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a b s t r a c t 

In logistics and mobility services, new business models such as “attended home delivery”, “same-day de- 

livery”, and “mobility-on-demand” have been successfully established over the last decade. They have in 

common that customers order online, while the services are provided offline. To make such online-to- 

offline services profitable, the efficient operation of a vehicle fleet is an essential prerequisite. Therefore, 

researchers began to explore approaches for integrating demand management and vehicle routing to sup- 

port such operations, and a rapidly growing body of literature emerged. However, due to the diversity of 

existing business models, the analysis and comparison of decision problems and solution concepts are 

challenging, especially across applications, making the search for appropriate models and algorithms for 

new problem settings non-trivial. 

Therefore, in this survey, we structure this innovative research area and review the existing literature 

from a methodological perspective. We present a generalized problem definition of integrated demand 

management and vehicle routing, derive a high-level formulation for the underlying sequential decision 

process, and present a corresponding mathematical model. We then describe and characterize solution 

concepts and algorithms from the literature in a structured way. We also present a tabular overview of 

the literature that connects applications and problem characteristics with solution concepts and allows 

researchers to quickly step through already studied combinations. Finally, we comment on the state-of- 

the-art from a cross-application perspective and discuss future research opportunities. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Over the last decade, many new applications for vehicle rout- 

ng models and corresponding solution methods have emerged, 

hich have attracted great interest in the research community and 

n public. Starting points for this development were the introduc- 

ion of new technologies like drones and delivery robots ( Boysen, 

edtke & Schwerdfeger, 2021 ) and the establishment of new busi- 

ess models such as attended home delivery, same-day delivery, 

nd mobility-on-demand (e.g., Agatz, Campbell, Fleischmann, van 

unen & Savelsbergh, 2013 , Voccia, Campbell & Thomas, 2019 , and 

in et al., 2020 ). These business models, often characterized by the 

erm “online-to-offline”, allow a service to be booked online that 

s delivered offline by operating vehicles. Today, with services like 

nstacart, Amazon PrimeNow, and Uber being commonplace, corre- 

ponding business models represent such an essential part of the 
∗ Corresponding author. 
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odern on-demand lifestyle that popular news media like the BBC 

ave covered even the underlying mathematics ( Church, 2019 ). 

In this context, demand management has become a popular, 

ften necessary tool. Requests for online-to-offline services arrive 

ver time, and customers have different preferences concerning 

ifferent fulfillment options. Hence, providers can shape demand, 

.e., the set of resulting orders and their characteristics, by offering 

argeted fulfillment options to specific customers to allow efficient 

outing operations. A variety of approaches were proposed for this 

urpose: In the case of attended home delivery (AHD) and field 

ervice operations (FSO), the variation of prices or time window 

vailability is often in the focus of demand control (e.g., Strauss, 

ülpinar & Zheng, 2021 or Avraham & Raviv, 2021 ). For same-day 

elivery (SDD) and mobility-on-demand (MOD) services, accepting 

r rejecting customer requests may be the approach of choice (e.g., 

lapp, Erera & Toriello, 2020 or Fielbaum, Kronmueller & Alonso- 

ora, 2021 ). In general, actively controlling demand entails the fol- 

owing benefits for providers: First, control decisions balance de- 

and in temporal and geographical terms to avoid spilled demand 

n the one hand and low utilization of fulfillment resources on the 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ther hand. This increases the number of orders served by a given 

eet and, hence, the overall profit. Second, for time periods or ar- 

as where such smoothing does not eliminate capacity shortage, 

emand control enables allocating available capacity to the most 

rofitable customers ( Agatz et al., 2013 ) and possibly earning ad- 

itional revenues in the form of delivery fees. Thereby, the average 

rofit per order increases. Third, effective demand control stimu- 

ates demand and opens new markets in the form of initially low- 

emand and, therefore, unprofitable delivery areas ( Yang & Strauss, 

017 ). Fourth, demand control contributes to increasing routing ef- 

ciency ( Klein, Neugebauer, Ratkovitch & Steinhardt, 2019 ). By con- 

rolling the fulfillment options sold, service providers can “gener- 

te” a favorable instance of the resulting routing problem. 

In principle, many established approaches from the field of rev- 

nue management, like availability control and dynamic pricing, 

an be used for demand management purposes (see Strauss, Klein 

 Steinhardt, 2018 and Klein, Koch, Steinhardt & Strauss, 2020 for 

ecent surveys). Unfortunately, the integration of demand manage- 

ent and vehicle routing turns out to be quite complex. More pre- 

isely, demand is stochastic and realizes over time, which leads to 

 sequential decision problem. Providers must decide on fulfillment 

ptions for incoming requests without exactly knowing the num- 

er of future customers and their preferences. Depending on the 

rders made, different vehicle routing costs may result, and fu- 

ure revenues may even be displaced, e.g., if an accepted request 

revents future orders due to capacity or service constraints. An- 

icipating these intertemporal effects requires solving vehicle rout- 

ng problems, which, in general, are NP-hard. Furthermore, to meet 

ustomers’ expectations, providers must make decisions in real- 

ime (e.g., Poggi, Carrera, Gavaldà, Ayguadé & Torres, 2014 ). 

This complexity led to various new approaches to integrate de- 

and management and vehicle routing, with the center of the re- 

pective contributions often depending on the authors’ method- 

logical backgrounds (e.g., integer programming or stochastic dy- 

amic programming). However, analyzing the literature shows that 

he structure of the specific control problems considered is very 

imilar. This observation even holds across application areas. As a 

onsequence, demand management approaches, solution concepts, 

nd algorithms applied in different areas are strongly related. De- 

pite that, the relationships are usually not discussed beyond the 

reas’ borders. 

Motivated by these observations, the key contributions of this 

urvey paper are as follows: 

(1) To foster a structured comparison of different real-world ap- 

plications, we present a generalized definition of integrated 

demand management and vehicle routing problems. To an- 

alyze the characteristics of specific decision problems, we 

identify four components of the underlying sequential de- 

cision process: request capture, demand management, order 

confirmation, and vehicle routing. Using morphological anal- 

ysis, we characterize each component regarding several di- 

mensions. We summarize this analysis in a comprehensive 

morphological box and illustrate the results by describing 

possible realizations for existing applications in AHD, FSO, 

SDD, and MOD. 

(2) As a synthesis of specific modeling approaches existing 

in the literature, we formulate a high-level mathematical 

model of the generalized sequential decision problem. As 

tractable solution concepts for decision problems falling un- 

der this generalized formulation, we discuss static deter- 

ministic approximations as well as decomposition-based ap- 

proximations. In particular, we investigate the tasks result- 

ing from decomposition-based approximations, i.e., feasibil- 

ity check, cost estimation, demand control, and routing con- 
500 
trol, and present corresponding solution approaches often 

based on specific auxiliary models. 

(3) We present an overview of the literature “at a glance” in two 

comprehensive tables, linking decision problems and solu- 

tion concepts to applications. These tables allow researchers 

to check for suitable approaches without analyzing all pos- 

sible related fields when they want to apply demand man- 

agement in their area of interest. Furthermore, they can 

quickly verify whether certain combinations of specific deci- 

sion problems and solution concepts have already been ex- 

amined. 

(4) Complementary to the high-level overview of solution con- 

cepts, we discuss selected contributions to algorithms used 

as part of solution approaches for static deterministic ap- 

proximations and decomposition-based approximations in 

more detail. For the latter class, we highlight the algorithms 

that are suitable for addressing several tasks in combination. 

(5) Finally, we identify seven different topics around which 

we discuss the current state of research to deliver cross- 

application insights, and which represent fruitful starting 

points for future research. 

The scope and the purpose of our work substantially differ 

rom existing surveys. Agatz et al. (2013) focus more on optimizing 

emand management decisions and less on the associated rout- 

ng problems. Besides this, they exclusively consider AHD prob- 

ems. The latter also holds for the survey by Snoeck, Merchán and 

inkenbach (2020) , who extensively outline possible extensions of 

HD-specific problem settings and their implications. Yan, Zhu, Ko- 

olko and Woodward (2020) exclusively deal with matching and 

ynamic pricing in MOD. The recent survey by Soeffker, Ulmer and 

attfeld (2022) considers dynamic vehicle routing in general, with 

DD being one of many application areas. 

To allow for the necessary focus, we establish the following cri- 

eria for selecting the publications for this survey: First, we only 

nclude works investigating stochastic and dynamic booking pro- 

esses. Second, we only consider settings where fulfillment oper- 

tions must be optimized explicitly by integrating demand man- 

gement and vehicle routing methods based on profitability or 

ervice quality. Hence, we exclude dynamic vehicle routing set- 

ings, where providers control service availability purely for en- 

uring the feasibility of routes and refer the interested reader 

o surveys by, e.g., Pillac, Gendreau, Guéret and Medaglia (2013) , 

saraftis, Wen and Kontovas (2016) , and Ulmer, Goodson, Mat- 

feld and Thomas (2020) . Finally, we assume full information and 

ontrol regarding the resources needed to fulfill services. Conse- 

uently, we do not cover problems involving stochastic vehicle 

vailability or platform-based service provision based on two-sided 

arkets, which arise in the context of sharing-based or crowd- 

ourced fulfillment systems (e.g., Afeche, Liu & Maglaras, 2018 , 

anerjee, Johari & Riquelme, 2016 , and Taylor, 2018 ). Furthermore, 

e leave out special cases for readability. 

Our survey is structured as follows: In Section 2 , we first 

tate the problem of integrating demand management and ve- 

icle routing along a generic process formulation. Subsequently, 

e discuss the characteristics of this process for several areas of 

pplication. We then provide an exact, high-level mathematical 

odel formulation for the resulting sequential decision problem 

n Section 3 . In Section 4 , we analyze different solution concepts 

ased on tractable approximations of the exact model from Section 

 . Section 4 concludes with a summary of all results up to this 

oint in the form of comprehensive tables of the existing litera- 

ure. Section 5 comprises a more detailed discussion on solution 

lgorithms and may be skipped by readers only looking for the 

igh-level overview provided in the preceding sections. Section 6 is 
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Fig. 1. Components of the sequential decision process. 
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evoted to key insights and take-aways and includes the discussion 

f promising research opportunities. 

. Generalized problem definition 

This section first investigates a sequential decision process for 

ntegrating demand management and vehicle routing from an 

pplication-oriented perspective. We identify four essential com- 

onents that are part of this process and present dimensions that 

haracterize each component as well as possible realizations of 

ach dimension in Section 2.1 . Subsequently, we discuss prototypi- 

al applications in Section 2.2 . The purpose is to show how differ- 

nt realizations of the dimensions relate to real-world implemen- 

ations. 

.1. Sequential decision process 

Providers that offer online-to-offline logistical services regularly 

ace stochastic and dynamic decision problems that arise over time 

n an operational level. Such problems can be described as se- 

uential decision processes, which cast the overall problem as a 

equence of states ( Powell, 2019 ). In each state, the provider must 

ollect and evaluate (stochastic) information concerning customers, 

ogistical resources, i.e., vehicles, and, possibly, the environment 

 Soeffker et al., 2022 ). Depending on the information’s evaluation, 

hey must also make different types of decisions. 

To analyze the problem characteristics, we decompose the re- 

ulting decision process into four components for each state. Two 

f the components include interactions with customers, the re- 

aining two deal with the provider’s decisions . Different types of 

vents may trigger these decisions. Fig. 1 shows the components 

nd their relationships. We explain them in the following and in- 

roduce dimensions by which we characterize different realizations 

f the components as part of a morphological analysis. This tech- 

ique allows us to systematically describe the entire spectrum of 

ecision problems by reducing the problems to these key dimen- 

ions with a set of possible realizations. 

Request capture : The arrival of a customer during a sales pe- 

iod, called the booking horizon, triggers this component. The 

rovider can sell different types of services : pure transportation 

e.g., a ride), transportation in combination with selling goods (e.g., 

roceries), or transportation in combination with selling ancillaries 

e.g., installation). We refer to the latter two as coupled goods and 

oupled services, respectively. The customer makes a request by 
501 
pecifying parameters of the service wanted, e.g., using a web ap- 

lication or via a call-center. These parameters can be origin and 

estination, time and mode of transport, and coupled goods or 

ervices. The provider must capture these parameters as input for 

heir decisions. 

Demand management : This component follows request captur- 

ng and must control demand with respect to the provider’s objec- 

ive . It tries to exploit that usually several feasible options for ser- 

ice fulfillment exist. Then, it aims at selling the available capac- 

ty in a way that maximizes a measure of profit. The profit com- 

rises several components that represent revenues and costs. On 

he revenue-side, the fees for the logistical service itself and the 

evenues/profits of coupled goods or services may be relevant. On 

he cost-side, the unit costs of the coupled goods or services, pos- 

ible discounts, and the transportation costs must be considered. 

epending on the application, also the number of orders, i.e., ac- 

epted requests, may serve as an objective. Regardless of the objec- 

ive function, the provider must ensure that the logistical services 

old can be fulfilled subject to operational constraints. The imple- 

entation of demand management can be characterized along the 

ollowing dimensions ( Agatz et al., 2013 ): 

• Concerning the time of decision , static and dynamic controls 

can be distinguished. Static controls determine all decisions 

before the start of the booking horizon based on exogenous 

information. They do not adjust them depending on endoge- 

nous information concerning customers but check for feasi- 

bility. As an example, an AHD provider may publish a static 

price list for their delivery time slots, which is valid for mul- 

tiple weeks. During each booking process, any customer will 

be able to place an order at the price of the published deliv- 

ery fee as long as the provider can feasibly fulfill the order. 

By contrast, dynamic controls make decisions based on the 

information becoming available during the booking and ser- 

vice horizon. Beyond the current request’s parameters, such 

information includes existing orders, the vehicles’ locations, 

and loads. In this case, an AHD provider would, e.g., offer 

individual delivery fees determined at the time of each cus- 

tomer request arrival based on the delivery location and the 

shopping basket value. 
• To influence the customers’ choices favorably, the provider 

can apply two control types , namely availability control 

or price-based control. In availability control, the provider 

makes decisions on which feasible fulfillment options to of- 
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Fig. 2. Booking and service horizon. 
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fer to the customer, e.g., when prices are fixed. In price- 

based control, they set fees for the different options. The set 

of fulfillment options along with their prices form an offer 

set, from which a customer can choose. 
• Finally, the provider can decide on request processing , i.e., 

between real-time processing for single requests or batch 

processing. In the first case, the provider implements deci- 

sions immediately. In the second one, they postpone deci- 

sions until, e.g., a specific batch size or state is reached. 

Order confirmation : After constructing the offer set, the or- 

er confirmation component represents a second interaction with 

he customers, which consists in presenting offer sets to customers 

nd, potentially, closing a deal. If the provider generally offers 

nly a single fulfillment option , customers will either buy or not. If 

hey provide an assortment of multiple options, e.g., different time 

indows for the transportation, customers will choose an option, 

hich is potentially the no-purchase option, according to some in- 

ividual preference function, e.g., by maximizing their utilities. If a 

ale takes place, the corresponding option becomes an order. 

Vehicle routing : The vehicle routing component is executed 

efore or during the period of service fulfillment, called the ser- 

ice horizon. Its task consists in determining feasible and cost- 

inimizing route plans for the given orders. Booking and service 

orizons can either be disjoint, overlapping, or infinite as illustrated 

n Fig. 2 . In the first case, the provider collects orders until a cut-

ff time, which lies before the beginning of the service horizon. 

ere, the provider can postpone definitive vehicle routing deci- 

ions until the end of the booking horizon. However, sometimes 

hey may perform tentative route planning as an input for demand 

anagement decisions. If the horizons overlap or are infinite, the 

rovider needs to finalize routing decisions before the end of the 

ooking horizon. Here, several events may trigger a decision for 

 given state. First of all, a new order may have been accepted. 

ther events include that a vehicle has become idle or must act, 

.g., leave the depot, to fulfill operational constraints. Also, it can 

e reasonable to move a vehicle to another position to be better 

repared for future requests. In the latter cases, the vehicle rout- 

ng component is executed without a customer arrival. Depending 

n the transportation service sold, the provider must solve differ- 

nt types of vehicle routing problems (e.g., Toth & Vigo, 2014 ). For 

xample, delivery or pickup problems may occur. Also, point-to- 

oint problems may arise. Finally, routing decisions may be sub- 

ect to different types of constraints . These may refer to the fleet 

ize or composition, the vehicles’ capacity, or service guarantees 

ike delivery within a specific time window. 

The morphological box in Table 1 summarizes the result of the 

orphological analysis, i.e., it describes the different components 

ased on the dimensions and their potential realizations intro- 

uced above. Besides providing a compact summary, it also serves 

s a tool for further analyses. Specific decision problems, includ- 

ng novel ones, can be derived by selecting a certain realization 

or each dimension and combining them. In turn, existing decision 

roblems can be classified according to their realizations for each 
502 
imension. In the survey at hand, we present the latter type of 

nalysis for prototypical decision problems ( Table 2 ) and decision 

roblems considered in the existing literature ( Table 4 ). 

.2. Applications 

This section discusses prototypical applications for which inte- 

rating demand management and vehicle routing has already been 

stablished or is currently evolving. We deliberately do not ex- 

licitly refer to specific companies’ existing applications because 

he underlying business models are adapted fast and refined con- 

inuously. However, in all cases, corresponding services exist and 

an easily be found by simple internet search. In Table 2 , we de-

cribe the prototypical applications based on the morphological 

ox ( Table 1 ) developed in Section 2.1 . Table 4 in Section 4.3 will

haracterize the related specific problems considered in the exist- 

ng academic literature. 

The most prominent application for AHD is e-groceries ( Agatz 

t al., 2013 ). Here, transportation is combined with the sales of 

roceries. Most commonly, the providers try to maximize profit af- 

er fulfillment. This profit is determined by the profit per order, 

hich considers the profit of the shopping basket plus the de- 

ivery fee, minus the cost of transportation. In the early days of 

HD, the usual way to control demand was to define combina- 

ions of delivery areas and time windows. For these combinations, 

he provider computed static prices and the maximal number of 

ustomers to be served prior to the booking horizon which led to 

 form of availability control. Thus, it was possible to provide cus- 

omers with feedback on fulfillment options after filling their shop- 

ing basket in real-time. Until recently, booking and service hori- 

on have usually been disjoint. Customers had to place their orders 

ntil the evening before the delivery day. For all orders accepted, 

he provider must solve a capacitated vehicle routing problem with 

ime windows. Please note that modern approaches do not only set 

rices dynamically but also offer overlapping time windows of dif- 

erent lengths. 

SDD is also used for selling groceries ( Archetti & Bertazzi, 2021 ). 

ew market entrants currently try to establish services that deliver 

 restricted assortment of food products within very short dead- 

ines. Established players like large grocery and wholesale retail- 

rs are experimenting with combining SDD and next-day delivery. 

owever, the concept was initially introduced for courier and ex- 

ress services, the reason why we discuss a corresponding appli- 

ation here ( Ghiani, Manni, Quaranta & Triki, 2009 ). Such services 

ffer pure transportation for, e.g., pharmaceutical drugs or spare 

arts. Since the provider’s capacity is usually fixed on a given day, 

hey maximize the total revenue as a proxy for profit. Depending 

n the transport’s origin and destination and the delivery deadline, 

he provider dynamically calculates a fee, i.e., sets a price. Again, 

he provider must process a captured request in real-time. New 

rders arrive while executing others, i.e., the booking and service 

orizon overlap. Hence, the provider must deal with a dynamic 

oint-to-point (pickup and delivery) problem with deadlines. 
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Table 1 

Components and dimensions of the sequential decision process. 

Process component Dimension Realization 

Request capture Service type Transportation (TR) Coupled goods (CG) Coupled services (CS) 

Demand management Objective Profit (PR) Revenue (RE) Number of orders (NO) 

Time of decision Static Dynamic 

Control type Availability (AV) Price-based (PB) 

Processing Real-time (RT) Batch (BA) 

Order confirmation Fulfillment options Single (SI) Multiple (MU) 

Vehicle routing Booking/service horizon Disjoint (DJ) Overlapping (OL) Infinite (IF) 

Routing problem Delivery (DE) Pick-up (PU) Point-to-point (PP) 

Constraints Fleet Vehicles Service guarantees 

Table 2 

Sample applications. 

Process component Dimension AHD SDD MOD FSO 

Request capture Service type Coupled goods Transportation Transportation Coupled services 

Demand 

management 

Objective Profit Revenue Number of orders Number of orders 

Time Static Dynamic Dynamic Dynamic 

Control type Availability Price-based Availability Availability 

Processing Real-time Real-time Real-time Batch 

Order confirmation Fulfillment options Multiple Single Single Multiple 

Vehicle 

routing 

Booking/service horizon Disjoint Overlapping Overlapping Infinite 

Routing problem Delivery Point-to-point Point-to-point Delivery 

Constraints Time windows, 

vehicle capacity 

Delivery deadlines Waiting and 

travel time 

Time windows, 

worker skills 
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An increasingly popular form of public transport is MOD 

 Hazan, Lang, Wegscheider & Fassenot, 2019 ). The transportation 

ervice is provided using mini-buses and taxis in a shared-ride 

ode. Public providers may aim at maximizing the number of or- 

ers, i.e., rides, performed. Customers can specify the origin and 

estination and the earliest pick-up or latest arrival time. The fee 

epends on the origin and destination and is commonly based on 

ublished tariffs, such that only the availability is subject to dy- 

amic control. Hence, based on their request and the capacity uti- 

ization, customers are either offered a ride or are rejected in real- 

ime. In the first case, a single option is provided which comes 

ith a travel time, a possible waiting time, and the number of 

assengers on the ride. The customers can then accept the op- 

ion or reject it. With the switch from call center- to application- 

ased reservation systems, providers have allowed to make reser- 

ations on the day of travel leading to overlapping booking and 

ervice horizons. Again, a point-to-point (dial-a-ride) transporta- 

ion problem results whose constraints must consider the vehi- 

les’ capacities and ride-specific aspects like waiting and travel 

imes. 

FSO represents an emerging application of integrated demand 

anagement and vehicle routing ( Chen, Thomas & Hewitt, 2016 ). 

n a business-to-consumer context, customers receive some furni- 

ure, electronics, or home appliances and may require a coupled 

ervice like installation for the items delivered. In a business-to- 

usiness context, on-site maintenance and repair may represent 

ossible use cases. In the first case, which we consider here, it 

s common that the customer can select several options from a 

enu of delivery dates with corresponding time windows, i.e., the 

rovider deliberately restricts the availability of options by avail- 

bility control. When determining the corresponding offer sets, the 

rovider usually tries to maximize the number of installations. 

ome days ahead of delivery, the provider informs about which of 

he customer’s options they have chosen for installation. Since lead 

imes for the products can depend heavily on the different prod- 

cts, the problem on hand has no finite horizon. New orders for 

roducts with a short lead time can arrive and be ready for instal- 
503 
ation while waiting for the completion of orders with longer ones. 

ike for AHD, the provider must solve a capacitated vehicle rout- 

ng problem with time windows. However, additional constraints 

ike worker skills come into play. Often, corresponding routing 

roblems are identified as technician or field service routing 

roblems. 

. Mathematical model formulation 

In this section, we discuss the formalization of the generalized 

roblem definition described in Section 2 by means of mathemati- 

al modeling. Since the problem at hand is stochastic and dynamic, 

n accurate formalization requires a dynamic control model, which 

s subject of Section 3.1 . An integral element of this formalization 

s also the modeling of the customers’ choice behavior, provided 

hat they are given a choice between fulfillment options as part 

f the order confirmation component. Therefore, we elaborate on 

hese customer choice models separately in Section 3.2 . 

.1. Dynamic control model 

Mathematically, Markov decision processes (MDPs) provide the 

oundation for describing most decision problems in demand man- 

gement and vehicle routing. However, in contrast to, e.g., de- 

erministic vehicle routing, it is not standard in the literature to 

resent a corresponding MDP model, which is an observation al- 

eady made by Ulmer et al. (2020) for stochastic, dynamic vehi- 

le routing. Reasons may be that the notation is quickly becoming 

omplex and awkward to handle. Moreover, solution approaches 

re generally approximative and do not rely directly on an exact 

ynamic control model. Further, the variety of problems leads to 

ather specific models from a notational point of view (e.g., Al- 

anj, Nascimento & Powell, 2020 , Ulmer, Goodson, Mattfeld & Hen- 

ig, 2019 , Xu et al., 2018 , or Yang, Strauss, Currie & Eglese, 2016 ).

herefore, in the following, we synthesize the models from existing 

orks and provide a generalized, high-level model formulation. We 

tructure the discussion along the model’s primary building blocks 
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sing the language and notation common for MDPs (e.g., Powell, 

019 ). For similarly generic models, we refer to Klein et al. (2020) ,

ho present formulations from a demand management perspec- 

ive, and Ulmer et al. (2020) , who propose a route-based modeling 

ramework for dynamic routing. 

In the model, demand is represented as a set of potential cus- 

omers I = { 1 , . . . , I } . Each customer i ∈ I comes with a location 

nd has different preferences for the services offered. To serve 

he customers, the provider has vehicles h ∈ H = { 1 , . . . , H } avail-

ble. The vehicles may have several restrictions concerning their 

apacity, which may refer to the maximal feasible load, the max- 

mal travel distance, or the maximal travel time due to working 

hifts. Based on these assumptions, we describe the building blocks 

f MDP models. For each possible variant of modeling a certain 

uilding block, we provide exemplary references. Please note that 

he notation chosen makes several deliberate simplifications for 

he sake of readability. For example, numbers of customers I, in 

eneral, are stochastic. Furthermore, we omit indices where possi- 

le, and following Al-Kanj et al. (2020) , we indicate unambiguous 

tate-dependencies by an index k . 

Decision epochs : The booking horizon and the service horizon 

ncompass k ∈ K = { 0 , . . . , K } decision epochs, whose number can 

e stochastic. Decision epochs represent points in time at which 

he provider must make a demand management decision, a rout- 

ng decision, or both. Three types of events can trigger a decision 

poch, with the latter two only being relevant for problems with 

verlapping horizons. The first one is the arrival of a customer re- 

uest ( Ulmer, 2020a ). Secondly, routing-related events may require 

ecisions, e.g., if a vehicle becomes available after completing an 

rder ( Ulmer, Mattfeld & Köster, 2018 ). Thirdly, a new decision 

poch can be defined to occur after a certain amount of time in 

hich vehicles were idle or orders were not assigned for fulfill- 

ent ( Chen et al., 2019 ). 

States : Tuples S k = ( S cust 
k 

, S v eh 
k 

) describe the system’s state at 

he beginning of a decision epoch k and contain all information 

ecessary to make a decision. The vectors S cust 
k 

and S v eh 
k 

describe 

he customers’ and vehicles’ statuses. For customers, this status 

ay indicate which customers are currently requesting service. Ad- 

itionally, in case the provider receives orders, information on the 

rders’ parameters ( Koch & Klein, 2020 ) and, for problems with 

verlapping horizons, the fulfillment status is stored ( Chen, Ulmer 

 Thomas, 2022 ). For vehicles, the status may refer to the current 

ocation ( Qiu, Li & Zhao, 2018 ), the time of arrival at the next cus-

omer ( Chen et al., 2019 ) or at the depot ( Voccia et al., 2019 ), or a

oute plan ( Ulmer & Thomas, 2020 ). Note that information on ve- 

icles is not required for problems with disjoint horizons because 

nal routing is not necessary before the end of the booking hori- 

on. 

Decisions : Depending on the state in decision epoch k , the 

rovider must either make a demand management decision and, 

otentially, a corresponding vehicle routing decision, or a stand- 

lone routing decision. When booking horizon and service horizon 

re disjoint, demand management decisions suffice. The decisions 

re summarized by variables x k = ( x dem 

k 
, x rout 

k 
) that describe the ac- 

ions taken and are defined as follows: 

• Vehicle routing decisions x rout 
k 

: If the provider makes a 

routing decision x rout 
k 

for state S k , they select a feasible route 

plan φk = { ρh : h ∈ H } , i.e., determine a route ρh for each ve- 

hicle h ∈ H ( Ulmer, 2020a ). A route plan is called feasible if

it does not violate any operational restriction. In this con- 

text, the term route plan has a fairly broad meaning, i.e., 

x rout 
k 

may only state which order to serve next for each ve- 

hicle (e.g., Xu et al., 2018 ). The set of all feasible route plans

in state S k is denoted by �k . In case the booking horizon 

and service horizon are disjoint, a single routing decision is 
504 
made at decision epoch K + 1 ( Klein, Mackert, Neugebauer & 

Steinhardt, 2018 ), i.e., at the end of the booking horizon. 
• Demand management decisions x dem 

k 
: A demand manage- 

ment decision x dem 

k 
determines which offer the provider 

makes for providing a service requested by customer i at de- 

cision epoch k . The feasible fulfillment options available are 

given by O k = { 1 , . . . , O k } . An option o ∈ O k is called feasible 

if a feasible route plan φk +1 exists when the request turns 

into an order due to the sale of o. When applying availabil- 

ity control, the provider determines an offer set �k ⊆ O k 

( Avraham & Raviv, 2021 ). Analogously, when using price- 

based control, the provider sets prices (service fees) p oi for 

all options o ∈ O k ( Prokhorchuk, Dauwels & Jaillet, 2019 ). 

Transitions : Transitions between states S k and S k +1 may occur 

or several reasons: If customer i decides (stochastically) to buy an 

ption o, the request becomes an order and S cust 
k 

is updated accord- 

ngly. The same holds if customers are served as the provider (par- 

ially) executes route plan φk . In this case, the vehicles’ status S v eh 
k 

s also updated ( Voccia et al., 2019 ). Mathematically, the transition 

an be described by a state equation S k +1 = S M ( S k , x k , W k +1 ) . W k +1 

epresents random variables affecting the transition from epoch k 

o k + 1 . In our case, these include, e.g., the choice of customer

 , the preferences and locations of incoming customers ( Mackert, 

019 ), or stochastic travel times ( Xu et al., 2018 ). 

Rewards : If the provider sells an option o to a customer i , they 

btain a reward R k ( S k , x k ) = r oi . Usually, r oi represents the revenue 

er order or the profit per order possibly depending on a charged 

rice (service fee) p oi ( Strauss et al., 2021 ). If the objective is to 

aximize the number of customers served, the reward is set to 

 oi = 1 ( Ulmer et al., 2019 ). Fulfillment costs can be modeled as 

egative rewards that are incurred once the respective routing de- 

isions become definitive and the route plan is (partly) executed 

 Klapp, Erera & Toriello, 2018 ). For disjoint horizon problems, the 

erminal reward R K+1 summarizes all fulfillment cost ( Yang et al., 

016 ). 

Policy : A policy X π ( S k ) is a rule or function that determines 

 decision x k for a state S k . Here, it refers to vehicle routing and 

emand management decisions, which are often intertwined. For 

xample, when deciding on an offer set, the provider may have 

o simultaneously make routing decisions anticipating the possible 

ale. 

Objective function : In general, since the problems are stochas- 

ic, the objective consists of maximizing expected rewards (includ- 

ng terminal cost R K+1 ): 

 ( X 

π ) = E 

{ 

K ∑ 

k =0 

R k ( S k , X 

π ( S k ) ) + R K+1 

} 

In infinite state problems, we can discount rewards and define 

he objective as the limit of the expression above, when K → ∞ 

 Holler et al., 2019 ). 

Value function : To evaluate possible decisions in state S k , we 

efine the value function V k ( S k ) the provider wants to maximize. 

t represents the objective function value at the end of the booking 

nd service horizon that can be expected at decision epoch k by 

he corresponding Bellman equation: 

 k ( S k ) = max 
x k 

E 

{
R k ( S k , x k ) + V k +1 

(
S M ( S k , x k , W k +1 ) 

) }
Thus, J( X π ) = V 0 ( S 0 ) holds if X π is an optimal policy. The cor- 

ect computation of the value function requires optimal demand 

anagement decisions for future requests and optimal routing de- 

isions for existing and future orders. Alternatively, it is possi- 

le to formulate a Bellman equation based on state-action values 

 Kullman, Cousineau, Goodson & Mendoza, 2021 ). 
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.2. Customer choice modeling 

In case the order confirmation component allows customers to 

elect a fulfillment option from an offer set, any dynamic control 

odel must include a customer choice model. Otherwise, if there 

s no such interaction during order confirmation, choice modeling 

an be omitted. More precisely, a choice model predicts a purchase 

robability P o ( �k ) for each option o ∈ �k with respect to the offer 

et �k and, possibly, prices p oi . For this purpose, parametric, non- 

arametric, and multi-stage models exist ( Strauss et al., 2018 and 

erbeglia, Garassino & Vulcano, 2021 ). 

In the context of vehicle routing applications, parametric mod- 

ls rooted in random utility theory dominate. Following this the- 

ry, each customer i evaluates the set of offered alternatives with 

espect to an individual utility function before deciding on ei- 

her buying one option o ∈ �k or leaving the market (e.g., Train, 

009 ). In general, we assume that the resulting utility for an option 

 ∈ �k has a deterministic and a random part. Customers decide on 

he alternative that maximizes their utility. If | �k | > 1 , customers 

ay substitute across all o ∈ �k , in case their preferred one is not

vailable (e.g., Kök & Fisher, 2007 ). In the literature, the existence 

f such substitution behavior is widely acknowledged (e.g., Ulmer, 

020a , Yan et al., 2020 , or Yang et al., 2016 ). Thus, the resulting

urchase decision is stochastic and depends on the characteristics 

f all options o ∈ �k including, if applicable, their prices p oi . 

The purpose of choice modeling is to obtain purchase probabil- 

ties for each o ∈ �k , which serve as input parameters for demand 

ontrol. To this end, the specification of a utility function is nec- 

ssary for random utility models. The deterministic part is usually 

xpressed as a linear function of a vector of attributes that influ- 

nce the purchase probabilities. In last-mile logistics, these include 

he associated time slot (e.g., Yang et al., 2016 ) and the delivery 

eadline ( Prokhorchuk et al., 2019 ). Similarly, for passenger trans- 

ortation, attributes encompass travel time ( Qiu et al., 2018 and 

tasoy, Ikeda, Song & Ben-Akiva, 2015 ) as well as origin, destina- 

ion, and time of day ( Al-Kanj et al., 2020 ). Also, the price p oi rep-

esents an attribute if fees are charged. 

Different choice models are obtained depending on the assump- 

ions made on the distribution of the random utility part. Thereby, 

t is crucial to consider that model selection and model specifica- 

ion significantly impact the quality of demand management de- 

isions and the complexity of demand control ( Berbeglia et al., 

021 ). The estimation of the utility function’s parameters from his- 

orical data is also an optimization problem and can be of varying 

omplexity. 

With respect to our domain, authors use the following random 

tility models: 

• Multinomial logit (MNL) model : This is the most promi- 

nent model. It assumes that the entire customer popula- 

tion can be described by a common utility function. Further- 

more, it assumes that the random utility components are in- 

dependent and identically distributed random variables fol- 

lowing a Gumbel distribution. If O k = 1 , the MNL reduces to 

a binary logit model ( Al-Kanj et al., 2020 ). In comparison 

to other random utility models, the MNL has advantages in 

terms of computational complexity ( Berbeglia et al., 2021 ). 

However, it is not sufficiently accurate in many applications, 

even with a nearly perfect specification: First, it does not 

capture latent customer preferences. Second, the model suf- 

fers from the IIA property (independence from irrelevant al- 

ternatives) and therefore only allows for proportional substi- 

tution behavior ( Train, 2009 ). 
• Generalized attraction model : Compared to the MNL 

model, it captures customer dissatisfaction and thus reduces 
505 
purchase probabilities for all offered products if the cardi- 

nality of an offer set is low ( Gallego & Topaloglu, 2019 ). 
• Finite mixture MNL model : This model assumes that de- 

mand is composed of homogeneous segments whose choice 

behavior can be described by standard MNL models ( Strauss 

et al., 2018 ). If the segment affiliations of the arriving cus- 

tomers are unknown, the integration of the model into de- 

mand control significantly increases its complexity ( Koch & 

Klein, 2020 ). The same holds for the parameter estimation 

problem. Otherwise, the segment-specific MNL models are 

independent, and there is no increase in complexity (e.g., 

Lang, Cleophas & Ehmke, 2021b ). 
• Nested logit model : The nested logit (NL) model is appro- 

priate if we can aggregate alternatives into nests in a way 

such that the IIA holds within each nest but not across 

nests. Each nest represents a set of substitutes. The model 

by Wang, Zeng, Ma and Guo (2021) accounts for alternate 

pick-up and drop-off points customers can choose. Köhler, 

Ehmke, Campbell and Cleophas (2019) and Strauss et al. 

(2021) use the NL model to reflect demand interdependen- 

cies and non-negligible disproportional substitution behav- 

ior due to offering overlapping time windows of different 

lengths. Because of the higher complexity of demand man- 

agement decisions, Strauss et al. (2021) approximate the NL 

model by a standard MNL model. 

Lastly, some authors propose parametric models that are specif- 

cally designed for pricing control and are not rooted in random 

tility theory ( Campbell & Savelsbergh, 2006 ; Chen et al., 2019 ; 

aliem, Mani, Aggarwal & Bhargava, 2021 ; Klein & Steinhardt, 

021 ; Ulmer, 2020a , and Vinsensius, Wang, Chew & Lee, 2020 ). 

. Solution concepts 

In this section, we discuss solution concepts for dealing with 

ecision problems that fall under the generalized problem defini- 

ion as presented in Section 2 . Due to the problems’ complexity, 

irectly solving corresponding dynamic control models ( Section 3 ) 

o optimality is computationally intractable. As the state space is 

ery large even for small instances, it is not possible to evalu- 

te, e.g., the Bellman equation for each potential state. Moreover, 

n each state, the determination of demand management decisions 

nd vehicle routing decisions can represent challenging optimiza- 

ion problems of their own. 

Instead, the existing literature follows two basic solution con- 

epts, both based on approximations. In Section 4.1, we first de- 

cribe decomposition-based approximations. Section 4.2 is devoted 

o static deterministic approximations. In Section 4.3 , we merge 

he results of our analyses of problem characteristics and solution 

oncepts in the form of a tabular overview. Thus, we only pro- 

ide exemplary references in all the following subsections and re- 

er the reader to Tables 4 and 5 for the extensive classification of 

ll works. 

.1. Decomposition-based approximation 

In the academic literature, most authors resort to a 

ecomposition-based approximation. For this purpose, they 

dentify major tasks in the overall decision process to be ad- 

ressed by the provider. Then, they formalize the tasks and solve 

orresponding subproblems or combinations of them sequentially. 

ifferent types of solution approaches exist: Sometimes, the 

uthors explicitly formulate auxiliary or simplified mathematical 

odels for the problems that are then tackled using a general- 

urpose solver or some special-purpose algorithm. In other cases, 

hey only describe the problems verbally, propose a conceptual 
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odel to, e.g., deal with stochasticity or interdependencies among 

roblems, and again, provide suitable algorithms. We define the 

asks in Section 4.1.1 and describe the corresponding solution 

pproaches in Sections 4.1.2–4.1.5. Solution algorithms are subject 

f Section 5.1. 

.1.1. Task definitions 

In Section 2.1 , we have identified two components that require 

he provider to make decisions: demand management and vehicle 

outing. When analyzing corresponding research papers, it turns 

ut that authors consider up to three different tasks to support 

emand management decisions x dem 

k 
. Fig. 3 shows the sequence 

f these tasks and the input data they provide for the succeed- 

ng task. Routing control can be viewed as a fourth task associated 

ith the vehicle routing component. 

Feasibility check : First, the provider must determine the set O k 

f feasible options with respect to existing orders in state S k . The 

xact type of the corresponding vehicle routing problem depends 

n the application. In case the vehicle routing problem has a fea- 

ible solution, this implies that o ∈ O k . 

Cost estimation : Second, the provider must compute the value 

ifference, i.e., the costs, �V ( S k +1 | o) = V k +1 ( S k +1 ) − V k +1 ( S k +1 | o)
or each feasible option o ∈ O k in case the provider sells option 

to customer i due to demand management decisions x dem 

k 
com- 

ared to not selling it. Hence, the result of the feasibility check 

s an input for cost estimation. The impact of selling option o is 

wofold: First, it can lead to the displacement of demand arriving 

ater, in case not enough capacity will be left. Hence, a sale influ- 

nces future rewards via the displacement cost well known from 

evenue management ( Talluri & van Ryzin, 2004a ). Second, due to 

eliveries, it also impacts the costs-side because the usage of some 

esources causes non-negligible (future) transport costs that are 

ot attributable to requests ex-ante. These costs are captured by 

he term marginal delivery cost or marginal cost-to-serve (e.g., Yang 

 Strauss, 2017 ). However, due to the “curses of dimensionality”

 Powell, 2011 ), i.e., the large number of possible states and actions, 

ost values �V ( S k +1 | o) can usually only be approximated by an es-

imate � ˜ V ( S k +1 | o) . 
Demand control : Based on a cost estimate for each feasible 

ption, the provider must make a demand management decision 

 

dem 

k 
: 

• When applying availability control, the provider will only of- 

fer (accept) an option (a request) o ∈ O k to (by) customer i if 

r oi ≥ � ˜ V ( S k +1 | o) . That is, the resulting order is feasible, and 

the total expected value increases by selling option o. Since 

the customer preferences for options are heterogenous and 

stochastic, it may pay off to offer only a restricted offer set 

�k ⊆ O k to influence choice behavior in a favorable manner. 
• When using price-based control, the provider again only of- 

fers an option o ∈ O k if r oi ≥ � ˜ V ( S k +1 | o) where r oi includes 

the price p oi . Hence, the � ˜ V ( S k +1 | o) represents a lower 

bound for the reward r oi , from which a lower bound for the 

price (service fee or discount) p can be derived. Based on 
oi 

506 
this information, the provider can optimize prices to influ- 

ence demand. 

Routing control : The final task results from the vehicle routing 

omponent and consists in making routing decisions x rout 
k 

. Again, 

he feasibility check provides a crucial input to ensure that routing 

ecisions do not violate the operational constraints. 

As we show in the following sections, there exist individual so- 

ution approaches for each task. Yet, as the tasks build upon each 

ther, the corresponding subproblems are often related. For exam- 

le, explicit route planning approaches can be applied to feasibility 

heck, cost estimation, and routing control. Therefore, one could 

rgue that solution approaches exist that solve tasks in combina- 

ion. However, for the sake of clarity, we discuss the approaches 

or each task individually (Sections 4.1.2–4.1.5). Table 3 provides an 

verview of the fundamental solution approaches for each task. 

.1.2. Feasibility check 

As stated before, the provider can check the feasibility of a po- 

ential order as a separate task. In this case, we can distinguish 

wo types of checks: 

Route-based check : This type solves some auxiliary model that 

xplicitly considers the constraint satisfaction version of a vehicle 

outing problem for each fulfillment option o being a candidate for 

 k (e.g., Brailsford, Potts & Smith, 1999 and Berbeglia, Pesant & 

ousseau, 2011 or Elting & Ehmke, 2021 in the context of point- 

o-point transportation). The models are deterministic because the 

lready existing orders and the option o are known for a state S k . 

n case a solution exists for the resulting instance, o is included in 

 k . 

Capacity-based check : These checks determine capacity limits 

or the number of feasible orders depending on criteria like the lo- 

ation or the time of delivery (e.g., Lang, Cleophas & Ehmke, 2021a ) 

nd thereby approximate the constraint satisfaction problem. Dur- 

ng the booking horizon, an option o is considered feasible, i.e., 

ncluded in O k , if the number of similar orders with respect to 

he criteria is below the capacity limit. Capacity-based feasibility 

hecks are generally more suitable for disjoint-horizon problems 

ecause no routing decisions are required during the booking hori- 

on and, thus, route-based planning is not essential. 

.1.3. Cost estimation 

The literature distinguishes between myopic cost estimation 

nd anticipative cost estimation depending on the use of informa- 

ion. 

Myopic estimation solely incorporates information about orders 

hat have already been received ( Haferkamp & Ehmke, 2022 ) and 

oes not require any (probabilistic) information about future de- 

and. Therefore, it only aims at marginal cost-to-serve and does 

ot capture a decision’s impact on future rewards, i.e., neglects 

isplacement cost. However, the reduced data requirements com- 

ared to anticipative estimation can also be a significant advantage 

n practice if data on future demand are sparse, unreliable, or even 

ot available at all. Usually, myopic estimation relies on a formu- 

ation of a static routing problem, so that marginal cost-to-serve 
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Table 3 

Overview of task-specific solution approaches. 

Task Solution approach 

Feasibility check Route-based (RO) Capacity-based (CA) 

Cost estimation Myopic (MY) Sampling-based (SA) Deterministic linear program (DL) Predictive (PR) 

Demand control Accept/reject (AR) Assortment optimization (AO) Discrete pricing (DP) Continuous pricing (CP) 

Routing control Full route plan (FP) Single route (SR) Leg-oriented (LO) 
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s estimated as the increase in total routing cost caused by adding 

nother order to the respective problem instance. 

If information about future demand is available, anticipative es- 

imation is applicable. It addresses two aspects to improve the es- 

imate. First, it can achieve a more accurate estimate of marginal 

ost-to-serve compared to myopic estimation. For example, this 

ost may be overestimated in myopic estimates if not consider- 

ng consolidation opportunities with future orders. Second, antic- 

pation enables an approximation of displacement costs in the first 

lace. Not surprisingly, empirically, many studies demonstrated 

hat anticipative estimation yields better results compared to my- 

pic estimation ( Section 6 ). However, the extent to which this po- 

ential can be realized in practice depends on the quality of avail- 

ble data regarding future demand. 

Depending on which techniques are used to deal with uncer- 

ainty, i.e., characteristics of future requests including the cus- 

omers’ preferences, we distinguish three subclasses of anticipative 

pproaches, namely sampling-based approaches , deterministic linear 

rogramming approaches , and predictive approaches . In the follow- 

ng, we characterize these subclasses: 

• Sampling-based : To obtain a more precise estimation of 

marginal cost-to-serve, several authors propose the inclusion 

of sampled future orders into a single (tentative) route plan 

or a pool of tentative route plans, i.e., a static routing prob- 

lem. If the corresponding problem allows displacements of 

sampled orders, its solution also yields an estimate of dis- 

placement cost. The idea behind this type of approaches, 

known as scenario-based planning, is to anticipate how the 

instance of the routing problem will be structured at the 

time a potential order is fulfilled. The resulting gain of ac- 

curacy is particularly high in the early phase of each book- 

ing horizon ( Yang et al., 2016 ). The concept goes back to 

Bent and van Hentenryck (2004) and Ichoua, Gendreau and 

Potvin (2006) , who apply it to pure dynamic vehicle routing 

problems. While scenario-based planning considers the fu- 

ture evolution of the decision process from a hindsight per- 

spective, sampling is also possible by dynamically simulating 

the evolution of the decision process from the current state 

onward over a limited horizon ( Soeffker et al., 2022 ). This is 

the principle of rollout approaches, which provide an esti- 

mate of both cost components as future decisions are sim- 

ulated sequentially according to a base policy (e.g., Ulmer, 

2020b ). 
• Deterministic linear programming : Originally developed 

in revenue management ( Gallego & Topaloglu, 2019 ), sev- 

eral publications show that deterministic linear program- 

ming techniques are transferable to the field of vehicle rout- 

ing. They define corresponding auxiliary models, which pro- 

vide two types of information: On the one hand, the objec- 

tive function value approximates a certain state value, and 

hence, the model can be solved twice to calculate a cost 

estimate � ˜ V ( S k +1 | o) (e.g., Klein et al., 2018 ). On the other 

hand, the solution yields information that may also serve 

directly as an input for demand control. Such models are 

related to sampling-based approaches in that they also as- 

sume expected future demand to be deterministic and in- 
507 
clude it as an input in aggregated or disaggregated form. 

The goal is to use this information to predict the expected 

evolution of the remaining booking and service horizon de- 

pending on the demand management and routing decisions. 

To model customer choice behavior, the inclusion of choice 

models (Section 3.2) is also possible. 
• Predictive : A considerable number of authors use predic- 

tive models borrowed from the field of statistical learning 

( Powell, 2019 ). We can distinguish three types of solution 

approaches depending on the values to be predicted: 

� The first type approximates the state value function 

˜ V k +1 ( S k +1 | o) for each resulting state S k +1 and option o

to calculate the cost � ˜ V ( S k +1 | o) as a value difference 
˜ V k +1 ( S k +1 ) − ˜ V k +1 ( S k +1 | o) (e.g., Lang et al., 2021a ). 

� The second one provides a direct cost approximation 

� ˜ V ( S k +1 | o) (e.g., Qiu et al., 2018 ). 

� Finally, the third one predicts state-action values by 

Q-learning based on approximating the value of a 

demand management decision in a particular state. 

Since maximizing the state-action value in a state S k 
directly leads to an optimal solution for demand con- 

trol, an explicit cost calculation is no longer required 

(e.g., Chen, Wang, Thomas & Ulmer, 2020 ). 

Any type of prediction can generally be encoded using three 

ypes of approximations ( Powell, 2011 ). All of these have in com- 

on that values are computed dependent on a set of preselected 

eatures representing the state in an aggregated form. Besides the 

ecision epoch k this may include order characteristics as well 

s route-based features of tentative routes like the vehicles’ idle 

imes. The approximations are: 

� Lookup tables : They store an estimate for all possible re- 

sulting combinations of feature values, which is updated 

each time one of the corresponding states occurs through- 

out the learning process (e.g., Ulmer et al., 2018 ). 

� Parametric approximations : They represent the prediction 

by an expression of a particular functional form dependent 

on a set of parameters and the feature values. Most often, a 

linear function, i.e., the weighted sum of all feature values, 

is chosen (e.g., Yang & Strauss, 2017 ). However, piecewise- 

linear or non-linear specifications are also possible (e.g., Ni, 

Sun, Wang & Tsang, 2021 and Lebedev, Margellos & Goulart, 

2020 ). 

� Non-parametric approximations : In contrast to parametric 

ones, these approximations do not assume that the relation- 

ship between the estimate and the feature values is of a 

particular functional form. Therefore, they can adapt more 

flexibly to the actual functional relationship, which is likely 

non-linear. Examples are kernel regression and (deep) neural 

networks (e.g., Dumouchelle, Frejinger & Lodi, 2021 ). 

.1.4. Demand control 

The demand control task yields the demand management deci- 

ions x dem 

k 
that are made in response to an arriving request in stage 

 k . For optimizing the demand management decision, potentially 

ased on customer choice behavior, three types of control are pro- 
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osed in the literature: accept/reject control, assortment optimiza- 

ion, and pricing control. 

Accept/reject : If the order confirmation step does not involve 

ny stochastic customer choice decision, demand control boils 

own to an accept or reject decision for each request. The re- 

ulting subproblem can be cast in two ways, both derived from 

raditional demand management applications ( Talluri & van Ryzin, 

004a ). First, the provider can subdivide the set of possible re- 

uests into subsets according to certain parameters and assign a 

ooking limit to each subset, i.e., an upper bound on the num- 

er of orders ( Giallombardo, Guerriero & Miglionico, 2020 ). In this 

ase, a request is accepted if this does not cause the corresponding 

imit to be exceeded. Second, the cost estimate (Section 4.1.3) can 

erve as a bid price, i.e., as the minimum profit of a request for it

o be accepted. This type of control is also applicable for batched 

equest processing ( Ulmer et al., 2018 ). 

Assortment optimization : Under the assumption of substitu- 

ion behavior and multiple fulfillment options, the demand con- 

rol task is called an assortment optimization problem (see Gallego 

 Topaloglu, 2019 for an in-depth introduction). Due to the deci- 

ion space growing exponentially with O k , i.e., the number of ful- 

llment options, it becomes combinatorial. Given O k as well as 

 oi , � ˜ V ( S k +1 | o) , and the offer set-dependent purchase probabilities 

 o ( �k ) for all o ∈ �k and �k ⊆ O k provided by the choice model, 

he objective is to maximize the expected profit after fulfillment: 

∗
k = argmax 

�k ⊆O k 

{ ∑ 

o∈ �k 

P o ( �k ) ·
(
r oi − � ˜ V ( S k +1 | o) 

)} 

If necessary, certain structural properties of the offer set can 

e specified by adding constraints. Additionally, problem structure 

nd problem complexity depend on the choice model (Section 3.2). 

Pricing : The basic principle of price-based control is to offer 

ach feasible option o ∈ �k = O k at some dynamic price p oi , i.e., 

etermine a price vector p i = ( p oi ) O k × 1 . Thus, rewards r oi ( p oi ) de- 

end on the respective price p oi . In general, pricing optimization 

equires the same types of input data as assortment optimization, 

nd the problem structure again depends on the choice model 

efining the purchase probabilities P o ( p oi , �k ) . The decision space, 

.e., the feasible price vectors, can be similarly vast even if restric- 

ions are imposed. In case the price is only subject to an upper or a

ower bound or is entirely unrestricted, a continuous pricing prob- 

em results, which is modeled as follows (e.g., Yang et al., 2016 ): 

p 

∗
i = argmax 

p i 

{ ∑ 

o∈ �k 

P o ( p oi , �k ) ·
(
r oi ( p oi ) − � ˜ V ( S k +1 | o) 

)} 

Specifying a set of feasible price points leads to a discrete 

ricing problem, which is a special case of the assortment opti- 

ization problem described above. Alternatively, auxiliary models 

ased on quadratic programming ( Campbell & Savelsbergh, 2006 

nd Vinsensius et al., 2020 ) and predictive models ( Chen et al., 

019 and Al-Kanj et al., 2020 ) are proposed in the academic liter- 

ture. Finally, note that discounts can also be modeled by allowing 

p oi < 0 . 

.1.5. Routing control 

Routing control is inherently related to the tasks of the demand 

anagement component discussed in 4.1.2–4.1.4. Its goal is to op- 

imize the route plan for serving the set of previously received or- 

ers augmented by the newly received one and to potentially make 

dditional routing decisions based on expected demand. In con- 

rast to checking feasibility, the objective is to not only determine 

 feasible route plan but a cost-minimal one. Depending on the 

ontrol problem at hand, three types of routing control are possi- 

le that differ in what portion of the route plan is determined. 
508
Full route plan : For disjoint horizon problems, routing con- 

rol is in fact static and deterministic as definitive routing deci- 

ions are made after the booking horizon. Therefore, the provider 

akes a single decision on the full route plan under certainty by 

olving a static vehicle routing problem ( Toth & Vigo, 2014 ). Note 

hat, additionally, tentative route planning is part of some solution 

pproaches for feasibility checking, cost estimation, and demand 

ontrol of disjoint problems but we do not categorize it as routing 

ontrol. 

Single route : Conversely, for overlapping horizons, some fulfill- 

ent planning decisions must be made during the booking hori- 

on and cannot be postponed until its end. Routing control deci- 

ions can then be made by repeatedly fixing complete routes for 

ingle vehicles over time, e.g., when the capacity limit of a vehicle 

s reached. For this purpose, corresponding routing problems may 

nclude tentative decisions for other vehicles. Consequently, most 

roblems consider a tentative route plan beyond the route to be 

ptimized (e.g., Klein & Steinhardt, 2021 ). This is particularly suit- 

ble for deliveries from a central depot as, once a set of orders 

s loaded onto a vehicle, the route usually cannot be changed any 

ore. 

Leg-oriented : Overlapping horizons also allow only fixing a cer- 

ain part of a route, i.e., the next leg or the next few legs for each

ehicle. A leg may correspond to serving an order, moving empty 

o another location or a charging station, or even idling until the 

ext decision epoch. This type of routing control is often applied to 

oint-to-point transportation problems. In this context, fulfillment 

lanning at each decision epoch only needs to cover a short time 

pan in the case of tight waiting time limits and the absence of 

re-bookings (e.g., Kullman et al., 2021 ). Decisions on relocations 

nd deliberate waiting times of the vehicles, i.e., anticipative rout- 

ng decisions based on expected demand, can be incorporated, e.g., 

y means of predictive modeling (e.g., Holler et al., 2019 ). We refer 

he interested reader to the works of Berbeglia, Cordeau and La- 

orte (2010) , Soeffker et al. (2022) , Ulmer (2017) , and Pillac et al.

2013) for an in-depth consideration of these aspects. 

.2. Static deterministic approximation 

Integrated demand management and vehicle routing problems 

an also be cast as static deterministic problems assuming given 

eterministic customer requests and customer preferences. Only a 

ubset of requests must be accepted as orders. If multiple fulfill- 

ent options are defined, it may also be part of the optimiza- 

ion which option should be sold to each customer. Hence, for a 

eet of several vehicles, profitable capacitated tour problems or 

eam orienteering problems result ( Vansteenwegen & Gunawan, 

019 ). Therefore, they can be formulated as mixed-integer pro- 

rams (MIPs). As is the case for dynamic control models, their 

tructure depends on the problem setting. Depending on their use, 

e distinguish two types of static deterministic approximations for 

he dynamic control model: 

Offline static control : Here, we assume perfect information on 

ncoming customer requests and customer preferences. This as- 

umption reflects an ex-post perspective at the end of the book- 

ng horizon. Solution approaches based on offline static control 

uxiliary models yield static controls, which determine definitive 

emand management decisions before the start of the booking 

orizon (e.g., Agatz, Campbell, Fleischmann & Savelsbergh, 2011 , 

lein et al., 2019 , and Mackert, Steinhardt & Klein, 2019 ). An- 

ther motivation for explicitly considering such models results 

rom the fact that their solutions serve as a bound for any policy’s 

erformance for the corresponding dynamic problem (e.g., Hosni, 

aoum-Sawaya & Artail, 2014 ). 

Online static control : The underlying idea of this approach is 

o derive both demand management and vehicle routing decisions 
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rom a static snapshot of the original dynamic control problem 

t a specific decision epoch. Consequently, perfect information is 

nly available about existing orders and newly arrived requests. 

nline static control is applicable for both real-time request pro- 

essing and batched request processing (e.g., Erdmann, Dandl & 

ogenberger, 2021 ). Expected future orders can, e.g., be integrated 

y simulating customer arrivals or using aggregated expectations, 

hich results in anticipative auxiliary models. Note that in addi- 

ion, constraints must ensure all previously made decisions. Exem- 

lary formulations of auxiliary models can be found in Klapp et al. 

2020) , Voccia et al. (2019) , and Wang et al. (2021) . 

.3. Tabular overview 

This section provides an overview of the literature on model- 

ng and dynamically solving integrated demand management and 

ehicle routing problems that we consider to be in scope for this 

urvey. To this end, we use the morphological analysis of the prob- 

em characteristics from Section 2.1 to classify the individual pub- 

ications (see Table 1 for the possible realizations of all dimen- 

ions). Table 4 comprehensively merges the results of this analysis 

Columns 3–10) with the application (Column 2), the selected cus- 

omer choice model (Column 11), and the basic solution concept 

f the respective work (Columns 12 and 13). Please note that in 

ddition to the applications considered in Section 2.2 , we use the 

ntry “GEN” for publications that consider a generic problem set- 

ing and do not specify an application. Also, Column 10 sketches 

he constraint structure of the respective problem in more detail 

han given in Table 1 . The following entries are possible: single ve- 

icle fleet (SV), heterogeneous fleet (HF), multiple trips per vehi- 

le (MT), maximum route duration (RD), order pickup range (PR), 

hysical vehicle capacity (PC), time windows (TW), delivery dead- 

ines (DD), maximum waiting time (WT), maximum ride time (RT), 

nd battery charging level (CL). Since we focus on dynamic de- 

ision making, all publications listed in Table 4 propose dynamic 

ontrols, and we omit the dimension “time of decision”. Column 

1 specifies whether the authors apply a multinomial logit model 

ML), a generalized attraction model (GA), a finite mixture MNL 

odel (FM), a nested logit model (NL), or a pricing-specific para- 

etric model (PM). To characterize the solution concept, Column 

2 states whether the authors apply a decomposition-based ap- 

roximation ( 
√ 

) or a static deterministic one (X). Additionally, Col- 

mn 13 indicates whether the approach is anticipative ( 
√ 

) or my- 

pic (X). For the works applying decomposition-based approxima- 

ion, we summarize the task-specific solution approach that the 

uthors selected in Table 5 . We use the classification scheme given 

n Table 3 . In case predictive cost estimation is applied, we ad- 

itionally state whether it provides a state value estimate (SV), a 

irect cost estimate (DC), or a state-action value estimate (AV). 

. Solution algorithms 

In this section, we provide a more detailed analysis of the spe- 

ific algorithms used as part of the solution concepts from Section 

 . Hence, this section is intended particularly for readers who 

ould like to dive deeper into the literature. We discuss algorithms 

or both classes of solution concepts in Sections 5.1 and 5.2, re- 

pectively. 

.1. Algorithms for decomposition-based approximation 

In the following, we discuss algorithms for the tasks individ- 

ally in Sections 5.1.1–5.1.4. We structure our discussion along the 

ypes of solution approaches characterized in Section 4.1. An essen- 

ial observation is that authors rarely fully decompose the problem, 

.e., they often propose a particular algorithm to tackle more than 
509 
ne task. Therefore, at the end of each section, we highlight the 

lgorithms suitable for solving a combination of the current and 

receding tasks. 

.1.1. Feasibility check 

The complexity of this task ranges from almost trivial (e.g., if 

he fleet consists of vehicles with a physical capacity of one) to NP- 

ard for time-window-constrained problems ( Savelsbergh, 1985 ). 

onsequently, exact as well as heuristic algorithms are applied. 

euristic algorithms are usually considerably faster compared to 

xact ones. Thus, as feasibility checks are required simultaneously 

or all potential options in real-time, the former prevail in the lit- 

rature. However, they may return false-positive or false-negative 

esults, i.e., incorrectly categorize an option as feasible or infeasi- 

le, respectively. The consequence of a false-positive statement and 

 resulting order of the corresponding option is that the provider 

annot serve the respective customer or other customers due to 

nsufficient capacity. This could cause a loss of customer goodwill 

e.g., Wang, Wu, Lin & Wang, 2011 ) or require expensive short-term 

apacity enhancement measures (e.g., Vinsensius et al., 2020 ). By 

ay of contrast, false-negative statements might lead to lost sales 

f a feasible and profitable option is not offered. 

Algorithms for route-based checks : Most publications apply 

oute-based feasibility checks, drawing on the extensive set of ex- 

sting methods for solving classical static vehicle routing problems: 

• Heuristics : In heuristic algorithms, at least one route plan 

φ ∈ �k serving all orders accepted so far is maintained or 

generated online at each decision epoch. If the heuristic 

finds that augmenting φ to a plan φ′ for an option o is feasi- 

ble, the check returns a positive result. Most approaches use 

an insertion heuristic to this end ( Solomon, 1987 ). Insertion 

heuristics offer high flexibility regarding the extensiveness of 

the search for a feasible position and are adaptable to many 

generalizations of the vehicle routing problem ( Campbell & 

Savelsbergh, 2004 ). For that reason, they are applied to al- 

most any problem setting. The following works present in- 

teresting contributions regarding this method: Campbell and 

Savelsbergh (2005) generate a pool of tentative route plans 

using a randomized insertion procedure and evaluate all po- 

tential insertion positions for a particular fulfillment option. 

Yang et al. (2016) additionally maintain a tentative route 

plan from the previous decision epoch. Azi, Gendreau and 

Potvin (2012) allow splitting routes if there is no feasible in- 

sertion position in the original routes of a single route plan, 

given some maximum route length constraint. Prokhorchuk 

et al. (2019) check for infeasible and undoubtedly unprof- 

itable options to reduce the computational effort for the 

downstream tasks. 
• Exact algorithms : As opposed to heuristics, exact algo- 

rithms thoroughly search a static routing problem’s solution 

space. Thus, they do not return false results but at the cost 

of higher time consumption. In the surveyed literature, au- 

thors only consider total enumeration and apply it to less 

complex problems. For example, they examine problem set- 

tings that only involve vehicles with a physical capacity of 

one (e.g., Chen et al., 2019 ). Qiu et al. (2018) show that total

enumeration is also applicable for vehicle capacities in the 

lower one-digit range. 

Algorithms for capacity-based checks : Since capacity-based 

easibility checks approximate route-based auxiliary models, they 

re heuristic by design. The corresponding algorithms differ in how 

apacity limits are determined offline. Lebedev et al. (2020) , Yang 

nd Strauss (2017) , and Strauss et al. (2021) draw on routing ap- 

roximation techniques by Daganzo (1987) . Lang et al. (2021a) ap- 
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Table 4 

General overview. 

Authors Application Service 

type 

Objective Control 

type 

Processing Fulfillment 

options 

Booking/service 

horizon 

Routing 

problem 

Constraints Choice 

model 

Decomposition Anticipation 

Al-Kanj et al. (2020) MOD TR PR PB BA SI OL PP PC, CL, PR ML 
√ √ 

Alonso-Mora et al. (2017) MOD TR NO AV BA SI OL PP PC, WT, RT – X 
√ 

Angelelli et al. (2021) GEN TR PR AV RT SI DJ PU SV –
√ √ 

Archetti et al. (2021) GEN TR PR AV RT SI OL DE PC, HF, TW, MT –
√ 

X 

Atasoy et al. (2015) MOD TR PR AV RT MU OL PP PC, HF, WT, RT ML 
√ 

X 

Avraham and Raviv (2021) FSO CS NO AV RT MU IF DE TW ML 
√ √ 

Azi et al. (2012) SDD TR PR AV RT SI OL DE TW, MT, RD –
√ √ 

Bertsimas et al. (2019) MOD TR PR AV BA SI OL PP PC, TW – X X 

Campbell and Savelsbergh (2005) AHD CG PR AV RT MU DJ DE PC, TW –
√ √ 

Campbell and Savelsbergh (2006) AHD CG PR PB RT MU DJ DE PC, TW PM 

√ 

X 

Chen et al. (2019) MOD TR RE PB RT SI OL PP PC, PR PM 

√ √ 

Chen et al. (2020) SDD TR NO AV RT SI OL DE DD, MT –
√ √ 

Chen et al. (2022) SDD TR NO AV RT SI OL DE PC, HF, DD, MT –
√ √ 

Côté et al. (2021) SDD TR PR AV BA SI OL DE TW, MT – X 
√ 

Dayarian et al. (2020) SDD TR NO AV BA SI OL DE SV, PC, HF, DD – X X 

Dumouchelle et al. (2021) GEN TR PR AV RT SI DJ PU PC –
√ √ 

Erdmann et al. (2021) MOD TR PR AV RT, BA SI OL PP PC, TW, WT – X X 

Fielbaum et al. (2021) MOD TR PR AV BA SI OL PP PC, WT, RT – X 
√ 

Giallombardo et al. (2020) GEN TR PR AV RT SI DJ PU PC –
√ √ 

Haferkamp and Ehmke (2022) MOD TR NO AV RT SI OL PP WT, RT – X 
√ 

Haliem et al. (2021) MOD TR PR PB BA SI OL PP PC PM 

√ √ 

Holler et al. (2019) MOD TR RE AV BA SI OL PP PC, PR, WT –
√ √ 

Hosni et al. (2014) MOD TR PR AV RT SI OL PP PC, HF, WT, RT –
√ 

X 

Jahanshahi et al. (2022) SDD TR NO AV RT SI OL PP PC, DD –
√ √ 

Klapp et al. (2018) SDD TR PR AV BA SI OL DE SV, MT, RD – X 
√ 

Klapp et al. (2020) SDD TR PR AV RT SI OL DE SV, MT, RD – X 
√ 

Klein et al. (2018) AHD CG PR PB RT MU DJ DE PC, TW ML 
√ √ 

Klein and Steinhardt (2021) SDD CG PR PB RT MU OL DE DD, MT PM 

√ √ 

Koch and Klein (2020)) AHD CG PR PB RT MU DJ DE TW FL 
√ √ 

Köhler et al. (2019) AHD CG NO PB RT MU DJ DE TW NL 
√ 

X 

Köhler et al. (2020) AHD CG NO AV RT MU DJ DE TW –
√ 

X 

Kullman et al. (2021) MOD TR PR AV RT SI OL PP PC, WT, CL –
√ √ 

La Rocca and Cordeau (2019) MOD TR RE AV BA SI IF PP PC, WT, CL – X X 

Lang et al. (2021a) AHD CG RE AV RT MU DJ DE TW FL 
√ √ 

Lang et al. (2021b) AHD CG RE AV RT MU DJ DE TW FL 
√ √ 

Lebedev et al. (2020) AHD CG PR PB RT MU DJ DE TW ML 
√ √ 

Lebedev et al. (2022) AHD CG PR PB RT MU DJ DE TW ML 
√ √ 

Lotfi and Abdelghany (2022) MOD TR PR AV BA MU OL PP PC, TW –
√ 

X 

Mackert (2019) AHD CG PR AV RT MU DJ DE PC, TW GA 
√ √ 

Ni et al. (2021) MOD TR PR PB BA MU OL PP CL PM 

√ √ 

Prokhorchuk et al. (2019) SDD TR RE PB RT MU OL DE DD, MT ML 
√ √ 

Qiu et al. (2018) MOD TR PR PB RT MU OL PP PC, HF, RT, PR ML 
√ √ 

Strauss et al. (2021) AHD CG PR PB RT MU DJ DE PC, TW NL 
√ √ 

Ulmer (2020a) SDD CG RE PB RT MU OL DE DD, MT PM 

√ √ 

Ulmer (2020b) FSO CS NO AV BA SI OL, IF DE SV –
√ √ 

Ulmer et al. (2018) GEN TR NO AV BA SI OL PU SV –
√ √ 

Ulmer et al. (2019) GEN TR NO AV BA SI OL PU SV –
√ √ 

Ulmer and Thomas (2020) GEN TR RE AV RT SI DJ DE SV, PC –
√ √ 

Vinsensius et al. (2020) AHD CG PR PB RT MU DJ DE PC, HF, RD, MT, TW PM 

√ √ 

Voccia et al. (2019) SDD TR NO AV BA SI OL DE TW, MT – X 
√ 

Wang et al. (2021) MOD TR PR PB BA MU OL PP PC, TW NL X X 

Xu et al. (2018) MOD TR RE AV BA SI OL PP PC –
√ √ 

Yang and Strauss (2017) AHD CG PR PB RT MU DJ DE PC, TW ML 
√ √ 

Yang et al. (2016) AHD CG PR PB RT MU DJ DE PC, TW ML 
√ √ 

Zhang et al. (2022) GEN TR NO AV RT SI OL DE MT –
√ √ 

5
1

0
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Table 5 

Overview of decomposition-based approaches. 

Authors Feasibility check Cost estimation Demand control Routing control 

Al-Kanj et al. (2020) RO PR, SV DP LO 

Angelelli et al. (2021) RO SA AR FP 

Archetti et al. (2021) RO MY AR SR 

Atasoy et al. (2015) RO MY AO SR 

Avraham and Raviv (2021) RO PR, DC AO FP 

Azi et al. (2012) RO SA AR SR 

Campbell and Savelsbergh (2005) RO SA AR FP 

Campbell and Savelsbergh (2006) RO MY DP FP 

Chen et al. (2019) RO PR, SV DP LO 

Chen et al. (2020) RO PR, AV AR SR 

Chen et al. (2022) RO PR, AV AR SR 

Dumouchelle et al. (2021) CA PR, AV AR FP 

Giallombardo et al. (2020) CA DL AR FP 

Haliem et al. (2021) RO MY CP LO 

Holler et al. (2019) RO PR, AV AR LO 

Hosni et al. (2014) RO MY AR LO 

Jahanshahi et al. (2022) RO PR, AV AR LO 

Klein et al. (2018) RO DL CP FP 

Klein and Steinhardt (2021) RO SA DP SR 

Koch and Klein (2020) RO PR, SV DP FP 

Köhler et al. (2019) RO MY DP FP 

Köhler et al. (2020) RO MY AO FP 

Kullman et al. (2021) RO PR, AV AR LO 

Lang et al. (2021a) CA PR, SV AO FP 

Lang et al. (2021b) CA PR, SV AO FP 

Lebedev et al. (2020) CA PR, SV CP FP 

Lebedev et al. (2022) CA PR, SV CP FP 

Lotfi and Abdelghany (2022) RO MY AR SR 

Mackert (2019) RO DL AO FP 

Ni et al. (2021) RO PR, SV CP LO 

Prokhorchuk et al. (2019) RO PR, SV CP SR 

Qiu et al. (2018) RO PR, DC CP LO 

Strauss et al. (2021) CA DL DP FP 

Ulmer (2020a) RO PR, SV CP SR 

Ulmer (2020b) RO SA, PR, SV AR LO 

Ulmer et al. (2018) RO PR, SV AR LO 

Ulmer et al. (2019) RO SA, PR, SV AR LO 

Ulmer and Thomas (2020) RO PR, SV AR FP 

Vinsensius et al. (2020) CA PR, SV DP FP 

Xu et al. (2018) RO PR, SV AR LO 

Yang and Strauss (2017) CA PR, SV CP FP 

Yang et al. (2016) RO SA CP FP 

Zhang et al. (2022) RO DL AR SR 
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ly the iterated local search algorithm by Souffriau, Vansteenwe- 

en, Vanden Berghe and Van Oudheusden (2013) to solve sampled 

nstances of the offline static control problem (Section 4.2). Lang 

t al. (2021b) also solve an offline problem with forecasted orders 

ut assume that the provider must serve all orders. 

.1.2. Cost estimation 

As outlined in Section 4.1.3, any cost estimation is approximate 

ue the task’s high complexity. This section discusses the algo- 

ithms presented in the literature, which again may yield cost es- 

imates of varying quality. 

Algorithms for myopic estimation : Applying myopic estima- 

ion yields an estimate of tentative marginal cost-to-serve , i.e., the 

ncrease in total delivery cost caused by additionally serving a po- 

ential order o. The term tentative expresses that they only refer to 

he orders accepted so far. For this estimate to be exact, routing 

osts of the optimal route plans φ
′ ∗ and φ∗ with and without the 

otential order need to be determined, which is often very time- 

onsuming. Therefore, only Hosni et al. (2014) apply a standard 

ixed-integer programming solver (MIP solver) to search for the 

inimum-cost update, however, separately for each vehicle and 

hus heuristically. The other algorithms rely on insertion heuristics. 

Campbell and Savelsbergh (2006) approximate the tentative 

arginal cost-to-serve by the insertion cost of a potential order 
511 
oncerning a pool of tentative route plans. Atasoy et al. (2015) de- 

elop a similar procedure that differentiates between different ve- 

icle types but is based only on a single current route plan. Köhler 

t al. (2019) and Köhler, Ehmke and Campbell (2020) observe that 

he insertion cost decreases depending on the routing flexibility for 

 given set of orders. Hence, they use measures for the routing 

exibility as a cost estimate. 

It is important to note that even exact tentative marginal cost- 

o-serve are an approximation of the true marginal cost-to-serve. 

he latter can be computed at the end of the booking horizon, 

eing the cost difference between optimal route plans with and 

ithout the potential order. In the following, we denote this true 

indsight cost as ex-post marginal cost-to-serve . This distinction is 

equired because a tentative route plan can structurally differ from 

he final route plan to a large extent ( Yang et al., 2016 ). 

Hence, we have a chain of three potential sources of inaccu- 

acy for myopic estimation: First, heuristic algorithms only approx- 

mate the exact tentative marginal cost-to-serve. Second, even the 

xact tentative marginal cost-to-serve only approximate the ex- 

ost marginal cost-to-serve. Third, as explained in Section 4.1.1, 

he ex-post marginal cost-to-serve is just one cost component and 

ust be complemented by the exact displacement cost to ob- 

ain a perfectly accurate cost estimate. Within the class of my- 

pic approaches, an algorithmic improvement can just tackle the 
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Monte Carlo tree search with the SARSA algorithm. 
rst source of inaccuracy as the other two are of a structural 

ature. 

It is only through anticipation that a refinement of the marginal 

ost-to-serve estimate beyond the exact tentative value and toward 

he ex-post value and the estimation of displacement cost becomes 

ossible. However, not all approaches take advantage of both op- 

ortunities, as explained in the following. 

Algorithms for sampling-based estimation : Solution algo- 

ithms for sampling-based cost estimation are related to those for 

yopic estimation in that they are also essentially routing heuris- 

ics. However, the inclusion of sampled orders necessitates adap- 

ions. 

Azi et al. (2012) calculate the average insertion cost of a po- 

ential order into a pool of route plans, each initialized with sam- 

led orders. They permanently insert new orders into the sampled 

oute plans and reoptimize them using an adaptive large neighbor- 

ood search heuristic. Yang et al. (2016) compute a weighted com- 

ination of the average insertion cost regarding two pools of route 

lans: One contains route plans of all received orders. The other 

onsists of historic final route plans and, hence, entirely contains 

ampled orders. The tentative insertion cost is expected to gain ac- 

uracy throughout the booking horizon, so its weight is gradually 

ncreased. Displacement of sampled customers is not possible in 

ither approach. 

In contrast, the following three algorithms also estimate dis- 

lacement cost. Campbell and Savelsbergh (2005) construct a sin- 

le route plan from scratch using a profit-based insertion heuris- 

ic for each potential order. In the first phase, they insert all ex- 

sting orders. In the second one, they include the potential order 

ogether with a set of sampled ones. Thereby, they adjust the sam- 

led orders’ revenues by the probabilities of their arrival. The re- 

ulting objective function values of the solution with and with- 

ut the potential order are used to determine a cost estimate, 

ncluding displacement cost. Angelelli, Archetti, Filippi and Vin- 

igni (2021) follow the same ideas but draw on a different rout- 

ng heuristic ( Chao, Golden & Wasil, 1996 ). Klein and Steinhardt 

2021) propose a method to refine cost estimates derived from 

cenario-sampling through the explicit integration of future de- 

and control decisions and the resulting customer choice behavior. 

lmer (2020b) presents a rollout algorithm. It uses a pre-trained 

tate value approximation and an insertion heuristic to simulate 

emand control and routing control, respectively. 

Algorithms for deterministic linear programming : Determin- 

stic linear programming models are usually solved through MIP 

olvers. To achieve tractable formulations, authors propose sev- 

ral techniques. Such formulations require an approximation of fi- 

al routing cost based on known and expected orders. Since ex- 

ected orders depend on future demand management decisions 

nd, potentially, on customer choice behavior, they must also in- 

lude these aspects. 

Klein et al. (2018) solve a model leaning on the choice-based 

eterministic linear program (e.g., Liu & van Ryzin, 2008 ). For 

stimating routing cost, they combine insertion-based tentative 

oute planning with a seed-based routing approximation devel- 

ped by Fisher and Jaikumar (1981) . To account for expected de- 

and management and the resulting purchase decisions, they de- 

ne a set of potential price lists and pre-compute choice proba- 

ilities. Mackert (2019) uses the same routing approach to adapt 

he sales-based deterministic linear program by Gallego, Ratliff

nd Shebalov (2015) , which endogenizes a choice model in the 

orm of linearized constraints. The same is true for the formula- 

ion used by Strauss et al. (2021) . However, they apply the ap- 

roximation developed by Daganzo (1987) to estimate the final 

outing cost. Zhang, Luo, Florio and Van Woensel (2022) solve 

 multiple-knapsack problem approximating both future demand 

anagement and routing decisions. Giallombardo et al. (2020) ge- 
512
graphically aggregate requests to allow for explicit route planning. 

f the request arrival rate is prohibitively high for real-time deci- 

ions, Klein et al. (2018) and Giallombardo et al. (2020) propose 

olving their auxiliary model at larger time intervals and re-using 

urrent cost estimates until an update is available. 

Algorithms for predictive estimation : For predictive ap- 

roaches, algorithms solve the estimation problem of the statisti- 

al model, i.e., they train the model based on historical or simu- 

ated booking data (e.g., Powell, 2019 ). This training involves sev- 

ral steps, such as feature value calculation, model updates, and 

xploration. For each of these steps, a wide range of methods from 

he field of statistical learning can be applied in various combina- 

ions to the control problem considered in this survey. Therefore, 

e refrain from discussing the individual methods and their com- 

osition in detail and only give an overview of the most important 

ontributions. 

• State value approximations : Lang et al. (2021b) apply a back- 

ward dynamic programming algorithm to compute a lookup ta- 

ble. Ulmer et al. (2018) and Al-Kanj et al. (2020) propose dy- 

namically refining the partitioning of lookup tables during the 

offline learning process. Ulmer et al. (2019) amend this ap- 

proach by an online rollout component. The parametric models 

by Prokhorchuk et al. (2019) and Koch and Klein (2020)) en- 

tail features derived from route plans. Like sampling-based ap- 

proaches, the latter include sampled orders into the route plan, 

which they gradually remove during the booking horizon. Both 

works use linear regression for policy updates. Koch and Klein 

(2020) find that side constraints incorporating the value func- 

tion’s structural properties improve the learning performance. 

The algorithms of Yang and Strauss (2017) and Vinsensius et al. 

(2020) do not require any tentative route planning. Both up- 

date the parameters using a stochastic gradient step immedi- 

ately after each value observation but differ in the way of cal- 

culating the final delivery cost: Yang and Strauss (2017) use 

a routing approximation by Daganzo (1987) , Vinsensius et al. 

(2020) construct each final route plan with a minimum-regret 

insertion heuristic ( Pisinger & Ropke, 2007 ). For non-linear sta- 

tistical models, Lebedev et al. (2020) and Lebedev, Margel- 

los and Goulart (2022) show that policy updates are not pro- 

hibitively complex. The same is true for non-parametric statis- 

tical models, i.e., neural networks, for which special policy up- 

date methods exist depending on the model specification ( Chen 

et al., 2019 and Lang et al., 2021a ). 
• Direct cost approximations : To directly learn a non-linear cost 

function, Avraham and Raviv (2021) conduct an iterative local 

search within a gradient descend framework and use simula- 

tion to evaluate a parameter set’s quality. Qiu et al. (2018) em- 

ploy a covariance matrix adaption evolution strategy, i.e., a nu- 

merical optimization method, to learn the parameters of a lin- 

ear function. 
• State-action value approximations : Instead of a value function 

or a cost function, Q-learning is based on learning a state-action 

value function. Combining Q-learning with a deep neural net- 

work representation of the state-action value function is called 

Deep Q-learning. It is, e.g., applied in the following two works: 

Chen et al. (2020) train the network such that it learns a pol- 

icy which balances acceptance rates over sub-areas. Kullman 

et al. (2021) estimate a separate Q-value for each vehicle and 

mimic centralized control during training by a reward-sharing 

mechanism. Holler et al. (2019) propose a proximal policy op- 

timization method that also relies on a neural network repre- 

sentation of the policy. Jahanshahi et al. (2022) train a Dou- 

ble Deep Q-Network with prioritized experience replay. Finally, 

Dumouchelle et al. (2021) train a neural network combining 
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Combination with other tasks : All algorithms for myopic cost es- 

imation simultaneously provide a cost estimate and a statement 

n the feasibility for each potential order. 

Yang et al. (2016) and Klein and Steinhardt (2021) simultane- 

usly check feasibility when applying their routing heuristics to 

etermine sampling-based cost estimates. Since some predictive 

ost estimation algorithms require tentative route planning to cal- 

ulate feature values, such as the free time budget, combining 

hem with a route-based feasibility check (e.g., Ulmer et al., 2018 ) 

s natural. 

Integrated capacity-based feasibility checks are, on the one 

and, possible via the routing approximations used as part of 

he deterministic linear programming approach by Strauss et al. 

2021) as well as the predictive approaches by Lebedev et al. 

2020) , Yang and Strauss (2017) , and Lang et al. (2021a) . On the

ther hand, the cost estimate can incorporate the likelihood that 

 potential order leads to an infeasible route plan. If the likeli- 

ood is high, the aim is to set the value of the cost estimate suffi-

iently high to prevent offering the respective fulfillment option. 

insensius et al. (2020) and Dumouchelle et al. (2021) propose 

uch algorithms. 

.1.3. Demand control 

In this section, we examine algorithms for the demand control 

ask. The complexity of this task depends on both the type of solu- 

ion approach, according to which we structure the following dis- 

ussion, and the choice model providing purchase probabilities. 

Algorithms for accept/reject control : Accept/reject decisions 

ased on both booking limits and bid prices require minimal 

omputational effort. For booking limits, it is sufficient to check 

hether a potential order causes the respective limit to be ex- 

eeded ( Giallombardo et al., 2020 ). Controlling demand based on 

id prices requires checking whether a potential order’s profit is 

arger than or at least equal to the cost estimate. If not, the request

s rejected ( Hosni et al., 2014 ). However, some algorithms allow 

uch requests to be reconsidered in subsequent decision epochs 

ntil they expire ( Holler et al., 2019 ). Maximizing state-action val- 

es ( Kullman et al., 2021 ) or solving a matching problem via the

uhn-Munkres algorithm ( Xu et al., 2018 ) are also suitable for ac- 

ept/reject control. 

Algorithms for assortment optimization : Under the assump- 

ion of an MNL choice model, an optimal offer set exists among 

he nested-by-revenue ones ( Talluri & van Ryzin, 2004b ). Lang et 

l. (2021a) and Lang et al. (2021b) take advantage of this property, 

hich does no longer hold in case of side constraints. The appli- 

ation considered by Atasoy et al. (2015) requires such constraints 

o guarantee that at most one option of different classes of fulfill- 

ent options is offered. However, the total unimodularity of this 

onstraint allows formulating the problem as a linear program (see 

avis, Gallego & Topaloglu, 2013 and Bechler, Steinhardt & Mack- 

rt, 2021 for an overview of such linearization techniques). Sim- 

larly, Mackert (2019) uses a linearized formulation of the assort- 

ent optimization problem arising under the assumption of a gen- 

ralized attraction choice model. For problem settings where | �k | 
s low, Avraham and Raviv (2021) find that total enumeration is an 

fficient method to solve assortment optimization problems given 

hat all options with r oi < � ˜ V ( S k +1 | o) can be excluded. 

Algorithms for pricing : Discrete pricing problems can be mod- 

led as assortment optimization problems, such that algorithms 

escribed in the previous paragraph are applicable. Like Atasoy et 

l. (2015) , Strauss et al. (2021) solve an MNL-based pricing problem 

ith unimodular constraints using a MIP solver. The constraints 

uarantee that less convenient options are priced lower than more 

onvenient ones. Koch and Klein (2020) tackle the discrete pricing 

roblem under a finite-mixture MNL model through a greedy con- 

truction heuristic. 
513 
Yang et al. (2016) are the first to describe the continuous pric- 

ng problem resulting from applying the MNL model in the context 

f demand management for a vehicle routing application. Drawing 

n Dong, Kouvelis and Tian (2009) , they show that the problem is 

on-linear but concave, so they can apply any numerical optimiza- 

ion method. 

While all pricing policies discussed so far involve discrete 

hoice models, the literature describes some other variants. 

ampbell and Savelsbergh (2006) propose a two-step algorithm. 

irst, they perform a rule-based selection of feasible options to be 

ffered at a discount. By solving the piecewise linear approxima- 

ion of a quadratic program, they determine the value of all dis- 

ounts. Vinsensius et al. (2020) apply a similar algorithm and solve 

he resulting quadratic program directly in closed form. Ulmer 

2020a) proposes a rule-based policy that makes offers at a static 

ase price or a price equal to the cost estimate if the latter exceeds 

he base price. Haliem et al. (2021) use a similar method. Köhler 

t al. (2019) present another rule-based algorithm analogous to the 

ssortment optimization method by Köhler et al. (2020) . Al-Kanj et 

l. (2020) and Chen et al. (2019) show that machine learning meth- 

ds are also suitable for solving pricing problems heuristically. 

Combination with other tasks : As booking limits generally re- 

ect the available logistical capacity, their use for the demand con- 

rol task involves a capacity-based feasibility check. Concerning the 

ther demand control approaches, existing works exclusively tackle 

emand control separate from other tasks. 

.1.4. Routing control 

Algorithms for determining vehicle routing decisions for con- 

rol problems with integrated demand management have much 

n common with pure vehicle routing algorithms ( Soeffker et al., 

022 ). Due to the constraint structure depending on operational 

estrictions, they are also highly specific to the problem setting of 

ndividual applications. As we generally focus on demand manage- 

ent, we only provide a high-level overview. 

Algorithms for full route plan approaches : In problem set- 

ings with disjoint booking and service horizons, a static vehicle 

outing problem arises after the cutoff time. Thus, any route plan- 

ing heuristic suitable for the respective model can be applied. 

Algorithms for single route approaches : In the case of over- 

apping horizons, routing control may rely on fixing complete 

outes. Here, it is possible to extend the feasibility check to not 

nly search for a feasible update for tentative route planning but a 

ost-minimal one. Azi et al. (2012) were the first to propose such 

n algorithm. They insert every new order into a valid route plan 

ontaining all received orders and reoptimize it by adaptive large 

eighborhood search upon each insertion. Archetti, Guerriero and 

acrina (2021) periodically perform a local search, Lotfi and Ab- 

elghany (2022) apply a greedy heuristic. Atasoy et al. (2015) con- 

ider a problem setting where each vehicle can be used for differ- 

nt transportation modes. Thus, they divide each route into blocks 

ithin which the mode remains the same. If possible, they insert 

ew orders into an existing block. Otherwise, they create a new 

lock solving a shortest path problem. 

Algorithms for leg-oriented approaches : Alternatively, the 

rovider can decide on the next legs of vehicles. The methods 

y Ulmer et al. (2018) and Ulmer et al. (2019) require a decision 

hether to wait at the current location or to proceed toward the 

ext location according to the updated route plan at each decision 

poch. For applications with point-to-point transportation, stand- 

lone algorithms can determine empty relocations as shown by 

hen et al. (2019) , who use a random walk process. In contrast, Ni

t al. (2021) apply a MIP solver to determine all routing decisions 

ncluding relocations. 

Combination with other tasks : For the routing control task, there 

re many combination opportunities with preceding tasks. Many 
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lgorithms for feasibility check and cost estimation already yield 

oute plans as a “side-product.” Hence, these plans can be used 

irectly (e.g., Klein & Steinhardt, 2021 ) or optimized further by 

he heuristics described above. Xu et al. (2018) and Qiu et al. 

2018) show that algorithms for demand control can also yield 

outing decisions. Decisions on relocations can also be made in 

onjunction with demand control. State(-action) value-based ac- 

ept/reject methods offer one way to integrate these tasks ( Al- 

anj et al., 2020 ; Holler et al., 2019 ; Jahanshahi et al., 2022 , and

ullman et al., 2021 ). Haliem et al. (2021) estimate dedicated state- 

ction values for relocations, which also serve as an input for pric- 

ng decisions. 

.2. Algorithms for static deterministic approximation 

In contrast to solution concepts based on decomposition, which 

re often inspired by traditional demand management applications, 

his class of concepts rather originate from pure dynamic vehicle 

outing ( Berbeglia et al., 2010 ) and, hence, are only suitable in case

f overlapping horizons. In each decision epoch, solving an auxil- 

ary online static control model (Section 4.2) simultaneously pro- 

ides a demand control and routing control decision. This results in 

nother important characteristic compared to decomposition-based 

pproximations: the lack of an explicit cost estimate. However, the 

otion of myopic and anticipative decision making is transferable 

ince online static control models may also include information on 

uture demand. In the literature, static deterministic approxima- 

ion is only applied, with one exception, for accept/reject control. 

herefore, the complexity of the periodic optimization problem is 

ainly determined by the vehicle routing component and the use 

f anticipation. Consequently, we consider algorithms for myopic 

nd anticipative approaches separately in Sections 5.2.1 and 5.2.2. 

.2.1. Algorithms for myopic approaches 

La Rocca and Cordeau (2019) present the only exact solution 

lgorithm within the class of myopic approaches. They apply a MIP 

olver to a linear assignment problem with dummy vehicles, which 

eads to a set of new orders with vehicle assignments. The route 

lan is then complemented with charging and relocation decisions 

or unassigned vehicles by separate rule-based policies dependent 

n the current system state. 

Other authors rely on heuristics: Erdmann et al. (2021) pro- 

ose a greedy matching heuristic to determine order-vehicle as- 

ignments. Bertsimas, Jaillet and Martin (2019) solve an auxiliary 

etwork flow model using a MIP solver. They use the solution from 

he previous decision epoch as a warm start and a backbone algo- 

ithm for preprocessing to reduce the computational effort. 

The auxiliary bi-level programming model used by Wang et al. 

2021) is very complex as it incorporates choice-based pricing con- 

rol and thus needs to be solved by a specialized heuristic search 

lgorithm. Dayarian, Savelsbergh and Clarke (2020) use a two-stage 

euristic that first creates a potentially infeasible route plan serv- 

ng all received orders and potential orders using a large neighbor- 

ood search with a worst-removal destroy operator. Second, poten- 

ial orders are removed following a greedy scheme until reaching 

easibility. 

.2.2. Algorithms for anticipative approaches 

Some works solving anticipative auxiliary models also consider 

roblems that allow a thorough search of the solution space. For 

ehicle capacities in the lower one-digit range, Alonso-Mora, Wal- 

ar and Rus (2017) show that total enumeration is applicable. They 

onstruct a shareability graph, first proposed by Santi et al. (2014) , 

o identify the set of all feasible routes and solve a matching prob- 

em to determine which of these to assign to vehicles. To allow 
514
or anticipation and relocations, a set of sampled requests with re- 

uced rejection penalty costs is added to the batch of newly ar- 

ived ones. Fielbaum et al. (2021) propose two extensions for this 

lgorithm: First, they modify arc costs according to the expected 

emand at the vehicle’s destination. Second, they refine the sam- 

ling procedure for future orders through an online method for es- 

imating demand distributions for sampling that does not require 

istorical data. Klapp et al. (2018) and Klapp et al. (2020) consider 

ingle-vehicle, multi-trip problems for which the application of a 

IP solver is also practical. Both works develop policies based on 

-priori plans, which are computed by solving the offline static 

ontrol problem based on expected customer arrivals associated 

ith rejection penalties. The a-priori plan is then updated at each 

ecision epoch by solving the online static control problem or a 

implified version of it. Following the authors mentioned above, 

lapp et al. (2020) state that it is beneficial to warm-start the 

olver with data from the previous decision epoch. However, they 

lso present a metaheuristic tailored to the problem’s structure to 

educe computation time further. 

This leads us to more complex static control problems where 

etaheuristics are, in fact, the only practical solution approach. 

aferkamp and Ehmke (2022) apply a large neighborhood search 

ith three classical removal operators and regret-insertion. Voccia 

t al. (2019) generate scenarios by sampling future requests and 

olve a relaxation of the online static control problem for each sce- 

ario instance by a variable neighborhood search. They then ap- 

ly a consensus function ( Bent & van Hentenryck, 2004 ) to the set

f resulting scenario plans. This function identifies which part of 

ach idle vehicle’s route can accommodate new orders in each sce- 

ario plan, selects the best plan, and with it the subset of requests 

o accept. The chosen plan is then repaired for feasibility by re- 

oving potential orders. Also based on scenario-sampling, Côté, de 

ueiroz, Gallesi and Iori (2021) first evaluate whether it is benefi- 

ial to delay the start of all planned routes. If not, they first ensure 

hat each request is either planned to be served by a vehicle de- 

arting in the current decision epoch, a later decision epoch, or is 

ejected consistently in all scenarios before applying the consensus 

unction. For route planning, they use an adaptive large neighbor- 

ood search. 

. Conclusion and research opportunities 

In this survey, we reviewed the methodological advances re- 

arding the integration of demand management and vehicle rout- 

ng. This research area, whose origins can be situated around the 

id-20 0 0s, encompasses a wide range of applications. Therefore, 

e first developed a generalized definition and a high-level math- 

matical model of the underlying sequential decision process, and 

hen used this as a basis for analyzing and classifying the litera- 

ure concerning the decision problems, solution concepts, and al- 

orithms presented. 

Based on this analysis, we can now discuss important insights 

nd challenges from a cross-application perspective. In particu- 

ar, we draw conclusions regarding the current state of research 

nd, simultaneously, point toward future research opportunities. 

e structure the elaboration along the following seven topics: 

Generic model formulations : Establishing some form of a 

ommon modeling language is undoubtedly beneficial to describe 

roblem settings in a standardized and concise manner and to be 

ble to relate these settings to each other on a formal level. To 

his end, it seems most natural to formalize the various settings 

n terms of corresponding Markov decision processes to fully cap- 

ure the dynamic and stochastic nature of the underlying control 

roblems. Since many existing works already include such mod- 

ls, we advocate that these become a standard for future publica- 

ions and introduced a generic, high-level formulation representing 
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 possible starting point for modeling specific control problems in 

ny area of application. One example in this context is the model 

y Yang et al. (2016) for dynamic pricing in AHD, on which sev- 

ral authors have based their models afterward. A particular chal- 

enge arises because vehicle routing dynamics and the reactions of 

ustomers to demand management must be modeled. Klein et al. 

2020) discuss examples of modeling integrations of demand man- 

gement techniques and operational decision making from differ- 

nt fields of applications. An important step to improve the pre- 

entation of relevant control problems toward a more generic de- 

cription is to establish and use common terminology that this re- 

iew aims to contribute to. 

Generic solution frameworks : Just like standardized modeling, 

 uniform description of solution concepts enables methodologi- 

al transfers within and between the application-specific literature 

treams and thus a faster progress of research overall. We aimed 

o contribute toward such a unification by explicitly distinguishing 

ecomposition-based approximations and static deterministic ones 

s well as the associated solution approaches ( Section 4 ). We en- 

ourage authors of future works on decomposition-based approxi- 

ation to be explicit about how they address each task, how they 

rchestrate their complete solution method, and how it could pos- 

ibly be adapted to other problem settings. It is also promising 

o align solution approaches and model formulation more closely. 

ubstantial efforts in this direction already exist in related fields, 

.g., by Ulmer et al. (2020) introducing a route-based Markov deci- 

ion process for dynamic vehicle routing problems. 

Advancement of solution approaches : We also see opportuni- 

ies for future research at the methodological level. For the feasi- 

ility check, machine learning methods suitable for solving binary 

lassification problems could be a valuable extension of the exist- 

ng body of methods for capacity-based checks. Recent work by 

umouchelle et al. (2021) and van der Hagen, Agatz, Spliet, Visser 

nd Kok (2022) shows that this is a promising research avenue. The 

ame observation accounts for constraint programming techniques 

or route-based feasibility checks. Recent advances in approximate 

ynamic programming could improve cost estimates ( Ulmer et al., 

019 ). To derive more accurate features from route plans, the inclu- 

ion of sampled orders could be further investigated ( Koch & Klein, 

020 ). The application of more accurate choice models, whose ma- 

or drawback is that they cause an increase in complexity of the 

emand control task, could be facilitated by developing tailored as- 

ortment planning and pricing heuristics. Sampling methods that 

ely on online demand data could enable anticipation in the ab- 

ence of a reliable source of historical data ( Fielbaum et al., 2021 ). 

Performance assessment : Due to the abovementioned hetero- 

eneity of the problem settings and dependencies on instance 

haracteristics, comparing the performance of complete solution 

pproaches on a general level is difficult. However, there seems to 

e a universally valid insight repeatedly reported in different ar- 

as of application: Anticipative approaches consistently dominate 

yopic ones, particularly in problem instances characterized by a 

edium scarcity of fulfillment capacity (e.g., Azi et al., 2012 and 

occia et al., 2019 ). Especially the anticipation of displacement ef- 

ects is found to have a significant impact by several authors (e.g., 

lein et al., 2018 ) comparing their approaches with the method by 

ang et al. (2016) , which uses anticipation only to refine the esti- 

ate of marginal cost-to-serve. Another interesting finding is that 

nticipation reduces the systematic discrimination against cus- 

omers based on their location (e.g., Prokhorchuk et al., 2019 ), an 

ssue that Soeffker, Ulmer and Mattfeld (2017) raised first. We be- 

ieve that researchers should put more emphasis on identifying 

he components of the overall solution procedure to which a cer- 

ain increase in performance can be attributed. To a certain ex- 

ent, this is examined, e.g., in the study by Haferkamp and Ehmke 

2022) . Regarding the performance, authors should also evaluate 
515 
he robustness of anticipative approaches in case that the param- 

ters used in choice models and demand distributions differ from 

he real-world ( Srour, Agatz & Oppen, 2018 ). To allow a general- 

zed empirical validation of these performance insights, Lang et al. 

2021a) identify the development of a benchmarking tool as an es- 

ential task for future research. First promising steps in this direc- 

ion are being taken ( Bertsimas et al., 2019 and Lang & Cleophas, 

020 ). 

Suitability of demand control policies : Whether providers 

hould prefer availability control or price-based control policies 

annot be answered equally clearly, which is why no approach 

as become dominant in the literature either. Several authors ar- 

ue that persuasive control strategies, i.e., those using incentives, 

re superior to coercive ones restricting service availability be- 

ause they are more likely to be endorsed by customers. Conse- 

uently, availability control and especially policies that might re- 

ect customers without offering alternative fulfillment options are 

een critically (e.g., Asdemir, Jacob & Krishnan, 2009 ). As Lee and 

avelsbergh (2015) point out, the resulting dissatisfaction in MOD 

ettings is amplified by the fact that rejected customers might have 

o switch to an alternative means of transportation at short notice. 

ffering a set of fulfillment options instead of only a single one 

ears the potential to reduce the rate of these provider-side rejec- 

ions substantially. On the other hand, charging dynamic prices for 

 logistical service is an inherent competitive disadvantage ( Lang 

t al., 2021b ). It may even be restricted or forbidden due to regu- 

ation ( Bruck, Cordeau & Iori, 2018 ). Other types of incentives can 

se discounts or vouchers ( Agatz, Fleischmann & Van Nunen, 2008 ) 

r highlight the environmental benefits of specific fulfillment op- 

ions ( Agatz, Fan & Stam, 2021a ) to alleviate these issues. 

Advancement of choice modeling and fulfillment options : In 

oth availability control and price-based control, the path toward 

ore customer-friendly controls leads to the growing importance 

f choice modeling and the design of fulfillment options. As illus- 

rated in Section 3.2, accurately modeling customer choice behav- 

or is widely recognized as a success factor for demand manage- 

ent in general. The results of Mackert et al. (2019) show that this 

s also the case for vehicle routing applications. In future research, 

nstead of passively fitting choice models, choice behavior could 

e actively explored, especially if the available historical data are 

parse or biased due to suboptimal demand management in the 

ast ( Bondoux, Nguyen, Fiig & Acuna-Agost, 2020 ). Furthermore, 

he integration of more advanced choice models like the expono- 

ial ( Alptekino ̆glu & Semple, 2016 ) or the Markov chain model 

 Feldman & Topaloglu, 2017 ) is a promising topic for future re- 

earch. Likewise, the development of suitable types of fulfillment 

ptions should depend on the application examined. Although this 

s a strategic planning task ( Talluri & van Ryzin, 2004a ), it often

as methodological implications. We believe the potential for fu- 

ure research in this regard exists in all application areas. For in- 

tance, Strauss et al. (2021) apply the concept of flexible prod- 

cts in AHD. Atasoy et al. (2015) propose an MOD system that al- 

ows customers to choose the mode of transport. Avraham and Ra- 

iv (2021) suggest offering arriving customers time slots of several 

onsecutive working days simultaneously. 

Transfer into practice : More research also seems necessary, in 

ur view, to address problems that arise when transferring existing 

ethods into practice. These include concurrency issues ( Avraham 

 Raviv, 2021 ) as well as the management of disruptions and 

ailed fulfillments, which can be investigated, for example, by tak- 

ng stochastic travel times into account ( Prokhorchuk et al., 2019 ). 

nother issue lies in the scalability of solution approaches con- 

erning large instances, as they usually occur in practice ( Bertsimas 

t al., 2019 ). 

With the survey at hand, we hope to promote the transfer of 

he large body of existing approaches to novel problem settings or 
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ven new applications. Interestingly, all three themes that Agatz, 

ewitt and Thomas (2021b) identify as characteristics of impact- 

ul research in the field of transportation are present in the sur- 

eyed research area: multi-objective optimization, stochastic opti- 

ization, and the integration of stakeholder behavior. Therefore, 

e believe active demand management to be a key enabler of new, 

ustainable business models for smart mobility and transportation 

pplications. 
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