

Formal methods and automated verification of critical systems

Maurice H. ter Beek1 · Stefania Gnesi1 · Alexander Knapp2

Abstract
Critical (software) systems are all around us. These systems are typically characterised by stringent dependability requirements
and demand elevated levels of robustness and fault tolerance. To assure that they function as intended and provide a number
of quality guarantees, formal methods and automated verification techniques and tools have been in use in the engineering
of such critical systems for many years now. In this introduction to the special issue FMICS–AVoCS on “Formal Methods
and Automated Verification of Critical Systems”, we outline a number of recent achievements concerning the use of formal
methods and automated verification techniques and tools for the specification and analysis of critical systems from a variety
of application domains. These achievements are represented by six selected papers: five were selected from the joint 21st
International Workshop on Formal Methods for Industrial Critical Systems and 16th International Workshop on Automated
Verification of Critical Systems (FMICS–AVoCS 2016), while one of them was selected after an open call for papers.

Keywords Formal methods · Automated verification · Critical systems

1 Introduction

We are surrounded by a fair amount of critical (software) sys-
tems with stringent dependability requirements and necessi-
tating elevated levels of robustness and fault tolerance. It is of
paramount importance that such systems (e.g. safety-critical,
business-critical, performance-critical) function as intended
and provide a number of overall quality guarantees. Thus,
the main causes of software failures—such as requirements
defects, design faults and incorrect implementations—need
to be excluded with the highest levels of assurance. To this
aim, formal methods and automated verification techniques
and tools have been in use in the engineering of such crit-
ical (software) systems for many years now [1,2] and their
use is currently a hot topic in numerous application domains
[3–10].

B Maurice H. ter Beek
terbeek@isti.cnr.it

Stefania Gnesi
gnesi@isti.cnr.it

Alexander Knapp
knapp@informatik.uni-augsburg.de

1 Istituto di Scienza e Tecnologie dell’Informazione, Consiglio
Nazionale delle Ricerche, Pisa, Italy

2 Institute for Software and Systems Engineering, Universität
Augsburg, Augsburg, Germany

Formal methods are specification languages for describ-
ing the behaviour of a (software) system as a model with a
precise semantics, thus allowing their associated formal ver-
ification tools to perform analyses over these system models
[11]. Similar to other engineering disciplines, the envisioned
advantage of their use is the expectation that appropriate
mathematical modelling and analysis can contribute to the
correctness of the developed systems by eliminating flaws
during the initial (software) development phases, i.e. well
before implementation, and by ensuring robust and fault-
tolerant systems that perform as specified even in uncertain
or inconsistent environments.

This special issue dedicated to “Formal Methods and
Automated Verification of Critical Systems” contains a total
of six papers. Five of them are extended versions of selected
papers from the joint 21st International Workshop on Formal
Methods for Industrial Critical Systems and 16th Inter-
national Workshop on Automated Verification of Critical
Systems (FMICS–AVoCS 2016), while one of them was
selected after an open call for papers.

The 21st International Workshop on Formal Methods
for Industrial Critical Systems and the 16th International
Workshop on Automated Verification of Critical Systems
(FMICS–AVoCS 2016), which were organised as a joint
event from26September to 28September 2016, in Pisa, Italy,

called for contributions on the following, non-exhaustive,
topics of interest:

– Design, specification, refinement, code generation and
testing of critical systems based on formal methods.

– Methods, techniques and tools to support the automated
analysis, certification, debugging, learning, optimisation
and transformation of critical systems, in particular dis-
tributed, real-time systems and embedded systems.

– Automated verification (e.g. model checking, theorem
proving, SAT/SMT constraint solving, abstract interpre-
tation) of critical systems.

– Verification and validation methods addressing short-
comings of existing methods with respect to their indus-
trial applicability (e.g. scalability and usability issues).

– Tools for the development of formal design descriptions.
– Case studies and experience reports on industrial appli-
cations of formal methods, focussing on lessons learnt or
on the identification of new research directions.

– Impact of the adoption of formal methods on the devel-
opment process and associated costs.

– Application of formal methods in standardisation and
industrial forums.

The proceedings of FMICS–AVoCS 2016 have been pub-
lished in Springer’s Lecture Notes in Computer Science
series [12].

Shortly after the joint event, in November 2016, an open
call for papers devoted to “Formal Methods and Automated
Verification of Critical Systems” was issued. According to
the call, research papers containing novel, previously unpub-
lished results in all areas related to the topics of the FMICS
and AVoCSworkshop series were sought for. This resulted in
the submissions of 14 papers. Based upon a thorough review-
ing process, the editors decided to accept nine papers; three
of them appeared in a dedicated special issue on “Formal
Methods for Transport Systems” of Springer’s International
Journal on Software Tools for Technology Transfer (STTT)
[10], due to their explicit focus on transport systems, while
six papers are included in this special issue.

In the remainder of this introduction, we will briefly
present and contextualise the contributions of the papers con-
tained in this special issue, followed by a discussion of the
overall impact of this special issue.

2 Selected papers

The first paper of this special issue, Qualitative and quanti-
tative analysis of safety-critical systems with S# by Leupolz
et al. [13], presents an integrated, uniform framework for
simulating and verifying safety-critical systems. This frame-
work S# is directly based on the C# programming language

and development tools, for user-friendliness, practicality, and
versatility. For safety-critical systems, dedicated support for
fault modelling is added. Both qualitative analysis, based on
linear temporal logic, and quantitative analysis using fault
probabilities can be conducted. The S# approach utilises the
LTSmin tool [14] for state space generation, feeding LTSmin
with state data directly computed from the C# program. On
the one hand, LTSmin can then be used for explicit-state
model checking for qualitative analysis, like direct-cause-
consequence analysis (DCCA). On the other hand, a Markov
chain can be derived for qualitative analysis when the faults
are labelled with probabilities. The effectiveness and the effi-
ciency of the approach are demonstrated on several case
studies.

The second paper of this special issue, Runtime verifica-
tion of autopilot systems using a fragment of MTL-

∫
by de

Matos Pedro et al. [15], introduces a novel approach to run-
time verification of hard real-time systems involving explicit
time and duration. The approach uses the three-valued
restrictedmetric temporal logic with durations RMTL-

∫
3. As

“bare-metal” real-time embedded systems running on X86
and ARM processors are targeted, monitor synthesis deliv-
ers C++11 code. A hierarchy of monitors is synthesised that
provide hard timingguarantees on each level. The expressive-
ness of the logic and the synthesis approach is first discussed
on two uses cases: the first demonstrates an application to
resource models exhibiting under- and over-loading condi-
tions for task. The second use case evaluates the likelihood
of tasks remaining unscheduled based on the overload of
another task. This use case is feasible as also conditional
probabilities can be represented in the logic and the synthe-
sised monitors. The overall framework is then successfully
evaluated on the PixHawk platform for an autopilot system
showing its applicability in practice.

The third paper of this special issue, High-level frame-
works for the specification and verification of scheduling
problems by Chadli et al. [16], contributes to the highly inter-
esting and timely issue of schedulability of Cyber-Physical
Systems. Leveraging on amodel-based rather than analytical
approach, Chadli et al. present so-called “simplicity-driven”
high-level specification and verification frameworks, based
on variants of (probabilistic) timed automata and supported
by the well-known Uppaal (SMC) toolset [17], to describe
and analyse scheduling problems (in particular correctness,
optimisation and monitoring). These frameworks can more-
over be constructed by a domain-specific tool generator
through meta-modelling, thus facilitating the task of design-
ing systems. A convincing feature is the adoption of a
user-friendly (graphical) approach: the high-level specifi-
cations are automatically translated to formal models (thus
hiding the latter from practitioners) to enable for the formal
verification, and the analysis results are transformed back to
the high-level specification language to facilitate their inter-

pretation (graphically). The effectiveness of the proposed
approach is showcased by experimenting with high-level
frameworks for two scheduling case studies.

In the fourth paper of this special issue, Integrated for-
mal verification of safety-critical software by Ge et al. [18],
a formal verification process based on the commercial Sys-
terel Smart Solver (S3) toolset1 [19] for the development
of safety-critical embedded software systems is presented.
The reader is guided through this process by means of an
Automatic Rover Protection system implemented onboard
a robot, which is a fitting example of a non-trivial safety-
critical embedded system, with distributed components,
some amount of central control and some amount of inde-
pendence. Furthermore, the paper offers a solution to the use
of floating-point arithmetics on bit level, which—in spite of
some scalability issues—nicely shows the limits of what is
feasible with current technology. This paper is of particular
interest to practitioners in the field of safety-critical systems,
as Ge et al. provide detailed guidance on how to apply which
techniques under what circumstances, and they do so from
system requirements down to code.

The fifth paper of this special issue, Model-based testing
strategies and their (in)dependence on syntacticmodel repre-
sentations by Huang and Peleska [20], presents a fresh look
at model-based testing, shifting the focus from the appar-
ent syntactic representation to the true semantic contents of
models. In fact, classical model-based testing relies on the
concrete syntactical form of a model for test case generation.
This may lead to test suites of different strength for different
syntacticalmodelswhich, however, have the same semantics.
The problem particularly arises when higher-level modelling
languages like UML are used. The new approach for test case
generation just relies on the language of themodel described,
i.e., its semantics. In particular, it is shown how to lift the tra-
ditional Wp-method for conformance testing to the language
setting.

The sixth and final paper of this special issue, Assessing
SMT and CLP approaches for workflow nets verification by
Bride et al. [21], assesses the verification of workflow nets
against specifications expressed in a modal logic for two
symbolic approaches: one is based on Satisfiability Mod-
ulo Theories (SMT), and the other is based on Constraint
Logic Programming (CLP). Workflow nets are a particular
class of Petri nets suitable for describing the behaviour of
business processes and workflows, and they are effectively
used in industry. Therefore, the focus of the assessment is on
the efficiency and scalability of the two resolution methods,
which is highly relevant for technology transfer. In fact, the
case studies used in the paper stem from industrial workflows
obtained through collaborations with industrial partners.

1 S3 is developed, maintained and distributed by Systerel.

The extensive experimental assessment of the two meth-
ods is performed over a huge set of several thousands of
workflow nets. Two solvers are used as analysis back-ends.
These are Z3 [22] (based on SMT) and SICStus Prolog2 [23]
(based on CLP). Their respective performance is thoroughly
analysed and compared using four classes of workflow nets
of increasing expressiveness (namely statemachines,marked
graphs, free-choice andordinaryworkflownets), and all com-
binations of valid/invalid may/must modal specifications.
Based on this assessment, Bride et al. propose concrete veri-
fication strategies for modal specifications of workflow nets
based on the specific features of the nets under verifica-
tion and the modal specification to be verified. Their results
empirically demonstrate that these methods are efficient and
scalable to workflow nets consisting of up to 1000 nodes.

3 Discussion

We have briefly presented the six selected papers that consti-
tute this special issue. The topics discussed in these papers
cover a broad range of formal methods and automated
verification techniques and tools, ranging from the formal
verification of concrete systems like the Automatic Rover
Protection system, through the modelling of safety-critical
systems—including probabilistic faultmodelling in the high-
level programming language C# and runtime verification of
embedded systems with hard timing requirements based on
RMTL-

∫
3—to semantic issues in model-based testing.

As could be expected from a special issue born out of the
FMICS–AVoCS workshop series, the focus is on industry-
relevant case studies, targeting practical problems related to
scheduling, real-time or workflows, and on automated tech-
niques for their modelling and verification. Consequently,
oftentimes the formal details are hidden from the users, by
employing high-level modelling languages and by applying
automated tools that are complemented with usage guidance
for practitioners. We also observe a trend in the use of real-
time and probabilisticmodelling.On the other hand, practical
support for testing safety-critical systems remains an issue,
in particular when it comes to real-time properties.

Acknowledgements We would like to thank all authors for their con-
tributions and the reviewers of FMICS–AVoCS 2016 and in particular
those of this special issue for their reviews.

References

1. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: For-
mal methods: Practice and experience. ACM Comput. Surv. 41(4),
19:1–19:36 (2009)

2 http://sicstus.sics.se/

http://sicstus.sics.se/

2. Gnesi, Stefania, Margaria, Tiziana (eds.): Formal Methods for
Industrial Critical Systems: A Survey of Applications. John Wiley
& Sons Inc, Hoboken (2013)

3. ter Beek, M.H., Clarke, D., Schaefer, I.: Editorial preface for the
JLAMP special issue on formal methods for software product line
engineering. J. Log. Algebraic Methods Programm. 85(1), 123–
124 (2016)

4. terBeek,M.H., Lisitsa,A.,Nemytykh,A.P.,Ravara,A.:Automated
verification of programs andWeb systems. J. Log. AlgebraicMeth-
ods Programm. 85(5), 653–654 (2016)

5. ter Beek, M.H., Lafuente, A.L.: Automated specification and ver-
ification of Web-based applications. J. Log. Algebraic Methods
Program. 87, 51 (2017)

6. Güdemann, M., Núñez, M.: Preface of the special issue on formal
methods in industrial critical systems. Int. J. Softw. Tools Technol.
Transf. 19(4), 391–393 (2017)

7. Ozay,N., Tabuada, P.:Guest editorial: special issue on formalmeth-
ods in control. Discrete Event Dyn. Syst. 27(2), 205–208 (2017)

8. Grov, G., Ireland, A.: Preface of the special issue on automated ver-
ification of critical systems (AVoCS 2015). Sci. Comput. Program.
148, 1–2 (2017)

9. ter Beek, M.H., Loreti, M.: Guest editorial for the special issue on
formal methods for the quantitative evaluation of collective adap-
tive systems (FORECAST). ACM Trans. Model. Comput. Simul.
28(2), 81–84 (2018)

10. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for trans-
port systems. Int. J. Softw. Tools Technol. Transf. 20(3), 237–241
(2018)

11. Almeida, J.B., Frade,M.J., Pinto, J.S., de Sousa, S.M.:Anoverview
of formal methods tools and techniques. In: Rigorous Software
Development. Undergraduate Topics in Computer Science, pp. 15–
44. Springer, London (2011)

12. terBeek,M.H.,Gnesi, S.,Knapp,A. (eds.):Critical systems: formal
methods and automated verification. In: Proceedings of the Joint
21st International Workshop on Formal Methods for Industrial
Critical Systems and 16th International Workshop on Automated
Verification of Critical Systems (FMICS-AVoCS 2016), volume
9933 of Lecture Notes in Computer Science. Springer (2016)

13. Leupolz, J., Knapp, A., Habermaier, A., Reif, W.: Qualitative and
quantitative analysis of safety-critical systems with S#. Int. J.
Softw. Tools Technol. Transf. (2018). In this issue

14. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van
Dijk, T.: LTSmin: High-performance language-independent model
checking. In: Baier, C, Tinelli, C (eds.) Proceedings of the 21st
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2015), volume 9035 of
Lecture Notes in Computer Science, pp. 692–707. Springer (2015)

15. de Pedro, M.A.., Sousa Pinto, J., Pereira, D., Pinho, L.M.: Runtime
verification of autopilot systems using a fragment of MTL-

∫
. Int.

J. Softw. Tools Technol. Transf. (2018). In this issue
16. Chadli, M., Kim, J.H., Larsen, K.G., Legay, A., Naujokat, S.,

Steffen,B., Traonouez,L.-M.:High-level frameworks for the speci-
fication and verification of scheduling problems. Int. J. Softw. Tools
Technol. Transfer (2018). In this issue

17. David, A., Larsen, K.G., Legay, A.,Mikučionis,M., Poulsen, D.B.:
Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4),
397–415 (2015)

18. Ge, N., Jenn, E., Breton, N., Fonteneau, Y.: Integrated formal ver-
ification of safety-critical software. Int. J. Softw. Tools Technol.
Transf. (2018). In this issue

19. Clabaut, M., Ge, N., Breton, N., Jenn, E., Delmas, R., Fonteneau,
Y.: Industrial grade model checking—use cases, constraints, tools
and applications. In: Proceedings of the 8th European Congress on
Embedded Real Time Software and Systems (ERTS2 2016), pp.
85–92 (2016).

20. Huang, W.L., Peleska, J.: Model-based testing strategies and their
(in)dependence on syntactic model representations. Int. J. Softw.
Tools Technol. Transf. (2018). In this issue

21. Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Assessing
SMT and CLP approaches for workflow nets verification. Int. J.
Softw. Tools Technol. Transf. (2018). In this issue

22. deMoura, L., Bjørner,N.: Z3:An efficient SMTsolver. In: Ramakr-
ishnan, C.R., Rehof, J. (eds.) Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS2008), volume4963 ofLectureNotes
in Computer Science, pp. 337–340. Springer (2008)

23. Carlsson, M., Mildner, P.: SICStus prolog-The first 25 years. The-
ory Pract. Logic Program. 12(1–2), 35–66 (2012)

	Formal methods and automated verification of critical systems
	Abstract
	1 Introduction
	2 Selected papers
	3 Discussion
	Acknowledgements
	References

