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Abstract— Obstructive sleep apnea (OSA) syndrome is a com-
mon breathing abnormality. During apnea, the airflow is im-
peded or totally interrupted. The reaction of the autonomic ner-
vous system terminates the apnea and also leads to changes in
heart rate variability (HRV). As shown in previous studies, the
spectral analysis of HRV allows for a diagnosis of apnea. There-
fore, a high quality time-frequency distribution is of great signif-
icance. The Wigner-Ville-Distribution (WVD) offers a very high
resolution in both, time and frequency. However, the proper
handling of cross terms resulting in the calculation of the WVD
is a crucial point using the WVD. To cope with this task, the pre-
sented work compares different methods regarding their ability
of cross term suppression and applicability. Furthermore it is
shown that using spectral information of ECG overnight record-
ings from the Physionet Apnea Data-base, these datasets can be
separated.
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I. INTRODUCTION

The obstructive sleep apnea syndrome has a prevalence of
4% in adult men and 2% in adult women [1]. The main rea-
son for the occurrence of apnea is the reduction of the mus-
cular tone in sleep. This causes an obstruction of the upper
airway. In addition, a large tongue or obesity may encourage
this process. During episodes of obstructive apnea, the res-
piratory effort is continued. The autonomic nervous system
causes an arousal which terminates the apnea. The apnea is
followed by a hyperventilation. The heart rate declines dur-
ing the apnea and rises at the end of it. These cyclical varia-
tions in heart rate are typical for the apnea [2],[3]. There is a
large research interest for detecting the OSA from ECG data.
The Computers in Cardiology (CinC) Challenge 2000 aims at
identifying apneic episodes from ECG overnight recordings.
Various methods were applied to solve this problem [4]. Am-
bulant, portable health monitoring systems become more and

more attractive. The Fraunhofer IPMS develops such Body
Area Networks. These networks combine a number of differ-
ent sensors and can even be integrated into clothes [5]. Us-
ing these technologies, effective screening is possible. The
approach of ECG based apnea detection is to use data from
screenings to select patients that show indications of apnea.
Selected patients are then further examined in a sleep labora-
tory.

II. MATERIAL

The apnea ECG database from Physionet [6] is used to
evaluate the implemented algorithms. The apnea database is
divided into a training database and a test database. Each
database contains 20 records of patients suffering from ap-
nea (group A), 10 records from a control group (C) and 5
records (group B) that neither belong to group A nor to group
C. The CinC Challenge was divided in two tasks. The first
task was to assign the datasets from the test database to one
of the groups A or C. The aim of the second task was to label
each minute of the datasets apneic or non-apneic.

III. METHODS

A. Generating a Tachogram

The heart rate series are plotted against time in a
tachogram. The instantaneous heart rate corresponds to the
reciprocal of the distance between two consecutive QRS
complexes. A Wavelet based approach is applied to detect
the QRS complexes [7]. The RR series are cleared up from
spikes and extrasystoles. A linear interpolation and a resam-
pling with 10Hz is used to generate an equidistant NN series.
After band-pass filtering (low-pass cutoff frequency: 0,4 Hz,
high-pass cutoff frequency: 0,001 Hz) the NN series, it is re-
sampled to 1 Hz. For filtering, cascaded Butterworth filters of
second order are applied.



(a) Time Domain Signal
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Fig. 1: Qualitative demonstration of the WVD, its modifications and of the
STFT. (a) Each of the two signals consists of two frequency modulated

Gaussian functions with frequencies 0,15 Hz (top) and 0,35 Hz (bottom).
The sum of the signals in (a) is transformed according to Wigner and its

modifications (b),(c),(d) and with the STFT (e).

B. Wigner-Ville Distribution

The WVD is used to analyze the frequency content of
HRV. Its time-frequency resolution is twice as high as this
of the Short Time Fourier Transform (STFT) [8].

The WVD is derived from the ambiguity function. For a
signal z(t), the WVD is defined as:

WV Dz(t, f ) =
∫

∞

−∞

z(t +
τ

2
)z∗(t− τ

2
)︸ ︷︷ ︸

Ψzz(t,τ)

exp(− j2π f τ)dτ (1)

The expression Ψzz(t,τ) in (1) is the so called instanta-
neous autocorrelation function. Its calculation causes cross
terms (or interference terms). These cross terms are the ma-
jor disadvantage of the WVD.

C. Cross Term (CT) suppression

The most common method for CT suppression is the
Smoothed Pseudo Wigner-Ville-Distribution (SPWVD). An-

other method uses a Time Frequency Distribution Series
(TFDS) [12]. In the following, both methods are explained
in detail. Further methods are given in Table 1.

SPWVD: The calculation of the SPWVD is separated in
two steps. In the first step, a window function h(τ) is applied:
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Depending on the length of the window function h(τ) this
suppresses, to some extent, the CT for multicomponent sig-
nals. The reason is that the window function makes the WVD
local. But there are still CT left from different auto terms
within the window. These CT can be reduced by convolut-
ing the result from (2) with function g(t):
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By applying the function h(τ) and g(t), the resulting time-
frequency distribution is smeared to some degree in time and
frequency. Nevertheless, the resolution provided by the SP-
WVD is still superior to the STFT.

TFDS: For the TFDS, the signal under investigation, z(t),
is written in terms of linear combination of a set of ele-
mentary functions. These elementary functions should have
a good localization in time and frequency. The Gabor ele-
mentary functions used in the TFDS satisfy these conditions.

The elementary functions are defined as:
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and a signal is represented as:

Table 1: Further methods for CT suppression in the WVD

Method Approach and Properties
TFDS, Wil-
son base[9]

TFDS using a Wilson base; (+): No re-
dundancy (-): High computational effort

Superposition
of STFT and
WVD [10]

Knowledge of auto terms in STFT re-
duces CT in WVD (+): Simple; High res-
olution (-): Auto terms have to have a
minimum distance

Phase shifting
of signal [11]

Shifted auto terms produce shifted CT;
(+): High Resolution (-): A priori knowl-
edge about auto terms
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Fig. 2: Different Time-Frequency-Distributions for HRV from a Group A
dataset (Record a03 apneadb)
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The Gabor elementary functions in 4 are time shifted and
frequency modulated Gaussian functions. Cm,n are the Gabor
coefficients. The coefficients are calculated using the Time
Frequency Toolbox [13]. The Cross WVD is applied to (5):

Wz(t, f ) = ∑
m,m′

∑
n,n′

Cm,nC∗m′,n′Wh,h′(t, f ). (6)

By setting (m,m′,n,n′) in (6), the distances |m−m′| and
|n− n′| are determined. These two distances describe the

width of the instantaneous autocorrelation function. By ma-
nipulating them, a windowing can be achieved. This improves
the resolution of the original Gabor spectrogram and simul-
taneously suppresses the CT effectively.

Figure 1 shows the interference terms in the WVD and the
high time-frequency concentration of the SPWVD and the
TFDS compared to the STFT.

D. Configuration of SPWVD and TFDS

Both, SPWVD and TFDS are programmed using MAT-
LAB. Gaussian windows are used for SWPVD and TFDS.

SPWVD: To analyze frequencies down to 0,01 Hz and less,
the minimum length of window function h(τ) is 100 s. The
following window lengths are a compromise for a good time-
frequency resolution: h(τ) = 181s, g(t) = 60s.

TFDS: For the TFDS, the Gabor coefficients have to be
calculated first. The Gabor elementary functions only form a
basis of L2(R) if T ·Ω = 2π in (4). But the closer T ·Ω gets to
2π , the worse the dual function becomes. This circumstance
requires some degree of oversampling, meaning T ·Ω > 2π .
The oversampling rate Q = M·N/L is set to 128. For a signal
consisting of L = 8192 samples, N = 512 Gabor coefficients
in time and M = 2048 in frequency are calculated. For the
Cross WVD applied in the following step, the distance d =
|m−m′|+ |n−n′| is set to 4.

IV. RESULTS

WVD and methods for CT suppression: Using different
test signals, the best results for CT suppression were achieved
using the SPWVD. Compared to the TFDS, the SPWVD has
less computational effort and the configuration is less com-
plex. The TFDS requires some degree of oversampling re-
sulting in a high redundancy.

A dataset from group A was analyzed using SPWVD,
TFDS and STFT (Gaussian window; 181 s) (see Fig. 2(a)
- 2(c)). Compared to the STFT, both the SPWVD and the
TFDS provide a higher time-frequency resolution. The SP-
WVD is chosen for further analysis.

Dataset Separation: In Fig. 2(a), the annotated apneic
episodes (annotated by an expert) are marked on the time
axis. There is an interrelation between these annotations and
the rise of the energy in the frequency range between 0,02 Hz
and 0,04 Hz. This interrelation was not noticeable in all of
the datasets. Characteristic peaks arise when averaging the
spectra in time. For datasets from group A, this peak lies
at 0,021± 0,006Hz. For datasets from group C, it lies at
0,011± 0,002Hz. These values have been determined from
the training dataset.



Fig. 3: Spectras for one dataset from group A and one from group C
averaged in time.

Table 2: Results for classifying datasets by their averaged peak in the
frequency domain

Training Database Test Database
Specificity 85 % 100 %
Sensitivity 90 % 100 %

The datasets are classified by setting a threshold value.
This threshold is based on the previously mentioned fea-
tures and is set to 0,015 Hz. Using this threshold, datasets
from groups A and C are separated (see Fig. 3). The re-
sults for classification within the training database and the
test database are summarized in Table 2.

V. DISCUSSION

Using SPWVD for HRV Analysis: To reduce CT artefacts
in the WVD, a modification has to be applied. The SPWVD
reduces the time frequency resolution of the WVD but is still
superior to the STFT. Using the high resolution, a minute by
minute analysis of HRV is possible.

Apnea detection: The spectral analysis of HRV has shown
an interrelation between episodes containing apnea and en-
ergy changes in the frequency range between 0,02 Hz and
0,04 Hz. This result agrees with results from other works [3],
[14]. For datasets from group C, the characteristic peak is
in the range between 0,006 Hz and 0,014 Hz. This peak, de-
tected in this work, is a further feature to separate the datasets
from groups A and C. But the minute by minute analysis
using the selected features does not work properly for all
datasets. One reason is that the physiological causes for the
very low frequencies in HRV are not entirely clear.

VI. CONCLUSION

The WVD is a powerful tool for the combined time fre-
quency analysis. The CT artefacts in the WVD are reduced by
using appropriate mathematical methods. The SPWVD was

found to be the most efficient approach for CT suppression in
this application.

Using the SPWVD to analyze HRV it was shown that it
is possible to separate group A and C datasets from the Phy-
sionet apnea database. Good results were achieved using a
simple threshold decision method.

Future work will use HRV to diagnose pathological
changes. The ECG derived respiratory signal will be used in
combination with the analysis of HRV to realize investiga-
tions with a higher temporal resolution.
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