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Abstract: In this paper we study double phase problems with nonlinear boundary condition and gradient
dependence. Under quite general assumptions we prove existence results for such problems where the per-
turbations satisfy a suitable behavior in the origin and at in�nity. Our proofs make use of variational tools,
truncation techniques and comparison methods. The obtained solutions depend on the �rst eigenvalues of
the Robin and Steklov eigenvalue problems for the p-Laplacian.
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1 Introduction
Let Ω ⊂ RN , N > 1 , be a bounded domain with Lipschitz boundary ∂Ω. We consider the following double
phase problem with nonlinear boundary condition and convection term given by

−div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= h1 (x, u,∇u) in Ω,(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)
· ν = h2 (x, u) on ∂Ω,

(1.1)

where ν(x) is the outer unit normal of Ω at the point x ∈ ∂Ω, 1 < p < q < N, 0 ≤ µ(·) ∈ L1 (Ω) and h1 : Ω × R ×
RN → R as well as h2 : ∂Ω × R → R are Carathéodory functions which satisfy suitable structure conditions
and behaviors near the origin and at in�nity, see Sections 3 and 4 for the precise assumptions.

The di�erential operator that appears in (1.1) is the so-called double phase operator which is de�ned by

−div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
for u ∈ W1 ,H(Ω) (1.2)

with an appropriate Musielak-Orlicz Sobolev space W1 ,H(Ω), see its de�nition in Section 2. Note that when
infΩ µ > 0 or µ ≡ 0 then the operator becomes the weighted (q, p)-Laplacian or the p-Laplacian, respectively.
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The energy functional J : W1 ,H(Ω) → R related to the double phase operator (1.2) is given by

J(u) =
∫
Ω

(
|∇u|p + µ(x)|∇u|q

)
dx, (1.3)

where the integrand has unbalanced growth. The main characteristic of the functional J is the change of
ellipticity on the set where the weight function is zero, that is, on the set {x ∈ Ω : µ(x) = 0}. Precisely, the
energy density of J exhibits ellipticity in the gradient of order q on the points x where µ(x) is positive and of
order p on the points x where µ(x) vanishes.

The �rst who introduced and studied functionals whose integrands change their ellipticity according to
a point was Zhikov [37] (see also themonograph of Zhikov-Kozlov-Oleinik [38]) in order to providemodels for
strongly anisotropic materials. Functionals stated in (1.3) have been intensively studied in the past decade
concerning regularity for isotropic and anisotropic functionals. We mention the papers of Baroni-Colombo-
Mingione [3–5], Baroni-Kuusi-Mingione [6], Byun-Oh [7], Colombo-Mingione [9, 10], Marcellini [21, 22], Ok
[25, 26], Ragusa-Tachikawa [33] and the references therein.

In this paperweare going to studyproblem (1.1) concerningmultiplicity of solutions. In the�rst part of the
paper, see Section 3,weprove the existence of a nontrivialweak solutionwhen the function h1 depends on the
gradient of the solution.Hence, no variational tools like critical point theory are available.Wewillmakeuse of
the surjectivity result for pseudomonotone operators where in the proof the �rst eigenvalues of the Robin and
Steklov eigenvalue problems for the p-Laplacian play an important role. In the second part of the paper we
will skip the gradient dependence and prove the existence of two constant sign solutions, one is nonnegative
and the other one is nonpositive. Here, we need some stronger conditions on the nonlinearities, for example
superlinearity at ±∞. Again, the solutions depend on the �rst Robin and Steklov eigenvalues, respectively.We
will see that the Steklov eigenvalue problem is the more natural one for problems with nonlinear boundary
condition than the Robin eigenvalue problem.

There are only few works dealing with double phase operators along with a nonlinear boundary condi-
tion. Papageorgiou-Vetro-Vetro [29] studied the Robin problem

−div
(
a(z)|∇u|p−2∇u)

)
− ∆qu + ξ (z)|u|p−2 u = λf (z, u(z)) in Ω,

∂u
∂nθ

+ β|u|p−2 u = 0 on ∂Ω,
(1.4)

where 1 < q < p < N, ξ ∈ L∞(Ω) is a positive potential, a(z) > 0 for a. a. z ∈ Ω and

∂u
∂nθ

= [a(z)|∇u|p−2 + |∇u|q−2 ]∂u∂n

with n(·) being the outward unit normal on ∂Ω. Under di�erent assumptions it is shown that problem (1.4)
admits two nontrivial solutions uλ , ûλ ∈ W1 ,H(Ω) for small λ > 0 such that ‖uλ‖1 ,H → +∞ and ‖ûλ‖1 ,H → 0
as λ → 0+. In Papageorgiou-Rădulescu-Repovš [28] the authors proved the existence of multiple solutions in
the superlinear and the resonant case for the problem

−div
(
a0(z)|∇u|p−2∇u)

)
− ∆qu + ξ (z)|u|p−2 u = f (z, u(z)) in Ω,

∂u
∂nθ

+ β|u|p−2 u = 0 on ∂Ω,

where 1 < q < p ≤ N andwith a positive Lipschitz function a0(·). Note that our assumptions and our treatment
di�er from the ones in [28] and [29]. Also, we allow that the weight function could be zero at some points.
Recently, Gasiński-Winkert [17] considered the problem

−div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= f (x, u) − |u|p−2 u − µ(x)|u|q−2 u in Ω,(

|∇u|p−2∇u + µ(x)|∇u|q−2∇u
)
· ν = g(x, u) on ∂Ω.

(1.5)

Based on the Nehari manifold method it is shown that problem (1.5) has at least three nontrivial solutions.
We point out that the proof for the constant sign solutions in [17] is based on a mountain-pass type argument
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and so di�erent from the treatment we used in this paper. Very recently, Farkas-Fiscella-Winkert [13] studied
singular Finsler double phase problems with nonlinear boundary condition and critical growth of the form

−div(A(u)) + up−1 + µ(x)uq−1 = up
*−1 + λ

(
uγ−1 + g1 (x, u)

)
in Ω,

A(u) · ν = up*−1 + g2 (x, u) on ∂Ω,
u > 0 in Ω,

(1.6)

where

div(A(u)) := div
(
Fp−1 (∇u)∇F(∇u) + µ(x)Fq−1 (∇u)∇F(∇u)

)
is the so-called Finsler double phase operator and (RN , F) stands for aMinkowski space. The existence of one
weak solution of (1.6) is proven by applying variational tools and truncation techniques.

For existence results for double phase problems with homogeneous Dirichlet boundary condition we
refer to the papers of Colasuonno-Squassina [8] (eigenvalue problem for the double phase operator), Farkas-
Winkert [12] (Finsler double phase problems), Gasiński-Papageorgiou [14] (locally Lipschitz right-hand side),
Gasiński-Winkert [15, 16] (convection and superlinear problems), Liu-Dai [19] (Nehari manifold approach),
Marino-Winkert [23] (systemsof double phase operators), Perera-Squassina [31] (Morse theoretical approach),
Zeng-Bai-Gasiński-Winkert [35, 36] (multivalued obstacle problems) and the references therein. Relatedworks
dealing with certain types of double phase problems can be found in the works of Bahrouni-Rădulescu-
Winkert [1] (Baouendi-Grushin operator), Barletta-Tornatore [2] (convection problems in Orlicz spaces), Liu-
Dai [20] (unbounded domains), Papageorgiou-Rădulescu-Repovš [27] (discontinuity property for the spec-
trum), Rădulescu [32] (overview about isotropic and anisotropic double phase problems) and Zeng-Bai-
Gasiński-Winkert [34] (convergence properties for double phase problems). Finally, we mention the nice
overview article of Mingione-Rădulescu [24] about recent developments for problems with nonstandard
growth and nonuniform ellipticity.

The paper is organized as follows. In Section 2 we recall themain properties of the double phase operator
including the properties of the Musielak-Orlicz Sobolev space W1 ,H(Ω). In Section 3 we prove the existence
of at least one solution of (1.1) when h1 depends on the gradient of the solution, see Theorem 3.1. The proof
is based on the surjectivity result for pseudomonotone operators and on the properties of the eigenvalues
of the Robin and Steklov eigenvalue problems for the p-Laplacian. Finally, in the last section, we skip the
convection term and use variational tools in order to prove the existence of two constant sign solutions for
superlinear problems. We consider two di�erent problems. The �rst problem is treated by properties of the
�rst Steklov eigenvalue and the second one by the �rst Robin eigenvalue, see Theorems 4.1 and 4.2.

2 Preliminaries
In this section we recall some de�nitions and present the main tools which will be needed in the sequel.

For every 1 ≤ r < ∞ we denote by Lr(Ω) and Lr(Ω;RN) the usual Lebesgue spaces equipped with the
norm ‖ · ‖r and for 1 < r < ∞ we consider the corresponding Sobolev spaceW1 ,r(Ω) endowed with the norm
‖ ·‖1 ,r. It is known thatW1 ,r(Ω) ↪→ L r̂(Ω) is compact for r̂ < r* and continuous for r̂ = r*, where r* is the critical
exponent of r de�ned by

r* =
{

Nr
N−r if r < N,
any ` ∈ (r,∞) if r ≥ N .

(2.1)

On the boundary ∂Ω of Ωwe consider the (N −1) -dimensional Hausdor� (surface) measure σ and denote
by Lr(∂Ω) the boundary Lebesgue spacewith norm ‖·‖r,∂Ω. From the de�nition of the tracemappingwe know
that W1 ,r(Ω) ↪→ L r̃(∂Ω) is compact for r̃ < r* and continuous for r̃ = r*, where r* is the critical exponent of r
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on the boundary given by

r* =
{

(N−1) r
N−r if r < N,

any ` ∈ (r,∞) if r ≥ N .
(2.2)

For simpli�cation we will avoid the notation of the trace operator throughout the paper.
In the entire paper we will assume that

1 < p < q < N and 0 ≤ µ(·) ∈ L1 (Ω). (2.3)

Note that the conditions in (2.3) are quite general. In all the other mentioned works for Neumann double
phase problems (see, for example, [13], [17], [28], [29]) the condition

Nq
N + q − 1 < p

is needed, which is equivalent to q < p* and so q < p* is also satis�ed. We do not need this restriction in the
current paper.

LetH : Ω × [0,∞) → [0,∞) be the function de�ned by

H(x, t) = tp + µ(x)tq .

Based on this we can introduce the modular function given by

ρH(u) :=
∫
Ω

H(x, |u|) dx =
∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

Then, the Musielak-Orlicz space LH(Ω) is de�ned by

LH(Ω) =
{
u
∣∣∣ u : Ω → R is measurable and ρH(u) < +∞

}
equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1
}
.

From Colasuonno-Squassina [8, Proposition 2.14] we know that the space LH(Ω) is a re�exive Banach space.
Moreover, we need the seminormed space

Lqµ(Ω) =

u ∣∣∣ u : Ω → R is measurable and
∫
Ω

µ(x)|u|q dx < +∞

 ,

which is endowed with the seminorm

‖u‖q,µ =

∫
Ω

µ(x)|u|q dx

 1
q

.

Analogously, we de�ne Lqµ(Ω;RN).
The Musielak-Orlicz Sobolev spaceW1 ,H(Ω) is de�ned by

W1 ,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1 ,H = ‖∇u‖H + ‖u‖H ,

where ‖∇u‖H = ‖ |∇u| ‖H. As before, we know thatW1 ,H(Ω) is a re�exive Banach space.
The following proposition states the main embedding results for the spaces LH(Ω) and W1 ,H(Ω). We

refer to Crespo-Blanco-Gasiński-Harjulehto-Winkert [11, Proposition 2.17].
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Proposition 2.1. Let (2.3) be satis�ed and let

p* := Np
N − p and p* :=

(N − 1) p
N − p (2.4)

be the critical exponents to p, see (2.1) and (2.2) for r = p. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(Ω) andW1 ,H(Ω) ↪→ W1 ,r(Ω) are continuous for all r ∈ [1 , p];
(ii) W1 ,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1 , p*];
(iii) W1 ,H(Ω) ↪→ Lr(Ω) is compact for all r ∈ [1 , p*);
(iv) W1 ,H(Ω) ↪→ Lr(∂Ω) is continuous for all r ∈ [1 , p*];
(v) W1 ,H(Ω) ↪→ Lr(∂Ω) is compact for all r ∈ [1 , p*);
(vi) LH(Ω) ↪→ Lqµ(Ω) is continuous.

We equip the spaceW1 ,H(Ω) with the equivalent norm

‖u‖0 := inf

λ > 0 :
∫
Ω

[(
|∇u|
λ

)p
+ µ(x)

(
|∇u|
λ

)q
+
(
|u|
λ

)p
+ µ(x)

(
|u|
λ

)q ]
dx ≤ 1

 .

For u ∈ W1 ,H(Ω) let

ρ̂H(u) =
∫
Ω

(
|∇u|p + µ(x)|∇u|q

)
dx +

∫
Ω

(
|u|p + µ(x)|u|q

)
dx. (2.5)

Based on the proof of Liu-Dai [19, Proposition 2.1] we have the following relations between the norm ‖ ·‖0
and the modular function ρ̂H, see also Crespo-Blanco-Gasiński-Harjulehto-Winkert [11, Proposition 2.16].

Proposition 2.2. Let (2.3) be satis�ed, let y ∈ W1 ,H(Ω) and let ρ̂H be de�ned as in (2.5).

(i) If y ≠ 0, then ‖y‖0 = λ if and only if ρ̂H( yλ ) = 1 ;
(ii) ‖y‖0 < 1 (resp. > 1 , = 1 ) if and only if ρ̂H(y) < 1 (resp. > 1 , = 1 );
(iii) If ‖y‖0 < 1 , then ‖y‖q0 6 ρ̂H(y) 6 ‖y‖p0;
(iv) If ‖y‖0 > 1 , then ‖y‖p0 6 ρ̂H(y) 6 ‖y‖q0;
(v) ‖y‖0 → 0 if and only if ρ̂H(y) → 0;
(vi) ‖y‖0 → +∞ if and only if ρ̂H(y) → +∞.

Let us recall some de�nitions which we will need in the next sections.

De�nition 2.3. Let (X, ‖ · ‖X) be a re�exive Banach space, X* its dual space and denote by 〈· , ·〉 its duality
pairing. Let A : X → X*, then A is called

(i) to satisfy the (S+)-property if un ⇀ u in X and lim supn→∞〈Aun , un − u〉 ≤ 0 imply un → u in X;
(ii) pseudomonotone if un ⇀ u in X and lim supn→∞〈Aun , un − u〉 ≤ 0 imply Aun ⇀ Au and 〈Aun , un〉 →
〈Au, u〉;

(iii) coercive if

lim
‖u‖X→∞

〈Au, u〉
‖u‖X

=∞.

Remark 2.4. The classical de�nition of pseudomonotonicity is the following one: From un ⇀ u in X and
lim supn→∞〈Aun , un − u〉 ≤ 0 we have

lim inf
n→∞

〈Aun , un − v〉 ≥ 〈Au, u − v〉 for all v ∈ X.

This de�nition is equivalent to the one in De�nition 2.3(ii) when the operator is bounded. Since we are only
considering bounded operators, we will use the one in De�nition 2.3(ii).
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The following surjectivity result for pseudomonotone operators will be used in Section 3. It can be found, for
example, in Papageorgiou-Winkert [30, Theorem 6.1.57].

Theorem 2.5. Let X be a real, re�exive Banach space, let A : X → X* be a pseudomonotone, bounded, and
coercive operator, and let b ∈ X*. Then, a solution to the equation Au = b exists.

Let A : W1 ,H(Ω) → W1 ,H(Ω)* be the nonlinear map de�ned by

〈A(u), φ〉H =
∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
·∇φ dx

+
∫
Ω

(
|u|p−2 u + µ(x)|u|q−2 u

)
φ dx

(2.6)

for all u, φ ∈ W1 ,H(Ω), where 〈 · , · 〉H is the duality pairing betweenW1 ,H(Ω) and its dual spaceW1 ,H(Ω)*.
The operatorA : W1 ,H(Ω) → W1 ,H(Ω)* has the followingproperties, seeCrespo-Blanco-Gasiński-Harjulehto-
Winkert [11, Proposition 3.5].

Proposition 2.6. Let (2.3) be satis�ed. Then, the operator A de�ned by (2.6) is bounded (that is, it maps
bounded sets into bounded sets), continuous, strictly monotone (hence maximal monotone) and it is of type
(S+).

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W1 ,H(Ω) we de�ne u±(·) = u(·)±. We have

u± ∈ W1 ,H(Ω), |u| = u+ + u−, u = u+ − u−.

For r > 1 we write r′ = r
r−1 .

Further, we denote by C1 (Ω)+ the positive cone

C1 (Ω)+ =
{
u ∈ C1 (Ω) : u(x) ≥ 0 for all x ∈ Ω

}
of the ordered Banach space C1 (Ω). This cone has a nonempty interior given by

int
(
C1 (Ω)+

)
=
{
u ∈ C1 (Ω) : u(x) > 0 for all x ∈ Ω

}
.

Let us now recall some basic facts about the spectrum of the negative r-Laplacianwith Robin and Steklov
boundary condition, respectively, for 1 < r < ∞. We refer to the paper of Lê [18]. The r-Laplacian eigenvalue
problem with Robin boundary condition is given by

−∆ru = λ|u|r−2 u in Ω,
|∇u|r−2∇u · ν = −β|u|r−2 u on ∂Ω,

(2.7)

where β > 0. We know that problem (2.7) has a smallest eigenvalue λR1 ,r,β > 0which is isolated, simple and it
can be variationally characterized by

λR1 ,r,β = inf
u∈W1 ,r(Ω)\{0}

∫
Ω |∇u|

r dx + β
∫
∂Ω |u|

r dσ∫
Ω |u|r dx

. (2.8)

By uR1 ,r,β we denote the normalized (that is, ‖uR1 ,r,β‖r = 1 ) positive eigenfunction corresponding to λR1 ,r,β. We
know that uR1 ,r,β ∈ int

(
C1 (Ω)+

)
.

Further, we recall the r-Laplacian eigenvalue problem with Steklov boundary condition which is given
by

−∆ru = −|u|r−2 u in Ω,
|∇u|r−2∇u · ν = λ|u|r−2 u on ∂Ω.

(2.9)
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As before, problem (2.9) has a smallest eigenvalue λS1 ,r > 0 which is isolated, simple and which can be char-
acterized by

λS1 ,r = inf
u∈W1 ,r(Ω)\{0}

∫
Ω |∇u|

r dx +
∫
Ω |u|

r dx∫
∂Ω |u|r dσ

. (2.10)

The �rst eigenfunction associated to the �rst eigenvalue λS1 ,r will be denoted by uS1 ,r and we can assume it is
normalized, that is, ‖uS1 ,r‖r,∂Ω = 1 . We have uS1 ,r ∈ int

(
C1 (Ω)+

)
.

3 Existence results in case of convection
In this section we are interested in the existence of a solution of problem (1.1) depending on the �rst eigen-
values of the Robin and Steklov eigenvalue problems of the p-Laplacian. We choose

h1 (x, s, ξ ) = f (x, s, ξ ) − |s|p−2 s − µ(x)|s|q−2 s for a. a. x ∈ Ω,
h2 (x, s) = g(x, s) − ζ |s|p−2 s for a. a. x ∈ ∂Ω,

for all s ∈ R and for all ξ ∈ RN with ζ > 0 speci�ed later and Carathéodory functions f and g characterized
in hypotheses (H1) below. Then (1.1) becomes

−div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) = f (x, u,∇u) − |u|p−2 u − µ(x)|u|q−2 u in Ω,
(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ν = g(x, u) − ζ |u|p−2 u on ∂Ω,

(3.1)

where we assume the following hypotheses:

(H1) The mappings f : Ω × R × RN → R and g : ∂Ω × R → R are Carathéodory functions with f (x, 0, 0) ≠ 0 for
a. a. x ∈ Ω such that the following conditions are satis�ed:

(i) There exist α1 ∈ L
r1
r1 −1 (Ω), α2 ∈ L

r2
r2 −1 (∂Ω) and a1 , a2 , a3 ≥ 0 such that

|f (x, s, ξ )| ≤ a1 |ξ |p
r1 −1
r1 + a2 |s|r1 −1 + α1 (x) for a. a. x ∈ Ω,

|g(x, s)| ≤ a3 |s|r2−1 + α2 (x) for a. a. x ∈ ∂Ω,

for all s ∈ R and for all ξ ∈ RN , where 1 < r1 < p* and 1 < r2 < p* with the critical exponents p* and
p* stated in (2.4).

(ii) There exist w1 ∈ L1 (Ω), w2 ∈ L1 (∂Ω) and b1 , b2 , b3 ≥ 0 such that

f (x, s, ξ )s ≤ b1 |ξ |p + b2 |s|p + w1 (x) for a. a. x ∈ Ω,
g(x, s)s ≤ b3 |s|p + ω2 (x) for a. a. x ∈ ∂Ω,

for all s ∈ R and for all ξ ∈ RN .

A function u ∈ W1 ,H(Ω) is called a weak solution of problem (3.1) if∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
·∇φ dx +

∫
Ω

(
|u|p−2 u + µ(x)|u|q−2 u

)
φ dx

=
∫
Ω

f (x, u,∇u)φ dx +
∫
∂Ω

g(x, u)φ dσ − ζ
∫
∂Ω

|u|p−2 uφ dσ
(3.2)

is satis�ed for all φ ∈ W1 ,H(Ω). It is clear that this de�nition is well-de�ned.
The main result in this section is the following one.
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Theorem 3.1. Let hypotheses (2.3) and (H1) be satis�ed. Then, there exists a nontrivial weak solution û ∈
W1 ,H(Ω) ∩ L∞(Ω) of problem (3.1) provided one of the following assertions is satis�ed:

(A) b1 + b2
(
λR1 ,p,β

)−1
< 1 and b2 β

(
λR1 ,p,β

)−1
+ b3 < ζ ;

(B) max{b1 , b2} + b3
(
λS1 ,p

)−1
< 1 and ζ ≥ 0.

Here λR1 ,p,β is the �rst eigenvalue of the p-Laplacian with Robin boundary condition with β > 0 and λS1 ,p stands
for the �rst eigenvalue of the p-Laplacian with Steklov boundary condition, see (2.7) and (2.9), respectively.

Proof. Let Ñf : W1 ,H(Ω) ⊂ Lr1 (Ω) → Lr
′
1 (Ω) and Ñg : Lr2 (∂Ω) → Lr

′
2 (∂Ω) be the Nemytskij operators corre-

sponding to the functions f : Ω × R × RN → R and g : ∂Ω × R → R, respectively. Furthermore, we denote
by i* : Lr

′
1 (Ω) → W1 ,H(Ω)* the adjoint operator of the embedding i : W1 ,H(Ω) → Lr1 (Ω) and j* : Lr

′
2 (∂Ω) →

W1 ,H(Ω)* stands for the adjoint operator of the embedding j : W1 ,H(Ω) → Lr2 (∂Ω). Then we de�ne

Nf := i* ◦ Ñf : W1 ,H(Ω) → W1 ,H(Ω)*,

Ng := j* ◦ Ñg ◦ j : W1 ,H(Ω) → W1 ,H(Ω)*,

which are both bounded and continuous operators due to hypothesis (H1)(i). Moreover, we de�ne
Nζ : W1 ,H(Ω) → W1 ,H(Ω)* by

Nζ := i*ζ ◦
(
ζ | · |p−2 ·

)
◦ iζ ,

where i*ζ : L
p′ (Ω) → W1 ,H(Ω)* is the adjoint operator of the embedding iζ : W1 ,H(Ω) → Lp(Ω).

Now we can de�ne the operatorA : W1 ,H(Ω) → W1 ,H(Ω)* given by

A(u) := A(u) − Nf (u) − Ng(u) + Nζ (u).

Taking the growth conditions in (H1)(i) into account, it is clear thatA : W1 ,H(Ω) → W1 ,H(Ω)*maps bounded
sets into bounded sets. In order to show the pseudomonotonicity, let {un}n∈N ⊂ W1 ,H(Ω) be such that

un ⇀ u inW1 ,H(Ω) and lim sup
n→∞

〈Aun , un − u〉H ≤ 0. (3.3)

From the compact embeddings W1 ,H(Ω) ↪→ L r̂(Ω) for any r̂ < p* and W1 ,H(Ω) ↪→ L r̃(∂Ω) for any r̃ < p*, see
Proposition 2.1(iii) and (v), along with (3.3) we have

un → u in Lr1 (Ω) and un → u in Lr2 (∂Ω), Lp(∂Ω).

Applying the growth conditions in (H1)(i) along with Hölder’s inequality gives∫
Ω

f (x, un ,∇un)(un − u) dx

≤ a1
∫
Ω

|∇un|p
r1 −1
r1 |un − u|dx + a2

∫
Ω

|un|r1 −1 |un − u|dx +
∫
Ω

|α1 (x)| |un − u|dx

≤ a1 ‖∇un‖
p r1 −1r1
p ‖un − u‖r1 + a2‖un‖r1 −1r1 ‖un − u‖r1 + ‖α1 ‖ r1

r1 −1
‖un − u‖r1 −→ 0

and ∫
∂Ω

g(x, un)(un − u) dσ ≤ a3
∫
∂Ω

|un|r2−1 |un − u|dσ +
∫
∂Ω

|α2 (x)| |un − u|dσ

≤ a3‖un‖r2−1r2 ,∂Ω‖un − u‖r2 ,∂Ω + ‖α2‖ r2
r2 −1

,∂Ω‖un − u‖r2 ,∂Ω −→ 0.
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Furthermore, again by Hölder’s inequality, we have

ζ
∫
∂Ω

|un|p−2 un(un − u) dσ ≤ ζ‖un‖p−1p,∂Ω‖un − u‖p,∂Ω −→ 0.

Replacing u by un and φ by un − u in the weak formulation in (3.2) and using the considerations above leads
to

lim sup
n→∞

〈A(un), un − u〉H = lim sup
n→∞

〈A(un), un − u〉H ≤ 0. (3.4)

From Proposition 2.6 we know that A ful�lls the (S+)-property. Therefore, from (3.3) and (3.4) we conclude
that

un → u inW1 ,H(Ω).

SinceA is continuous we haveA(un) → A(u) inW1 ,H(Ω)* which shows thatA is pseudomonotone.
Let us now prove thatA : W1 ,H(Ω) → W1 ,H(Ω)* is coercive. We distinguish between two cases.
Case I: Condition (A) is satis�ed.
From the p-Laplace eigenvalue problem with Robin boundary condition, see (2.7) and (2.8) for r = p, we

know that

‖u‖pp ≤
(
λR1 ,p,β

)−1 (
‖∇u‖pp + β‖u‖pp,∂Ω

)
for all u ∈ W1 ,p(Ω). (3.5)

Let u ∈ W1 ,H(Ω) be such that ‖u‖0 > 1 and note thatW1 ,H(Ω) ⊆ W1 ,p(Ω). Then, from (H1)(ii), (3.5), (A) and
Proposition 2.2(iv) we obtain

〈A(u), u〉H =
∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
·∇u dx +

∫
Ω

(
|u|p−2 u + µ(x)|u|q−2 u

)
u dx

−
∫
Ω

f (x, u,∇u)u dx −
∫
∂Ω

g(x, u)u dσ + ζ
∫
∂Ω

|u|p dσ

≥ ‖∇u‖pp + ‖∇u‖qq,µ + ‖u‖pp + ‖u‖qq,µ − b1 ‖∇u‖pp − b2‖u‖pp − ‖ω1 ‖1
− b3‖u‖pp,∂Ω − ‖ω2‖1 ,∂Ω + ζ‖u‖pp,∂Ω

≥
(
1 − b1 − b2

(
λR1 ,p,β

)−1)(
‖∇u‖pp + ‖u‖pp

)
+ ‖∇u‖qq,µ + ‖u‖qq,µ

+
(
ζ − b2 β

(
λR1 ,p,β

)−1
− b3

)
‖u‖pp,∂Ω − ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω

≥
(
1 − b1 − b2

(
λR1 ,p,β

)−1)(
‖∇u‖pp + ‖u‖pp + ‖∇u‖qq,µ + ‖u‖qq,µ

)
− ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω

=
(
1 − b1 − b2

(
λR1 ,p,β

)−1)
ρ̂H(u) − ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω

≥
(
1 − b1 − b2

(
λR1 ,p,β

)−1)
‖u‖p0 − ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω .

This shows the coercivity ofA.
Case II: Condition (B) is satis�ed.
From the Steklov p-Laplace eigenvalue problem, see (2.9) and (2.10) for r = p, we have the inequality

‖u‖pp,∂Ω ≤
(
λS1 ,p

)−1 (
‖∇u‖pp + ‖u‖pp

)
for all u ∈ W1 ,p(Ω). (3.6)

As before, let u ∈ W1 ,H(Ω) be such that ‖u‖0 > 1 and note again thatW1 ,H(Ω) ⊆ W1 ,p(Ω). Applying (H1)(ii),
(3.6), (B) and Proposition 2.2(iv) one gets

〈A(u), u〉H =
∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
·∇u dx +

∫
Ω

(
|u|p−2 u + µ(x)|u|q−2 u

)
u dx
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−
∫
Ω

f (x, u,∇u)u dx −
∫
∂Ω

g(x, u)u dσ + ζ
∫
∂Ω

|u|p dσ

≥ ‖∇u‖pp + ‖∇u‖qq,µ + ‖u‖pp + ‖u‖qq,µ − b1 ‖∇u‖pp − b2‖u‖pp − ‖ω1 ‖1
− b3‖u‖pp,∂Ω − ‖ω2‖1 ,∂Ω + ζ‖u‖pp,∂Ω

≥
(
1 −max{b1 , b2} − b3

(
λS1 ,p

)−1)(
‖∇u‖pp + ‖u‖pp

)
+ ‖∇u‖qq,µ + ‖u‖qq,µ

− ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω

≥
(
1 −max{b1 , b2} − b3

(
λS1 ,p

)−1)
ρ̂H(u) − ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω

≥
(
1 −max{b1 , b2} − b3

(
λS1 ,p

)−1)
‖u‖p0 − ‖ω1 ‖1 − ‖ω2‖1 ,∂Ω .

Hence,A : W1 ,H(Ω) → W1 ,H(Ω)* is again coercive.
We have shown that A : W1 ,H(Ω) → W1 ,H(Ω)* is a bounded, pseudomonotone and coercive operator.

From Theorem 2.5 we �nd an element û ∈ W1 ,H(Ω) such that A(û) = 0 with û ≠ 0 since f (x, 0, 0) ≠ 0
for a. a. x ∈ Ω. In view of the de�nition of A, we see that û turns out to be a nontrivial weak solution of
problem (3.1). Similar to Theorem 3.1 of Gasiński-Winkert [17] we can show the boundedness of û. The proof
is complete.

4 Constant sign solutions for superlinear perturbations
In this section we are interested in constant sign solutions for problems of type (1.1) without convection term
but with superlinear nonlinearities. We are going to consider the cases of the dependence on Robin and
Steklov eigenvalues separately. We start with the Steklov case and set

h1 (x, s, ξ ) = −ϑ|s|p−2 s − µ(x)|s|q−2 s − f (x, s) for a. a. x ∈ Ω,
h2 (x, s) = ζ |s|p−2 s − g(x, s) for a. a. x ∈ ∂Ω,

for all s ∈ R, ϑ, ζ > 0 to be speci�ed and Carathéodory functions f and gwhich satisfy hypotheses (H2) below.
With this choice, (1.1) can be written as

−div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) = −ϑ|u|p−2 u − µ(x)|u|q−2 u − f (x, u) in Ω,
(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ν = ζ |u|p−2 u − g(x, u) on ∂Ω,

(4.1)

where the following conditions are supposed:

(H2) The nonlinearities f : Ω × R → R and g : ∂Ω × R → R are assumed to be Carathéodory functions which
satisfy the subsequent hypotheses:

(i) f and g are bounded on bounded sets.
(ii) It holds

lim
s→±∞

f (x, s)
|s|q−2 s = +∞ uniformly for a. a. x ∈ Ω,

lim
s→±∞

g(x, s)
|s|q−2 s = +∞ uniformly for a. a. x ∈ ∂Ω.

(iii) It holds

lim
s→0

f (x, s)
|s|q−2 s = 0 uniformly for a. a. x ∈ Ω,

lim
s→0

g(x, s)
|s|p−2 s = 0 uniformly for a. a. x ∈ ∂Ω.
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We say that u ∈ W1 ,H(Ω) is a weak solution of problem (4.1) if∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
·∇φ dx +

∫
Ω

(
ϑ|u|p−2 u + µ(x)|u|q−2 u

)
φ dx

=
∫
Ω

(
−f (x, u)

)
φ dx +

∫
∂Ω

(
ζ |u|p−2 u − g(x, u)

)
φ dσ

is ful�lled for all φ ∈ W1 ,H(Ω).
The following theorem states the existence of constant sign solutions where the parameter ζ depends on

the �rst Steklov eigenvalue for the p-Laplacian, namely λS1 ,p.

Theorem 4.1. Let hypotheses (2.3) and (H2) be satis�ed. Furthermore, let ϑ ∈ (0, 1] and let ζ > λS1 ,p with λS1 ,p
being the �rst eigenvalue of the Steklov eigenvalue problem of the p-Laplacian stated in (2.9). Then, problem
(4.1) has at least two nontrivial weak solutions u0, v0 ∈ W1 ,H(Ω) ∩ L∞(Ω) such that u0 ≥ 0 and v0 ≤ 0.

Proof. From hypothesis (H2)(ii) we know that we can �nd constants M1 ,M2 = M2 (ζ ) > 1 such that

f (x, s)s ≥ |s|q for a.a. x ∈ Ω and all |s| ≥ M1 ,
g(x, s)s ≥ ζ |s|q for a.a. x ∈ Ω and all |s| ≥ M2 .

(4.2)

We set M3 = max (M1 ,M2 ) and take a constant function u ≡ ς ∈ [M3 , +∞). Applying (4.2), p < q and M3 > 1
yields

0 ≥ −f (x, u) for a. a. x ∈ Ω and 0 ≥ ζ up−1 − g(x, u) for a. a. x ∈ ∂Ω. (4.3)

Analogously, we can choose v ≡ −ς in order to get

0 ≤ −f (x, v) for a. a. x ∈ Ω and 0 ≤ ζ |v|p−2 v − g(x, v) for a. a. x ∈ ∂Ω.

Now, we introduce the cut-o� functions θ± : Ω ×R → R and θ±ζ : ∂Ω ×R → R de�ned by

θ+(x, s) =


0 if s < 0
−f (x, s) if 0 ≤ s ≤ u
−f (x, u) if u < s

,

θ+ζ (x, s) =


0 if s < 0
ζsp−1 − g(x, s) if 0 ≤ s ≤ u
ζ up−1 − g(x, u) if u < s

,

θ−(x, s) =


−f (x, v) if s < v
−f (x, s) if v ≤ s ≤ 0
0 if 0 < s

,

θ−ζ (x, s) =


ζ |v|p−2 v − g(x, v) if s < v
ζ |s|p−2 s − g(x, s) if v ≤ s ≤ 0
0 if 0 < s

,

(4.4)

which are Carathéodory functions. We set

Θ±(x, s) =
s∫

0

θ±(x, t) dt and Θ±ζ (x, s) =
s∫

0

θ±ζ (x, t) dt.

Now we consider the C1 -functionals Γ± : W1 ,H(Ω) → R de�ned by

Γ±(u) = 1
p ‖∇u‖

p
p +

1
q ‖∇u‖

q
q,µ +

ϑ
p ‖u‖

p
p +

1
q ‖u‖

q
q,µ −

∫
Ω

Θ±(x, u) dx −
∫
∂Ω

Θ±ζ (x, u) dσ.
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Furthermore, we write F(x, s) =
∫ s
0 f (x, t) dt and G(x, s) =

∫ s
0 g(x, t) dt.

We �rst investigate the existence of the nonnegative solution. Due to the truncations in (4.4) it is clear that
the functional Γ+ is coercive and also sequentially weakly lower semicontinuous. Hence, its global minimizer
u0 ∈ W1 ,H(Ω) exists, that is

Γ+(u0) = inf
[
Γ+(u) : u ∈ W1 ,H(Ω)

]
.

From hypotheses (H2)(iii), for given ε1 , ε2 > 0, there exist δ1 = δ1 (ε1 ), δ2 = δ2 (ε2 ) ∈ (0, u) such that

F(x, s) ≤ ε1q |s|
q for a.a. x ∈ Ω and for all |s| ≤ δ1 ,

G(x, s) ≤ ε2p |s|
p for a.a. x ∈ ∂Ω and for all |s| ≤ δ2 .

(4.5)

We set δ := min(δ1 , δ2 ). Recall that uS1 ,p is the �rst eigenfunction corresponding to the �rst eigenvalue λS1 ,p of
the eigenvalue problem of the p-Laplacian with Steklov boundary condition, see (2.9). We may suppose that
it is normalized, that is, ‖uS1 ,p‖p,∂Ω = 1 . Since uS1 ,p ∈ int

(
C1 (Ω)+

)
, we may choose t ∈ (0, 1) small enough

such that tuS1 ,p(x) ∈ [0, δ] for all x ∈ Ω. Because of (4.4), (4.5) and δ < u it follows that

Γ+
(
tuS1 ,p

)
= 1
p

∥∥∥∇(tuS1 ,p)∥∥∥p
p
+ 1
q

∥∥∥∇(tuS1 ,p)∥∥∥q
q,µ

+ ϑp

∥∥∥tuS1 ,p∥∥∥p
p
+ 1
q

∥∥∥tuS1 ,p,∥∥∥q
q,µ

−
∫
Ω

Θ+
(
x, tuS1 ,p

)
dx −

∫
∂Ω

Θ+
ζ

(
x, tuS1 ,p

)
dσ

≤ t
p

p λ
S
1 ,p +

tq
q

∥∥∥∇uS1 ,p∥∥∥q
q,µ

+ t
q

q

∥∥∥uS1 ,p∥∥∥q
q,µ

+
∫
Ω

F
(
x, tuS1 ,p

)
dx − ζt

p

p

+
∫
∂Ω

G
(
x, tuS1 ,p

)
dσ

≤ t
p

p λ
S
1 ,p +

tq
q

∥∥∥∇uS1 ,p∥∥∥q
q,µ

+ t
q

q

∥∥∥uS1 ,p∥∥∥q
q,µ

+ ε1 t
q

q

∥∥∥uS1 ,p∥∥∥q
q
− ζt

p

p + ε2 t
p

p

= tp
(
λS1 ,p − ζ + ε2

p

)
+ tq


∥∥∥∇uS1 ,p∥∥∥qq,µ + ∥∥∥uS1 ,p∥∥∥qq,µ + ε1 ∥∥∥uS1 ,p∥∥∥qq

q

 .

(4.6)

By assumption, we know that ζ > λS1 ,p. So we may choose ε1 , ε2 > 0 such that

0 < ε1 < ∞ and 0 < ε2 < ζ − λS1 ,p .

From this choice and since p < q we obtain from (4.6)

Γ+
(
tuS1 ,p

)
< 0 for all su�ciently small t > 0.

Therefore, we know now that

Γ+ (u0) < 0 = Γ+ (0) .

Hence, u0 = ̸ 0.
Since u0 is a global minimizer of Γ+ we have (Γ+)′(u0) = 0, that is,∫

Ω

(
|∇u0|p−2∇u0 + µ(x)|∇u0|q−2∇u0

)
·∇φ dx

+
∫
Ω

(
ϑ|u0|p−2 u0 + µ(x)|u0|q−2 u0

)
φ dx

=
∫
Ω

θ+ (x, u0)φ dx +
∫
∂Ω

θ+ζ (x, u0)φ dσ

(4.7)
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for all φ ∈ W1 ,H(Ω). First we take φ = −u−0 ∈ W1 ,H(Ω) as test function in (4.7). We obtain

‖∇u−0‖pp + ‖∇u
−
0‖qq,µ + ‖u

−
0‖pp + ‖u

−
0‖qq,µ = 0,

which yields u−0 = 0 and so u0 ≥ 0. Second we choose φ = (u0 − u)+ ∈ W1 ,H(Ω) as test function in (4.7) which
results in ∫

Ω

(
|∇u0|p−2∇u0 + µ(x)|∇u0|q−2∇u0

)
·∇ (u0 − u)+ dx

+
∫
Ω

(
ϑup−10 + µ(x)uq−10

)
(u0 − u)+ dx

=
∫
Ω

θ+(x, u0) (u0 − u)+ dx +
∫
∂Ω

θ+ζ (x, u0) (u0 − u)
+ dσ

=
∫
Ω

(−f (x, u)) (u0 − u)+ dx +
∫
∂Ω

(
ζ up−1 − g(x, u)

)
(u0 − u)+ dσ

≤ 0,

(4.8)

by (4.3). First note that ∫
Ω

(
|∇u0|p−2∇u0 + µ(x)|∇u0|q−2∇u0

)
·∇ (u0 − u)+ dx

≥ ϑ
∫
Ω

(
|∇(u0 − u)+|p + µ(x)|∇(u0 − u)+|q

)
dx.

(4.9)

Since u0 > u > 1 on the set {u0 > u} we have∫
Ω

(
ϑup−10 + µ(x)uq−10

)
(u0 − u)+ dx

≥ ϑ
∫

{u0>u}

(
up−10 + µ(x)uq−10

)
(u0 − u) dx

≥ ϑ
∫

{u0>u}

(
(u0 − u)p−1 + µ(x)(u0 − u)q−1

)
(u0 − u) dx

= ϑ
∫
Ω

(
((u0 − u)+)p + µ(x)((u0 − u)+)q

)
dx.

(4.10)

Combining (4.8) with (4.9) as well as (4.10) and using Proposition 2.2(iii), (iv) implies that

ϑmin{‖(u0 − u)+‖p0 , ‖(u0 − u)
+‖q0} ≤ ϑρ̂H((u0 − u)+) ≤ 0.

Hence, u0 ≤ u and so u0 ∈ [0, u]. By thede�nitionof the truncations in (4.4)we see that u0 ∈ W1 ,H(Ω)∩L∞(Ω)
turns out to be a weak solution of our original problem (4.1).

For the nonpositive solution we consider the functional Γ− : W1 ,H(Ω) → R and show in the same way
that it has a global minimizer v0 ∈ W1 ,H(Ω) which belongs to [v, 0].

Let us study now the case when the solutions depend on the �rst Robin eigenvalue. We set

h1 (x, s, ξ ) = (ζ − ϑ)|s|p−2 s − µ(x)|s|q−2 s − f (x, s) for a. a. x ∈ Ω,
h2 (x, s) = −β|s|p−2 s for a. a. x ∈ ∂Ω,

for all s ∈ Rwith parameters ζ > ϑ > 0 to be speci�ed, β > 0 is the same parameter as in the Robin eigenvalue
problem and f is a Carathéodory function. Then, problem (1.1) becomes

−div(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) = (ζ − ϑ)|u|p−2 u − µ(x)|u|q−2 u − f (x, u) in Ω,
(|∇u|p−2∇u + µ(x)|∇u|q−2∇u) · ν = −β|u|p−2 u on ∂Ω,

(4.11)
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where f satis�es the following assumptions:

(H3) The function f : Ω ×R → R is a Carathéodory function such that:

(i) f is bounded on bounded sets.
(ii) It holds

lim
s→±∞

f (x, s)
|s|q−2 s = +∞ uniformly for a. a. x ∈ Ω.

(iii) It holds

lim
s→0

f (x, s)
|s|p−2 s = 0 uniformly for a. a. x ∈ Ω.

We have the following multiplicity result concerning problem (4.11).

Theorem 4.2. Let hypotheses (2.3) and (H3) be satis�ed. Further, let ζ > λR1 ,p,β + ϑ with ϑ > 0 and λR1 ,p,β being
the �rst eigenvalue of the Robin eigenvalue problem of the p-Laplacian with β > 0 stated in (2.7). Then, problem
(4.11) has at least two nontrivial weak solutions u1 , v1 ∈ W1 ,H(Ω) ∩ L∞(Ω) such that u1 ≥ 0 and v1 ≤ 0.

Proof. Taking hypothesis (H3)(ii) into account we �nd a constant M = M(ζ ) > 1 such that

f (x, s)s ≥ ζ |s|q for a.a. x ∈ Ω and all |s| ≥ M. (4.12)

As in the proof of Theorem 4.1, by (4.12), we can take constant functions u ∈ (M, +∞) and v ≡ −u such that

0 ≥ ζ up−1 − f (x, u) for a. a. x ∈ Ω and 0 ≤ ζ |v|p−2 v − f (x, v) for a. a. x ∈ Ω, (4.13)

because p < q and M > 1 .
Then we de�ne truncations ψ±ζ : Ω ×R → R and ψ±β : ∂Ω ×R → R as follows

ψ+
ζ (x, s) =


0 if s < 0
ζsp−1 − f (x, s) if 0 ≤ s ≤ u
ζ up−1 − f (x, u) if u < s

,

ψ+
β(x, s) =


0 if s < 0
−βsp−1 if 0 ≤ s ≤ u
−βup−1 if u < s

,

ψ−ζ (x, s) =


ζ |v|p−2 v − f (x, v) if s < v
ζ |s|p−2 s − f (x, s) if v ≤ s ≤ 0
0 if 0 < s

,

ψ−β(x, s) =


−β|v|p−2 v if s < v
−β|s|p−2 s if v ≤ s ≤ 0.
0 if 0 < s

(4.14)

We set

Ψ±ζ (x, s) =
s∫

0

ψ±ζ (x, t) dt and Ψ±β(x, s) =
s∫

0

ψ±β(x, t) dt

and introduce the C1 -functionals Π± : W1 ,H(Ω) → R given by

Π±(u) = 1
p ‖∇u‖

p
p +

1
q ‖∇u‖

q
q,µ +

ϑ
p ‖u‖

p
p +

1
q ‖u‖

q
q,µ −

∫
Ω

Ψ±ζ (x, u) dx −
∫
∂Ω

Ψ±β(x, u) dσ.
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As before, we de�ne F(x, s) =
∫ s
0 f (x, t) dt.

We start with the existence of a nonnegative solution. Because of (4.14) we know that the functional Π+

is coercive and also sequentially weakly lower semicontinuous. Therefore, we �nd an element u1 ∈ W1 ,H(Ω)
such that

Π+(u1 ) = inf
[
Π+(u) : u ∈ W1 ,H(Ω)

]
.

By hypothesis (H3)(iii), we �nd for every ε > 0 a number δ ∈ (0, u) such that

F(x, s) ≤ εp |s|
p for a.a. x ∈ Ω and for all |s| ≤ δ. (4.15)

We recall that uR1 ,p,β is the �rst eigenfunction corresponding to the �rst eigenvalue λR1 ,p,β of the eigenvalue
problem of the p-Laplacian with Robin boundary condition, see (2.7). Without any loss of generality we can
assume that uR1 ,p,β is normalized (that is, ‖uR1 ,p,β‖p = 1 ) and because of uR1 ,p,β ∈ int

(
C1 (Ω)+

)
we choose

t ∈ (0, 1) su�ciently small such that tuR1 ,p,β(x) ∈ [0, δ] for all x ∈ Ω. Applying (4.14), (4.15), δ < u and ϑ > 0
gives

Π+
(
tuR1 ,p,β

)
= 1
p

∥∥∥∇(tuR1 ,p,β)∥∥∥pp + 1
q

∥∥∥∇(tuR1 ,p,β)∥∥∥qq,µ + ϑp ∥∥∥tuR1 ,p,β∥∥∥pp + 1
q

∥∥∥tuR1 ,p,β∥∥∥qq,µ
−
∫
Ω

Ψ+
ζ

(
x, tuR1 ,p,β

)
dx −

∫
∂Ω

Ψ+
β

(
x, tuR1 ,p,β

)
dσ

≤ t
p

p λ
R
1 ,p,β −

βtp
p

∥∥∥uR1 ,p,β∥∥∥pp,∂Ω + tqq ∥∥∥∇uR1 ,p,β∥∥∥qq,µ + tpϑp + t
q

q

∥∥∥uR1 ,p,β∥∥∥qq,µ
− ζt

p

p +
∫
Ω

F
(
x, tuR1 ,p,β

)
dx + βt

p

p

∥∥∥uR1 ,p,β∥∥∥pp,∂Ω
≤ t

p

p λ
R
1 ,p,β +

tq
q

∥∥∥∇uR1 ,p,β∥∥∥qq,µ + tpϑp + t
q

q

∥∥∥uR1 ,p,β∥∥∥qq,µ − ζtpp + εt
p

p

≤ tp
(
λR1 ,p,β + ϑ − ζ + ε

p

)
+ tq


∥∥∥∇uR1 ,p,β∥∥∥qq,µ + ∥∥∥uR1 ,p,β∥∥∥qq,µ

q

 .

(4.16)

Due to ζ > λR1 ,p,β + ϑ and p < q one has from (4.16) for ε ∈ (0, ζ − λR1 ,p,β − ϑ) that

Π+
(
tuR1 ,p,β

)
< 0 for all su�ciently small t > 0.

Hence, Π+ (u1 ) < 0 = Π+ (0) and so u1 ≠ 0.
We have (Π+)′(u1 ) = 0, that is,∫

Ω

(
|∇u1 |p−2∇u1 + µ(x)|∇u1 |q−2∇u1

)
·∇φ dx

+
∫
Ω

(
ϑ|u1 |p−2 u1 + µ(x)|u1 |q−2 u1

)
φ dx

=
∫
Ω

ψ+
ζ (x, u1 )φ dx +

∫
∂Ω

ψ+
β (x, u1 )φ dσ

(4.17)

for all φ ∈ W1 ,H(Ω). As done in the proof of Theorem 4.1 we take φ = −u−1 ∈ W1 ,H(Ω) and φ = (u1 − u)+ ∈
W1 ,H(Ω) as test functions in (4.17) which gives us 0 ≤ u1 ≤ u, see (4.13). Hence, by the de�nition of the
truncations in (4.14) we see that u1 ∈ W1 ,H(Ω) ∩ L∞(Ω) solves problem (4.11).

In the same way we can show the existence of a nontrivial nonpositive solution v1 ∈ W1 ,H(Ω) ∩ L∞(Ω)
by treating the functional Π− : W1 ,H(Ω) → R instead of Π+ : W1 ,H(Ω) → R.
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Remark 4.3. In this section we decided to consider two di�erent problems since in the proof of Theorem 4.1 the
use of the �rst Robin eigenfunction would have provided a condition of the form

λR1 ,p,β + ϑ < (β + ζ )
∥∥∥uR1 ,p,β∥∥∥pp,∂Ω , (4.18)

which depends also on the boundary norm of the eigenfunction uR1 ,p,β. So the statement of Theorem 4.1 still holds
truewhenwe replace the assumption ζ > λS1 ,p by (4.18)where uR1 ,p,β is the �rst normalized (that is, ‖uR1 ,p,β‖p = 1 )
eigenfunction associated to the �rst eigenvalue λR1 ,p,β of the Robin eigenvalue problem.
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