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Abstract
This work compares two Nitsche-type approaches to treat non-conforming
triangulations for a high-order discontinuous Galerkin (DG) solver for the
acoustic conservation equations. The first approach (point-to-point interpo-
lation) uses inconsistent integration with quadrature points prescribed by a
primary element. The second approach uses consistent integration by choosing
quadratures depending on the intersection between non-conforming elements.
In literature, some excellent properties regarding performance and ease of
implementation are reported for point-to-point interpolation. However, we show
that this approach can not safely be used for DG discretizations of the acous-
tic conservation equations since, in our setting, it yields spurious oscillations
that lead to instabilities. This work presents a test case in that we can observe
the instabilities and shows that consistent integration is required to maintain
a stable method. Additionally, we provide a detailed analysis of the method
with consistent integration. We show optimal spatial convergence rates glob-
ally and in each mesh region separately. The method is constructed such that it
can natively treat overlaps between elements. Finally, we highlight the benefits
of non-conforming discretizations in acoustic computations by a numerical test
case with different fluids.
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1 INTRODUCTION

The main benefit of non-conforming interfaces (NCIs) is the ability to handle arbitrary element connections. In acoustic
simulations, we require different element sizes in different regions of a triangulation, for example, due to wave propa-
gation through inhomogeneous media. NCIs can realize the jump in element sizes without the use of transition regions
which usually contain strongly distorted elements.1,2 This way, it is possible to reduce degrees of freedom (DoFs) needed
without introducing errors related to elements with bad quality.2,3 Additionally, algorithms that can handle NCIs can
simplify mesh generation since it is possible to generate the grids in a modular way.1

Overlapping elements further reduce the difficulties in mesh generation since they can be constructed without paying
attention to adjacent regions at all. One famous example of this is the overset grid method;4 a structural mesh serves as the
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background mesh in which complex geometries can be embedded. This is done by overlaying the corresponding meshes
and deleting the elements of the background mesh that completely overlap the embedded mesh.

Besides mentioned advantages of NCIs, some applications, like a rotating fan, require NCIs. To compute the aeroa-
coustic sound field, we need two mesh regions, one of which is rotating, see, for example, Reference 5. A conforming
mesh at each time step is not feasible; using NCIs in such applications is the obvious solution. However, this requires the
non-conforming interface to lie precisely on top of each other, which is only possible using curved elements, compare
Reference 6. A slightly different approach is to use methods that can also handle element overlaps between the triangula-
tions. This way, the fixed and rotating domain can still pick values for the fluxes at the overlapping boundaries, with the
difference that these values are defined inside elements of the other triangulation.

There exist three different ways to handle non-conformities. The most common method in literature is the Mortar
method, first introduced by Bernadi et al.7 The Mortar method is a projection-based method that typically uses Lagrange
multipliers to enforce coupling; this requires additional DoFs at the interface. Coupling of the second order wave equation
using Mortar methods has been successfully applied in Reference 3.

Another way to couple non-conforming meshes is through interpolation-based methods, such as INTERNODES
(INTERpolation for NOn-conforming DEcompositionS).8

Nitsche9 presented the idea of including Dirichlet boundary conditions (DBCs) in the weak form. Methods using
this idea are consequently named Nitsche-type methods. Discontinuous Galerkin (DG) schemes use this idea at all ele-
ment boundaries already.10 Therefore, we believe that using Nitsche-type methods to couple meshes via NCIs is the
most natural way to couple DG schemes. Here we can distinguish between schemes that use consistent and inconsis-
tent integration. For methods with inconsistent integration, we use integration points dictated by elements on the NCI
and evaluate needed quantities in the non-conforming attached elements. Hermann et al.11 used this approach in a
two dimensional DG setting for seismic waves on meshes with possibly different element types. Laughton et al.12 refer
to this method as point-to-point interpolation method. Methods using consistent integration collect integration rules
on the intersections between the connected elements. This procedure is commonly referred to as “mortaring,” and the
intersections are often called “mortars” (without any relation to the Mortar method). Nitsche-type mortaring has been
successfully applied in a finite element methods (FEM) setting amongst others in, References 13 and 14 for the inho-
mogeneous wave equation and Maxwell equations, respectively. The procedure of mortaring is the same for Mortar
and Nitsche-type mortaring methods. The difference in both methods is that Nitsche-type methods enforce the cou-
pling directly via numerical fluxes. On the other hand, Mortar methods enforce the coupling via an additional integral
(using Lagrange multipliers).

Laughton et al.12 compared the Nitsche-type mortaring method to the point-to-point interpolation method regarding
performance and accuracy in a DG setting. The advantage of point-to-point interpolation over methods with mortaring
is its ease of implementation.12 For the compressible Euler equations in two dimensions, it is shown that point-to-point
interpolation outperforms the method with mortaring, considering polynomial degrees between 3 and 7.12 We expect the
performance to close up for long run-times on static triangulations (the quadrature rules of the intersections and the map-
ping of obtained integration points have to be setup only once). However, we suspect the performance to diverge even more
on moving meshes, where the intersections and the mappings have to be updated every time step or Runge–Kutta stage.
The disadvantage of point-to-point interpolation is that it introduces numerical errors related to aliasing. Methods using
mortaring do not face this issue. To obtain similar errors for point-to-point interpolation compared to the Nitsche-type
mortaring, Laughton et al.12 increases the number of quadrature points.

Solving the scalar acoustic wave equation utilizing conforming FEM has some unattractive peculiarities. It requires
specific time-stepping schemes and suffers from numerical dispersion.2,15 Transforming the acoustic wave equation to
a first-order system yields the acoustic conservation equations. These acoustic conservation equations do not include a
second-order temporal derivative; thus, standard time-stepping methods, such as Runge–Kutta methods, can be applied.
Furthermore, the velocities of non-harmonically vibrating surfaces natively appear in governing equations, making a
straightforward application of these velocities as boundary conditions (BCs) possible. Additionally, conservation laws
are ideally suited for finite volume or DG discretizations,16 and it is possible to find less dispersive schemes by adding
numerical diffusion using numerical fluxes.

We applied the point-to-point interpolation method in Reference 17 and showed that it provides optimal rates of
convergence in space. Later, we observed instabilities for some element configurations using this method. Within this
work, we show that for DG discretizations of the acoustic conservation equations, it is not safe to use point-to-point
interpolation since the method is not only less accurate but yields spurious oscillations that lead to instabilities in some
cases. To the best of the authors’ knowledge, no Nitsche-type mortaring formulation exists for the acoustic conservation
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laws in literature. We present a test case in which mentioned instabilities occur and show that using consistent integration
via mortaring is a remedy.

Additionally, we provide in-depth convergence studies for the Nitsche-type mortaring approach and show optimal
spatial convergence rates on the global computational domain and separately on domains with coarse and high resolution.

2 GOVERNING EQUATIONS

The wave equation reads

1
c2
𝜕

2p
𝜕t2 − 𝜌∇ ⋅

(
1
𝜌
∇p

)
= f in Ω × [0,T], (1)

on a domain Ω ⊂ Rd of dimension d and in a time interval [0,T]. Here, p is the acoustic pressure, c is the sound speed,
and the underlying material’s density is 𝜌. The wave equation is a reformulation of the acoustic conservation equations
of momentum and mass

𝜌
𝜕u
𝜕t
+ ∇p = 0 in Ω × [0,T], (2)

1
c2
𝜕p
𝜕t
+ 𝜌∇ ⋅ u = F in Ω × [0,T], (3)

p = gp on 𝜕ΩD
p , (4)

u = gu on 𝜕ΩD
u , (5)

𝜌cu ⋅ n = Yp on 𝜕ΩY
. (6)

At boundaries we can apply pressure DBCs (4), velocity DBCs (5), and admittance BCs (6) by setting the normal
component of the velocity and a certain admittance Y .

3 NUMERICAL METHOD

3.1 Notation

The physical domain Ω is represented by the computational domain Ωh(t)=
⋃Nel

i=1Ωei ∈ Rd, with the space dimension d.
Within this work, it consists of Nel possibly overlapping rectangular/hexahedral finite elements and is bounded by Γh =
𝜕Ωh. A finite element spansΩe and is bounded by 𝜕Ωe. The solution is continuous inside elements and, due to the nature
of DG, discontinuous between elements. The acoustic particle velocity u and acoustic pressure p are subject to the broken
polynomial spaces h for the corresponding test and trial functions


u
h =

{
uh ∈ [L2(Ωh)]d ∶ uh(x)|Ωe = ũ(𝝃)|Ω̃e ∈ [ku (Ω̃

e)]d,∀e ∈ [1,Nel]
}
, (7)


p
h =

{
ph ∈ L2(Ωh) ∶ ph|Ωe = p̃h|Ω̃e ∈ kp(Ω̃

e),∀e ∈ [1,Nel]
}
. (8)

Here k is the space of polynomial functions with order k on a reference element. Coordinates in the physical space are
x = (x1, ..., xd)T ; their representation on a reference element are 𝝃 = (𝜉1, ..., 𝜉d)T . To transfer between x and 𝝃 a bidirectional
mapping

𝝋 ∶

{
Ωe → Ω̃e

x → 𝝃 = 𝝋(x,Ωe)
, 𝝋−1 ∶

{
Ω̃e

→ Ωe

𝝃 → x = 𝝋−1(𝝃,Ωe)
, (9)

can be used. The discrete representations of the continuous pressure and velocity fields in the reference space read

ũe
h(𝝃) =

nNku∑
i=1

Nku
i (𝝃)u

e
i , p̃e

h(𝝃) =
n

Nkp∑
i=1

Nkp

i (𝝃)p
e
i , (10)
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with the number of shape functions nNk defined on a volume element; for instance, the pressure in the one
dimensional case has a number of nNkp = kp + 1 shape functions. The shape functions Nk

i are constructed by Lagrange
polynomials of degree k. Within this work, the same polynomial orders k for velocity and pressure (ku = kp) are utilized.
We denote the interior information of an elementΩe with (⋅)− and the exterior information of adjacent elements with (⋅)+.
Consequently, the current element (from now on called “primary element”) is denoted as Ωe

−, and the neighboring ele-
ments (or “secondary elements”) are described asΩe

+. The outward pointing normal vectors of the primary element are n−.
In the case of conforming and non-conforming element transitions, the faces of primary and secondary elements coin-
cide, n = n− = −n+. In the case of overlapping elements, this is not the case. Fluxes are evaluated over interfaces that
align with the primary element face, and thus we still demand n+ = −n− in this case. Accordingly, any scalar or vectorial
quantity b is implicitly defined on the primary element if no superscript explicitly assigns it to the primary or secondary
element b = b−. We choose the notation for the averaging operator {{⋅}}, jump operator [⋅], and normal jump operator
⟦⋅⟧ according to Bassi et al.18,19 They are {{b}} = (b− + b+)∕2,

[
b
]
= b− − b+, and ⟦b⟧ = b− ⊗ n− + b+ ⊗ n+. Hereinafter,

the integrals are written in the compressed notation (a, b)Ωe
= ∫Ωe

a ⋅ b dΩ and (a, b)𝜕Ωe
= ∫

𝜕Ωe
a ⋅ b dΓ, where the oper-

ator ⋅ indicates an inner product and a represents an arbitrary quantity of the same dimension as b. All operators are
given in the notation considering element boundaries; therefore, each facet becomes a primary and secondary element.
For numerical integration, we employ Gaussian quadrature. On an element of spatial dimension d we use nq = (k + 1)d
quadrature points for the volume integrals and nq = (k + 1)d−1 on element faces. Boundary conditions are applied using
a mirror principle, compare Reference 16. While pressure and velocity DBCs are defined as

p+ = −p− + 2gp; u+ = u− on 𝜕ΩD
p , (11)

u+ = −u− + 2gu; p+ = p− on 𝜕ΩD
u . (12)

Admittance BCs read

u+ =
(

2Y
𝜌c

p− − u− ⋅ n
)

n; p+ = p− on 𝜕ΩY
. (13)

Reflecting BCs and first-order absorbing BCs20 (ABC) are achieved by setting the admittance to Y = 0 and Y = 1,
respectively. If the first order ABC is insufficient, a corresponding perfectly matched layer formulation is provided in
Reference 21 for conforming FEM formulations.

3.2 Spatial discretization

The numerical method, without non-conformities, has been described briefly in Reference 22. Within this section, we
will recall it in a more detailed manner to be able to extend the formulation.

The semi-discrete system is obtained as usual (cf. Reference 16). The governing equations are multiplied by the test
functions wh and qh, and integrated over the computational domain Ωh. For DG schemes, it is crucial to perform the
integration by parts to ensure boundary terms exist. With this, we end up with a corresponding weak formulation. For
given equations, it is also possible to perform a second integration by parts to obtain the strong formulation (cf. Refer-
ence 16) which is used in Reference 23. Eventually, numerical fluxes (denoted by the superscript ∗) are introduced into
the boundary integrals. This results in the semi-discrete system of equations

(
wh,

𝜕uh

𝜕t

)
Ωe
−
(

1
𝜌
∇ ⋅wh, ph

)
Ωe
+
(

1
𝜌

wh ⋅ n, p∗h

)
𝜕Ωe

= 0 ∀wh ∈ u
h , (14)

(
qh,

𝜕ph

𝜕t

)
Ωe
−
(
𝜌c2∇qh,uh

)
Ωe +

(
𝜌c2qh ⋅ n,u∗h

)
𝜕Ωe =

(
c2qh, f

)
Ωe ∀qh ∈ p

h . (15)

We use Lax–Friedrichs fluxes, as also done in References 23-26,

p∗h = {{ph}} +
𝜏

2
⟦uh⟧,

u∗h = {{uh}} +
𝛾

2
⟦ph⟧. (16)
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The penalty parameters 𝜏 and 𝛾 are derived using the Rankine–Hugoniot condition when solving for the Riemann
solution,23,27 resulting in 𝜏 = 𝜌c and 𝛾 = 1

𝜌c
. These penalty parameters are consistent in terms of a dimension analysis

which demands 𝜏 ∼ 𝜌c and 𝛾 ∼ 1
𝜌c

. Element boundaries are either located inside the domain 𝜕Ωe
inner, at non-conforming

boundariesΓe
NCI, or subject to BCs (𝜕ΩD,e

p , 𝜕ΩD,e
u , or 𝜕ΩY,e). The explicit notation of the discretization at element boundaries

reads(
1
𝜌

wh ⋅ n, p∗h

)
𝜕Ωe

=
(

1
𝜌

wh ⋅ n, p∗h

)
𝜕Ωe

inner

+
(

1
𝜌

wh ⋅ n, gp

)
𝜕ΩD,e

p

+
(

1
𝜌

wh ⋅ n, p−h + 𝜏(u
−
h − gu)

)
𝜕ΩD,e

u

+
(

1
𝜌

wh ⋅ n, p−h + 𝜏
(

u−h ⋅ n − Y
𝜌c

p−h

))
𝜕ΩY,e

+
(

1
𝜌

wh ⋅ n, p∗h,NCI(p
−
h , p

+
h ,u

−
h ,u

+
h ))

)
Γe

NCI−

,

(17)

and (
𝜌c2qhn,u∗h

)
𝜕Ωe =

(
𝜌c2qhn,u∗h

)
𝜕Ωe

inner
+
(
𝜌c2qhn,u−h + 𝛾(p

−
h − gp)

)
𝜕ΩD,e

p
+
(
𝜌c2qhn, gu

)
𝜕ΩD,e

u

+
(

cqh, 2Yp−h
)
𝜕ΩY,e +

(
𝜌c2qhn,u∗h,NCI(p

−
h , p

+
h ,u

−
h ,u

+
h )
)
Γe

NCI−
.

(18)

In this notation Γe
NCI− are the faces of the primary elements. A more detailed description of how integrals are computed

in the non-conforming case is provided in Sections 3.3 and 3.4.
To be able to consider different materials, we have to adapt the fluxes at the NCIs. To this end, we use the LDG fluxes

with special self-adapting upwinding parameters and penalty terms as an additional stabilization mechanism to increase
the numerical diffusion23

p∗h,NCI =
𝜏
+p−h + 𝜏

−p+

𝜏− + 𝜏+
+ 𝜏

−
𝜏
+

𝜏− + 𝜏+
⟦uh⟧,

u∗h,NCI =
𝛾
+u−h + 𝛾

−u+h
𝛾− + 𝛾+

+ 𝛾
−
𝛾
+

𝛾− + 𝛾+
⟦ph⟧.

(19)

We can see, that the fluxes simplify to the Lax–Friedrichs fluxes of (16) for homogenous materials. In latter case c−𝜌−=c+𝜌+
and therefore, 𝛾− = 𝛾+ and 𝜏− = 𝜏+.

3.3 Point-to-point interpolation

Non-conformity can be easily handled by the evaluation of all quantities in consistent quadrature points;11,12 that is, we
have to evaluate fluxes at the same point in the physical space. The primary element dictates the used quadrature points;
see Figure 1. For conforming DG this leads to the same quadrature points in the reference space 𝝃− = 𝝃+. However, if
non-conformities in the mesh are present, quadrature points that correspond to the same coordinate in the physical space
differ, and we have to find quadrature points on the secondary element as

𝝃+ = 𝝋(x,Ωe
+). (20)

F I G U R E 1 Point-to-point interpolation: Shown is the mapping of a exemplary quadrature point 𝝃− (associated to the primary
element Ω1

−) to the the non-conformingly connected secondary element Ω2
+. Source: Adapted from Reference 17.
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Therefore, we can explicitly state that an arbitrary physical flux ∗h is a function of arbitrary quantities b, evaluated at the
same physical coordinates x = 𝝋−1(𝝃−,Ωe

−) (provided by the integration rule of the corresponding primary element face)


∗
h (b

−
, b+) = ∗h

(
b−(𝝃−), b+(𝝃+)

)
. (21)

The integration over a non-conforming face of a primary element subsequently reads

∫
𝜕Ωe 

∗
h (b

−
, b+) dΓe

NCI− ≈
∑nq

q=1wq
∗
h (b

−(𝝃−), b+(𝝃+))|Jq|. (22)

wq are the weights of the Gauss quadrature, and the Jacobi determinants |Jq| in quadrature points q correspond to
the primary element face. If not specified otherwise, the number of quadrature points on each primary element face is
nq = (k + 1)d−1. Using more integration points leads to a better approximation of the integral and thus enhances the
solution.12

3.4 Nitsche-type mortaring

In contrast to point-to-point interpolation, Nitsche-type mortaring computes the integration over primary element faces
at NCIs as the sum of collected quadrature rules on the mortars, see Figure 2A. Thus the integral computes as

∫
𝜕Ωe 

∗
h (b

−
, b+) dΓe

NCI− ≈
nm∑

m=1

nq∑
q=1

wq
∗
h (b

−(𝝃−), b+(𝝃+))|Jm
q |. (23)

In (23), nm is the number of found intersections. The Jacobi determinants |Jm
q | in quadrature point q is now determined

on mortar m. The number of quadrature points on each mortar is nq = (k + 1)d−1, thus the number of integration points
used to compute the integral over each primary element face is m ⋅ nq. This way, the integration on the NCI is consistent;
the discrete secondary solution on the NCI is split into piecewise polynomials of order k for which Gauss quadrature
is exact (if enough quadrature points nq are chosen) without aliasing. Constructing the mortars is more challenging to
implement and reduces performance.12

3.5 Nitsche-type mortaring with overlapping elements

For overlapping elements, intersections are computed between the face of the primary element and connected secondary
volume elements; for example, in 2D simulations, intersections are computed between a quadrilateral and a line, see
Figure 2B. By computing the intersections the same way for non-overlapping cases, the implementation for Nitsche-type
mortaring is independent of element overlaps (see Section 4). We also refer to overlapping boundaries as Γe

NCI. This way,
equations from Section 3.2 are valid without further ado. From (16) and (19), it can be easily seen that chosen numerical

(A) (B)

F I G U R E 2 Nitsche-type mortaring: In contrast to point-to-point interpolation, quadrature points are not dictated by the primary
element. Instead, the mortars between elements are computed, and quadrature points, weights, and Jacobians correspond to the mortar
patches. This way, there is no aliasing, and values form a smooth representation in each quadrature. (A) Non-conforming connection:
Intersections between secondary and primary elements align; (B) overlapping elements: Intersections are computed between the face of the
primary element and connected secondary volume elements. Thus, intersections do not align
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fluxes are conservative, that is, the definition of the numerical fluxes is symmetric. For the overlapping case, this is not
true since the influx into the primary domain happens at a different position in space than the efflux of the secondary
domain and vice versa (cf. Figure 2B). Note that our methodology itself is not perfectly conservative since we are using
L2 spaces for pressure and velocity (thus, u−h ≠ u+h and p−h ≠ p+h ).

4 REMARKS ON IMPLEMENTATION

Our implementations will be freely available as a part of the the software library deal.II28 and the open source software
project ExaDG29.

In the case of point-to-point interpolation, we are collecting all quadrature points on the NCIs mapped to the physical
space. After that, we perform a global search based on distributed bounding boxes for secondary elements that hold these
integration points and store the corresponding quadrature points in the reference space. In each time step, we evaluate
pressure and velocities on the secondary elements and use the results to compute the fluxes over the NCIs. If a quadrature
point is found on multiple elements, we use the average value in the computation of the fluxes. Note that in the case of
overlapping elements, the quadrature points corresponding to the primary element faces are located inside an arbitrary
element of the secondary mesh and vice versa. This approach works on curved elements without further ado.

In the case of Nitsche-type mortaring, we first create the mortars between the primary and secondary elements. To
ensure our implementation is the same in case of element overlaps and standard NCIs, we are computing the d − 1 dimen-
sional intersections between d and d − 1 dimensional geometric entities, independent if elements overlap or not. The
d − 1 element is a face of a primary element. This way, quadrature rules are defined on the primary element faces, inde-
pendent if elements overlap or not; again corresponding quadrature points are located inside arbitrary elements of the
secondary mesh or on the boundary of the secondary domain for the overlapping and non-conforming case, respectively.
In our implementations, we extract the vertices of the non-conforming or overlapping faces of the primary elements and
all vertices of possibly connected secondary volume elements. We then use CGAL30 to compute the inter-dimensional inter-
sections and eventually create mapped quadrature rules on each mortar patch. The rest of the implementation is nearly
the same as for the point-to-point interpolation: Additionally to the quadrature points, we store the Jacobi determinants
of the mortar patches at the quadrature points. We evaluate pressure and velocity in all stored quadrature points (in both
mesh regions) at every time step and use the stored Jacobi determinants to compute and test the fluxes over the NCIs.
Normal vectors are not stored; instead, we use the negative normal vectors of the primary element during flux evaluation
(also in the overlapping case). This approach limits us to non-curved elements at NCIs because the mortars are spanned
between the vertices of the primary element faces. Since CGAL is working with triangular/tetrahedral elements, mortar
patches are always triangular in the 3D case (even if the patch could be rectangular). Note that the number of created
mortars and thus the number of quadrature points highly depends on the element configuration.

5 NUMERICAL RESULTS

This section provides numerical results using point-to-point interpolation and Nitsche-type mortaring. First, we show
instabilities related to non-smooth representations of values at NCIs for the point-to-point interpolation method. We show
that these instabilities do not occur if we use Nitsche-type mortaring instead. For Nitsche-type mortaring, we provide
in-depth convergence results for different mesh regions, quantify the error introduced at the NCI, and provide results for
a test case with heterogeneous material. Additionally, we show that the method also works if elements are overlapping.
From now on, all spatial values are given in m.

5.1 Vibrating membrane

To be able to compute errors exactly, we use the test case of a vibrating membrane which has also been used, among others,
in References 24 and 31. For this test case, the analytical solution at each time t is known, and for a two-dimensional
domain, it reads for the pressure

p = cos(M
√

2𝜋t) sin(M𝜋x) sin(M𝜋y), (24)
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HEINZ et al. 2041

F I G U R E 3 Computational mesh consisting of two mesh regions which are connected via a non-conforming interface.

and for the acoustic particle velocity

u =
−sin(M

√
2𝜋t)√

2

(
cos(M𝜋x) sin(M𝜋y)
sin(M𝜋x) cos(M𝜋y)

)
, (25)

assuming no acoustic loads F = 0 kg m−3 s−1, as well as 𝜌 = 1 kg m−3 and c = 1 m s−1. Our simulations’ computational
domain Ω consists of two mesh regions connected via NCIs, as shown in Figure 3. The outer region Ωo is a rectangular
domain with a rectangular hole in which the inner region Ωi is embedded. Thus, Ω = Ωo ∪ Ωi and within the following
Ωo = (0, 0) × (0.1, 0.1) ⧵Ωi and Ωi = (1∕30, 1∕30) × (2∕30, 2∕30). We use M = 120 modes, which leads to p = 0 Pa at the
boundaries of the computational domain Ω and we apply homogenous pressure DBCs gp = 0 Pa. All computations use
the implementation of the low storage Runge–Kutta version RKC8432 from ExaDG, see Reference 33. The CFL condition

Δt = Cr
k1.5

hmin

cmax
, (26)

gives the required time step sizeΔt needed for a stable temporal discretization. We use the minimum edge length hmin of all
existing elements, the polynomial degree k, and the largest value of the speed of sound cmax for its computation. To account
for the different spacing between Legendre–Gauss–Lobatto (used as quadrature points) we are using the superscript 1.5
as proposed in Reference 34. For a detailed discussion on the CFL condition for explicit Runge–Kutta methods, we refer
to Reference 35. From this point forward, all computations use time step sizes computed by the CFL condition with a
Courant number Cr = 0.2.

5.1.1 Instabilities

The test case perfectly conserves the sound energy

E =
∫Ω

(
p2

2𝜌c2 +
𝜌(u ⋅ u)

2

)
dΩ. (27)

Since the analytic solution exists, we can compute the exact sound energy contained in the system as Eexact = 1.25 mJ. The
mesh (cf. Figure 3) has element edge lengths of hΩi = 1∕(30 ⋅ 13) on the NCI for the inner domain and hΩi = 1∕(30 ⋅ 7) on
the NCI for the outer domain. Figure 4A shows the sound energy in the system over time for point-to-point interpolation.
After a certain time, instabilities manifest as an non-physical rapid increase of sound energy.
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2042 HEINZ et al.

(A) (B) (C)

F I G U R E 4 Sound energy over time computed for orders k = 1 to k = 6. The given setup for the vibrating membrane test case is
perfectly energy conservative and thus energy has to be constant over time. For point-to-point interpolation, instabilities form after some
time while the simulation stays stable for consistent integration with Nitsche-type mortaring. (A) Point-to-point interpolation: nq = k + 1; (B)
point-to-point interpolation: nq = 3(k + 1); (C) Nitsche-type mortaring

Obviously, the approach suffers from aliasing; the integration of the primary elements only includes information from
each connected element if quadrature points are found in every element. One can regard this as a Dirichlet-Dirichlet
approach, where the values are picked from the secondary domain instead of, an analytical function. Since there are no
instabilities if we apply DBCs from the analytical solution to each domain separately, this reasoning does not explain the
observed instabilities.

The difference in the applied Dirichlet boundary values is that in the case of an analytical function, the boundary
values form a smooth representation of the solution. In the case of using values from the secondary domain, bound-
ary values are not necessarily smooth. If quadrature points are located in different elements, we might face jumps in
the solution representation. While these jumps are assumed to be less distinctive in the case of continuous FE meth-
ods, the nature of the DG method intensifies this issue. Nevertheless, the same also happens in the case of continuous
FE methods, in the case where whole secondary elements are not sampled by any quadrature point of the primary
element. The jumps between Dirichlet values introduce spurious oscillations that eventually lead to unstable simu-
lations. To quantify that this is indeed the source of instabilities, we tested to interpolate solution values between
domains into the DoFs. This way, there are no jumps between quadrature points since the shape function of the pri-
mal element enforces a smooth representation of the values. Nevertheless, we observed instabilities in the case of high
polynomial degrees. These instabilities are related to Gibbs’ phenomena. Significant differences between DoFs and
the high-order shape functions lead to ringing modes, typically observed in shock capturing. Applying techniques to
interpolated values that are usually used in shock capturing, such as modal filtering,16 lead to stable schemes. How-
ever, this also leads to a drop in the obtained spatial convergence rates; therefore, we are not further discussing those
approaches.

Point-to-point interpolation with over-integration enhances the solution12 but can not guarantee stability. As discussed
above, the solution in the secondary domain might have jumps along the integration domains (i.e., primary element
faces). Therefore, the Gauss quadrature of secondary values along the primary element is generally not consistent since
the secondary solution can not be represented by any polynomial along the primary element if jumps or kinks are present.
Results in Figure 4B are obtained with nq = 3(k + 1) quadrature points for each surface element at the NCI. The number
of quadrature points is chosen since the maximum number of elements on the NCI that are touching is three, and thus, a
maximum of three times nq = k + 1 quadrature points are used in the case of mortaring. Since errors due to inconsistent
integration get smaller, the accumulation of spurious oscillations takes longer. During a runtime of 13 s, we can not
observe instabilities for polynomial degrees k = 1, 2, 3, and k = 6. However, for polynomial degrees k = 4, and k = 5 the
simulations get unstable. While over-integration enhances the solution and, in some cases, yields stable simulations (for
the first 13 s), it can not generally guarantee stability.

According to the previous discussion, the phenomenon is not expected in the case of Nitsche-type mortaring. Since
the integrals are evaluated on intersections between elements, the representation of values is forced to be continuous in
each quadrature rule. Consequently, integration over each part of the shape function is exact. The results are depicted
in Figure 4C; we do not observe instabilities. From this point forward, we will only consider the Nitsche-type mortaring
approach.
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HEINZ et al. 2043

Note that the main focus of the test case is to show instabilities for any polynomial degree for point-to-point interpo-
lation without over-integration. However, the mesh resolution for low polynomial degrees k is chosen too poor for a good
approximation of the primal variables. According to Reference 36, the element size h has to be chosen such that

k + 1
2
>
𝜔h
2
+ C(𝜔h)1∕3

. (28)

In (28), C is a constant that can be chosen unity in practice36 and 𝜔 is the wave-number. For the vibrating membrane
test case 𝜔 = 2𝜋M. Using the maximum element size in used triangulation, we obtain 𝜔h

2
+ (𝜔h)1∕3 ≈ 3.44 for current

investigations. Thus, we fulfill (28) with polynomial degrees k > 2, for k = 2 we are slightly off, and for k = 1 we have a
substantial deviation. Consequently, we can see constant sound energy over time for orders greater than k = 2. For k = 2,
we see a drop in energy due to numerical dispersion originating from the too coarse resolution. For k = 1, the resolution
is so poor that the sound energy can not be resolved from the beginning, and we observe non-physical oscillations. These
results are in accordance to Reference 36, in which it is reported that results might even become qualitatively incorrect
for insufficient resolutions. Within the next sections the mesh resolutions are chosen such that (28) is fulfilled for k = 1
which successfully removes any non-physical oscillations.

5.1.2 Convergence results

We use the setup of the previous section with M = 30 modes. However, we alter the mesh sizes compared to Figure 3. The
elements in the outer domain have initial edge lengths of ho,initial = 1∕(30 ⋅ 2); in the inner domain initial element edge
lengths are hi,initial = 1∕(30 ⋅ 3). We compute the relative L2 error for the pressure L2,rel

p, on region after 1 s for different
mesh refinements


L2,rel
p, =

√
∫

(ph − pana)2 dΩ√
∫


p2
ana dΩ

, (29)

with the analytical solution of the pressure pana, see Equation (24). The velocity error L2,rel
u, is computed accordingly.

Regions are either the global region Ω, the inner region Ωi, or the outer region Ωo. The mesh refinement is realized
by replacing each quadrilateral cell by four children cells, and the corresponding edge lengths h at refinement level r
compute as

h = hinitial

2r . (30)

We observe optimal convergence rates of order k + 1 in space on the global domainΩ, see Figure 5A. The outer domain
has a coarser spatial discretization and dominates the errors on the global domain. Therefore, it is not surprising that the
errors on the outer domain (Figure 5B) behave similar to the ones on the global domain (Figure 5A). The inner domain
has a finer spatial discretization; thus the errors obtained in the inner domain might be shadowed by the errors obtained
in the outer domain. However, errors propagate from the outer domain to the inner domain. We also observe optimal
convergence rates computing the errors on the inner domain (see Figure 5C). Errors obtained in the inner and outer
domain are similar. Thus errors from the outer domain entirely propagated to the inner domain after 1 s. Therefore, in
practical applications, one should aim to choose mesh sizes that yield approximately the same errors in each domain. In
conclusion, we obtain optimal convergence rates in all regions of the non-conforming mesh and can confidently apply
the proposed method, keeping in mind that a jump in element sizes has to be justified, for example, due to different
materials.

5.1.3 Embedding of circular domain

Being able to handle overlaps has two useful properties. Mesh generation gets more straightforward, and rotating inter-
faces can be handled without the need for curved elements. We provide results for three different grids, depicted in
Figure 6, that are prototypical in the context of rotating interfaces. The rectangular domain spans Ωo = [−0.1, 0.1]2 and
the circular domain Ωi has a radius of $0.05$.
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2044 HEINZ et al.

(A)

(B)

(C)

F I G U R E 5 Spatial convergence study for the vibrating membrane test case with M = 30, defined on the rectangular domain of
Figure 3 (with hi,initial = 1∕(30 ⋅ 3), and ho,initial = 1∕(30 ⋅ 2)) using Nitsche-type mortaring: Shown are the relative L2 errors for pressure L2,rel

p,

and velocity L2,rel
u, on different domains. The domainmight be the global domain Ω, the inner domain Ωi, or the outer domain Ωo. (A)

Global domain is Ω; (B) outer domain is Ωo; (C) inner domain is Ωi

In this particular case, it is easily possible to manually compute quadrature rules on the curved intersections since
the NCI is a circle (cf. Figure 6A). Note that this does not work for arbitrary shapes in our implementations since we
rely on CGAL to compute the intersections. Nevertheless, this approach becomes relevant for large-scale computations
with sliding interfaces since the computational cost to create mortars is heavily reduced, compare Reference 37. For the
version with a slight overlap (cf. Figure 6B), the radius of the hole is slightly smaller than the radius of the circular domain,
rΩo = 0.05 − 2 ⋅ 10−3. Using overset meshes (cf. Figure 6C) is particularly helpful in generating structured meshes in
regions connected to complex geometries.

All meshes have similar numbers of DoFs. Note that the methodology works for arbitrary overlaps. However, the same
physical fields are computed in the overlap; thus, redundant work is done if the overlap exceeds one element. Table 1
shows the errors obtained after 1 s for the vibrating membrane test case with M = 5 modes. In this case, we apply inhomo-
geneous pressure DBCs with gp obtained from the analytical solution. We can see that the errors are in the same order of
magnitude for the overlapping and overset mesh. Even though we used fewer DoFs in the overset mesh, we can see slightly
better errors, with an outlier at polynomial degree k = 5. This relates to the element distortions in the overlapping case.
The curved interface setup produces more significant errors than the overlapping setup, the most distinct deviations are
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(A) (B) (C)

F I G U R E 6 Three different meshes that have a circular mesh embedded in a rectangular mesh. (A) Curved interface; (B) small overlap;
(C) overset mesh

T A B L E 1 Relative L2 errors L2,rel
Ω = L2,rel

p,Ω + L2,rel
u,Ω for different polynomial degrees k computed on the meshes depicted in Figure 6.

Curved interface Overlap Overset

k DoFs 
L2,rel
𝛀 DoFs 

L2,rel
𝛀 DoFs 

L2,rel
𝛀

1 6,720 2.915 × 10−2 6,720 2.779 × 10−2 6,432 2.053 × 10−2

2 15,120 8.303 × 10−4 15,120 5.444 × 10−4 14,472 4.641 × 10−4

3 26,880 4.304 × 10−5 26,880 8.536 × 10−6 25,728 7.428 × 10−6

4 42,000 1.666 × 10−6 42,000 2.220 × 10−7 40,200 2.200 × 10−7

5 60,480 6.974 × 10−8 60,480 2.328 × 10−9 57,888 2.367 × 10−9

6 82,320 2.650 × 10−9 82,320 1.286 × 10−9 78,792 1.096 × 10−9

for polynomial degree k = 3 and k = 4. This is not expected and needs further investigation before application to slid-
ing rotating interfaces. One possible explanation is that round-off errors are introduced while computing the curved
intersections.

Overall, we conclude that our methodology works as expected if elements overlap.

5.2 Application

As pointed out, NCIs are especially desirable if different spatial resolutions are required. Imagine two fluids with differ-
ent speeds of sound c. We need different element sizes to resolve the acoustic pressure up to a specific frequency. We use
the test case with heterogeneous acoustic material, also simulated by Bangerth et al.,38 Kocher & Bause,39 and Perugia
et al.40 We adapt the computational domain to show that our implementations work in the 3D case. A wave travels over
the interface between two materials. At the interface, the wave is partially transmitted and partially reflected, and an addi-
tional wavefront emerges due to the Huygens–Fresnel principle. A sectional view of the setup for this test case is depicted
in Figure 7. The domain Ω = Ω1 ∪ Ω2 spans from Ω = (−1,−1,−1) × (1, 1, 1). In the left part of the domain the speed of
sound is cΩ1 = 1 m s−1 while it is cΩ2 = 3 m s−1 in the right part. The density of both fluids is 𝜌Ω1 = 𝜌Ω2 = 1 kg m−3. As
an initial condition, a pressure pulse is chosen

p(t = 0) = exp
(
−104 x ⋅ x

)
, (31)

u(t = 0) = 0. (32)

The test case is subject to homogenous pressure BCs.

 10970207, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7199 by U
niversitaetsbibl A

ugsburg, W
iley O

nline Library on [10/01/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2046 HEINZ et al.

F I G U R E 7 Application: Domain with heterogeneous fluids clipped in x1-x2 plane. The speed of sound in both fluids differs, while the
density is 𝜌Ω1

= 𝜌Ω2
= 1 kg m−3 = const. A pressure pulse ⊙ is located in the center of the domain as an initial condition.

F I G U R E 8 Application: Snapshot of acoustic pressure at different times. At t = 0.3 s the transmitted, the reflected and the Huygens
wave can be seen. (A) x1-x2 plane, t = 0.1 s; (B) x1-x2 plane, t = 0.2 s; (C) x1-x2 plane, t = 0.3 s; (D) 3D view, t = 0.38 s

In the right domain, we use element sizes that are three times as big compared to the left domain to resolve both
domains up to the same frequency. In the left domain we use elements with maximum edge length hmax,Ω1 = 0.0167
and accordingly hmax,Ω2 = 0.05. The used polynomial degree is k = 3. The pressure field at different times can be seen in
Figure 8.

To quantify the effect of the NCI we also run the simulations on a domain with hmax,Ω1 = hmax,Ω2 = 0.0167 and hmax,Ω1 =
hmax,Ω2 = 0.05. We record the pressure at 1000 points along x1, x2 = 0, x3 = 0 at t = 0.2 s. The discretization with the
smallest mesh size hmax,Ω1 = hmax,Ω2 = 0.0167 serves as a reference. It is supposed to produce the most accurate solution
but uses too many DoFs if we want to resolve the same frequencies in both fluids.
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HEINZ et al. 2047

(A) (B)

F I G U R E 9 Application: Pressure values along x1 at x2 = 0, x3 = 0 and at t = 0.2 s. The position of the NCI is indicated by the vertical
line. (A) Pressure along the whole domain; (B) detail view around NCI

The recorded pressure profile is plotted in Figure 9A. Figure 9B shows a detailed view around the interface. We observe
great differences to the reference for the discretization with the biggest mesh size hmax,Ω1 = hmax,Ω2 = 0.05. However, using
the biggest and smallest mesh size for the different regions, employing the non-conforming formulation, gives a result
that is in good agreement with the reference solution. In this case, the finest domain has 442,368,000 DoFs while the
domain with different element sizes has 271,974,400 DoFs, hence, the problem size is reduced approximately by 40%
in comparison the fine problem while keeping the same accuracy. This highly encourages to use NCIs for this kind of
problems to effectively reduce the number of DoFs.

6 CONCLUSION

Using Nitsche-type mortaring, we proposed a stable non-conforming DG discretization for the acoustic conservation laws.
We showed that point-to-point interpolation is unsuitable in this setting since it introduces errors related to non-smooth
representations of values in quadrature rules. Therefore, we can not avoid the expensive computations of element
intersections between primary and secondary elements.

The proposed method collects integration rules on the intersections between secondary volume elements and facets
of primary elements. This way, the method naturally extends to overlapping elements and is a perfect starting point
for problems with rotating interfaces. The method is subject to optimal spatial convergence rates. Measuring the error
region-wise, we can show that the method converges optimally in all sub-domains. Nevertheless, errors are propagat-
ing in the domain; therefore, optimal spatial convergence can only be applied in a meaningful way if triangulations are
constructed such that errors are of the same magnitude in all parts of the domain. Thus, we recommend using element
sizes that resolve the same frequencies in all sub-domains in acoustics. With an application, we demonstrated that this
procedure efficiently reduces needed DoFs while maintaining accuracy.
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