (0, . . . 0, x̃i , 0, . . . 0)T, i = 1, . . . , M , a direct cal-
culation taking into account Lemma 4.1 and the Lipschitz continuity of the derivatives
of K and h yields

‖∂xi r2,x (̃x)‖L p(QT ) ≤ C ‖x̃i‖2L∞(0,T ;R2)
,

‖∂t r2,x (̃x)‖Ls (0,T ;L p(Ω)) ≤ C ‖x̃i‖2W 1,s (0,T ;R2)
.

Using again (4.7) and the trace Lemma 2.3 leads to

‖r2,xi (̃x) · n‖
W 1−1/p,1/2−1/(2p)

p (ΣT )
= O(‖x̃i‖W 1,s (0,T ;R2)),

which proves the differentiability of e2 w.r.t. x.
The component e3 is trivially differentiable. For e4 we show

e4(ρ + ρ̃, φ, x) − e4(ρ, φ, x)

= 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
ρ̃ +

∫ 1

0

(

2 f (ρ + sρ̃) f ′(ρ + sρ̃)

( f (ρ + sρ̃)2 + δ2)2
− 2 f (ρ) f ′(ρ)

( f (ρ)2 + δ2)2

)

ρ̃ ds,

e4(ρ, φ + ˜φ, x) − e4(ρ, φ, x)

= δ1Δ˜φ + 2∇φT∇˜φ + |∇˜φ|2.

Again, we denote the remainder terms (the terms which are nonlinear in ρ̃ and ˜φ) by
r4,ρ(ρ̃) and r4,φ(˜φ). We show

‖r4,φ(˜φ)‖L∞(0,T ;L p(Ω)) ≤ C‖∇˜φ‖2L∞(QT ) ≤ C‖˜φ‖2L∞(0,T ;W 2,p(Ω))
,

‖∂t r4,φ(˜φ)‖L p(0,T ;W 1,p(Ω)∗) ≤ C‖∇˜φ‖L∞(0,T ;W 1,p(Ω)) ‖∂t∇˜φ‖L p(QT ).

and both estimates together imply

‖r4,φ(˜φ)‖Z4 = O(‖˜φ‖Y2).
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With similar arguments we can show the differentiability of e4 with respect to ρ.
Finally we consider e5, which is nonlinear in ρ and xi . We confirm by a simple

computation that

e5(ρ + ρ̃, φ, x; u; t) − e5(ρ, φ, x; u; t)
=

∫ t

0
f ′(ρ(τ, xi (τ ))) ρ̃(τ, xi (τ )) ui (τ ) dτ

+
∫ 1

0

∫ t

0
( f ′((ρ + s ρ̃)(τ, xi (τ ))) − f ′(ρ(τ, xi (τ ))))ρ̃(τ, xi (τ )) ui (τ ) dτ ds,

e5(ρ, φ, x + x̃; u; t) − e5(ρ, φ, x; u; t)
= x̃i (t) −

∫ t

0
f ′(ρ(τ, xi (τ )))∇ρ(τ, xi (τ )) · x̃i (τ ) ui (τ ) dτ

−
∫ 1

0

∫ t

0

(

f ′(ρ(τ, (xi + s x̃i )(τ )))∇ρ(τ, (xi + s x̃i )(τ ))

− f ′(ρ(τ, xi (τ )))∇ρ(τ, xi (τ ))
)

· x̃i (τ ) ui (τ ) dτ ds

for x̃ = (0 . . . x̃i . . . 0)T, i = 1, . . . , M . Again, the remainder terms (the terms depend-
ing nonlinearly on ρ̃ and x̃ in the above equation) are denoted by r5,ρ(ρ̃) and r5,x (̃x).

Using the Lipschitz continuity of f ′, assumption (C1) and ‖ρ‖L∞(R2) ≤ ‖ρ‖L∞(Ω)

(see Lemma 2.4), we obtain

|r5,ρ(ρ̃; t)| ≤ C f C
2
E,∞ ‖ρ̃‖2L2(0,T ;L∞(Ω))

= o(‖ρ̃‖W 2,1
p (QT )

). (4.8)

With similar arguments and the Hölder inequality with 1/s > 2/p we deduce for the
temporal derivative of r5,ρ

‖∂t r5,ρ(ρ̃)‖Ls (0,T ;R2)

≤
∫ 1

0
‖( f ′((ρ + sρ̃)(·, xi (·))) − f ′(ρ(·, xi (·)))) ρ̃(·, xi (·)) ui (·)‖Ls (0,T ;R2) ds

≤ C f ‖ρ̃‖2L p(0,T ;L∞(R2))
≤ C f C

2
E,∞ ‖ρ̃‖2L p(0,T ;L∞(Ω)) = o(‖ρ̃‖W 2,1

p (QT )
).

For the remainder term r5,x (̃x) with x̃ = (0, . . . 0, x̃i , 0, . . . 0)T we show

|r5,x (̃x; t)|
≤ ‖x̃i‖L∞(0,T ;R2)·

·
∫ 1

0

∫ t

0

(

| f ′(ρ(τ, (xi + s x̃i )(t))) − f ′(ρ(τ, xi (t)))||∇ρ(τ, (xi + s x̃i )(τ ))|

+ | f ′(ρ(τ, xi (τ )))||∇ρ(τ, (xi + s x̃i )(τ )) − ∇ρ(τ, xi (τ ))|
)

dτ ds. (4.9)
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Using Lipschitz estimates for f ′ and the mean value theorem we conclude

| f ′(ρ(τ, (xi + s x̃i )(τ ))) − f ′(ρ(τ, xi (τ )))| ≤ C f Lip(ρ(τ, ·)) |̃xi (τ )|
≤ C f CE ‖ρ(τ, ·)‖W 2,p(Ω) |̃xi (τ )|,

(4.10)

|∇ρ(τ, (xi + s x̃i )(τ )) − ∇ρ(τ, xi (τ ))| ≤ ‖∇ρ(τ, ·)‖C0,α(R2) |̃xi (τ )|α
≤ CE ‖ρ(τ, ·)‖W 2,p(Ω) |̃xi (τ )|α.

(4.11)

In the above estimates we used ‖ρ‖C0,1(R2) ≤ ‖ρ‖C1,α(Ω), the continuity of
E : C1,α(Ω) → C1,α(R2), see Lemma 2.4, and the embedding W 2,p(Ω) ↪→
C1,α(Ω), which is valid for α ∈ (0, 1/2] due to p > 2.

The insertion of (4.10) and (4.11) into (4.9) yields

|r5,x (̃x; t)| ≤ CE C f Cρ max{t1−2/p, t1−1/p}
(

Cρ ‖x̃i‖2L∞(0,T ;R2)
+ ‖x̃i‖1+α

L∞(0,T ;R2)

)

= o(‖x̃i‖L∞(0,T ;R2)).

The above also uses an application of the Hölder inequality in time and 2/p < 1.
Finally, the Hölder inequality in time with 1/s = 1/2 + 1/p yields the estimate

‖∂t r5,x (̃x)‖Ls (0,T ;R2)

≤ C f

(

‖ρ(·, (xi + s x̃i )(·)) − ρ(·, xi (·))‖L2(0,T ) ‖∇ρ(·, (xi + s x̃i )(·))‖L p(0,T )

+ ‖ρ(τ, xi (τ ))‖L2(0,T )‖∇ρ(·, (xi + s x̃i )(·))
− ∇ρ(·, xi (·))‖L p(0,T )

)

‖x̃i‖L∞(0,T ;R2)

= o(‖x̃i‖L∞(0,T ;R2)),

where the last step follows again from (4.10) and (4.11). This confirms the partial
differentiability of e5.

Collecting the previous estimates proves the partial Fréchet differentiability of the
operator e. Based on the properties of f , h and φK using again Lipschitz continuity
and boundedness, the operators ∂ρe, ∂φe and ∂xi e depend continuously on (ρ, φ, x),
which implies the continuous Fréchet differentiability. ��

Next, we show that the operator ∂ ye( y, u) is invertible.
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Lemma 4.3 The operator ∂ ye( y; u) is bijective. That is, given y = (ρ, φ, x) ∈ Y and
F = (F1, . . . , F5)T ∈ Z , the system ∂ ye( y, u) ỹ = F given by

∂t ρ̃ − ε Δρ̃ − ∇ · (ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ) = F1 in QT ,

(ε ∇ρ̃ + ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ) · n + χ∂ΩO η ρ̃ = F2 on ΣT ,

ρ̃(0) = F3 in Ω,

−δ1 Δ˜φ + 2∇φT∇˜φ + 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
ρ̃ = F4 in QT ,

x̃i (t) −
∫ t

0
f ′(ρ(s, xi (s)))(∇ρ(s, xi (s))

T x̃i (s) + ρ̃(s, xi (s)))ui (s) ds = F5,i (t),

(4.12)
for t ∈ (0, T ) and i = 1, . . . , M, possesses a unique solution ỹ = (ρ̃, ˜φ, x̃) ∈ Y .

Proof The strategy of the proof is to apply Banach’s fixed point theorem to the linear
system (4.12) to avoid technicalities that arise from the fact that x̃(t) depends on ρ̃

non-locally in time. To this end, we introduce three solution operators.
First, there is Fρ : Y → W 2,1

p (QT ) which maps ỹ = (ρ̃, ˜φ, x̃) to ρ̂ ∈ W 2,1
p (QT ),

which is defined as the solution to

∂t ρ̂ − εΔρ̂ − ∇ · (ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ) = F1 in QT ,

(ε∇ρ̂ + ρ̃ β( y) + ρ
∂β(̃ y)
∂ y

) · n + χ∂ΩO η ρ̃ = F2 on ΣW,

ρ̂(0) = F3 in Ω.

(4.13)

Second, we define the operator

Fφ : W 2,1
p (QT ) → L∞(0, T ;W 2,p

ND (Ω)) ∩ H1(0, T ; H1(Ω)),

which maps ρ̃ to the solution ˜φ of

− δ1Δ˜φ + 2∇φT∇˜φ + 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
ρ̃ = F4 in QT , (4.14)

together with the boundary conditions (1.5) (these are incorporated in the function
space).

Third, we introduce Fx : W 2,1
p (QT ) → W 1,∞([0, T ];Rn)M mapping ρ̃ to the

solution x̃ = (̃x1, . . . , x̃M )T of

x̃i (t) =
∫ t

0
f ′(ρ(s, xi (s)))(∇ρ(s, xi (s))

T x̃i (s) + ρ̃(s, xi (s)))ui (s) ds + F5,i (t),

for i = 1, . . . , M .
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The idea of the proof is to applyBanach’s fixedpoint theorem in the spaceW 2,1
p (QT )

to the operator

ρ̂ = F(ρ̃) := Fρ(ρ̃, Fφ(ρ̃), Fx(ρ̃)). (4.15)

As the operator F is affine, it suffices to show the boundedness of the linear part of F
by a constant smaller than 1, which will imply that F(ρ̃) is a contraction.

Step 1: Estimate for Fφ . Due to φ(t) ∈ W 2,p(Ω) ↪→ W 1,∞(Ω) for p > 2 and
a.a. t ∈ (0, T ), we confirm that ∇φ ∈ L∞(QT ) holds. Moreover, taking into account
f ∈ W 1,∞(R) and ρ ∈ W 2,p(QT ) ↪→ L∞(QT ), we get

‖ 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
ρ̃‖L∞(0,T ;L p(Ω)) ≤ 2C f Cρ δ−2

2 ‖ρ̃‖L∞(0,T ;L p(Ω)).

From Thm. 3.17 in [49], see also Prop. 2 in [41] for an application to the linearized
Eikonal equation, we then deduce that the problem (4.14) possesses for a.a. t ∈ (0, T )

a unique solution ˜φ(t) ∈ W 2,p
ND (Ω), which fulfills the inequality

‖˜φ‖L∞(0,T ;W 2,p(Ω)) ≤ C(‖ρ̃‖L∞(0,T ;L p(Ω)) + ‖F4‖L∞(0,T ;L p(Ω))). (4.16)

Furthermore, formal differentiation of (4.14) with respect to time and exploiting
∂t F4 ∈ L p(0, T ;W 1,p(Ω)∗) yields

‖∂t˜φ‖L p(0,T ;W 1,p(Ω))

≤ C (‖ρ̃‖W 2,1
p (QT )

+ ‖F4‖L∞(0,T ;L p(Ω)) + ‖∂t F4‖L p(0,T ;W 1,p(Ω)∗)).

(4.17)

In the second estimate C may depend on T , via norms of ∂tφ, ∂tρ, etc.. Since this
implies that C is decreasing when T is decreasing, this does not affect the contraction
argument.

Step 2: Estimate for Fx .Next,we show theboundedness of the solutionoperator Fx .
To this end, we define Cρ(t) := ‖ρ(t, ·)‖W 2,p(Ω) and deduce from the last equation
in (4.12), using the Hölder inequality with 1/p + 1/q = 1 and the continuity of
E : W 2,p(Ω) ↪→ C1,α(Ω) → C1,α(R2), see Lemma 2.4:

|̃xi (t)| ≤
∫ t

0
| f ′(ρ(s, xi (s)))

(

∇ρ(s, xi (s))
T x̃i (s) + ρ̃(s, xi (s))

)

ui (s)| ds + |F5,i (t)|

≤ C f CE C∞(

∫ t

0
Cρ(s) |̃xi (s)| ds + t1/q ‖ρ̃‖W 2,1

p (Qt )
) + ‖F5,i‖L∞(0,t).

Due to the Gronwall inequality we obtain

|̃xi (t)| ≤ (

C f CE C∞t1/q ‖ρ̃‖W 2,1
p (QT )

+ ‖F5,i‖L∞(0,t)
)

exp(C f CE C∞
∫ t

0
Cρ(s) ds).
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We can further estimate
∫ t
0 Cρ(s) ds ≤ t1/q ‖ρ‖W 2,1

p (Qt )
. The constants depending

only on input data and the linearization point ρ are shifted into the generic constants
c,C , which depend on T in monotonically decreasing way only. This implies

‖x̃i‖L∞(0,T ) ≤ C ec T
1/q

(T 1/q ‖ρ̃‖W 2,1
p (QT )

+ ‖F5,i‖L∞(0,T )). (4.18)

From now on we will choose T > 0 sufficiently small such that C T 1/q ecT
1/q

< 1.
Furthermore, we can show Ls-regularity for the time derivative of x̃i . From the

classical formulation of the ODE and the usual Hölder arguments we deduce

| ˙̃xi (t)| = | f ′(ρ(t, xi (t)))(∇ρ(t, xi (t))
T x̃i (t) + ρ̃(t, xi (t)))ui (t) + Ḟ5(t)|

≤ C f CE(Cρ(t) |̃xi (t)| + Cρ̃ (t)) + |Ḟ5,i (t)|

for a.a. t ∈ [0, T ]. Taking the Ls(0, T ;R2)-norm yields, after insertion of the estimate
(4.18) and an application of the Hölder inequality with 1/s = 1/2 + 1/p,

‖x̃i‖W 1,s (0,T ;R2) ≤ C f CE T
1/2(‖ρ‖W 2,1

p (QT )
‖x̃i‖L∞(0,T ;R2) + ‖ρ̃‖W 2,1

p (QT )
)

+ ‖F5,i‖W 1,s (0,T ;R2)

≤ C T 1/2 ‖ρ̃‖W 2,1
p (QT )

+ (1 + C ec T
1/q

)‖F5,i‖W 1,s (0,T ;R2). (4.19)

Step 3: Estimate for Fρ : Next, we consider the solution operator of (4.13). By
Lemma 3.2 we have the a priori estimate

‖ρ̂‖W 2,1
p (QT )

≤ C

[

‖F1‖L p(QT ) + ‖F2‖W 1−1/p,1/2−1/(2p)
p (ΣW)

+ ‖F3‖W 2(1−1/p),p(Ω)

+ ‖∇ · (ρ̃ β( y) + ρ
∂β( y)

∂ y
ỹ)‖L p(QT )

+ ‖(ρ̃ β( y) + ρ
∂β( y)

∂ y
ỹ) · n + χ∂ΩO η ρ̃‖

W 1−1/p,1/2−1/(2p)
p (ΣT )

]

. (4.20)

It remains to discuss the last two terms on the right-hand side. First, we confirm with
the product rule, the Hölder inequality and Lemma 4.1 that the estimate

‖∇ · (ρ̃ β( y))‖L p(QT ) ≤ Ch T
1/p(‖∇ρ̃ f (ρ) + ρ̃ f ′(ρ) ∇ρ‖L∞(0,T ;L p(Ω)) + ‖ρ̃ f (ρ)‖L∞(QT ))

≤ C T 1/p ‖ρ̃‖W 2,1
p (QT )

(4.21)

holds. Note that we also exploited regularity results for the linearization point, more
precisely, f (ρ), ρ ∈ W 2,1

p (QT ) ↪→ L∞(0, T ;W 1,p(Ω)) ↪→ L∞(QT ) (see (2.4)),
φ ∈ L∞(0, T ;W 2,p(Ω)), and the assumptions on f , h and φK .
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Next, we show an estimate for the term involving ρ
∂β( y)
∂ y ỹ and we study all partial

derivatives of β separately. For the derivative with respect to ρ we get

‖∇ · (ρ
∂β( y)

∂ρ
ρ̃)‖L p(QT )

= ‖∇ · (ρ f ′(ρ) ρ̃ h(Φ))‖L p(QT )

≤ Ch(‖ρ̃ ∇ρ ( f ′(ρ) + ρ f ′′(ρ)) + ρ ∇ρ̃ f ′(ρ)‖L p(QT )

+)‖ρ f ′(ρ) ρ̃‖L p(0,T ;L∞(Ω))

≤ C T 1/p‖ρ̃‖W 2,1
p (QT )

, (4.22)

where the last step follows from the Hölder inequality, f ∈ W 2,∞(R), Lemma 4.1
and the embedding W 2,1

p (QT ) ↪→ L∞(0, T ;W 1,p(Ω)) ↪→ L∞(QT ), taking into
account the regularity of the linearization point (ρ, φ, x).

For the terms involving ∂β
∂φ

we first confirm by a simple computation

∂h(Φ)

∂φ
˜φ = Dh(Φ)∇˜φ.

This implies with the product rule

‖∇ · (ρ
∂β( y)
∂φ

˜φ)‖L p(QT )

≤ ‖g′(ρ)∇ρ · (Dh(Φ)∇˜φ) + g(ρ)∇ · (Dh(Φ)∇˜φ)‖L p(QT ) (4.23)

with g(ρ) := ρ f (ρ) and g′(ρ) = ρ f ′(ρ) + f (ρ). Due to ˜φ ∈ L∞(0, T ;W 2,p(Ω))

and thus,∇˜φ ∈ L∞(0, T ;W 1,p(Ω)) ↪→ L∞(QT ), aswell as∇ρ ∈ L∞(0, T ; L p(Ω))

and Lemma 4.1, we get for the first term on the right-hand side of (4.23)

‖g′(ρ)∇ρ · (Dh(Φ)∇˜φ)‖L p(QT )

≤ T 1/p Cg Ch ‖∇ρ‖L∞(0,T ;L p(Ω))‖∇˜φ‖L∞(QT ) ≤ C T 1/p ‖˜φ‖L∞(0,T ;W 2,p(Ω)).

To bound the second term in (4.23), we insert the identity

∇ · (Dh(Φ)∇˜φ) = (∇ · Dh(Φ)) · ∇˜φ + Dh(Φ) : ∇2
˜φ

and obtain, together with the bounds for Dh, from Lemma 4.1

‖g(ρ)∇ · (Dh(Φ)∇˜φ)‖L p(QT )

≤ Cg Ch T
1/p (‖∇˜φ‖L∞(QT ) + ‖∇2

˜φ‖L∞(0,T ;L p(Ω)))

≤ C T 1/p ‖˜φ‖L∞(0,T ;W 2,p(Ω)).
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Insertion of the two previous estimates into (4.23) then yields

‖∇ · (ρ
∂β( y)
∂φ

˜φ)‖L p(QT ) ≤ C T 1/p ‖˜φ‖L∞(0,T ;W 2,p(Ω)). (4.24)

The derivative with respect to xi , i = 1, . . . , M , is handled using the chain rule,
Lemma 4.1 and assumption (K2), leading to

‖∇ · (ρ
∂β( y)
∂xi

x̃i )‖L p(QT ) = ‖∇ · (g(ρ) Dh(Φ)∇2K (· − xi ) x̃i )‖L p(QT )

≤ C T 1/p ‖x̃i‖L∞(0,T ;R2). (4.25)

The estimates (4.21), (4.22), (4.24) and (4.25) give an estimate for the fourth term in
(4.20), namely

‖∇ · (ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ)‖L p(QT ) ≤ C T 1/p ‖ ỹ‖Y . (4.26)

It remains to show the boundedness of the fifth term in (4.20) and we apply a trace
theorem as in the proof of Lemma 4.2, see (4.7). This requires us to show appropriate
bounds in the L p(0, T ;W 1,p(Ω))- and W 1,s(0, T ; L p(Ω))-norms.

First, when replacing ∇· by an arbitrary partial derivative ∂x j in the previous con-
siderations, we get analogously to (4.26)

‖ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ‖L p(0,T ;W 1,p(Ω)) ≤ C T 1/p ‖ ỹ‖Y . (4.27)

Furthermore, we study the temporal derivative of the expressions occurring in the fifth
term of (4.20). The Hölder inequality and Lemma 4.1 yield

‖∂t (ρ̃ β( y))‖Ls (0,T ;L p(Ω))

≤ T 1/2 ‖∂t (ρ̃ f (ρ) h(Φ))‖L p(QT )

≤ C f Ch T
1/2(‖∂t ρ̃‖L p(QT ) + ‖ρ̃‖L∞(QT ) (‖∂tρ‖L p(QT ) + 1))

≤ C f Ch C∞ (Cρ + 1) T 1/2 ‖ρ̃‖W 2,1
p (QT )

.

For the term involving ∂β( y)
∂ρ

ρ̃ we get

∥

∥

∥

∥

∂t (ρ
∂β( y)

∂ρ
ρ̃)

∥

∥

∥

∥

Ls (0,T ;L p(Ω))

≤ T 1/2 ‖∂t (ρ f ′(ρ) ρ̃ h(Φ))‖L p(QT )

≤ C f Ch T
1/2 (2 ‖∂tρ‖L p(QT ) ‖ρ̃‖L∞(QT )

+)‖ρ‖L∞(QT ) (‖∂t ρ̃‖L p(QT ) + ‖ρ̃‖L∞(QT ))

≤ C f Ch Cρ C∞ T 1/2 ‖ρ̃‖W 2,1
p (QT )

.

123



Applied Mathematics & Optimization (2023) 88 :87 Page 35 of 44 87

For the term depending on ∂β( y)
∂φ

˜φ we obtain

∥

∥

∥

∥

∂t (ρ
∂β( y)
∂φ

˜φ)

∥

∥

∥

∥

Ls (0,T ;L p(Ω))

≤ T 1/2 ‖∂t (g(ρ) Dh(Φ)∇˜φ)‖L p(QT )

≤ Cg Ch T
1/2 ((‖∂tρ‖L p(QT ) + 1)‖∇˜φ‖L∞(QT ) + ‖∂t∇˜φ‖L p(QT ))

≤ Cg Ch(2 + Cρ) T 1/2 (‖˜φ‖L∞(0,T ;W 2,p(Ω)) + ‖∂t˜φ‖L p(0,T ;W 1,p(Ω))).

Finally, for the derivative with respect to xi we derive

∥

∥

∥

∥

∂t (ρ
∂β( y)
∂xi

x̃i )

∥

∥

∥

∥

Ls (0,T ;L p(Ω))

= ‖∂t (g(ρ) Dh(Φ)∇2K (· − xi ) x̃i )‖Ls (0,T ;L p(Ω))

≤ Cg Ch CK Cx((Cρ + 1) T 1/2 ‖x̃i‖L∞(0,T ;R2) + 2 ‖x̃i‖W 1,s (0,T ;R2)).

The previous four estimates and an embedding yield the desired property

∥

∥

∥

∥

ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ

∥

∥

∥

∥

W 1/2,p(0,T ;L p(Ω))

≤ C

∥

∥

∥

∥

ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ

∥

∥

∥

∥

W 1,s (0,T ;L p(Ω))

≤ C T 1/2(‖ρ̃‖Y1 + ‖˜φ‖Y2) + C ‖x̃‖Y3 .

(4.28)

Next, we may combine the estimates (4.28) and (4.27) and apply the trace
Lemma 2.3 to arrive at

∥

∥

∥

∥

(ρ̃ β( y) + ρ
∂β( y)
∂ y

ỹ) · n + χ∂ΩO η ρ̃

∥

∥

∥

∥

W 1−1/p,1/2−1/(2p)
p (ΣT )

≤ C T 1/p(‖ρ̃‖Y1 + ‖˜φ‖Y2) + C ‖x̃‖Y3 . (4.29)

From the estimates (4.26) and (4.29) we deduce that there exists a unique solution
ρ̂ ∈ W 2,1

p (QT ) of (4.13). Moreover, together with (4.20) using p > 2, we obtain for
sufficiently small T > 0 the a priori estimate

‖ρ̂‖W 2,1
p (QT )

≤ C
(

T 1/p(‖ρ̃‖Y1 + ‖˜φ‖Y2) + ‖x̃‖Y3

+ ‖F1‖L p(QT ) + ‖F2‖W 1−1/p,1/2−1/(2p)
p (ΣW)

+ ‖F3‖W 2(1−1/p),p(Ω)

)

. (4.30)

Step 4: The fixed-point argument
Now, we can combine the estimates (4.16), (4.17), (4.19) and (4.30) to deduce the

continuity of the operator F(ρ̃) = Fρ(ρ̃, Fφ(ρ̃), Fx(ρ̃)). This gives the estimate

‖F(ρ̃)‖W 2,1
p (QT )

≤ C ‖F‖Z + C T 1/p ‖ρ̃‖W 2,1
p (QT )
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for T ≤ 1.
As F is an affine linear operator we directly conclude the contraction property

provided that T is sufficiently small. Thus, Banach’s fixed-point theorem provides the
existence of a unique solution ρ̃ ∈ W 2,1

p (QT ) which can be extended to an arbitrary
time-scale with a concatenation argument.

The regularities of the corresponding potential ˜φ and the agent trajectories x̃i ,
i = 1, . . . , M , follow from (4.16), (4.17) and (4.19).

The previous two lemmas, together with the implicit function theorem, imply the
differentiability of the control-to-state operator. The derivative in a direction ũ ∈
L∞(0, T ;R2)M can be computed by means of

e y( y, u) ỹ = −eu( y, u) ũ.

We summarize the final result in the following theorem.

Theorem 4.4 The control-to-state operator S : U → Y is Fréchet-differentiable and
ỹ = S′(u) ũ for given ũ ∈ U is characterized by the unique solution of

∂t ρ̃ − εΔρ̃

− ∇ ·
(

ρ̃ β(ρ, φ, x) + ρ

(

∂β(ρ, φ, x)

∂ρ
ρ̃ + ∂β(ρ, φ, x)

∂φ
˜φ + ∂β(ρ, φ, x)

∂x
x̃
))

= 0,

− δ1Δ˜φ + 2∇φ · ∇˜φ + 2 f (ρ) f ′(ρ)

( f 2(ρ) + δ2)2
ρ̃ = 0,

˙̃xi − f ′(ρ(·, xi ))
(∇ρ(·, xi )T x̃i + ρ̃(·, xi )

)

ui = f (ρ(·, xi )) ũi ,
(4.31)

for i = 1, . . . , M, together with the boundary conditions (1.5) and homogeneous
initial conditions

ρ̃(·, 0) = 0 and x̃i (0) = 0, i = 1, . . . , M .

5 Optimal Control Problem

In this section we come back to the optimal control problem outlined in Sect. 1.1. We
consider objective functionals of the form

J (ρ, φ, x; u) := Ψ (ρ, φ, x) + α

2 T
‖u‖2H1(0,T ;R2)M

, (5.1)

where α > 0 is a regularization parameter and the functional Ψ : Y → R fulfills the
following assumption:

(J1) The functional Ψ : Y → R is weakly lower semi-continuous and bounded from
below on {(ρ, φ, x) ∈ Y : ρ ≥ 0 a. e. in QT }.

The assumed weak lower semi-continuity is fulfilled, e. g., when Ψ is convex and
continuous. As the density part ρ of each solution of the forward model (1.9) is non-
negative it suffices to assume boundedness of Ψ on a subset only.
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We consider the following optimal control problem:

⎧

⎪

⎨

⎪

⎩

Minimize J (ρ, φ, x; u) where (ρ, φ, x; u) ∈ Y × U
subject to (ρ, φ, x) = S(u)

and u ∈ Uad.

(5.2)

The set of admissible controls is defined by

Uad := {u ∈ U |‖ui‖L∞(0,T ) ≤ 1 for i = 1, . . . , M}.

This general framework covers in particular the two applications mentioned in
Sect. 1

With standard arguments, see, e. g., Ch. 4.4 in [50], (J1) and Lemma 3.9 imply the
following existence result for (5.2).

Theorem 5.1 Let assumptions (A1)–(A4), (K1)–(K2), (C1) and (J1) hold. Then prob-
lem (5.2) possesses at least one global solution u∗ ∈ Uad.

Moreover, with the properties shown for S in Sects. 3 and 4, in particular the
Fréchet differentiability, wemay deduce the following first-order necessary optimality
condition, which is a direct consequence of the chain rule applied to the reduced
optimization problem with objective j(u) := J (S(u); u) and subject to u ∈ Uad:

Theorem 5.2 Let assumptions (A1)–(A4), (K1)–(K2), (C1) and (J1) hold. Then each
local minimizer ( y∗, u∗) ∈ Y × Uad of (5.2) fulfills

〈Ψ ′( y∗) , δ y〉Y∗×Y + α

T
(u∗ , δu)H1(0,T ) ≥ 0 for all δu ∈ TUad(u

∗),

where y∗ = S(u∗) and δ y = S′(u∗) δu and S′ is characterized by the system from
Theorem 4.4. Moreover, TUad(u

∗) denotes the tangent cone to Uad at u∗.

The optimality conditions from Theorem 5.2 can be rewritten by expressing
〈Ψ ′( y∗) , δ y〉Y∗×Y in terms of a suitably defined adjoint state. This then serves as
the starting point for gradient-based optimization methods. Such methods, as well as
appropriate discretization of the forward and adjoint systems and numerical results
will be discussed in a forthcoming publication.
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A Auxiliary Results

First we present the proof of Lemma 3.3. It is based on choosing derivatives of the
solution as test functions and a Galerkin approximation as well as the uniqueness of
weak solutions, see also Ch. III, Sect. 6 in [42].

Proof of Lemma 3.3 Existence in L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗) follows
by a standard Galerkin approximation. To this end we introduce ρN (t, x) =
∑N

i=0 di (t)ϕi (x), where (ϕi )i∈N is an orthonormal basis in H1(Ω) which is also
orthogonal w.r.t. L2(Ω). The coefficients satisfy di (0) = (ρ0 , ϕi )H1(Ω). Choosing
ρN as a test function results in

∫ T

0

d

dt

∫

Ω

(ρN )2 dt dx + ε

∫

QT

|∇ρN |2 dt dx

≤
∫

QT

|∇ρN ||g(ρN ) h| dt dx − η

∫

ΣO

(ρN )2 dt dsx

≤ ε

2

∫

QT

|∇ρN |2 dt dx + 1

2ε

∫

QT

|g(ρN ) h|2 dt dx, (A.1)

i. e.

‖ρN‖L∞(0,T ;L2(Ω)) + ‖∇ρN‖L2(QT ) ≤ C(‖h‖L2(0,T ;L2(Ω)) + ‖ρ0‖L2(Ω)), (A.2)

where we used ‖ρN (·, 0)‖L2(Ω) ≤ C ‖ρ0‖L2(Ω). This readily implies that ρN is
bounded, uniformly in N , in

L2(0, T ; H1(Ω)) ∩ H1(0, T ; H1(Ω)∗) ∩ C([0, T ]; L2(Ω)),

see, e. g., Ch. 7.1.2, Thm. 2 in [29]. A subsequent application of the Aubin-Lions
Lemma (Thm. II.5.16 in [10]), ensures the convergence of ρN strongly in L2(QT ) to
ρ and thus the convergence of the nonlinear term

∫

QT

g(ρN ) h · ∇ξ dt dx →
∫

QT

g(ρ) h · ∇ξ dt dx
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as N → ∞ which follows by dominated convergence, noting that g(ρN ) h · ∇ξ is
uniformly bounded in L1(0, T ; L1(Ω)). Hence the limit satisfies theweak formulation
(3.10).

To show uniqueness, assume that there are two solutions ρ1 and ρ2. Testing each
equation with ρ1 − ρ2, integration w.r.t. to t , and using the Lipschitz continuity of g
together with an application of the weighted Cauchy inequality yields

1

2

∫

Ω

(ρ1(t, ·) − ρ2(t, ·))2 dx + ε

2

∫

Qt

|∇(ρ1 − ρ2)|2 dt dx

≤ 1

2ε
‖h‖L∞(0,t;L∞(Ω))

∫

Qt

(ρ1 − ρ2)
2 dt dx − η

∫

ΣD,t

(ρ1 − ρ2)
2 dt dsx

for a.a. t ∈ (0, T ). As the last term on the right-hand side is non-positive, the unique-
ness follows fromGronwall’s inequality as both ρ1 and ρ2 have the same initial datum.

To show the additional regularity, we choose, for finite N , the test function ∂tρ
N

and integrate w.r.t. time. We obtain

∫

Qt

(∂tρ
N )2 dt dx + ε

∫

Qt

∇ρN · ∇(∂tρ
N ) dt dx −

∫

Qt

g(ρN ) h · ∇(∂tρ
N ) dt dx

(A.3)

= −η

∫

ΣD,t

ρN ∂tρN dt dsx . (A.4)

For the second term on the left-hand side we have

ε

∫

Qt

∇ρN · ∇(∂tρ
N ) dt dx = ε

2

∫ t

0

d

dt

∫

Ω

|∇ρN |2 dt dx

= ε

2

∫

Ω

|∇ρN (t, ·)|2 dx − ε

2

∫

Ω

|∇ρN (0, x)|2 dx,

while for the third one, integration by parts in time together with the (weighted)
Cauchy’s inequality gives

−
∫

Qt

g(ρN ) h · ∇(∂tρ
N ) dt dx

=
∫

Qt

∂tρ
N g′(ρN ) h · ∇ρN dt dx

+
∫

Qt

g(ρN ) ∂t h · ∇ρN dt dx −
∫

Ω

|g(ρN ) h · ∇ρN dx
t
0

≤ 1

2
‖∂tρN‖2L2(0,T ;L2(Ω))

+ 1

2
(‖g′(ρN )h‖2L∞(0,T ;L∞(Ω)) + 1)‖∇ρN‖2L2(0,T ;L2(Ω))

+ ‖g(ρN ) ∂t h‖2L2(0,T ;L2(Ω))
+ ε

4
‖∇ρN (t, ·)‖2L2(Ω)

+ 1

4ε
‖g(ρN ) h‖2L∞(0,T ;L2(Ω))

+ ‖g(ρ(0, ·)N ) h(0, ·)∇ρN (0, ·)‖2L2(Ω)
.
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The term on the right-hand side of (A.3) becomes

−η

∫

ΣD,t

ρN ∂tρN dt dsx = −η

2

∫

Ω

(ρN (t, x))2 dx + η

2

∫

Ω

(ρN (x, 0))2 dx .

Combining all these estimates, an application of the trace theorem applied to
‖ρ0‖L2(∂ΩO) and using

‖ρN (·, 0)‖H1(Ω) ≤ ‖ρ0‖H1(Ω)

yields

1

2
‖∂tρN‖2L2(0,T ;L2(Ω))

+ ε

4
‖∇ρN‖2L∞(0,T ;L2(Ω))

≤ C‖ρN
0 ‖2H1(Ω)

+ c ‖∇ρN‖2L2(0,T ;L2(Ω))
+ d, (A.5)

where

c = 1

2
(‖g′(ρN ) h‖2L∞(0,T ;L∞(Ω)) + 1),

C = ‖g(ρ(0, ·)N ) h(0, ·)‖2L∞(Ω),

d = 1

2
‖g(ρN ) ∂t h‖2L2(0,T ;L2(Ω))

+ 1

4ε
‖g(ρN ) h‖2L∞(0,T ;L2(Ω))

.

Using (A.2), we can estimate the second term on the right-hand side which yields
the desired regularity for ρN . We also infer the existence of a weakly converging
subsequence in L2(0, T ; L2(Ω))∩L∞(0, T ; H1(Ω))which, by theweak lower semi-
continuity of the norms, yields the bound also for the limit ρ. Reinserting this into
(A.5) yields the assertion.

We also state the definition of Carathéodory conditions.

Definition A.1 We say that a function r : QT → R
2 satisfies the Carathéodory con-

ditions whenever

• for each fixed x ∈ R
d , the function t �→ r(t, x) is measurable,

• for a.a. t ∈ [0, T ], the function x �→ r(t, x) is continuous,
• there exists an integrable function m s. t.

|r(t, x)| ≤ m(t) for all x ∈ Ω and a.a.t ∈ [0, T ].

Lemma A.2 Recall that ϕγ is a standard mollifier. For given ρ ∈ L∞(0, T ; L1(Ω)),
the function ργ := ϕγ ∗ ρ is Lipschitz continuous in x with the Lipschitz constant
depending on γ and ‖ρ‖L1(Ω) ∈ L∞(0, T ), only.
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Proof By definition, ϕγ is Lipschitz continuous and we denote its Lipschitz constant
by Lγ . Then, for a.a. t ∈ (0, T ), we have

|ργ (t, x) − ργ (t, y)| ≤
∫

Ω

|ϕγ (x − z) − ϕγ (y − z)||ρ(t, z)| dz

≤ Lγ

∫

Ω

|x − y||ρ(t, z)| dz ≤ Lγ ‖ρ(t, ·)‖L1(Ω)|x − y|.

Lemma A.3 [Compactness of φγ ] Fix 2 ≤ p < ∞ and denote by (ργk )k ∈ W 2,1
p (QT )

a bounded family of functions, i. e. there exists a constant Cρ , independent of γ , s. t.

‖ργk‖W 2,1
p (QT )

≤ Cρ.

Denoting by φγk the sequence of solutions to (1.9b) with ργk on the right-hand side,
there exists an element φ ∈ L p(0, T ;W 1,p(Ω)) and a subsequence, again denoted
by φγk , s. t.

φγk → φ in L p(0, T ;W 1,p(Ω)). (A.6)

Proof Instead of (1.9b), we work with the transformed version (3.6) and denote its
solution by ψγ . We seek to apply a variant of the Aubin-Lions Lemma, introduced in
[48], where instead of time derivatives we have to control finite differences in time.
Indeed, as W 2,p(Ω) ↪→↪→ W 1,p(Ω), it suffices to show

∫ T−h

0
‖ψγ (t + h, ·) − ψγ (t, ·)‖p

W 1,p(Ω)
dt ≤ O(h).

To this end, note that the difference ψγ (t + h, ·) − ψγ (t, ·) satisfies the equation

Δ(ψγ (t + h, ·) − ψγ (t, ·)) + qt (ψγ (t + h, ·) − ψγ (t, ·)) = (1− ψ(t, ·))(qt+h − qt ),

with boundary conditions (3.6) and the corresponding a priori estimate

‖ψγ (t + h, ·) − ψγ (t, ·)‖W 1,p(Ω) ≤ C(Cφ)‖qt+h − qt‖L p(Ω).

This yields

∫ T−h

0
‖ψγ (t + h, ·) − ψγ (t, ·)‖p

W 1,p(Ω)
dt ≤ C

∫ T−h

0
‖qt+h(·) − qt (·)‖p

W 1,p(Ω)
dt .

(A.7)
To estimate the right-hand side, note that ργ ∈ W 1,p(0, T ; L p(Ω)) ↪→ C0,1/2([0, T ];
L p(Ω)), and thus there exists a constant Lρ , depending only on Cφ but not on γ , s. t.
for all t ≥ 0 and h > 0 satisfying t + h ≤ T , the inequality

‖ργ (t + h, ·) − ργ (t, ·)‖L p(Ω) ≤ Lρ

√
h
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holds. The definition of qt in (3.4) then directly implies

‖qt+h(·) − qt (·)‖L p(Ω) ≤ CLρ

√
h,

which, when inserted into the right-hand side of (A.7), yields

∫ T−h

0
‖ψγ (t + h, ·) − ψγ (t, ·)‖p

W 1,p(Ω)
dt ≤ (CLρ)p (T − h) h p/2.

Since 2 ≤ p holds, this is the desired estimate. Thus, Lemma on p. 1011 in [48]
ensures the existence of a subsequence that strongly converges in L p(0, T ;W 1,p(Ω)).
By inverting the transformation (3.5), the result for φγ is obtained. ��
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