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1. Introduction

High number of variables and interactions between vari-
ables makes it harder to interpret and summarize the
results as well as to apply multivariate statistics. Principle
Components Analysis (PCA) is a method developed to
remove the dependence between the variables and to
reduce p variables to m variables (p > m) with longitudinal
components (Ozdamar, 2004; Tatlıdil, 1996). PCA only
examines continuous relationships between ordinal or con-
tinuous variables. Generalized Principal Components
Analysis (GPCA), which is developed as an alternative
for PCA, is the optimal scaling method for data sets with
continuous, ordinal, and nominal variables.

Another method currently used for dimension reduction
is the neural networks (NN). Inspired by biological neural
networks, the NN imitates functions of the human brain
                                                             
                              

* Corresponding author. Tel.: +90 284 2357641x1631; fax: +90 284
2357652.

E-mail address: ture@trakya.edu.tr (M. Ture).
such as knowledge transfer and storage. This method can
determine the basic variables by evaluating linear and
non-linear relationships without any restriction to the type
of the variables.

Some researchers have investigated the performance of
these methods with different data sets. Dong and MacAvoy
(1996) have compared PCA and non-linear principal com-
ponents analysis using neural networks (NLPCA-NN) in
image compression. Monahan (2000) has compared the
dimension reduction performances of PCA and NLPCA-
NN using a data set related with climate. Albanis and
Batchelor (1999) have compared PCA, PCA-NN, and
NLPCA-NN in dimension reduction of financial rates in
evaluating a data set with long term credit continuity.
Hsieh (2001) has compared PCA, rotated PCA, and
NLPCA-NN using surface temperature data of the Pacific
Sea.

This study aimed to compare the PCA, GPCA, PCA-
NN, and NLPCA-NN methods in the dimension reduction
of questions examining satisfaction of the 294 patients
applying at Trakya University Medical Faculty in 2005.
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2. Material and methods

2.1. Data

Our study included 294 consecutive patients (46.3%
males, 53.7% females) admitted to the outpatient clinics
of Trakya University Medical Faculty on 12 January
2005. A patient satisfaction questionnaire consisting of 31
items with a 5-point Likert scale (1—very bad, 2—bad,
3—average, 4—good, 5—excellent) evaluating the satisfac-
tion of patients from the hospital staff was applied to the
patients.

The reliability coefficient of the questionnaire (Cron-
bach a) was 0.96. The 31 items were subdivided as satisfac-
tion from the doctor, nurse, radiology technician,
laboratory technician, and other staff. The reliability coef-
ficients for doctor, nurse, radiology technician, laboratory
technician, and other staff were 0.96, 0.93, 0.91, 0.93, and
0.84 respectively (Table 1).
Table 1
Reliability coefficients of the different groups

Question

Items related with satisfaction from the doctor

1. Giving you enough time during the consultation
2. Facilitating you to explain you problems
3. Involving you in clinical decisions related with your care
4. Listening to you
5. Having fast relief for your complaints
6. Examining you
7. Explaining the aims of tests and treatments
8. Responding to your information requests
9. Helping you to deal with your anxieties

10. Helping to become aware of the importance of his suggestions
11. Remembering what he/she said and did during the previous encounters
12. His/her respect to you
13. The interest/listening of the doctor
14. Cheerfulness of the doctor
15. Giving you information

Items related with the satisfaction from the nurse

1. Respect to you
2. Interest/listening to you
3. Cheerfulness of the nurse
4. Giving you information

Items related with satisfaction from the radiology technician

1. Respect of the radiology technician
2. Interest/listening to you
3. Cheerfulness of the radiology technician
4. Giving you information

Items related with satisfaction from the laboratory technician

1. Respect of the laboratory technician
2. Interest/listening of the laboratory technician
3. Cheerfulness of the laboratory technician
4. Giving you information

Items related with satisfaction from other staff

1. Interest and listening of the registration desk staff to you
2. Cheerfulness of the registration staff
3. Respect of the registration staff to you
4. Attitudes of the security staff
2.2. Principal components analysis

Essentially, PCA maximizes the correlation between the
original variables to form new variables that are mutually
orthogonal, or uncorrelated (A project funded by the Tsu-
nami Initiative, 1999; Ozdamar, 2004). PCA was used to
describe the variance in data sets of n observations on p vari-
ables (Jolliffee, 1986; Manly & Bryan, 1986). PCA is a statis-
tical technique that linearly transforms the original set of
variables into a substantially smaller set of uncorrelated
variables that represents the maximum amount of informa-
tion in the original set of variables. A small set of uncorre-
lated variables is much easier to understand and use in
further analyses than a larger set of correlated variables.

Principal components are able to describe different
dimensions of a given n · p data set of n observations on
p variables. The first principal component (Y1) can be
defined as a linear combination of the elements of the data
matrix, X:
Cronbach a

0.96

0.93

0.91
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Y 1 ¼ e11X 1 þ e12X 2 þ � � � þ e1pX p

where coefficients that chosen so as to maximize the vari-
ance represented by the first principal component are sim-
ply the eigenvectors of the symmetric covariance matrix.

The eigenvalues of the covariance matrix represent the
variation of each principal component, where

VarðY iÞ ¼ ki

Ideally, a principal component analysis will yield several
components that describe the majority of the total varia-
tion of the data set. Geometrically, the first PC is the line
of closest fit to the n observations. It minimizes the sum
of the squared distances of the n observations from the line
where the distance is defined in a direction perpendicular to
the line. The second PC a line of closest fit to the residuals
from the first PC, the third PC is a line of closest fit to the
residuals from the second PC, and so on (Ozdamar, 2004;
Sharma, 1996; Tatlıdil, 1996).

2.3. Generalized principal components analysis

The GPCA procedure quantifies categorical variables
using optimal scaling, resulting in optimal principal com-
ponents for the transformed variables. The variables can
be given mixed optimal scaling levels and no distributional
assumptions about the variables are made (Gifi, 1990;
Michailidis & De Leeuw, 1998, 2000; SPSS Inc., 1999).

In GPCA, dimensions correspond to components, and
object scores correspond to component scores (Gifi, 1990;
SPSS Inc., 1999).

The GPCA objective is to find object scores X and a set
of Yj (for j = 1,2, . . . ,m) so that the function

rðX; YÞ ¼ n�1
w

X

j

c�1trððX�GjYjÞ0MjWðX�GjYjÞÞ

with c is p if j 2 J

is minimal, under the normalization restriction X
0
M*

WX = nwmwI (I is the p · p identity matrix). The inclusion
of Mj in r(X;Y) ensures that there is no influence of passive
missing values. M* contains the number of active data
values for each object. The object scores are also centered.
Y is that collection of category quantifications for variables
with multiple nominal scaling level, and vector coordinates
for non-multiple scaling level. Gj is indicator matrix for
variable j, of order ntotal · kj. nw is the weighted number
of analysis cases, mw is the weighted number of analysis
variables, and W is diagonal ntotal · ntotal matrix, with wi

on the diagonal (Gifi, 1990; Michailidis & De Leeuw,
1998, 2000).

2.4. Linear principal components analysis using neural

networks

PCA-NN is mainly used for classification and feature
extraction. The goal of PCA is to find a set of orthogonal
components that minimize the error in the reconstructed
data. An equivalent formulation of PCA is to find an
orthogonal set of vectors that maximize the variance of
the projected data (Diamantras & Kung, 1996).

Sanger proved that one-layered linear neural network is
equivalent to the linear standard PCA. And the neural net-
works which implement this learning algorithm is called
PCA-NN. We are assuming that the network has m out-
puts, each given by

yjðnÞ ¼
Xp

i¼1

wijðnÞxiðnÞ; j ¼ 1; 2; . . . ;m

and p inputs (m < p). To apply Sanger’s rule the weights
ðwijðnÞÞ are updated according to

DwjiðnÞ ¼ g½yjðnÞxiðnÞ � yjðnÞ
Xj

k¼1

wkiðnÞykðnÞ�;

i ¼ 1; 2; . . . ; p

where g is the step size. In this rule, the input to each neu-
ron is modified by subtracting the product of the outputs
from the preceding neurons and the respective weights.
This implements the deflation method after the system con-
verges. That is, after convergence of the first neuron
weights will the second neuron weights converge com-
pletely to the eigenvector that corresponds to the second
largest eigenvalue (Albanis & Batchelor, 1999; Hassoun,
1995; Principe, Euliano, & Lefebvre, 2000).

2.5. Non-linear principal components analysis using neural

networks

The NLPCA-NN is a general purpose feature extraction
algorithm producing features that retain the maximum
possible amount of information from the original data
set. If non-linear correlations between variables exist and
sufficient data to support the formulation between more
complex mapping functions are available, then NLPCA
will describe the data with greater accuracy than PCA
(Albanis & Batchelor, 1999).

Kramer presented a NLPCA-NN method based on
autoassociative neural networks that are trained by back-
propagation (Krammer, 1991). NLPCA-NN uses five-layer
feed-forward network with a bottleneck layer of nodes to
reduce the dimension of the input variables and each layer
fully connected to the next (Krammer, 1991; Oja, 1992).
The second and fourth layers of the network have sigmoi-
dal activation functions, so layers 1–3 and layers 3–5 model
non-linear functions. The activation functions of the third
and fifth layers are linear. The input (first) and output
(fifth) layers have p units (the number of variables in the
data set). The third layer has fewer nodes (m < p) than
the first or fifth. The values of the output nodes in layer
5 are trained to approximate the inputs. After the network
has been trained, bottleneck node activation values in layer
3 give a lower dimensional representation of the inputs
(Fotheringhame & Baddeley, 1997; Monahan, 2000).

The goal of the network is to minimize the error term
(e). The network is then trained to try and reproduce the
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input pattern at the output layer by using an error term
which is simply the squared difference between the network
prediction (Xi) and input pattern ðX 0iÞ;

e ¼
Xp

i¼1

ðX i � X 0iÞ
2 ði ¼ 1; 2; . . . ; pÞ

NLPCA-NN reduces the dimension of the inputs by fitting
a curve through the data. The first three layers of the net-
work project the original data onto the curve and the acti-
vation values of the bottleneck layer, called scores, give the
location of the projection. The last three layers define the
curve (Albanis & Batchelor, 1999; Daszykowski, Walczak,
& Massart, 2003; Hsieh, 2001; Michailidis & De Leeuw,
2000).

2.6. Package programs

In this study, data were analyzed using SPSS 10.5 (PCA,
GPCA, Hierarchical Cluster Analysis) and NeuroSolutions
5.0 (PCA-NN, NLPCA-NN).

3. Results

The whole data set was used for PCA and GPCA.
Before building NN, the data set was randomly split into
Table 2
Percentage of variance explained after dimensionality reduction

Principal component Variable Percentage of variance

PCA GPCA

Doctor 15 62.2 60.2
Nurse 4 82.0 80.5
Radiology technician 4 79.4 79.2
Laboratory technician 4 82.1 82.1
Other staff 4 67.6 66.5

* Variables were determined as continuous.
+ Variables were determined as ordinal.

Fig. 1. Percentages of variance explained acco
two parts: 80% (n = 235) of the data for a training set
and 20% (n = 59) for a cross validation set.

In Table 2, we present the percentages of variance
explained by dimension reduction methods for a principal
component which represented items of each group. The
minimum–maximum levels for percentage of variance
explained with PCA, GPCA*, GPCA+, PCA-NN and
NLPCA-NN were 62.2–82.1%, 60.2–82.1%, 63.4–84.0%,
84.9–91.7%, and 84.9–96.1% respectively (Table 2).

As it can be seen from Table 2 and Fig. 1, PCA-NN and
NLPCA-NN had the highest percentages of variance
explained for doctor, nurse, radiology technician, labora-
tory technician, and other staff. Ordinal GPCA performed
better than numeric GPCA and PCA.

Percentages of variance explained were used as input
variables in the Hierarchical Cluster Analysis (HCA)
(Ture, Kurt, Kurum, & Ozdamar, 2005). HCA was done
to identify homogenous groups of dimensionality reduction
techniques based on percentages of variance explained. The
dendrogram from centroid clustering method that was
obtained is shown in Fig. 2. In the dendrogram, the data
points appear to cluster in two groups. The first cluster
includes PCA, GPCA*, and GPCA+. The second cluster
includes PCA-NN and NLPCA-NN. We found that both
PCA-NN and NLPCA-NN explain a higher amount of
explained (%)

* GPCA+ PCA-NN NLPCA-NN

63.4 84.9 84.9
82.7 88.4 88.7
84.0 91.7 96.1
83.8 90.9 90.9
69.8 85.9 86.1

rding to principal component of methods.



Fig. 2. Dendrogram showing relationship among dimension reduction methods.
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variation in the original set of variables than other
techniques.
4. Discussion

Frequently the investigated issues are under the effect of
multiple variables and thus it is mandatory to evaluate the
effecting variables together in order to ascertain reliability
and validity. However, having multiple variables and rela-
tionship between variables makes data analysis more diffi-
cult. Dimension reduction methods are used frequently to
reduce the data into m dimensions instead of working in
a p dimension environment (p > m). Since PCA is a method
developed for determining linear relationships, it does not
consider non-linear relationships. Therefore it remains
insufficient in determining representative variables in the
data set in case of non-linear relationships.

Albanis and Batchelor (1999) have demonstrated that
the PCA-NN and NLPCA-NN are superior to PCA in
dimension reduction using the long term credit continuity
data set. Dong and MacAvoy (1996) have shown that
NLPCA-NN is better than PCA in image compression.
Monahan (2000) has used a data set related with climate
and compared the dimension reduction performances of
PCA and NLPCA-NN where he has shown that
NLPCA-NN is a more superior method in doing this.
Hsieh (2001) compared PCA, rotated PCA, and NLPCA-
NN using surface temperature data set of the Pacific Sea
where he demonstrated a better performance of NLPCA-
NN. In our study using the patient satisfaction data set,
the highest variance explanation rates for variables deter-
mined for doctor, nurse, radiology technician, laboratory
technician, and other staff was with the PCA-NN and
NLPCA-NN methods. Ordinal scaled GPCA method
showed a slightly higher performance than the proportion-
ally scaled GPCA and PCA methods.

It can be concluded from this study that instead of
working with variables of lower explanatory rates, methods
containing NN should be implemented in dimension reduc-
tion due to its advantage of containing alternative methods
in contrast to many classical methods. It should be kept in
mind that NN has the ability to determine the best vari-
ables due to its advantage of considering the non-linear
relationships along with the linear relationships.
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