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Thermodynamic signatures of topological

spin-texture transitions in
magnetic field gradients

Stefan Gorol

Abstract

Topological phases are commonly characterized by a non-trivial Chern number which is related
in many cases to non-trivial topological spin-textures. There are measurable quantities, such as
the transverse Hall conductivity, being proportional to the Chern number. The transverse Hall
conductivity is a transport quantity depending on edge state physics. In contrast to these transport
quantities, thermodynamic response signatures unequivocally indicating topological spin-texture
transitions are investigated in this thesis. These signatures are bulk properties, analyzed in
two dimensional electronic systems where the information about non-trivial topological phase
transitions are manifest in the second order response of the spin polarization to external in-plane
magnetic field gradients. This response is shown to directly provide topological information. In
addition, the change in the spin magnetization due to the magnetic field gradients shows a clear
increase in its amplitude towards the phase boundary with a sign change across the phase transition.
The results demonstrate that the magnetization response can in principle be in measurable ranges
and therefore appropriate to gain qualitative information about changes in topological invariants
across the phase transitions.
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I. Motivation

Topology is a vast branch in mathematics. Probably the most popular example of geometrical
topology is the topological equivalence of the bagel and the coffee cup since the coffee cup can
be continuously deformed into a bagel and vice versa. This example was used as an illustration
of topology in 2016 by Haldane [1] in his physics Nobel price lecture. The concept of topology
allows to define topological invariants which describe the equivalence of spaces in terms of
integers. The reason for the Nobel price in 2016 was the perception of the importance of topology
in physics when in 1982 Thouless and collaborators proved the transverse conductivity of the
quantum Hall effect to be proportional to a topological invariant [2], the Chern number. This
transverse Hall conductivity had been measured by von Klitzing two years before in 1980 [3]
for which he received the Nobel price in 1985 for the discovery of the quantization of the Hall
effect in a two-dimensional electron gas at low temperatures [4]. There, the transverse Hall
conductivity 𝜎xy shows to have pronounced plateaus. The very interesting point in the transverse
Hall conductivity and in topological invariants is the identification of exact integer values obtained
from experiments. The plateaus in the quantum Hall effect are precisely given at 𝜎𝑥𝑦 = 𝑁Ce2/h
[5] where 𝑁C is an integer while e and h denote the elementary charge and the Planck constant,
respectively. The importance of topology reaches far beyond the quantum Hall effect and the
relevance of research in that field is still high. A variety of materials have been identified hosting
non-trivial topological states [6] among which the topological superconductors [7], topological
insulators and Chern insulators [8], and Weyl and Dirac semimetals [9] have to be mentioned.

In any case, in the context of fermionic systems, the topological invariants are defined by the
bulk states. However, there is a correspondence between the occurrence of gapless edge states
and bulk topological states referred to as bulk boundary correspondence [8]. This link between
the bulk topology and the edge states opens up the possibility to analyze topological properties
from edge state measurements. In fact, quantum Hall conductivity rely on the existence of edge
states in topological insulators [10, 11].

The field of potential application and research for topology is wide and includes for example
spintronics, where topological spin textures such as skyrmions are of much interest [12–14]. The
skyrmion is defined in terms of the full cover of a compact manifold under the map defined by
the spin expectation above some compact parameter space (e. g. the real or momentum space).
Although the concept of skyrmion numbers is different to the concept of the Chern number, in a
variety of systems [15, 16], both concepts can be applied yielding the exact same information
about their topologies.

The analysis of topological spin textures raises the question, whether topological phases or
transitions between them can be identified in the magnetization, a thermodynamic quantity. This
question has been taken up within the framework of this thesis. Thermodynamics have been
discussed in the context of topological phase transitions in the literature. However, signatures not
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restricted to non-trivial spin-texture transitions have not been identified yet. One example of a
thermodynamic signature which has been addressed to topological phase transitions is the Lifshitz
transition [17, 18] which is solely driven by structural Fermi surface transitions, a prerequisite of
topological phase transitions, and thus not sufficient to identify topological phase transitions.

This leads to the question if it is even possible to identify bulk thermodynamic signatures
confined to non-trivial topological phase transitions. Such an identification is very important
because the transport quantities such as the transverse conductivity — which can be directly
related to non-trivial topological phases — are caused by edge state physics. However, topology
is defined within the bulk. Moreover, the occurrence of edge states are also not restricted to
topologically non-trivial bulk states. This issue is also addressed within the analysis of this thesis.

The spin-polarization response to an in-plane electric field can produce a collective spin
magnetization [19] in the out-of-plane direction. Instead of in-plane electric fields (corresponding
to in-plane gradients of the electric potential), in-plane gradients of the magnetic field are used
within the context of this thesis in order to obtain bulk quantities bearing directly topological
information. The presented results on thermodynamic response quantities clearly suggests that
the second order out-of-plane magnetization response to an applied magnetic field gradient linear
in both in-plane directions shows thermodynamic signatures connected to non-trivial spin-texture
transitions. In this way, the response analysis may be pivotal for the detection of non-trivial
spin-texture transitions.
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II. Introduction

In the first section, a brief introduction into the field of topology including mathematical basics
and historical background of topology is presented. The main results of this thesis are examined
for two different, well known fermionic systems which are introduced in the second and third
section of this introductory chapter.

II.1. Basics of topology

Topology is a vast branch in mathematics with many application in physics. An example is the
quantum Hall effect which is related to the Chern number, a topological property observable in
Chern insulators [20]. In the following, basic concepts of topology that are related to the main
part of this work are introduced.
Historical background and Basic concepts

The concept of topology goes back to Leonhard Euler [21]. In 1750, he found that any convex
polyhedron fulfills the condition [22]

𝐾 − 𝐸 + 𝐹 = 𝜒polyhedron = 2, (II.1.1)
where 𝐸, 𝐾 and 𝐹 denote the number of edges, vertices and faces, respecively, e. g. a tetrahedron
has four faces 𝐹 = 4, six edges 𝐸 = 6 and four vertices 𝐾 = 4 resulting in 𝜒tetrahedron =
4 − 6 + 2 = 2. Since any convex polyhedron yields the same result, 𝜒 = 𝜒polyhedron is said to
be a topological invariant. Later, Simon Lhuilier generalized the formula to include non-convex
polyhedra including 𝑔 holes to [23]

𝐾 − 𝐸 + 𝐹 = 𝜒polyhedron − 2𝑔. (II.1.2)

Since a sphere can be thought of a polyhedron with the number of vertices going to infinity, the
sphere has the same Euler characteristic 𝜒sphere = 2 as the polyhedron. Actually, a polyhedron is
homeomorphic to a sphere (See Definition 1.0 below for homeomorphism). The sphere and the
polyhedron are therefore topologically identical. The first formal proof was obtained by Legendre
[24, 25] using radial projections from a polyhedron onto a surrounding sphere.

Therefore, any purely convex three dimensional object, such as the sphere, the polyhedron
or an ellipsoid for example, have the same Euler characteristic. So one can think of the Euler
characteristic as an invariant under smooth deformation as long the resulting object has no extra
holes in it. This scheme is illustrated in Figure II.1. The sphere in Subfigure II.1 a) can be deformed
into the cube in II.1 b) without a change in its topology. The torus depicted in II.1 c) cannot be
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Chapter II. Introduction

a) b) c)

Figure II.1.: The sphere given in a) can be continuously deformed for example into the cube
given in b). For both, the sphere and the cube, the Euler characteristic is equal
𝜒Cube = 𝜒Sphere = 2. The torus given in c) cannot be deformed continuously into a
sphere. The torus has thus a different Euler characteristic which is given by 𝜒c = 0.

deformed into the sphere without allowing for discontinuities and has another Euler characteristic.
This concept can be generalized to higher dimensions which was done by Poincare [26].

Independent on the Euler characteristic, Carl Friedrich Gauß analyzed the curvature on surfaces
in three dimensional space [27]. He found that the product of the principal curvatures referred to
as “Gaussian curvature” which is defined as the product of the largest and the smallest curvature
on each point of the surface is a property that is only dependent on the inner geometry of the
surface which means that it can be described using only the so called first fundamental form of
surfaces. The first fundamental form is given by the inner product of two tangent vectors defined
on the surface in three dimensional space. With the first fundamental form, the length of lines on
curved surfaces or the area on a curved surface can be determined [28].

Interestingly, the total Gaussian curvature, which is the integral of the Gaussian curvature over
the entire surface, is related to the Euler characteristic which is a global topological property
whereas the curvature at a single point on the surface is a local geometric property. This relation
between the Gaussian curvature and the Euler characteristic was published by Bonnet [29], which
is why this is referred to as the Gauß-Bonnet theorem.

The concept of topology establishes meanwhile a huge branch in mathematics. Some of the
mathematical definitions are important in the context below and are therefore presented here.
These definitions are well known and can be found in common literature on topology.
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II.1. Basics of topology

Definition II.1.1: Topological space

A topological space is called a pair (𝕏, 𝜏) where 𝕏 is a set, 𝜏 a collection of subsets of 𝕏
satisfying the following properties

1. ∅ and 𝕏 ∈ 𝜏

2. 𝑈, 𝑉 ∈ 𝜏 implies 𝑈 ∩ 𝑉 ∈ 𝜏 any intersecting set of two subsets in 𝜏 are included
in 𝜏.

3. 𝑈, 𝑉 ∈ 𝜏 implies 𝑈 ∪ 𝑉 ∈ 𝜏 any union of subsets in 𝜏 is a member of 𝜏.
The collection 𝜏 is called a topology on 𝕏 and the ordered pair (𝕏, 𝜏) is called a topological
space. The elements of 𝜏 are said to be open sets.

The simplest example of a topological space would be (𝕏,
{

∅,𝕏
}

), where 𝜏 consist only of the
set itself and the empty set — the trivial topology. There are of course many other possibilities to
define in this manner an example of a topological space.

In physics, one usually deals with metric spaces (Euclidean) and every metric 𝑑 on a set 𝕏 in-
duces a topology 𝜏 on 𝕏. Therefore, one can define the open set 𝐵(𝑥, 𝜖) = {𝑦 ∈ 𝕏 ∶ 𝑑(𝑥, 𝑦) < 𝜖}.
The collection of sets 𝜏𝑑 = {𝐵(𝑥, 𝜖) ∶ 𝑥 ∈ 𝕏, 𝜖 > 0} is then a topology on 𝕏. Therefore a metric
space fulfills the definitions of a topological space and is thus a special type of topological space.
In physics, we thus naturally deal with topological spaces most of the time. Examples for topo-
logical spaces are the 2-sphere (S2) which is given by S2 ∶= {𝑥 ∈ ℝ3 ∶ ||𝑥|| = 1}, the 1-sphere
(S1) defined through S1 ∶= {𝑥 ∈ ℝ2 ∶ ||𝑥|| = 1} or the torus T := S1 × S1.

In order to discuss topological invariants, the concept of homeomorphism is important. A
topological invariant is defined as a property preserved under homeomorphisms.

Definition II.1.2: Homeomorphism

Let (𝕏, 𝜏𝕏) and (𝕐 , 𝜏𝕐 ) be two topological spaces, then a function 𝑓 ∶ 𝕏 → 𝕐 is a homeo-
morphism if it has the following properties

1. 𝑓 is a bijection
2. 𝑓 is continuous
3. the inverse function 𝑓−1 is continuous

A homeomorphism is called a bicontinuous function and is said to be an equivalence relation
between topological spaces.

Another fundamental concept of topology is the invariance under smooth deformations called
a homotopy invariance.
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Chapter II. Introduction

Definition II.1.3: Homotopy

Let (𝕏, 𝜏x), (𝕐 , 𝜏y) be topological spaces, and 𝑓, 𝑔 ∶ 𝕏 → 𝕐 two continuous maps. A
homotopy from 𝑓 to 𝑔 is a continuous function 𝐹 ∶ 𝕏×[0, 1] → 𝕐 satisfying 𝐹 (𝑥, 0) = 𝑓 (𝑥)
and 𝐹 (𝑥, 1) = 𝑔(𝑥), for all 𝑥 ∈ 𝕏. If such a homotopy exists, then 𝑓 is homotopic to 𝑔.

Simply speaking, a homotopy is a continuous deformation of two continuous functions. If a
function can be smoothly deformed into the other function, then both functions are homotopic to
each other.

Theorem II.1.1: Homotopy equivalence

Let 𝑓 ∶ 𝕏 → 𝕐 be a continuous map. Then 𝑓 is said to be homotopy equivalence if
there exists a continuous map 𝑔 ∶ 𝕐 → 𝕏 such that 𝑓◦𝑔 is homotopic to id𝕐 and 𝑔◦𝑓 is
homotopic to id𝕏 . The map 𝑔 in the above definition is said to be a homotopy inverse to 𝑓 .

That means that two topological spaces are homotopy equivalent if they can be continuously
deformed into each other. So the polyhedron is homotopy equivalent to the sphere. The homotopy
groups therefore yield information about basic shapes, these are the point, the sphere, the torus
and so on. The above mentioned Euler characteristic is thus a homotopy invariant.

Being a topological invariant and homotopy invariant are two different concepts, however, the
Euler characteristic is both, invariant under homeomorphisms [30] and invariant under homotopies.
There are examples of topological invariants which are homotopy invariant but not invariant under
homeomorphisms. An example for such an invariant is the degree of a continuous map.

Definition II.1.4: Degree of a continuous map

The degree of a continuous mapping between two compact oriented manifolds of the same
dimension is a number that represents the number of times that the domain manifold wraps
around the range manifold under the mapping. The degree is always an integer, but may be
positive or negative depending on the orientations.

As an example, the continuous map from the torus T2 to the unit sphere S2 𝑓 :T2 → S2 is a
homotopy invariant since it is a continuous map between two compact oriented manifolds of
the same dimension and its degree is therefore an integer and any smooth deformation of this
mapping yields still the same integer. However, the T2 is not homeomorphic to the S2 so there is
not a one to one correspondence between the T2 and the S2. The formulation of such a degree
of a continuous map was first introduced by Brouwer [31, 32]. The important invariants under
consideration in this thesis are the degrees of a continuous map and the Chern number which are
both homotopy invariants. However, in the following, the term “topological invariant” is used
also in the context of homotopy invariants such as the Chern number or the degree of a continuous
map while strictly speaking, topological invariants are defined such that they are invariant under
homeomorphism.
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II.1. Basics of topology

Parallel transport

As mentioned above, the Euler characteristic can be determined by the integration of the Gaussian
curvature of a closed manifold. In order to determine the “curvature” of a surface, the concept of
parallel transport is useful to establish the connection to topological quantum systems.

The concept of parallel transport works as follows. Imagine a curved surface embedded in a
three dimensional Euclidean space. Choose one tangent vector of the tangent vector space at a
certain point on the curved surface and a direction of the displacement of the tangent vector and
then move this vector along a path on the surface such that the angle between the chosen tangent
vector and the direction of the displacement along the chosen path is kept constant. This method
allows one to compare two different tangent vectors on different positions on a curved surface.
Therefore one transports one of the tangent vectors parallel in this way to the position of the other
vector. The angle of the two vectors can now be compared as both vectors are defined on the same
position of the surface. The result of this procedure is dependent on the chosen path. One could
now choose a tangent vector on a curved surface and transport the vector parallel along a straight
line (a geodesic) to another point on the surface (e. g. from point A to point B in Figure II.2), then
to a third position on the surface (point C) and finally return to the starting point. After the closed
loop, dependent on the chosen path, the initial direction and the final direction of the tangent
vector at the same point on the surface are different. This difference depends on the curvature of
the surface. The angle between the initial and the final tangent vector is called anholonomy angle
𝛼 and is given by

𝛼 = ∫𝐴
𝐾d𝑆 (II.1.3)

Figure II.2.: The concept of parallel transport along
a triangle on the surface of a sphere is
shown. The description is given in the
main text.

where 𝐴 is the area enclosed by the path
where 𝐾 denotes the Gaussian curvature
[33]. Therefore if one takes the limit of
infinitesimal small areas enclosed by the
chosen path, the anholonomy angle 𝛼 is
given by the Gaussian curvature multiplied
by the enclosed area. Thus, within the
concept of parallel transport, the Gaussian
curvature can be obtained. Instead of mov-
ing a single tangent vector along geodesics
of a surface, one could move an entire or-
thonormal frame consisting of a unit nor-
mal vector �̂� perpendicular to the surface
and two orthogonal unit tangent vectors
𝒕1 and 𝒕2 within the surface plane along the
geodesics. The advantage of the moving
frame is that simple mathematical condi-
tions can be formulated ensuring that the frame is moved parallel along the geodesics. Here the
presentation follows closely the one given by Berry [34, 35]. Being transported parallel means
that the orthonormal frame should not twist around �̂� when moving across the surface. That
means that the angular velocity 𝝎 = �̂�1 × d𝑡1 of the frame needs to be orthogonal to the unit
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Chapter II. Introduction

normal vector which translates into the condition
(

�̂�1 × d�̂�1
)

⋅ �̂�
!
= 0 (II.1.4)

⇔
(

𝑡1𝑡1
) (

d�̂�1�̂�2
)

−
(

𝑡1𝑡2
) (

d�̂�1�̂�1
) !
= 0 (II.1.5)

⇒ d�̂�1�̂�2
!
= 0 (II.1.6)

Defining
𝜓 = 1

√

2

(

𝑡1 + i𝑡2
) (II.1.7)

The conditions for the transport being parallel in (II.1.5) and (II.1.6) then translate into

𝜓∗ ⋅ d𝜓
!
= 0 (II.1.8)

The moved frame can be compared to a fixed frame (�̂�, �̂�1, �̂�2) at some position 𝒙 = (𝑥1, 𝑥2) on
the surface while the frames can differ by a twist angle 𝛼(𝒙) around the unit normal �̂�. The moved
and the fixed frame are thus related such that

𝜓 ′(𝑥) = ei𝛼(𝒙)𝜓(𝒙) (II.1.9)
with

𝜓 ′(𝑥) = 1
√

2

(

�̂�1 + i�̂�2
)

. (II.1.10)

From the parallel transport condition (II.1.8) it follows that
d𝛼(𝒙) = −i𝜓 ′(𝒙)d𝜓 ′(𝒙). (II.1.11)

The full anholonomy angle 𝛼 after moving one complete loop on the surface is thus

𝛼() = −i∮
d𝒙𝜓 ′(𝒙)∇𝒙𝜓(𝒙). (II.1.12)

By use of Stokes theorem, the line integral can be rewritten as a surface integral yielding

𝛼() = −i ∫
𝐴()

d𝑥1d𝑥2∇𝒙 ×
(

𝜓 ′(𝒙)∇𝒙𝜓
′(𝒙)

) (II.1.13)

Comparing (II.1.13) and (II.1.3), the Gaussian curvature on a surface of three dimensional objects
can be written as

𝐾(𝒙) = −i∇𝒙 ×
(

𝜓 ′(𝒙)∇𝒙𝜓
′(𝒙)

)

. (II.1.14)
This expression for the curvature is similarly given in the context of topological fermionic systems
and this link is discussed in the following.
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II.1. Basics of topology

Berry Phase and skyrmion number

Above, the Gauß-Bonnet theorem was addressed which relates the Gaussian curvature which is a
local geometrical property to the global topology of three dimensional manifolds. In quantum
mechanics, systems are described by Hamiltonians that vary smoothly in parameter space. A
Hamiltonian is not a geometrical object. However, topological invariants can be defined for
Hamiltonians and these invariants can be found to be related to physically measurable quantities.
Following the presentation of Berry [36], a Hamiltonian 𝐻(𝒙(𝑡)) where 𝒙(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),…)
are parameterized by the time 𝑡 is considered. The eigenstates of the Hamiltonian at the initial
time 𝑡 = 0 are given by the solutions of the eigenequation

𝐻(𝒙(0))|𝑛(0)⟩ = 𝐸𝑛|𝑛(0)⟩.

The system 𝐻(𝒙(𝑡)) evolves in time through its parameters. It is assumed that 𝐻(𝒙(𝑡)) evolves
adiabatically in time which means that the Hamiltonian changes slowly in time such that the state
|𝜓(𝒙(𝑡))⟩ is always an eigenstate of 𝐻(𝒙(𝑡)). Consequently due to the adiabatic theorem, one can
write

𝐻(𝒙(𝑡))|𝜓(𝒙(𝑡))⟩ = 𝐸(𝒙(𝑡))|𝜓(𝒙(𝑡))⟩. (II.1.15)
The states stay in an eigenstate due to the adiabatic theorem but their phase can still change.

The ansatz
⇒ |𝜓(𝒙(𝑡))⟩ → e−i𝜙(𝑡)|𝑛(𝒙(𝑡))⟩

can be used in the Schrödinger equation which now reads
iℏ d
d𝑡
|𝜓(𝑡)⟩ = 𝐻(𝒙(𝑡))|𝜓(𝑡)⟩. (II.1.16)

⇔ ℏ|𝜓(𝒙(𝑡))⟩ d
d𝑡
𝜙(𝑡) + iℏ d

d𝑡
|𝜓(𝒙(𝑡))⟩ = 𝐸|𝜓(𝒙(𝑡))⟩

Solving for the phase 𝜙(𝑡) by integration in time eventually yields
𝜙(𝜏) = ∫

𝜏

0
d𝑡′

𝐸(𝑡′)
ℏ

− i∫

𝜏

0
d𝑡⟨𝜓(𝒙(𝑡))| d

d𝑡
|𝜓(𝒙(𝑡))⟩ (II.1.17)

⇔ 𝜙(𝜏) = ∫

𝒙(𝜏)

𝒙(0)
d𝒙′ 𝐸(𝒙′)

ℏ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

dynamical phase

− i∫

𝒙(𝜏)

𝒙(0)
d𝒙⟨𝜓(𝒙(𝑡))|∇𝒙|𝜓(𝒙(𝑡))⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
geometrical phase

. (II.1.18)

The first term on the left is identified with the dynamical phase. The reason for the second term
being called geometrical phase is explained subsequently. One could ask how the phase changed
when the system evolves from 𝑡 = 0 after a period 𝑡 = 𝜏 such that 𝒙(0) = 𝒙(𝜏) which means that
the system returns to its initial parameters after the adiabatic evolution in time. To do so, the
phase is calculated after integrating over a closed loop. The eigenstates only depend on time
through their parameters. One can therefore write

𝜙() = − i∮
d𝒙⟨𝜓(𝒙)|∇𝒙|𝜓(𝒙)⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝛾()

.

10



Chapter II. Introduction

The phase 𝜙() is called Berry phase and 𝛾() is called Berry connection. Of course, the
geometrical phase needs to be real which is clearly fulfilled because of ⟨𝜓(𝒙)|𝜓(𝒙)⟩ = 1 which
means that

i
(

∇𝒙⟨𝜓(𝒙)|
)

|𝜓(𝒙)⟩ = −i⟨𝜓(𝒙)| (∇|𝜓(𝒙)⟩) ⇒ ⟨𝜓(𝒙)|∇𝒙|𝜓(𝒙)⟩ ∈ ℝ. (II.1.19)
Applying Stokes theorem, the relation

𝜙() = ∫𝐴
d𝑥1d𝑥2ΩB(𝒙) (II.1.20)

holds where the Berry curvature is identified as
ΩB(𝒙) = −i∇ × ⟨𝜓(𝒙)|∇𝒙|𝜓(𝒙)⟩; Berry curvature.

The Berry curvature is here defined for a single state 𝜓(𝒙). The definition can be extended to
band Hamiltonians yielding

ΩB,𝜈(𝒙) = −i∇ × ⟨𝜓(𝒙, 𝜈)|∇𝒙,𝜈|𝜓(𝒙, 𝜈)⟩; Berry curvature for a band 𝜈. (II.1.21)
The total Berry curvature is then given by the ΩB,𝜈 summed over all occupied bands. By using an
alternative representation of the derivative of an eigenstate given in Equation (A.1.6) the total
Berry curvature can be brought to the more convenient formula [20]

ΩB(𝒌) =
occ
∑

𝜈

∑

𝜇≠𝜈

⟨𝜈,𝒌|𝜕𝑘x𝐻(𝒌)|𝜇,𝒌⟩⟨𝜇,𝒌|𝜕𝑘y𝐻(𝒌)|𝜈,𝒌⟩ − h.c.

(𝜈(𝒌) − 𝜇(𝒌))2
. (II.1.22)

By comparison of (II.1.13) and (II.1.20) the reason for the terminology geometrical phase becomes
evident. In the context of quantum states the angle difference after one complete loop is given by

𝜙() = 2𝜋𝑁c; 𝑁C ∈ ℤ (II.1.23)
while 𝑁C is called the Chern number. The Chern number is integer valued, and defined for each
band of translation invariant band Hamiltonians. The total Chern number is given by the sum
over all Chern number of each filled band.

There are other possibilities to define a topological invariant in a quantum mechanical system.
One of these is through the use of the degree of a continuous map. The degree of a continuous
map between two compact orientable manifolds of the same dimension is a topological invariant
(to be more precise an invariant among homotopies) as mentioned above. The degree from the
S1 to the S1 is called the winding number and the map from a two-dimensional manifold to the
S2 is called skyrmion number. In this work, systems with non-zero skyrmion numbers 𝑁S are
analyzed. In general, the degree of a map �̂� from some domain manifold M to the S2 is given by
the analytic formula

deg(�̂�) = 𝑁S = 1
(S2) ∫𝑀

d𝑥d𝑦ΩS; ΩS ≡ �̂� ⋅
(

𝜕𝑥�̂� × 𝜕𝑦�̂�
)

; (S2) = 4𝜋 (II.1.24)

11



II.1. Basics of topology

where (S2) denotes the surface area of the S2. Equation (II.1.24) has a simple intuitive interpre-
tation. The integrand consists of a cross product term and a scalar product. The dot product yields
the infinitesimal surface element d𝑺 of the S2 embedded in the three dimensional Euclidean space.
The direction of the surface element d𝑺 is either parallel or antiparallel to �̂� by construction
because 𝒅 is a map onto the unit sphere and the surface elements of the unit sphere are parallel or
antiparallel to its position vector. The integrand is thus the flux of �̂� through the surface element
d𝑺 of the unit sphere which is however equal to the surface element itself multiplied by either 1
or -1 depending on whether (𝜕𝑥�̂� × 𝜕𝑦�̂�

) is parallel or antiparallel to �̂�. It is clear that the integral
can only yield an integer of entire coverings of the unit sphere because the map between the two
compact manifolds is continuous. Any hole in the map from the domain to the range manifold
would imply a discontinuity in the map since any small neighborhood in the range manifold needs
to be a small neighborhood in the domain manifold. Therefore (II.1.24) can only yield integer
values. Interestingly, for the special case of a simple 2x2 hermitian matrix  given by

 = 𝒅𝝈, (II.1.25)
the Berry curvature ΩB = ΩS which was shown in Ref [37]. This relation does not hold in general
as discussed for the topological s-wave superconductor in Section III.2.

12



Chapter II. Introduction

II.2. Topological s-wave superconductor

This thesis focuses on two common topological systems discussed extensively in the literature. This
thesis deals with the analysis of these systems with respect to their ground-state spin textures and
the textures in finite size systems or at finite temperatures. The discussion extends to the analysis
of thermodynamic signatures at topological phase transitions. The model of the topological
s-wave superconductors is explained below. This model has been investigated in terms of its
topological properties in References [38–40]. The Hamiltonian for such a superconducting system
reads

SC = TB +SOC +Z +I (II.2.1)
with TB, SOC, Z and I denoting the tight binding-, the spin-orbit coupling- the Zeeman-
splitting and the electron-electron interaction Hamiltonian, respectively.

The tight-binding Hamiltonian is supposed to contain only nearest neighbor hopping terms
describing the kinetic energy of the electrons. In canonical quantization the energy is given by

TB =
∑

𝑖

∑

𝑗

∑

𝑠=↑,↓

(

−𝑡𝑐†
𝑖,𝑗,𝑠𝑐𝑖+1,𝑗,𝑠 − 𝑡𝑐

†
𝑖,𝑗,𝑠𝑐𝑖,𝑗+1,𝑠

)

+ h.c. (II.2.2)

with 𝑐†
𝑖,𝑢,𝑠 and 𝑐𝑗,𝑣,𝑠 denoting the annihilation and creation operators for Fermions at the position

𝒓𝑖,𝑢 and 𝒓𝑗,𝑣 and spin 𝑠 in canonical quantization, respectively. They obey the anticommutator
relations

[𝑐𝑖,𝑢,𝑠, 𝑐𝑗,𝑣,𝑠′]+ = 0; [𝑐†
𝑖,𝑢,𝑠, 𝑐𝑗,𝑣,𝑠′]+ = 𝛿𝑖,𝑗𝛿𝑢,𝑣𝛿𝑠,𝑠′ (II.2.3)

with [𝐴,𝐵]+ = 𝐴𝐵 + 𝐵𝐴. The incorporation of the the coupling of an magnetic field to the
orbital energy of the electrons, the hopping energy 𝑡 is supplemented by the Peierls phase

𝑡→ 𝑡
|𝒓𝑖,𝑢−𝒓𝑗,𝑣|e

i 𝑒ℏ𝑐 ∫
𝒓𝑗,𝑣
𝒓𝑖,𝑢 d𝒓𝑨(𝒓) (II.2.4)

while the integration ∫ 𝒓𝑖,𝑢
𝒓𝑗,𝑣

d𝒓 is applied along the direct connection between the points 𝒓𝑖,𝑢 and
𝒓𝑗,𝑣 and 𝑨(𝒓) denotes the vector potential defined by 𝑩(𝒓) = ∇ ×𝑨(𝒓). Due to this definition, the
vector potential is not uniquely defined since a given 𝑨(𝒓) can be replaced by 𝑨(𝒓) + ∇𝝓(𝒓) with
𝜙(𝒓) being an arbitrary analytic scalar-field. The resulting tight-binding term is then given by

TB = −
∑

⟨𝑖,𝑗⟩
⟨𝑢, 𝑣⟩

∑

𝑠
𝑡
[

ei
e
ℏc ∫

𝒓𝑗,𝑣
𝒓𝑖,𝑢 𝐴(𝒓)d𝒓𝑐†

𝑖,𝑢,𝑠𝑐𝑗,𝑣,𝑠 + h. c.
]

. (II.2.5)

In this thesis, the effects of magnetic fields on the spin magnetization is analyzed leaving aside
the effects of the Peierls coupling. This is reasonable for almost in-plane magnetic field setups in
the two-dimensional topological s-wave superconductor [41]. Some effects of the incorporation
of the Peierls phase is mentioned but a comprehensive analysis taking into account this orbital
magnetic field coupling is beyond the scope of this thesis and leaves open questions which are
discussed further in the outlook of this thesis.

Applying the definition of the Fourier transform
�̂�†
𝒌 = 1

√

𝑁

∑

𝑹
ei𝒌𝑹�̂�†

𝑹 (II.2.6)
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II.2. Topological s-wave superconductor

to the kinetic energy part of the Hamiltonian yields
TB = −2𝑡

∑

𝑘x

∑

𝑘y

∑

𝑠
𝜖(𝒌)𝑐†

𝑘x,𝑘y ,𝑠
𝑐𝑘x,𝑘y ,𝑠; 𝜖(𝒌) = cos(𝑘x𝑎) + cos(𝑘y𝑎) (II.2.7)

consisting of the standard cosine bands valid for a basis with one orbital per lattice site with 𝑎
denoting the lattice constant. The second ingredient of the topological s-wave superconductor in
the Hamiltonian given in (II.2.1) is the Rashba spin-orbit coupling.

The origin of Rashba spin-orbit coupling results from broken inversion symmetry at interfaces
where the gradient of the crystal potential causes the emergence of an electric field 𝑬. The
electron moving in the electric field is affected by an effective magnetic field contribution given
through

𝑩 = −𝛾 𝒗
𝑣
× 𝑬 (II.2.8)

with 𝛾 = 1∕
√

1 − (𝑣∕c)2 ≈ 1+(𝑣∕c)2∕2 being the Lorentz factor where c is the speed of light and
𝑣 denotes the speed of the electron in the frame of the crystal lattice. The electron spin interacts
with this magnetic field through Zeeman splitting resulting in [42]

SOC = 𝛼R
∑

𝑖

∑

𝑗

∑

𝑠,𝑠′=↑,↓

(

i𝑐†
𝑖,𝑗,𝑠𝑐𝑖+1,𝑗,𝑠′ − i𝑐†

𝑖,𝑗,𝑠𝑐𝑖,𝑗+1,𝑠′
)

+ h. c. (II.2.9)

on a square lattice in the tight binding description with 𝛼R∕𝑎 = ℏ𝜇B𝐸∕2𝑚ec being the Rashba
spin-orbit coupling parameter, where e denote the elementary charge, ℏ the usual reduced Planck
constant, and𝑚e is the electron mass. The spin-orbit interaction is a relativistic effect which results
in small energy shifts which are about 𝛼R ≈ 10−7 eV. However, experiments [43, 44] have shown
that the spin-orbit can be much greater which is the case e. g. at lanthanum aluminate-strontium
titanate interfaces (LAO/STO). The reason for the much larger spin-orbit interaction is that the
atomic spin-orbit interaction in multi-band systems can lead to an effective Rashba-like spin-orbit
interaction. The strength of the large spin-orbit coupling terms in crystals can be estimated by
[45]

𝛼R ≈
𝛾𝜉
ΔI

(II.2.10)
with ΔI being a band gap between in-plane and out of plane bands resulting from an inversion
symmetry breaking potential at interfaces, 𝛾 is the hopping energy between 𝑥𝑦 and 𝑦𝑧 orbitals, 𝜉 is
the strength of atomic spin-orbit coupling. The resultant Rashba spin-orbit coupling in LAO/STO
heterostructures yields energy shifts of about 𝛼R ≈ 10−2 eV. Assuming the square lattice with
nearest neighbor hopping and performing the Fourier transformation leads to

SOC = 𝛼R
∑

𝒌

∑

𝑠

∑

𝑠′
𝑐†
𝒌,𝑠

(

0 𝜖R(𝒌)
𝜖∗R(𝒌) 0

)

𝑠,𝑠′
𝑐𝒌,𝑠′ ; 𝜖R(𝒌) = sin(𝑘y𝑎) − i sin(𝑘x𝑎). (II.2.11)

The interaction between the magnetic moments of the electron spins and a magnetic field is
taken into account by the so-called Zeeman splitting. Its energy scale is determined by the Bohr
magneton 𝜇B. The Zeeman splitting term is described by

Z = 𝜇B
∑

𝑖,𝑗

∑

𝑠=↑,↓
𝑐†
𝑖,𝑗,𝑠𝑩𝝈𝑠,𝑠𝑐𝑖,𝑗,𝑠 (II.2.12)
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Chapter II. Introduction

which is diagonal in position space. The Zeeman splitting simply transforms in momentum space
to

Z = 𝜇B
∑

𝒌

∑

𝑠

∑

𝑠′
𝑐†
𝒌,𝑠 (𝑩𝝈)𝑠,𝑠′ 𝑐𝒌,𝑠′ . (II.2.13)

The last ingredient of the Hamiltonian given in (II.2.1) is the effective s-wave electron-electron
interaction with the attractive on-site pairing potential 𝑉𝑠,𝑠′𝛿(𝒓𝑖,𝑢 − 𝒓𝑗,𝑣) such that

I =
∑

𝑖,𝑗,𝑢,𝑣

∑

𝑠,𝑠′
𝑉𝑠,𝑠′𝛿(𝒓𝑖,𝑢 − 𝒓𝑗,𝑣)𝑐

†
𝑖,𝑢,𝑠𝑐𝑖,𝑢,𝑠𝑐

†
𝑗,𝑣,𝑠′𝑐𝑗,𝑣,𝑠′ . (II.2.14)

This Hamiltonian is a two particle Hamiltonian. Exact results for such two particle problems are in
general cumbersome. Below, a common approximation is used to deal with this interaction term
on mean field level. Transforming into Fourier space, the interaction Hamiltonian I becomes
(see Appendix A.3 or for example Reference [46])

𝐻I =
𝑉
𝑁

∑

𝑠

∑

𝑠′

∑

𝒌

∑

𝒌′

∑

𝒒
(i𝜎y)𝑠,𝑠′𝑐

†
𝒌,𝑠𝑐

†
𝒌′,𝑠′

𝑐𝒌′−𝒒,𝑠′𝑐𝒌+𝒒,𝑠 (II.2.15)

where the momenta 𝒒 are referred to as finite center of mass momenta [47]. The Hamiltonian
allows for many finite momentum pairing vectors 𝒒. In the case, where an out of plane magnetic
field 𝒉 = (0, 0, ℎz)T is applied, only one finite momentum pairing vector with 𝒒 = 0 is realized
[48]. However, out of plane magnetic field setups allow for solutions with 𝒒 ≠ 0. There are
different possibilities for the finite 𝒒-solutions. One possibility is, that there is only one momentum
𝒒 which is referred to as the Fulde-Ferrell pairing [49]. In the case where two finite momenta are
allowed with 𝒒 and −𝒒 is referred to as the Larkin-Ovchinnikov pairing [50]. In Ref [41, 48] finite
momentum pairing states with two different momenta 𝒒1 and 𝒒2 have been found. Their results
show that the solution 𝒒 = 0 is even stable for slightly in-plane tilted magnetic field setups as
sketched in Figure II.2. When the magnetic field tilt and the strength of the magnetic field exceeds
a certain value a region with two different 𝒒1 and 𝒒2 occurs.

In Appendix A.3, the well known thermodynamic potential of the topological s-wave supercon-
ductor is explicitly calculated and it can also be found for example in References [51–54]. The
thermodynamics are determined by the thermodynamic potentials. The grand canonical potential
Ω can, in general, be expressed in the form (see Appendix A.3 for a more detailed discussion)

Ω ≈ −1
𝛽
ln
(

exp
(

−𝑆eff
)) (II.2.16)

with the effective action 𝑆eff . For the topological superconductor 𝑆eff given by

𝑆eff = 𝑁𝛽
𝜇
2
− 1
ℏ ∫

ℏ𝛽

0
d𝜏

(

−1
2
Tr (ln)

[

−1(𝜏)
]

Δ(𝒒)=Δ(𝒒) +
∑

𝒒

|Δ(𝒒)|2

𝑉

)

. (II.2.17)

The value of Δ(𝒒) is determined by the extremal condition used in the saddle-point approximation
𝜕𝑆eff (Δ(𝒒))
𝜕Δ(𝒒)

|

|

|

|Δ=ΔOP

= 0 (II.2.18)

⇔ ℏ𝛽Δ(𝒒)𝑁


= 1
2 +𝑄

∑

𝒌

∑

𝜔𝑛

𝜕Δ𝒒
−1, (II.2.19)
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II.2. Topological s-wave superconductor

Figure II.3.: Qualitative results obtained for tilted magnetic field setups in the topological s-wave
superconductor indicating that finite momentum pairing is absent for perpendicular
magnetic field setups and small tilt angles. For almost in-plane setups, finite momen-
tum pairing needs to be considered. The figure is taken from Reference [41].

which is common approximation on mean field level. Equation (II.2.19) is referred to as gap
equation, since the solutions of this equation determines the superconducting order parameter
ΔOP which accounts for the energy gap between particle and hole space in the conventional
superconductor — at which the Rashba spin-orbit coupling is not present. The action 𝑆eff has to
be minimized at all different ΔOP(𝒒). the inverse Green’s function −1 is given by

−1𝜏,𝒌,𝒒 = 𝜕𝜏 +𝐻(𝒌, 𝒒) = 𝜕
𝜕𝜏

+

⎛

⎜

⎜

⎜

⎜

⎝

𝐸(𝒌) Δ(𝒒1) Δ(𝒒2) ⋯
Δ(𝒒1) − 1

𝑄
𝐸T(−𝒌 + 𝒒1) 0 ⋯

Δ(𝒒2) 0 − 1
𝑄
𝐸T(−𝒌 + 𝒒2) ⋯

⋮ ⋱ ⋱ ⋱

⎞

⎟

⎟

⎟

⎟

⎠

(II.2.20)

with
𝐸(𝒌) =

(

𝜁+𝒌 𝜉𝒌
𝜉∗𝒌 𝜁−𝒌

)

, Δ(𝒒) =
(

0 ΔOP(𝒒)
−ΔOP(𝒒) 0

)

(II.2.21)
where Q is the total number of different 𝒒-vectors and 𝜏 is the Matsubara time [55]. Supplemental
details on the Matsubara time formalism is given in Appendix A.7. Here, the quantities

𝜁±𝒌 = 𝜖TB𝒌 ± 𝜇B𝐵, 𝜉𝒌 = 𝜖R(𝒌) + ℎx − iℎy (II.2.22)
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are introduced. However, there is a constraint on this equation namely the conservation of particle
number. The particle number is obtained by Equation (A.7.50) which yields

𝑁 = −𝜕Ω
𝜕𝜇

= 𝑁
2

+ 1
2
∑

𝒌

∑

𝜔𝑛

𝜕𝜇−1. (II.2.23)

The summation over the Matsubara frequencies in the gap Equation (II.2.19) and the particle-
number Equation (II.2.23) can be performed using the calculation described in Section (A.7) with
the eigenvalues of 𝐻(𝒌, 𝒒) denoted by 𝜆𝑖 where 𝑖 counts the number of bands. In the following
the eigenvalues are supposed to be ordered such that 𝜆𝑖 ≤ 𝜆𝑖+1.

II.3. Qi-Wu-Zhang model

A standard model for topological Chern insulators is a model considered by Qi, Wu and Zhang
(QWZ-model) which was introduced in Reference [15]. Here a short review of this model is given.

The QWZ-model is a two-band model. It is a basic and simple model which however contains
the important features of a Chern insulator. The model is defined on a square lattice with nearest
neighbor hoppings resulting in two bands, a particle-like and a hole-like bad, and Rashba spin-orbit
coupling. The particle and the hole band carry different spin, ↑-spin and ↓-spin or pseudo-spin
[56–58]. A pseudo-spin is some degree of freedom that transforms analogous to a spin and is
thus represented by 𝜎-matrices. The Hamiltonian of that model reads
𝐻 =

∑

𝑖

∑

𝑗

[(

�̂�†
𝒓𝑖,𝑚

(

𝑡𝜎z +
𝛼R
2
i𝜎x

)

�̂�𝒓𝑖+1,𝑗 + �̂�†
𝒓𝑖,𝑗

(

𝑡𝜎z +
𝛼R
2
i𝜎y

)

�̂�𝒓𝑖,𝑗+1 + h. c.
)

+ 𝒉𝝈�̂�†
𝒓𝑖,𝑗
�̂�𝒓𝑖,𝑗

]

(II.3.1)
with 𝑡 being the hopping energy, 𝛼R the Rashba coupling and 𝒉𝝈 the Zeeman splitting energy.
Transforming the system into Fourier space, the Hamiltonian becomes diagonal in momentum
space and its matrix elements are given by

(𝒌) = 𝒅(𝒌) ⋅ 𝝈 (II.3.2)
in two dimensions with 𝒌 = (𝑘x, 𝑘y). The Hamiltonian is translation invariant and thus diagonal
in the crystal momentum 𝒌. The momentum dependent vector

𝒅(𝒌) = (𝛼R sin(𝑘y) + ℎx, 𝛼R sin(𝑘x) + ℎy, ℎz − 2𝑡(cos(𝑘x) + cos(𝑘y)))T (II.3.3)
is called Bloch vector [20]. The above introduced vector notation 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) where 𝜎x,y,z are
the Pauli matrices is used. The parameter ℎz shifts the particle and hole bands in energy according
to their spin.

The eigenvalues of (II.3.2) are identified as
𝜆 1
(2)

= (+)− |𝒅(𝒌)| (II.3.4)

and the eigenvectors are [37]
𝑢±(𝒌) =

1
√

2|𝒅(𝒌)|(|𝒅(𝒌)| ± 𝑑z(𝒌))

(

𝑑z(𝒌) ± |𝒅(𝒌)|, 𝑑x(𝒌) + i𝑑y(𝒌)
)T . (II.3.5)

17
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Within this model, two spin (pseudo-spin) bands exist with 𝜆2 ≥ 𝜇, and 𝜆1 ≤ 𝜇 where the equality
is only fulfilled when a number of momenta 𝒌t for which |𝒅(𝒌t)| = 0 holds exist. Hence, the
Hamiltonian is gapped except for certain parameters 𝒉t at which the Hamiltonian has isolated
band crossing points in the Brillouin zone denoted by 𝒌t for which one has 𝜆1(𝒌t) = 𝜆2(𝒌t). For
ℎx = ℎy = 0, three distinct transitions fields 𝒉t,𝑖 = (0, 0, ℎt,𝑖) with 𝑖 ∈ {1, 2, 3} are given by

ℎt,1 = −4𝑡 with 𝒌t,1 = (𝜋, 𝜋)
ℎt,2 = 0 with 𝒌t,2 = (0, 𝜋) and 𝒌t,4 = (𝜋, 0)
ℎt,3 = 4𝑡 with 𝒌t,3 = (0, 0)

(II.3.6)

exist. Hence, there are four points where the band gap can close at the transition fields 𝒉t,𝑖.
According to (III.4.9), these are located at 𝒌t ∈ {(0, 0), (−𝜋, 0), (0, 𝜋), (𝜋, 𝜋)} for ℎx = ℎy = 0. If
the applied magnetic field is not exactly perpendicular to the plane, the transition fields 𝒉t,𝑖 and the
momenta 𝒌t In the following it is assumed that ℎx and ℎy are small compared to 𝛼R which is realized
for small tilt angles of the magnetic field. Assuming, as an example, a band dispersion at which
the bands are close to a band crossing at the momentum 𝒌t,3 for 𝒉z ≈ ℎt,3. The expansion around
the momentum 𝒌t,3 up to second order yields consequently 𝑑z(𝒌) ≈ −|𝒉t,3(ℎx,y = 0)| + 𝑡𝑘2x + 𝑡𝑘

2
yand 𝑑x,y(𝒌) ≈ 𝛼R𝑘x,y. It is straightforward to show that

𝒉t,3(ℎx, ℎy) = 𝒉t,3(ℎx,y = 0) −

(

𝑡
ℎ2x + ℎ

2
y

𝛼2R
, ℎx, ℎy

)

(II.3.7)

𝒌t,3(ℎx, ℎy) =
(

−
ℎx
𝛼R
,−
ℎy
𝛼R

)

. (II.3.8)

Thus, the z-component of the magnetic field at the transition is suppressed due to the in-plane
field components and the momenta 𝒌t of the band gap closing points at are shifted by ℎx,𝑦∕𝛼R.

In order to analyze the thermodynamics of the QWZ-model, its necessary to calculate its
thermodynamic potential. Using (A.7.37) given in the appendix, the grand canonical potential is
given by

Ω = −1
𝛽
∑

𝜔𝑛

ln
((

det
[

ℏ−1(𝜔𝑛)
])) (II.3.9)

= −1
𝛽
∑

𝜔𝑛

∑

𝒌
ln
[(

𝜆1(𝒌) − iℏ𝜔𝑛
) (

−𝜆1(𝒌) − iℏ𝜔𝑛
)] (II.3.10)

with −1(𝜔𝑛) denoting the inverse Matsubara Green’s function. The sum over the Matsubara
frequencies 𝜔 can be performed analogous to Appendix A.7 yielding the grand canonical potential
for the QWZ model

Ω = −1
𝛽
∑

𝒌
ln
(

2 cosh
(

𝛽𝜆1(𝒌)
2

))

. (II.3.11)

This grand canonical potential is the basis for the calculations of the thermodynamics in the QWZ
model.
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III. Topological spin-textures and
topological invariants

Topological quantization expressed by concomitant topological invariants has become relevant
not only for the description of topological defects in condensed matter physics [60] but also in
solid state physics [8, 20, 61, 62] where topological insulators [63], Chern insulators [64] and
topological superconductors [20, 48] have been studied intensively over the last few decades. In
general, topological phases are manifest in their ground state wave functions. Their topological
phase can be described by the Chern number which was discussed in the previous Section II.1.
The Chern number may be measured by the quantum Hall conductivity [20] and thermal Hall
conductivity [65, 66]. These measurements rely on the existence of topological edge states. The
existence of such boundary states is assumed by the bulk boundary correspondence.

Definition III.0.1: Bulk boundary correspondence

The bulk boundary correspondence [2, 67] is considered as a one-to-one relation between
gapless chiral (or helical) edge states for infinite systems with open boundary conditions
and topologically non-trivial bulk states.

These topological edge currents lead to the above mentioned transverse transport quantities
proportional to the the Chern number. These quantities associated with the Chern number depend
on the nature of the edge currents.

Definition III.0.2: Chiral (helical) edge states [8]

Edge states being chiral (helical) means that the edge modes are counter propagating at
the opposite ends of a finite size system. The ↑- and ↓-spin states propagate into the same
(opposite) direction at each edge.

In the case of chiral edge currents, for example, one speaks of the quantum Hall effect [3, 5]
whereas the quantum spin Hall effects is associated with the helical edge currents [68].

On the other hand different topological bulk states can be characterized by topological ground
state spin- or pseudo-spin-like textures in real or reciprocal space [15, 38, 69, 70]. In real space,
spin-textures have been found that are topologically non-trivial; called skyrmions [71], yielding
non-zero skyrmion numbers. There are different kinds of real space skyrmions (antiskyrmions),
these are the Néel- or Bloch-type skyrmions (antiskyrmions). In both types, the spin winds around
the radius vector emanating from the origin. In the Bloch-type skyrmion, the in-plane component
of the spin points perpendicular to the origin. The spin points towards the center or away from
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Chapter III. Topological spin-textures and topological invariants

Figure III.1.: Bloch-type meron and skyrmion spin-textures. The presentation is similar to that in
Reference [59].

it in the Néel type skyrmion. Although both kinds of skyrmions are in their spatial structure
different, they are topologically identical. In addition to the skyrmion spin-textures, meron [72,
73] spin-textures have been identified and investigated. There, the spin is completely in-plane
far away from the center (at infinity) as shown in Figure III.1. Besides the real space skyrmions
there can be skyrmion textures in momentum space which are analyzed within this thesis and
will be discussed below in detail because of a direct association with the Berry curvature or
likewise the Chern number in the analyzed systems, the QWZ model and the topological s-wave
superconductor. The following section addresses their non-trivial topological spin-textures.
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III.1. Spin-textures of the QWZ model and the topological s-wave superconductor

III.1. Spin-textures of the QWZ model and the topological
s-wave superconductor

The QWZ model has three different topological phases expressed by Chern numbers. The phase
diagram of the QWZ model in terms of its Chern numbers is depicted in the following figure.

NC=-1 NC=1NC=0 NC=0

hzht,1 ht,2 ht,3

Figure III.2.: Phase diagram of the QWZ model.

This phase diagram is valid for the situation at which the magnetic field𝒉 is exactly perpendicular
to the plane. In the case ℎx, ℎy ≠ 0, the phase boundaries are shifted as described in the previous
section. Topological phase transitions can only take place when the band gap closes. Therefore,
the condition for a topological phase transition is |𝒅(𝒌t)| = 0.

The Berry curvature for the three different topological phases is shown in Figure III.3.
Subfigure III.3 a) depicts the the topologically trivial situation at which the total Berry Curvature

vanishes. The non-trivial Berry curvatures are given in Figure III.3 b) and III.3 c) for the phases
𝑁C = −1 and 𝑁C = 1, respectively.

Besides the Chern numbers, the topology of this system can be described by the skyrmion
numbers 𝑁S, defined in (II.1.24). Here the spin is defined

𝒔(𝒌, 𝑇 ) = −
∑

𝜈=±
⟨𝜈,𝒌|𝝈|𝜈,𝒌⟩ tanh

(

𝜆𝜈(𝒌)
2𝑇

)

. (III.1.1)

The ground state spin-texture is analyzed at first setting 𝑇 = 0. The parameters used for the
displayed ground-state textures correspond to those used for the calculation of the respective
curvatures given above each texture in Figure,III.3. The textures at non-zero temperature are
discussed further below in Section III.3.

The in-plane spin components of the spin display vortex and antivortex textures around the
𝒌t while the in-plane spin components vanish at the different momenta 𝒌t . The z-components
of the pseudo-spin is however either positive or negative which results in a z-component of the
normalized spin vector

𝑺(𝒌t) = (𝑆x(𝒌t), 𝑆y(𝒌t), 𝑆z(𝒌t)) = 𝒔(𝒌t)∕|𝒔(𝒌t)| (III.1.2)
with values 𝑆z(𝒌t) = ±1. There are vortices around the Γ-point (0, 0) and the M-point (𝜋, 𝜋)
where antivortices are located around the X- and Y-point (𝜋, 0) and (0, 𝜋). The skyrmion numbers
corresponding to the different topological spin textures are given in the figure caption.

Actually, the skyrmion number can be deduced easily by examining the spin texture around
the different 𝒌t . A vortex-texture of the in-plane components counts ±1 if the z-component is
positive of negative, respectively. For the antivortices the opposite is true. There are as many
vortices as antivortices such that all vorticities sum up to zero. The simple scheme to read off the
skyrmion number is proven below.
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Chapter III. Topological spin-textures and topological invariants

Figure III.3.: Berry Curvatures for a) 𝑁C = 0, b) 𝑁C = −1 and c) 𝑁C = 1. The corresponding
spin-textures are given below the Berry curvatures with d) 𝑁S = 0 and e) 𝑁S = −1,
f) 𝑁S = 1. The arrows represent the projection of the in-plane components of the
spin-vectors normalized to unity.

The skyrmion number is realized by the degree of the map from the torus T (the Brillouin
zone) onto the S2 (the unit sphere) as discussed above. The right hand side of Equation (II.1.24)
is completely unchanged if the single vortex center points 𝒌t are excluded from the integral. This
step is important because a connection between the skyrmion number and the vorticities in the
textures desired but the vorticities are not defined at the exact momenta 𝒌t . One can therefore
express the skyrmion number as

𝑁S = 1
(S2) ∫

∖{𝒌t}

d2𝑘𝑺 ⋅
(

𝜕𝑘x𝑺 × 𝜕𝑘y𝑺
)

(III.1.3)

However, it is known that the skyrmion number is invariant under homotopies. It is therefore
allowed to smoothly deform the spin space which is not necessary but which is useful for the
following considerations.
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The function

𝚽 ∶ S2∖{(0, 0, 1), (0, 0,−1)} → S1 × (−1, 1) with 𝚽(𝑥, 𝑦, 𝑧) ∶=

(

𝑥
√

𝑥2 + 𝑦2
,

𝑦
√

𝑥2 + 𝑦2
, 𝑧

)

(III.1.4)
can be defined which defines a map from the S2 — where the north-pole and the south pole are
excluded — onto the cylinder surface 𝑆1 × (−1, 1) such that this map is a bijection. On the other
hand, the smooth function
𝝓S ∶ S1 × (−1, 1) → S2∖{(0, 0, 1), (0, 0,−1)} with 𝝓S(𝑥, 𝑦, 𝑧) ∶=

(√

1 − 𝑧2𝑥,
√

1 − 𝑧2𝑦, 𝑧
)

(III.1.5)
defines a map from the open cylinder surface S1 × (−1, 1) onto the S2∖{(0, 0, 1), (0, 0,−1)} and
𝝓S is a bijection. Taking the composition of both 𝚽 and 𝝓S yields

𝚽◦𝝓S = idS1×(−1,1) (III.1.6)
so 𝚽 is the inverse of 𝝓S which is why 𝑆1 × (−1, 1) is homotopy equivalent to the unit sphere
with the north and south-pole excluded.

Now, apart from normalizing the vector 𝒔, a new vector 𝑺SC is defined by
𝑺SC ∶= Φ(𝑺(𝒌)) (III.1.7)

that maps the normalized spin vector 𝑺(𝒌) onto the open cylinder surface S2 × (−1, 1) such that
the finite number of points from the domain manifold, the vortex cores, are mapped onto the top
and the bottom of the cylinder S1 × {1} and S2 × {−1}, respectively. The exact top and bottom
of this cylinder are however undefined and a finite number of points given by {𝒌t} have to be
removed from the domain. A similar map was suggested and discussed in Reference [37] in
the context of the topological s-wave superconductor. The difference between the map defined
in the reference and the map introduced here, is that Φ of (III.1.4) is defined as the map from
S2∖{(0, 0,−1), (0, 0, 1)} to S1 × (−1, 1) while the map that is suggested in the reference is a map
from a surface given by the spin expectation values 𝒔 to the S1×(−1, 1) given by 𝑆L(𝒌) = 𝚽(𝑠(𝒌)).

The above constructed map from the Brillouin zone to the cylinder is thus homotopy equivalent
to the map of the Brillouin zone to S2∖{(0, 0,−1), (0, 0, 1)} as the range manifold can be smoothly
mapped onto the S2∖{(0, 0,−1), (0, 0, 1)}, which does not hold for 𝑺L in general. Thus it is
possible to describe the skyrmion number by

𝑁S = 1
(𝑆1 × [−1, 1]) ∫

∖{𝒌t}

d2𝑘𝑺SC(𝒌) ⋅
(

𝜕𝑘x𝑺SC(𝒌) × 𝜕𝑘y𝑺SC(𝒌)
)

, (III.1.8)

where ∖{𝒌t} denotes the exclusion of the set of points {𝒌t} from the Brillouin zone. The right
hand side of (III.1.8) differs from the “Loder” number which is defined as

ΣL = 1
2𝜋 ∫∖{𝒌t}

d2𝑘ΩL(𝒌); ΩL(𝒌) = 𝑺L(𝒌) ⋅
(

𝜕𝑘x𝑺L(𝒌) × 𝜕𝑘y𝑺L(𝒌)
)

(III.1.9)
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with ΩL(𝒌) defining the “Loder curvature” by the replacement of 𝑺SC with with 𝑺L. Equation
(III.1.8) can be integrated by parts yielding [74]

𝑁S =
∑

𝑖
𝑆SCz(𝒌t,𝑖)

× 1
2
lim
𝜖→0∮
𝐶(𝒌t,𝑖,𝜖)

d𝒌
2𝜋

(

𝑆SCx(𝒌)∇𝒌𝑆SCy(𝒌) − 𝑆SCy(𝒌)∇𝒌𝑆SCx(𝒌)
)

= 1
2
∑

𝑖
𝑆SCz(𝒌t,𝑖)(𝒌t,𝑖) =

1
2
∑

𝑖
𝑆z(𝒌t,𝑖)(𝒌t,𝑖). (III.1.10)

The index 𝑖 runs over all vortex-center points where 𝑠x(𝒌t,𝑖) = 𝑠y(𝒌t,𝑖) = 0, and the quantity (𝒌)
denotes the vorticity of the in-plane spin around the vector 𝒌 as defined in (III.1.10). Here, 𝒌t is
used as an expression for lim𝜖→0(𝒌t + 𝜖𝒖) where 𝒖 is an arbitrary vector in the Brillouin zone.
In addition 𝐶(𝒌t , 𝜖) denotes an infinitesimal circle around 𝒌t with a radius 𝜖. Equation (III.1.10)
shows that the topological invariant is in fact given by just the vorticity  and the spin expec-
tation value of the z-component at the four points 𝒌t in the Brillouin zone. If all pseudo-spins
are pointing into the same direction at each 𝒌t the spin-texture is trivial since ∑

𝑖 (𝒌t,𝑖) = 0.
At a topological phase transitions, the z-components of the spin hast to change at some of the
𝒌t . The vorticity  can also be defined in the lattice model which is then still confined to inte-
gers. So the right hand side of (III.1.10) can be determined for lattice models still yielding integers.

It is important to note that the S1×[−1, 1] is not homotopy equivalent to the S2 but it is homotopy
equivalent to the S2∖{(0, 0,−1), (0, 0, 1)}. Strictly speaking, the Brouwer degree is only defined
for compact manifolds which the S2∖{(0, 0,−1), (0, 0, 1)} does not fulfill. However, the non-
singular cover of the S2∖{(0, 0,−1), (0, 0, 1)} can, in the situation above, easily be compactified
to the cover of the full S2 which does fulfill the requirement. It is therefore the special situation of
the cover of the S1 × [−1, 1] or likewise the S2∖{(0, 0,−1), (0, 0, 1)} which allows one to define
the skyrmion number in terms of the cover of a non-compact manifold the 𝑆1 × [−1, 1]. The
compactification is possible because the cover of the cylinder is smooth except for the vortex
cores and the number of these is finite.

The possibility to rewrite the skyrmion number in terms of (III.1.8) leads to Equation (III.1.10)
which enables new perspectives on the interpretation of spin-textures in terms of the topological
character as discussed in Section III.3.
Topological s-wave superconductor

The topological s-wave superconductor, the model of which is introduced in Section II.2, has
been analyzed many times. The reason is, that this system is realizable and can in principle show
non-trivial topological phases. These non-trivial phases can be characterized by non-zero Chern
numbers where these depend on two parameters, the band-filling and the magnetic field.

The calculation of the full topological phase diagram in terms of the Chern numbers as a
function of the band filling and the magnetic field in z-direction is given in Figure III.6. The phase
diagram is obtained by self-consistent calculations taking into account the gap Equation (II.2.19)
and the particle number Equation (II.2.23). The diagram shows that the topological s-wave
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Figure III.4.: Dispersion of the normal conducting bands 𝜉+𝒌 and 𝜉−𝒌 for the cases ℎz < ℎt,1 (left
figure), ℎz > ℎt,1 (right figure). The arrows indicate the spin direction related to each
band. The situation around ℎt,2 is similar. The figure is taken from Reference [74].

superconductor has three possible different topological phases. Two different topological phases
(𝑁C = −2 and 𝑁C = −1) can be found in the region between quarter filling and half filling
corresponding to 𝑛 = 1∕2 and 𝑛 = 1, respectively. Due to the inclusion of Rashba spin-orbit
coupling and the neglection of the coupling of the magnetic field to the momentum by the Peierls
phase, the system does not show any superconducting to normal conducting phase transition due
to the finite Zeeman field in perpendicular direction which is also addressed in References [41,
53, 75]. Thus, the order parameter Δ(ℎz) is always finite at any ℎz, however it is exponentially
decreasing [41] with increasing ℎz and exponentially small at large magnetic fields. In order
to enter any non-trivial topological phase it is necessary to apply magnetic field energies larger
than ΔOP but the upper critical magnetic field energy set by ℎ2c2 is usually smaller than ΔOP.
So the experimental realizability of topologically non-trivial phases in the topological s-wave
superconductor is in question and is at least arduous. There are suggestions to tilt the magnetic
field almost in-plane in order circumvent this issue as the in-plane magnetic fields increase the
value of |𝒉c| [76] but preserves the non-trivial topology [41]. In this regard, the topological phase
transition may be observed in spin-orbit coupled s-wave superconductors with sufficiently strong
Zeeman splitting [38, 74].

The topological phase-transition fields are defined by two magnetic fields ℎt,1(𝑛) and ℎt,2(𝑛) at
which the band gap closes, given by [77, 78]

ℎt,1(ℎx,y = 0) =
√

(

ΔOP
)2 + (𝜖(𝟎) − 𝜇(𝑛))2, (III.1.11)

ℎt,2(ℎx,y = 0) =
√

(

ΔOP
)2 + 𝜇2(𝑛). (III.1.12)

For low band fillings 𝑛 ≪ 1 one has 𝜇(𝑛) ≈ 𝜖(𝟎) and hence ℎt,1 < ℎt,2. However, around half
filling 𝑛 ≈ 1 one finds 𝜇(𝑛) ≈ 0 and thus ℎt,1 > ℎt,2. In between these cases the crossing point
of both transition-field curves is found at around quarter filling 𝑛 ≈ 1∕2 which corresponds to
𝜇 = −2𝑡. At this point all topological phases merge as shown in Figure III.6 a).
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Figure III.5.: The zero temperature spin-textures are depicted for (a) the topologically trivial phase
with 𝑁S = 𝑁C = 0, 𝑛 = 0.19, (ℎz − ℎt,1)∕ℎt,1 = −0.5, (b) for the topologically
non-trivial phases with 𝑁S = 1∕2, 𝑁C = −1, 𝑛 = 0.12, (c) (ℎz − ℎt,1)∕ℎt,1 = 0.18,
𝑁S = −1, 𝑁C = 2, 𝑛 = 0.9, (ℎz − ℎt,2)∕ℎt,2 = 0.3 , and (d) 𝑁S = −1∕2, 𝑁C = 1,
𝑛 = 0.54, (ℎz−ℎt,1)∕ℎt,1 = 0.05. The arrows indicate the direction of the normalized
spin vectors. The color codes the 𝑧-component of the normalized spin, where red
corresponds to 𝑆z = 1 whereas blue corresponds to 𝑆z = 0. The positions of the
𝒌t , which are defined in the main text, are marked with red and green symbols for
vortices and antivortices, respectively. The figures are taken from Reference [74].

The gap closes whenever one band of the normal conducting state is depleted — related to ℎt,1
and ℎt,2 of Equations (III.1.11) and (III.1.12) in the ΔOP → 0 limit — as illustrated in Figure III.4.
There, 𝜉+𝒌 and 𝜉−𝒌 are the helical spin-split eigenbands of the normal conducting Hamiltonian. The
transition fields depend on 𝛼R through 𝜇(𝑛) obtained by solving the particle-number equation.

As mentioned above, in the region between quarter filling and half filling corresponding to
𝑛 = 1∕2 and 𝑛 = 1, respectively, two non-trivial topological phases with 𝑁C = 2 and 𝑁C = 1
are possible. However, the latter requires large magnetic fields with ℎz ≥ 𝜖(𝟎)∕2 = ℎ0 where ℎ0
is the minimal magnetic field for which ℎz > ℎt,1, ℎt,2 is fulfilled. In the low filling regime, the
minimum transition field min(ℎt,1(𝑛)) = ΔOP is obtained for a filling 𝑛∗ for which 𝜇(𝑛∗) = 𝜖(𝟎);
𝑛∗ depends on the Rashba spin-orbit coupling as shown in Figure III.6 b). Here, it should be noted
that 𝜖(𝟎) is not the lowest band energy on account of the finite Rashba spin-orbit coupling. The
topological phase diagram of the topological s-wave superconductor is given in Figure III.6.
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Figure III.6.: a) Phase diagram of topological ground states specified by the Chern numbers𝑁C for
𝛼R∕𝑡 = 0.5 and 𝑉 ∕𝑡 = 0.75. b) Filling 𝑛∗ as a function of 𝛼R∕𝑡, defined as the band
filling at which ℎt,1 = ΔOP (see text). The figures are taken from Reference [74].

If the magnetic field is rotated into an in-plane orientation, the topological transition fields ℎt,1
and ℎt,2 are decreased. For ℎx, ℎy ≪ 𝛼R

ℎt,1,2(ℎx,y ≠ 0) ≈ ℎt,1,2(ℎx,y = 0) − 𝑡
ℎ2x + ℎ

2
y

𝛼2R
(III.1.13)

is obtained analogous to the QWZ-model. The required field rotation into an in-plane orientation
which may be required in order to realize this model experimentally leads to pairing with finite
center-of-mass momentum [79–83], however, this does not destroy the inherent topological
character of the considered phases [69] and, consequently, thermodynamic signatures which are
addressed in Section IV.3 are not affected qualitatively. Therefore, without loss of generality,
the analysis of thermodynamic quantities in the following sections concentrate on the situation
without finite momentum pairing.

As in the QWZ-model, the topological s-wave superconductor also amounts to topologically
distinct spin-textures in reciprocal space related to the different Chern numbers [69]. In contrast
to the QWZ model, four different topologically non-trivial phases can be identified. The spin-
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expectation value is determined by
⟨𝒔(𝒌)⟩ = 1

2
∑

𝜈=1,2
tanh

(

𝛽𝜆𝜈(𝒌, 𝜇)
2

)

⟨𝜈,𝒌|
(

𝑐†
𝒌,↑𝑐

†
𝒌,↓

)

𝝈
(

𝑐𝒌,↑𝑐𝒌,↓
)T

|𝜈,𝒌⟩. (III.1.14)

At ℎx,y = 0 and 𝑇 = 0, the spin-texture for the topologically trivial phase for low band
filling is depicted in Figure III.5 a. There are vortex patterns at the momenta (0, 0) and (𝜋, 𝜋) and
antivortices at (0, 𝜋) and (𝜋, 0). For ℎx,y ≠ 0, the 𝒌t are shifted like in the QWZ model. In contrast
to the QWZ-model, at some of the centers of a vortex or antivortex the spin normalization must
be defined by the limit 𝒌 → 𝒌t since all three spin components can vanish simultaneously. For
𝑁C = 0, the spin-texture is non-normalizable at all four 𝒌t because all spin-components vanish
as shown in Figure III.5 a). The normalized spin-textures for the phases with 𝑁C = −1, 2, 1 are
shown in Figures III.5 b - d. In each of the these phases, the spin points in positive z-direction,
𝑺 = (0, 0, 1)𝑇 , at one or more of the 𝒌t and its normalization is hence possible there as depicted
in Figure III.5.

As the normalized spin 𝑺(𝒌) can be viewed as a map from the torus (the 2d Brillouin zone)
to the upper hemisphere of the sphere S2, the number of the 𝒌t mapped onto the “north pole”
are less than or equal to four, whereas the remaining points are mapped to the equator, where
the map becomes undefined. The manifold of the spin expectation values can be compactified
to the unit sphere such that the equator is mapped to the south pole [69] of the sphere proving
the spin-texture’s topological non-trivial nature because the continuous map between the com-
pact manifolds is a topological invariant and application of Equation (III.1.10) is possible. In
Figure III.5, the color of the arrows indicates on which latitude of the sphere the normalized spin
expectation value is positioned after compactification. Dark red corresponds to the covering of
the north pole while dark blue implies the mapping onto the equator. Similar to the QWZ-model
the mapping is defined by Equation (III.1.4). The number of north pole coverings is one, zero,
two, and three for the phases 𝑁C = −1, 0, 1, 2, respectively.

III.2. Relation of the Loder curvature and the Berry curvature
in the topological s-wave superconductor

According to Reference [69], the skyrmion number and the Chern number are closely related such
that the 𝑁S = −0.5𝑁C. Moreover, according to the reference, the Berry curvature is pointwise
identical to ΩS defined in (II.1.24). However, this identity does not hold in the topological s-
wave superconductor which is discussed in the following. Here, finite momentum pairing in
the Fulde-Ferrell regime with a single momentum 𝒒 is considered. However, states with more
than one single 𝒒-vector may be favored in energy [48]. The Hamiltonian of the topological
s-wave superconductor with Rashba spin-orbit coupling and Zeeman splitting in the Fulde-Ferrell
situation is given by

𝐻(𝒌) =
⎛

⎜

⎜

⎜

⎝

𝜖(𝒌) + ℎz 𝜉(𝒌) 0 ΔOP
𝜉∗(𝒌) 𝜖(𝒌) − ℎz −ΔOP 0
0 −ΔOP −𝜖(−𝒌 + 𝒒) − ℎz −𝜉∗(−𝒌 + 𝒒)

ΔOP 0 −𝜉(−𝒌 + 𝒒) −𝜖(−𝒌 + 𝒒) + ℎz

⎞

⎟

⎟

⎟

⎠

(III.2.1)
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Figure III.7.: a) ΩB and b) ΩL obtained for ℎy = 0.2𝑡, ℎx = 0, 𝑞x = 0, 𝑞y = 0; c): ΩB and d) ΩL
at ℎy = 0, ℎx = 0, 𝑞x = 𝜋∕10, 𝑞y = 0. Other parameters are 𝛼R = 0.4𝑡, ΔOP = 0.5𝑡
and ℎz = ℎt,1∕2.

in the basis |𝜓⟩ = (𝑐𝒌,↑, 𝑐𝒌,↓, 𝑐
†
−𝒌+𝒒,↑, 𝑐

†
−𝒌+𝒒,↓) with 𝜉(𝒌) = 𝜖R(𝒌) + ℎx − iℎy.

Numerically, it was suggested in Reference [69] that the Loder curvature defined in (III.1.9)
may be related to the Berry curvature by

ΩB(𝒌) = −1
2
(

ΩL(𝒌) + ΩL(−𝒌 + 𝒒)
)

𝒌 ∉ {(0, 0), (𝜋, 0), (0, 𝜋), (𝜋, 𝜋)} . (III.2.2)
This suggestion was not investigated further in the reference and has not been analyzed so far.
The numerical analysis shows that this identity is not fulfilled as discussed below.

Apparently, the Loder curvature is very tedious to analyze analytically since terms get lengthy
because of the square root terms in the denominator in the spin-normalization. Setting 𝒒 ≠ 0
but keeping ℎx, ℎy = 0 shifts the Berry curvature in momentum space by the vector 𝒒 but it
remains symmetric as shown in Figure III.7 c) On the other hand, for ℎx ≠ 0 or ℎy ≠ 0 while
keeping 𝒒 = 0 the Berry curvature does not shift and the Berry curvature is symmetric depicted in
Figure III.7 a). In comparison, the Loder curvature is shown for both cases in Figure III.7 d) and
b), respectively. In contrast to the Berry curvature the Loder curvature is not symmetric in both
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Chapter III. Topological spin-textures and topological invariants

Figure III.8.: Comparison of 1∕2 ⋅
(

ΩL(𝒌) + ΩL(−𝒌 + 𝒒)
) with the Berry curvature. The pa-

rameters used in a) and c) correspond to the parameters chosen in Figure III.7 a)
and b). The parameters used in b) and d) correspond to the parameters chosen in
Figure III.7 c) and d).

cases. In order to symmetrize the Loder curvature one has to take 1∕2 ⋅
(

ΩL(𝒌) + ΩL(−𝒌 + 𝒒)
)

which is suggested in Ref [69].
The equality in (III.2.2) is tedious to analyze analytically since the terms become cumbersome.

Restricting the evaluation to 𝑘y = 0 and allowing only for ℎy ≠ 0 and 𝑞x ≠ 0 while 𝑞y = 0
simplifies the expression for ΩL significantly. Then 𝑆Lx = 0 and |𝑆Ly| = |𝑠y∕(𝑠2x + 𝑠

2
y)| = 1 such

that one finds

ΩL(𝑘y = 0, 𝑘x) =
sign

(

𝑠y
)

|𝑠y|

( occ
∑

𝜈
4Re

(

∑

𝜇≠𝜈
⟨𝜈,𝒌|𝜎z ⊗ 𝜏11|𝜇,𝒌⟩

⟨𝜇,𝒌|𝜕𝑘x𝐻|𝜈,𝒌⟩
𝐸𝜈,𝒌 − 𝐸𝜇,𝒌

)

×

( occ
∑

𝛼
Re

(

∑

𝛽≠𝛼
⟨𝛼𝑅,𝒌|𝜎x ⊗ 𝜏11|𝛽,𝒌⟩

⟨𝛽,𝒌|𝜕𝑘y𝐻|𝛼,𝒌⟩

𝐸𝛼,𝒌 − 𝐸𝛽,𝒌

)))

.

(III.2.3)
The expression for ΩL(𝑘y = 0, 𝑘x) depends only on the eigenvectors and the derivative of the
Hamiltonian. This expression is thus numerically simple and comparable to the Berry curvature
given in (II.1.22). The numerical analysis confirms the correctness of Equation (III.2.2) for
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ℎx, ℎy = 0 and 𝒒 = 0. For ℎx, ℎy ≠ 0 or 𝒒 ≠ 0 this equality is numerically not fulfilled but
differences are small except for a small region around the vortex center point. The numerical
comparison of ΩL(𝑘y = 0, 𝑘x) calculated with (III.2.3) and ΩB(𝑘y = 0, 𝑘x) is given in Figure III.8.
Due to the finite momentum pairing vector 𝒒, the vortex center is shifted in momentum space.

For 𝒒 ≠ 0 and ℎx = ℎy = 0, the result of the comparison within the full Brillouin zone where
ΩL is calculated through (III.1.9) is given in Figure III.8 a). A small but non-zero difference is
recognizable around the Γ-point where a large difference is given in the vicinity to that point.
This difference is confirmed by the evaluation of Equation (III.2.3) along the dashed line indicated
in the inset. There, the vortex center is given at 𝒒 where a singularity in ΩL(𝒒) is found in the
numerical results. Therefore ΩL(−𝒌) has a singularity at −𝒒 and another singularity arising from
ΩL(−𝒌 + 𝒒) is given at 𝒌 = 2𝒒. The criticalities are caused by the vanishing of |𝑠y| at the vortex
center points.

The pronounced differences in the obtained results are not numerical artifacts as one may think
due to the vortex texture and the undefinedness of the texture at the vortex center point. This is
shown by the evaluation of Equation (III.2.3) where the difference is a smooth function of 𝑘x.

The analogous situation is obtained by taking 𝒒 = 0, ℎx = 0 but ℎy = 0.2𝑡. The results are
depicted in Figure III.8 b). The identity (III.2.2) is thus only fulfilled in the situation with total
out-of plane magnetic field which however does support finite center of mass momentum pairing
[41, 48].

III.3. Finite size and temperature

The spin-textures shown above are the ground state spin-textures for systems with periodic
boundary conditions. Here, the effects of finite temperature and finite size on the spin-textures
are analyzed. First, the changes in the spin-texture due to finite temperatures are investigated. At
finite temperature, the vortex and antivortex texture is maintained. Moreover, the z components
of the normalized spin expectation vector is stable against finite temperatures at the different
𝒌t . Therefore, according to Equation (III.1.10), the topological spin-texture is — in terms of the
skyrmion number — invariant under any finite temperatures in the QWZ-model. As discussed in
Chapter IV qualitative differences in the change of the magnetization with respect to a temperature
increase can be identified across a topological phase transition. The difference in the 𝑠z values
defined in (III.1.14) due to the change in temperature are displayed in Figure III.9 above and
below a topological transition field ℎt . The change in the magnetization is largest in the vicinity
of the gap closing momentum 𝒌t , which is in the case depicted in the figure given at 𝒌t = (0, 0).
The derivative of the magnetization with respect to the temperature shows a sign change of
the spin polarization across the topological phase transition at small temperatures. At high
temperatures, two regions with a different sign in 𝜕𝑇𝑚(𝒌) are found for ℎz < ℎt,z,3. The change
in the magnetization in z-direction is thus different for the distinct topological phases. The net
magnetization of the entire system is used to identify topological phase transitions in the spin
magnetization which is discussed in more detail in Section IV.2.

The QWZ-model is translation invariant and thus diagonal in reciprocal space. At finite size
with open boundary conditions, the translation invariance is of course no longer fulfilled which
results in off-diagonal matrix elements in momentum space. It is thus more convenient to stay in
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Figure III.9.: Change of the momentum-resolved spin polarization in the QWZ model with respect
to the temperature 𝑇 . The results are displayed in a) and b) for 𝑇 = 0.1𝑡 and in c)
and d) for 𝑇 = 0.5𝑡. The topological non-trivial phase is shown in a) and c) with
ℎz = ℎt,3 − ℎt,3∕5. The trivial phase is given in b) and d) for ℎz = ℎt,3 + ℎt,3∕5.
The green arrows indicate the direction of the in-plane components of the spin
expectation values.

real space calculations for finite size systems by directly implementing the Hamiltonian given in
Equation (II.3.1). Compared with the translation invariant system the full real-space Hamiltonian
needs to be implemented, therefore the calculation time is highly increased for open boundary
calculations and thus smaller systems have to be implemented. Here, the real space Hamiltonian
is implemented with the possibility of choosing the boundary conditions in the different directions
being either open or periodic.

For periodic boundary conditions, the real space representation yields a vanishing in-plane
polarization at each point in real space and the z-component is finite but constant in the Brillouin-
zone. These result are expected since the system needs to be translation invariant and thus needs
to be homogeneous. As the total magnetization in the in-plane components need to vanish, all
in-plane spin components need to be zero at any lattice point.

Switching to open boundary conditions, the obtained results in momentum space and in real
space are summarized in Figures III.10. Although the system is not translation invariant with
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Figure III.10.: Spin-textures of the QWZ model with open boundary conditions represented
in reciprocal space in a) and in real space in b). The parameters ℎz = 0.5𝑡,
𝛼R = 0.5𝑡, ℎx = ℎy = 0𝑡 are used corresponding to the topological phase with
𝑁C = −1. The spin-texture in a) has an 1D inset below.

open boundary conditions and hence not diagonal in momentum space, the expectation value
of the spin for a certain momentum can still be taken by Fourier transforming the Hamiltonian
into momentum space and calculating its eigenvectors. The expectation value of a spin state in
momentum space is then defined by

𝒔(𝒌, 𝑇 = 0) =
(

𝜓𝑘1,↑, 𝜓𝑘2,↑,… , 𝜓𝑘1,↓, 𝜓𝑘2,↓,… , 𝜓𝑘𝑁−1,↓, 𝜓𝑘𝑁 ,↓
)∗
1𝒌 ⊗ 𝝈

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜓𝑘1,↑
𝜓𝑘2,↑
⋮

𝜓𝑘1,↓
𝜓𝑘2,↓
⋮

𝜓𝑘𝑁−1,↓
𝜓𝑘𝑁 ,↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (III.3.1)

At any finite size, the skyrmion number, being an exact topological invariant, cannot be determined
through Equation (II.1.24) since this equation requires infinite systems in order to obtain the
continuum description. However, Equation (III.1.10) can be generalized for finite size lattice
models at which the vorticity is still confined to integers. Thus, the vortex- and antivortex-like
patterns can still be identified in finite size systems which can then be related to the topological
invariants of the corresponding continuum spin-texture. For distinguishability, the term topological
character of the spin-texture is used in the finite lattice model instead of skyrmion number which
denotes the topological invariant which is defined through the continuum model.
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Figure III.11.: Spin-textures of the QWZ-model at different homogeneous magnetic fields in
z-direction and system sizes. The used parameters are a) 𝑁 = 𝑁x = 𝑁y = 10 and
ℎz = ℎt,z,3−0.2𝑡; b)𝑁 = 20 and ℎz = ℎt,z,3−0.2𝑡; c)𝑁 = 10 and ℎz = ℎt,z,3−0.9𝑡;
d) 𝑁 = 20 and ℎz = ℎt,z,3 − 0.1𝑡.

The results show that the vortex and antivortex texture in momentum space is maintained but
the z-component of the spin is modified which is clearly visible in the real space solution. Instead
of a homogeneous polarization in 𝑟x, the polarization is dependent on 𝑟x showing the largest
magnitudes of the polarization at the edges as indicated in Figure III.10 b).

Depending on the size of the system and the chosen parameter sets in the Hamiltonian the
topological character of the spin-texture can differ from the topological invariant of the related
texture with the periodic boundary conditions. For example in Figure III.11 a) the z-component
of the spin points towards the north-pole at all the 𝒌t for ℎz = ℎt,z,3 − 0.2t and its spin-texture
has therefore a trivial topological character. For periodic boundary conditions in the continuum
limit, however, a non-trivial phase with 𝑁C = 1 is established for that parameter set. However,
the difference between the topological character of the finite size system and the topological
spin-texture in the periodic system are dependent on the parameter set of the Hamiltonian and
the system size. One can identify that the 𝑠z(𝒌t) values differ from -1 and 1 due to the finite size
effects as shown in Figure III.10 a). This difference is enhanced by shrinking the system size. It
turns out that the transitions fields ℎts(𝑁x, 𝑁y) are functions of the system size. For magnetic
fields |ℎz−ℎt| < |ℎts(𝑁x, 𝑁y)−ℎt|, the spin-texture changes its topological character. Therefore,
a topological character transition can be driven by the system size as demonstrated in Figure III.11.
The spin character is trivial in Subfigure III.11 a) for which a system size of𝑁 = 10 and a value of
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ℎz = ℎt,z,3−0.2𝑡 are chosen. The value for ℎz corresponds to a topological non-trivial spin-texture
for periodic boundary conditions. Keeping ℎz at the same value but choosing 𝑁 = 20 leads to a
non-trivial character of the spin-texture as depicted in Subfigure III.11 b). The increase of the
system size does therefore lead to a change in the topological spin-texture character. On the other
hand a topologically non-trivial spin-texture character is obtained for𝑁 = 10 but ℎz = ℎt,z,3−0.9𝑡
depicted in c). Finally, a trivial spin-texture is obtained for 𝑁 = 20 and ℎz = ℎt,z,3 − 0.1𝑡 shown
in subfigure d). The change of the topological character is not necessarily a change into a trivial
character. Transitions between non-trivial topological spin-texture characters are possible since
the sign of the 𝑠z(𝒌t) can change at single momenta 𝒌t . These observations allow to introduce the
concept of system size driven topological character transitions.

A major difference between the results for open boundary and periodic boundary results is that
in case of open boundaries, the systems can possess gapless edge states and for periodic boundary
conditions it cannot which is referred to as bulk-boundary correspondence [8]. In order to analyze
the edge states, different boundary conditions are enforced in the x and y direction. At first, the
cylinder geometry is used. There, in the x-direction, the boundary conditions are open, whereas
in the y-direction periodic boundary conditions are chosen.

In fact, edge states for the open boundary conditions are only present for parameter sets for
which the corresponding system with periodic boundary conditions is topologically non-trivial.
This is fulfilled for all ℎz ∈

{

ℎt,1(ℎ𝑥,𝑦 = 0), ℎt,3(ℎ𝑥,𝑦 = 0)
}. The edge modes are indicated with

the colored lines in the dispersion shown in Figure III.12 b). They fill the gap between the bulk
(black colored) states. The color provides information about the real space distribution of the
states. The used color map is generated by the function

1(2)(𝑠, 𝑘y) =
1
𝐿
∑

𝑟x

(

𝑟x −
𝐿
2

)

|⟨𝑠, �̂�x, �̂�y⟩1(2)|
2 (III.3.2)

where ⟨… ⟩1(2) denotes the expectation value taken for a single edge mode where the index
corresponds to the lower (1) and the higher (2) band and 𝑠 ∈ {↑, ↓}.

The indicated colors orange to yellow corresponds to a state distributed dominantly around
𝑟x = 𝐿 and dark to light blue correspond to a state distributed around 𝑟x = 0. Likewise black
corresponds to a state that is distributed across the full system length which thus corresponds to a
bulk state distribution. At any topological trivial phase, no edge states can be found whereas in the
topological bulk phase, edge modes are clearly identified. The edge states show a linear dispersion
the 𝑘y,t as shown in Figure III.12. The have its probability at the edges of the system as the results
in Figure III.12 illustrate. The band gap is vanishing for towards infinite systems. However, at any
finite size, there is a small but finite overlap of the edge states from both ends of the system. As a
result, the edge states display a small but finite gap [84]. Besides the probabilities for an edge
state to be localized at a certain position, the probability for the pseudo-↑-spin and ↓-spin have
been distinguished as well. The edge states with ↑-spin and group velocity 𝑣G ∶= 𝜕𝑘y𝜆 > 0 are
found at the edge 𝑟x = 0 while the states with ↑-spin with 𝑣G < 0 are located at the opposite edge.
The situation for the ↓-spin expectation values are equivalent. This means that all the edge states
carry electrons with both ↑-spin and ↓-spin in the positive y-direction at 𝑟x = 0 and in negative
y-direction at 𝑟x = 𝐿 resulting in an edge current. The edge modes are thus chiral. These results
are well known from the quantum Hall effect [85].
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Figure III.12.: Dispersions and edge states in the QWZ-model; a) Dispersion in the topological
trivial phase which has no edge states. b) Dispersion in the non-trivial phase
where edge modes are identified displayed in colors. c) Edge modes and bulk
states distributed in position space. The colors correspond to the states marked in
Subfigure b). d) Distribution of the edge modes in the 𝑟x − 𝑘y-space for the lower
band. Further details are given in the main text.

In the next step, the edge states with energy closest to the chemical potential 𝜇 are analyzed for
open boundary conditions in both, x- and y-direction. In the density of states (DOS) or likewise
the local density of states (LDOS), one can recognize the edge states as those which fill the band
gap as depicted in Figure III.14 a) and b). The LDOS is shown at the edge 𝑟x = 0 as a function of
𝑟y and the energy 𝐸. The color indicates the intensity of the LDOS and the band gap is marked
by the dashed lines. In the trivial phase, no edge state can be identified. The LDOS and DOS is
plotted for ℎz = ℎt,z,3 + 0.5𝑡 in Figure III.14 a) which corresponds to the trivial bulk phase and
for ℎz = −0.5𝑡 in Figure III.14 b) corresponding to the non-trivial bulk phase. The DOS clearly
indicates the bulk gap where the DOS is zero in a) and small but almost constant in b). The edge
modes are distributed along the entire edge for ℎz = ℎt,z,3 − 0.5𝑡 while its highest probability is
found at the corners.

These findings are confirmed by the results displayed in Figure III.13 where the distribution
of the spin-resolved expectation values of the position operator are given in position space. The
results clearly show that the edge states are localized at the corners for ℎz = 0.5𝑡 (Figure III.13a)
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Figure III.13.: Distribution of the edge modes in the QWZ model in real space. At ℎz = 0.5𝑡,
which is presented in a) and b), the edge modes are localized at the corners. At
ℎz = ℎt,z,3 − 0.5𝑡 given in c) and d), the edge modes are found along the entire
edge but with highest probability at the corners. Particular bulk states are depicted
in e) and f).

and III.13 b)) and spread across the edge for ℎz = ℎt,z,3 − 0.5𝑡 (Figure III.13 c) and III.13 d) with
highest probability at the corners. The distributions are different for ↑-spin and ↓-spin as one would
expect because there is an imbalance between ↑-spin and ↓-spin resulting in a net-polarization.
Moreover, the ↓-states are more localized at the corners than the ↑-states at ℎz = ℎt,z,3 − 0.5𝑡.
The bulk states are plotted in Figure III.13 e) and III.13 f) showing no ↓-spin at the center of the
system or the edge but the probability is highest in a region in between the center and the edges.
The bulk states, on the other hand, have a non-zero ↑-spin expectation value at the center of the
system. Thus, the results confirm the existence of edge states when the corresponding bulk is
topologically non-trivial.
Topological s-wave superconductor

The situation regarding the finite temperature and the finite size results is in the topological s-wave
superconductor different than in the QWZ model as discussed in the following. A major reason
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Figure III.14.: Local density of states (LDOS) at 𝑟x = 0 as a function of 𝑟y and 𝐸 (figures above)
and the density of states (DOS) (figures below) for the QZW model in a) the trivial
phase at ℎz = ℎt,3 + 0.5𝑡 and in b) the non-trivial phase at ℎz = ℎt,3 − 0.5𝑡.

for the differences is that the topological s-wave superconductor exhibits a meron-like spin-texture
in momentum space whereas the spin-texture is skyrmion-like in the QWZ-model. This has
consequences on the stability of the topological character of the spin-textures.

Important for understanding the meron spin-textures is the existence of distinct points at which
all three spin-components vanish simultaneously. At those points, the spin-normalization is not
defined. However, the topological state can be described by the skyrmion number which can be
determined by Equation (III.1.10). At any finite temperature 𝑇 , the 𝑠𝑧(𝒌) are non-zero everywhere
in the Brillouin zone because any small excitation induces a non-zero polarization. The north pole
is then covered four times since the in-plane spin components 𝑠x(𝒌t) = 𝑠y(𝒌t) = 0 by symmetry.
Hence, the number of 𝒌t mapped onto the equator is zero and the compactified map does not
yield a full covering of the S2. Because the map is still smooth, the associated skyrmion number
vanishes for any 𝑇 > 0. Yet, the change in the spin polarization around the gap closing points is in
the topological s-wave superconductor quite similar to the QWZ-model. In Figure III.15 𝜕𝑇𝑀z(𝒌)
is plotted in the Brillouin zone. Similarly as in the QWZ-model, 𝜕𝑇𝑀z(𝒌) changes sign across
the topological phase transition which has consequences for the total change of the magnetization
in the vicinity of the topological phase transition which is analyzed further in Section IV.2.

Also, the Hamiltonian for the topological s-wave superconductor is analyzed for open boundary
conditions. The results in the QWZ model in the case of open boundary conditions show that the
systems can possess edge states just when the bulk is topologically non-trivial. This situation is
different in the topological superconductor. Different boundary conditions are enforced in the x
and y direction in order to analyze the edge states. First, open boundary conditions in x-direction
and periodic boundary conditions in y-direction are used.

The edge states are clearly identified for the system with non-trivial topology shown in Fig-
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Figure III.15.: Change of the spin polarization in the topological s-wave superconductor model
with respect to the temperature 𝑇 . The results are displayed in a) and b) for
𝑇 = 0.01𝑡 and in c) and d) for 𝑇 = 0.1𝑡. The topological trivial phase is given
in a) and c) with ℎz = ℎt,1 − ℎt,1∕5. The non-trivial phase is shown in b) and d)
with ℎz = ℎt,1 + ℎt,1∕5. The green arrows indicate the direction of the in-plane
components of the spin expectation values. Further parameters are 𝜇 = −3𝑡,
ΔOP = 0.5𝑡 and 𝛼R = 0.5𝑡.

ure III.16 a) and b). The edge states are indicated colored as for the QWZ model described
above. There, the used color map is generated by the function given in Equation (III.3.2). Setting
ℎz = ℎt,1, there are two edge states for each momentum 𝒌 ∈

[

−𝜋∕2, 𝜋∕2
] where the states with

𝑣G > 0 are found at the edge 𝑟x = 𝐿 while the edge states with 𝑣G < 0 are located at 𝑟x = 0
as shown in Figure III.16 a), b). The states with 𝑣Gy > 0 or 𝑣Gy < 0 carry both , ↑-spin and
↓-spin, however, the ↓-spin is much more localized at the edge as shown by the color map in
Figure III.16 a) and b), for ↓- and ↑-spin, respectively.

Another major difference between the QWZ model and the topological s-wave superconductor
is that the latter exhibits edge states even for parameter sets which do not support non-trivial
topology in the periodic setup. These edge states are depicted in Figure III.16 c) and d). They
carry also a non-vanishing charge current since the states with a positive group velocity in y
direction are found at 𝑟x = 𝐿 and the states with a negative group velocity are found at 𝑟x = 0. The
topological s-wave superconductor exhibits thus chiral edge states when the bulk is topological
trivial. In addition the edge states have a rather ↑-spin character than ↓-spin character which is

40



Chapter III. Topological spin-textures and topological invariants

Figure III.16.: Superconducting model with open boundary conditions. a) and b): Edge states
spin-resolved in the topological bulk phase with 𝑁C = −1. ↓-states are given in
a) and ↑-states are depicted in b). The ↓-states are closer confined to the edge
than the ↑-states as indicated by the colors. c), d): Edge states spin-resolved in
the trivial bulk phase characterized by 𝑁C = −1. ↓-states are given in c) and
↑-states are depicted in d). The ↓-states are closer confined to the edge than the
↑-states. The parameters 𝛼R = 0.5𝑡, 𝜇 = −3.0𝑡 and ℎz = ℎt,1 + 0.1𝑡 (in a) and b))
and ℎz = ℎt,1 − 0.1𝑡 (in c) and d)) are used.

the result of the strong Zeeman field which breaks time reversal symmetry and suppresses the
↓-spin chanel. However, these edge states are gapped as indicated in the figures.

In the next step, the edge states are analyzed for open boundary conditions in both, x- and
y-direction. The results are presented in Figures III.17 a) and b) for a parameter set, where the
corresponding bulk solution is trivial and in Figures III.17 c) and d) for a non-trivial bulk solution.
It can be recognized that the edge states that fill the band gap identified in the DOS are present in
both parameter sets (where the bulk is trivial and where the bulk is topological).

The existence of the edge states in the trivial bulk phase and the differences in the distribution of
the ↑-spin expectations and ↓-spin expectations are confirmed by the results of the distribution of
the edge states for the ↑- and ↓-spin polarization of the edge modes for open boundary conditions
in both, x and y direction. The distribution of the edge states for the parameter set corresponding
to a trivial bulk phase are depicted in Figure III.17 a) and b). While the ↓-spin expectation value is
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Figure III.17.: Real space distribution of the edge states in the topological s-wave superconductor.
Further descriptions are given in the main text. Subfigures a) and b) correspond to
the trivial phase and c), d) correspond to the topological non-trivial state.

distributed along the edge and most conspicuous at the corners, the ↑-spin is rather spread allover
the system.

The parameter set corresponding to a topological bulk phase is depicted in Figure III.17 c) and
d), where the edge states are mainly distributed across the edge for both ↑- and ↓-spin. However,
the expectation value for the ↓-spin reaches further into the bulk whereas the ↑-spin expectation
value is distributed closer along the edge. A square like-pattern in the distribution of the edge
modes can be identified. This pattern can also be recognized in the real space spin-textures given
in Figure III.18.

The spin-textures for open boundary conditions are given in Figure III.18 showing that the vortex
and antivortex texture in momentum space is maintained such as for the QWZ-model. In contrast
to the topological two-band model, the topological character of the spin-texture corresponds to a
trivial skyrmion number for every finite system due to the fragility of the meron like spin-texture.
At any finite size system, the 𝑠z expectation value is different to zero at the vortex cores such
that the component 𝑆z(𝒌t) of the normalized spin points onto the north pole at every 𝒌t . This is
in clear contrast to the dependence of the topological character of the spin-texture as a function
of the systems size in the QWZ-model where the non-trivial character can be stable against the
effects of the finite size for sufficiently large systems.

The corresponding spin-textures in real space are given in Figure III.18 c) and d). The real
space spin-texture has a non-zero spin-expectation value in the in-plane spin components while
the overall in-plane spin-expectation value sums up to zero. So for the topological s-wave
superconductor, the real space spin-texture is complicated, however at the edge of the system, the
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Figure III.18.: Spin textures obtained from the real space calculations in the topological s-wave su-
perconductor with periodic boundary conditions in a) and c) and for open boundary
conditions in b) and d). The shown arrows represent the full normalized spin-
vectors in a) and b). The arrows in c) and d) represent the in-plane components
of the spin-vectors normalized to unit length. The used parameters are 𝛼R = 0.5𝑡,
ΔOP = 0.5𝑡, 𝜇 = −3𝑡 and ℎz = ℎt,1 + ℎt,1∕2.

in-plane spin components point towards the edge of the system both in the trivial and topological
phase while the spins are more disordered in the trivial phase at the boundary. In the bulk, the
in-plane spin direction changes drastically its direction while the spin direction is ordered along
linear patterns inside the system. This pattern is similarly obtained for the edge state wave function
distribution inside the system given in Figure III.17. Yet, the real space spin-texture is not useful
to interpret the non-triviality of the spin-states.

The edge states for the half-open boundary conditions are gapped in the trivial phase, whereas
the edge states cross (albeit there is a finite gap due to finite size effects) for the non-trivial setup.
For open boundary conditions the gap — as a function of the system size in the topological and
the trivial bulk phase — are shown in Figure III.19 b). The corresponding gap for the QWZ-
model with open boundary conditions is given in Figure III.19 a). For the topological parameter
set, the finite size gap vanishes for increasing system sizes whereas for the trivial phase the
finite size gap converges towards a constant value as the system size is enlarged. While the
gap is decreasing monotonously as a function of the system size in the QWZ model the gap is
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Figure III.19.: Gap as a function of the system size given by 𝑁 = 𝑁x = 𝑁y for fully open
boundary conditions in the QWZ model in a) and in the topological s-wave super-
conductor in b). The finite size gap vanishes as the system size increases in the
non-trivial phases while the gap is finite for the non-trivial phases.

an oscillatory increasing or decreasing function of the system size for the topological s-wave
superconductor in the trivial and topological phase, respectively. These results confirm the bulk
boundary correspondence. They show however, that chiral edge states exist even in the trivial
bulk phase carrying a non-vanishing edge current.

III.4. Extension to higher winding numbers

Tracing the in-plane component of the spin expectation value along a path around the 𝒌t , the
spin winds around only once in the model used above. In principal, any spin winding 𝑤 ∈ ℤ is
possible. To allow for trivial windings 𝑤 = 0 or higher |𝑤| > 1 with linear band crossings at the
topological transition, the Hamiltonian used in (II.3.2) is modified. This modified QWZ-model is
introduced because the analysis in section IV.3, where thermodynamic signatures of topological
phase transitions are analyzed numerically, deals with the uniqueness of thermodynamic signatures
for topologically non-trivial phase transitions. It is there of considerable interest whether the
analyzed signatures are indeed only non-zero for non-trivial spin-texture transitions. For this
purpose, these signatures need to be tested on distinct spin-textures.

In the following, a 𝒅(𝒌)-vector allowing for more general windings is defined for the QWZ-
model. In order to obtain the topological band crossings around the momenta 𝒌t , points in the
Brillouin-zone at which 𝑑x ∝ 𝑘y and 𝑑y ∝ 𝑘x are constructed. In polar coordinates one has

𝑘x(𝑟, 𝑤, 𝜑) = 𝑟 cos(𝑓 (𝑤,𝜑)) (III.4.1)
𝑘y(𝑟, 𝑤, 𝜑) = 𝑟 sin(𝑓 (𝑤,𝜑)) (III.4.2)
𝜑(𝑘x, 𝑘y) = atan2

(𝑘y
𝑘x

)

(III.4.3)

𝑟(𝑘x, 𝑘y) =
√

𝑘2x + 𝑘2y (III.4.4)

44



Chapter III. Topological spin-textures and topological invariants

where atan2 is the signed arctangent. In contrast to the regular atan which is defined in the
interval [−𝜋∕2, 𝜋∕2], the atan2 returns the angle in [−𝜋, 𝜋]. The 𝒅-vector in (II.3.3) is replaced
by (𝑑x, 𝜆𝑑y, 𝑑z) with

𝑑x = 𝛼R ⋅ 𝑟(𝑘x, 𝑘y) sin
(

𝑓 (𝑤,𝜑(𝑘x, 𝑘y))
) (III.4.5)

𝑑y = 𝛼R ⋅ 𝑟(𝑘x, 𝑘y) cos
(

𝑓 (𝑤,𝜑(𝑘x, 𝑘y))
) (III.4.6)

𝑑z = ℎz − 𝑡(cos(𝑘x) + cos(𝑘y)) (III.4.7)
introducing the additional parameter 𝜆 ∈ {−1, 1} which is related to the vorticity  defined in
(III.1.10). The function 𝑓 (𝑤,𝜑) is constructed such that it is a smooth function fulfilling the
condition

𝑓 (𝑤, 2𝜋) = 2𝑤𝜋 + 𝑓 (0, 0) (III.4.8)
with 𝑤 ∈ ℕ allowing for spin-textures whose in-plane spin projection is not constant along
a closed loop around the momenta 𝒌t but with a vanishing total winding. Examples for such
functions 𝑓 (𝑤,𝜑) are 𝑓 (1, 𝜑) = sin(𝜑) or 𝑓 (2, 𝜑) = cos(2𝜑). This function generates a class
of Hamiltonians which allow for different spin-textures which are either topologically trivial
or topologically non-trivial with higher winding numbers. This modified QWZ-model has the
following topological phases:

𝑁C =

⎧

⎪

⎨

⎪

⎩

0 for ℎz < ℎt,1 or ℎz > ℎt,3
−𝑤𝜆 for ℎz > ℎt,1 and ℎz < ℎt,2
𝑤𝜆 for ℎz > ℎt,2 and ℎz < ℎt,3

. (III.4.9)

The phase boundaries ℎt ∈
{

ℎQWZ
t,z,1 , ℎ

QWZ
t,z,2 , ℎ

QWZ
t,z,3

}

are thus not affected by the modification
but the Chern number is determined by the product of the parameters 𝑤 and 𝜆. Examples for
obtained spin-textures using different 𝑓 (𝑤,𝜑) and 𝜆 are depicted in Figure III.20 a) to d). In
subfigure a) the spin-texture is non-trivial with 𝑤𝜆 = 1 and corresponds therefore to the regular
QWZ-model. The subfigures b) and c) show topological spin-textures with𝑤𝜆 = 2, 3, respectively.
The last subfigure is realized by a spin-texture which is partially like a vortex and partially like an
antivortex such that its overall vorticity is  = 0. The positions and numbers of vortex (antivortex)
center points is equal to the positions and numbers of the standard QWZ model. The skyrmion
number does therefore only depend on the vorticity at each momenta 𝒌t . By the evaluation of
Equation (III.1.10) the skyrmion numbers can be read off from the spin-textures easily.
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Figure III.20.: Spin-textures for a) 𝑤 = 1, 𝑓 (1, 𝜑) = 𝜑, b) 𝑤 = 2, 𝑓 (2, 𝜑) = 𝜑, c) 𝑤 = 3,
𝑓 (3, 𝜑) = 𝜑, d) 𝑤 = 1, 𝑓 (0, 𝜑) = sin(𝜑). Other parameters used are 𝜆 = 1,
ℎz = 0.5𝑡, 𝛼R = 0.5𝑡. The arrows show the normalized in-plane pseudo-spin
components while the color yields the values of the z-components of the normalized
spin. The corresponding values for 𝑁C are given in the figure.

III.5. Spin textures in other topological superconductors

Combinations of singlet and triplet pairings are possible in two-dimensional superconducting
systems [86, 87]. Moreover, the realization of topological p-wave superconductors have been
proposed due to proximity effects of s-wave pairing on the surface of topological insulators [88]
or due to the placement of magnetic moments on regular s-wave superconductors [89]. The
topological p-wave superconductor is therefore a promising candidate for the realization of non-
trivial topology in superconductors and is claimed to be realized in Strontium Ruthenate (Sr2RuO4)
for example [90]. The admixture of singlet and 𝑝𝑥 + i𝑝𝑦 triplet pairing — the 𝑝𝑥 + i𝑝𝑦 is itself
topologically non-trivial in terms of Berry phase analysis — affects the topological spin-texture
or the non-trivial Berry phase. In the following, the spin-textures for an s-wave superconductor
with the admixture of 𝑝x + 𝑖𝑝y pairing is discussed.

Only on-site interactions do not support triplet pairing [91] and thus the consideration of
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extended s-wave pairing [92] is required. The following Hamiltonian incorporates all of the above
addressed superconducting pairings. It is given in matrix form by

SCs =

⎛

⎜

⎜

⎜

⎝

𝜖(𝒌) + ℎz 𝛼R(𝒌) Δt
1(𝒌) Δs(𝒌)

𝛼R∗(𝒌) 𝜖(𝒌) − ℎz −Δs(𝒌) −Δt ∗(𝒌)
Δt ∗ −Δs∗(𝒌) −𝜖(𝒌) − ℎz 𝛼R∗(𝒌)

Δs∗(𝒌) −Δt(𝒌) 𝛼R(𝒌) −𝜖(𝒌) + ℎz

⎞

⎟

⎟

⎟

⎠

(III.5.1)

with
Δs =

(

Δs
1 + Δs

2(cos(𝑘x) + cos(𝑘y))
) (III.5.2)

Δt = Δt
1(sin(𝑘y) + i sin(𝑘x)). (III.5.3)

Choosing Δs
1 ≠ 0 and Δs

2,Δ
t
1 = 0 yields the topological s-wave superconductor described

above. For all pairings the spin expectation value is calculated using Equation (III.1.14) while
self-consistency is dispensed. At first, the extended s-wave superconductor is analyzed. Cor-
respondingly, the s-wave pairing amplitudes are set to Δs

1,Δ
s
2 ≠ 0 while the triplet pairing is

zero. The obtained phase diagram includes the same Berry phases as the topological s-wave
superconductor discussed above. The phase diagram is given in Figure III.21.

The phase boundaries are shifted for extended topological s-wave superconductivity and, as
shown in Figure III.21, the topology of the spin-texture is retained when compared to exclusive
on-site pairing. Thus, the discussed analysis described above and in the following also applies
for the extended topological s-wave superconductor and it is therefore sufficient to analyze the
simplified situation of pure on-site singlet pairing.

For the inclusion of 𝑝x + i𝑝y triplet pairing Δs
2,Δ

s
1,Δ

r
1 ≠ 0 is set. The inclusion of the triplet

pairing requires the consideration of a model allowing for finite range pairing interactions. The
situation at which the triplet pairing is small compared to the s-wave pairing is considered. As
shown in Figure III.22, the topological s-wave superconductor with the admixture of 𝑝x + i𝑝y
triplet pairing has a similar topological phase diagram with the distinct phases characterized
by 𝑁C ∈ {−2,−1, 0, 1}. The different spin-textures related to the different Chern numbers are
displayed in the figure. One can see that the spin-textures are very different in this case.

In the trivial and in the non-trivial phase with 𝑁C = 1, vortices are located at the Γ-point, the
𝑋 and the 𝑌 point while antivortices are found at the M-point and in between the Γ-point and the
X-point. There are thus three vortices and three antivortices found. Applying Equation (III.1.10)
shows that the phase with 𝑁C = 1 corresponds to the phase with 𝑁S = −1. In the non-trivial
phase with 𝑁C = −1, there are vortices at the Γ-point and in between the Y and M - point while
antivortices are identified at the X-, Y, and M-point. Thus there are also a total number of three
vortices and three antivortices identified. The spin-texture corresponds to a skyrmion number
𝑁S = 1. Finally, the spin-texture corresponding to the phase with 𝑁C = −2 exhibits vortices in
between the Y and M-point and in between the Γ- and Y-point and antivortices at the Γ-, X-, Y-
and M-point. Therefore there are four vortices and four antivortices identified. The application
of Equation (III.1.10) yields 𝑁S = 2. There are additional vortex-antivortex pairs found and the
total number of vortices and antivortices is dependent on distinct topological phases. Moreover,
at the topological transitions lines, the type of vorticity can change form a vortex to an antivortex
at the Γ, X-, Y- or M-point. During such a vorticity change, vortex-antivortex pairs unite or new
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Figure III.21.: Topological phase diagram and the corresponding spin-textures for the topological
extended s-wave superconductor. The parameters 𝛼R = 0.5𝑡, Δs

1 = 0.5𝑡, Δs
2 = 0.1𝑡

and Δt
1 = 0 are used.

48



Chapter III. Topological spin-textures and topological invariants

Figure III.22.: Topological phase diagram and the corresponding spin-textures for the topological
s- plus p-wave superconductor. The parameters 𝛼R = 0.5𝑡, Δs

1 = 0.4𝑡, Δs
2 = 0.08𝑡

and Δt
1 = 0.1𝑡 are used.
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vortex-antivortex pairs form. However, the skyrmion number is still related to the Chern number
in the topological s- plus p-wave superconductor. The triplet pairing amplitude has been chosen
smaller than the s-wave pairing amplitude in these results. The situation might be different in the
case of a dominant triplet pairing. In this case Equation (III.1.10) may not apply and the topology
may not be describable by a topological spin-texture. This situation has not been analyzed yet
and further investigations are required here.
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IV. Thermodynamic signatures at
topological phase transitions

IV.1. Thermodynamic signatures of topological phase
transitions in homogeneous magnetic fields

Thermodynamic signatures of topological phase transitions have been investigated many times
[93–96] and, by the use of Hill thermodynamics, contributions of topological edge states in
finite-size systems are taken into account in the thermodynamic observables [93, 94], resulting
in a linear contribution to the heat capacity. In 1960 I. M. Lifshitz described “anomalies of
thermodynamic quantities” [17] when electron bands are depleted or new bands enter the Fermi
level such that the Fermi surface topology is changed. The terminology ’Fermi-surface topology’
is to be clearly distinguished from topology used in the context of Berry phase and skyrmion
numbers. The sudden qualitative change in the Fermi surface are accompanied by the occurrence
of critical points 𝒌L at which ∇𝒌𝜖𝑛(𝒌) = 0 in the Brillouin zone. These have consequences for
example on thermodynamic quantities. Then, the change in the density of states — as a function
of some parameter which drives this so-called Lifshitz transition — translates into a kink in
first derivative of the thermodynamic potential with respect to the parameter driving the Fermi
surface transition. The Lifshitz transition is only a ground state phenomenon, however finite
temperature signatures survive which can be related to the zero temperature transition. At finite
temperature, the kink is broadened but may still be visible as a peak in the third derivative of
the thermodynamic potential [95, 97–99]. It has been observed experimentally and related to
topological phase transitions several times [93–96]. However, the observation of a Lifshitz is not
sufficient to conclude topological phase transitions in general. So, a topological phase transition
needs to be accompanied by a Lifshitz transition but the reverse does not apply. A topological
phase transition is automatically accompanied by a Fermi surface change. Such a Fermi surface
change does however not need to be non-trivial in terms of Berry phase or spin textures in general.

Topological fermionic systems are usually described by non-trivial spin textures or Chern
numbers. Using the concept of Uhlmann numbers which defines geometric phases on mixed states
at finite temperature [100] different topological phases have been investigated [58, 101, 102].
The Uhlmann numbers can be viewed as the finite temperature extension of the Chern numbers.
However, the Uhlmann numbers are not topological invariants as they are not always integer
valued [103]. They have a physical meaning as they are related to the dynamical susceptibility
and conductivity [103].

Within this thesis, thermodynamic quantities close to topological phase transitions are investi-
gated. While the Lifshitz transition is related to the Fermi surface structure of the corresponding
normal conducting phase, here the thermodynamic signatures tied to spin-texture changes across
topological phase transitions are analyzed. These are visible in the change of the magnetization as
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a response to a change of the temperature as discussed in section IV.2 or as a response to in-plane
magnetic field gradients discussed in section IV.3.

From the thermodynamic potential given in (II.2.16) and (II.3.11) for the superconductor and
the QWZ model, respectively, three important thermodynamic quantities, analyzed within this
thesis are obtained; these are

𝑆 = − 𝜕Ω
𝜕𝑇

|

|

|

| ,𝜇,𝐻
(IV.1.1)

𝑁 = − 𝜕Ω
𝜕𝜇

|

|

|

| ,𝐻,𝑇
(IV.1.2)

𝑀 = − 1


𝜕Ω
𝜕𝐻

|

|

|

| ,𝜇,𝑇
(IV.1.3)

with 𝑆, 𝑁 ,  and 𝑀 denoting the entropy, particle number, volume and magnetization, respec-
tively.

IV.2. Spin polarization in homogeneous Zeeman fields

As discussed in Section III.1, the topological spin-textures are qualitatively different for the QWZ
model with skyrmion-type spin-textures and the topological s-wave superconductor where the
spin-textures are meron-like. Here, both systems are analyzed for their thermodynamic signatures
in the vicinity of a topological phase transition related to the non-trivial topological spin-textures
in homogeneous static Zeeman splitting fields. The QWZ-model may have a topological pseudo-
spin texture and thus the Zeeman splitting field is replaced by a pseudo Zeeman splitting field. In
the case of the topological s-wave superconductor, the Zeeman splitting field is realized by a real
magnetic field.

QWZ-model

The thermodynamic properties of a system can be described by the thermodynamic potentials
which are given by Equation (II.3.11) and (A.3.8) for the QWZ and the superconducting models,
respectively. As shown in Equation (III.1.10), the skyrmion number depends on the vorticity
(𝒌t) and the spin expectation values 𝑆z(𝒌t) at the four different vortex centers 𝒌t . Due to Zeeman
splitting, the 𝑆z(𝒌t) expectation values change at a topological phase transition while the vortex
and antivortex spin-textures remain. The values of 𝑠z(𝒌t) at isolated points of the Brillouin zone are
not accessible by measurements of thermodynamic quantities. However, the modification of the
spin-structure in a sizable region around the momenta 𝒌t can affect thermodynamic properties and
can therefore give rise to signatures of the topological phase transitions. The spin magnetization,
which is a direct thermodynamic property of the spin-texture does always take into account the
entire spin-texture and not just sizable regions around the momenta 𝒌t at which the essential
topological phase transition take place. Instead, the analysis of the change in the magnetization
due to thermal excitations yields signatures which are confined to a sizable region around the band
gap minimum. Across the topological phase transitions, the band gap closes and reopens at some
of the momenta 𝒌t . Because excitations are particularly pronounced around the band gap minima,
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IV.2. Spin polarization in homogeneous Zeeman fields

Figure IV.1.: Thermal excitations of the magnetization. a) solid line: 𝜕𝑇𝑀z in blue corresponding
to (ℎz − ℎt,3)∕ℎt,3 = −4.5 ⋅ 10−2 in the topological phase and in gray corresponding
to (ℎz−ℎt,3)∕ℎt = 4.5 ⋅10−2 in the trivial phase. 𝑀S is the saturation magnetization
in z-direction. b) 𝜕2𝑀z∕𝜕ℎz at 𝑇 = 0.1 ⋅ 10−2𝑡, 𝑇 = 1.3 ⋅ 10−2𝑡 and 𝑇 = 3.3 ⋅ 10−2𝑡
for the solid, dashed and dash-dotted lines, respectively. For 𝑇 → 0 the maxima in
𝜕2𝑀z∕𝜕ℎz diverge, indicating the Lifshitz transition. c) blue/(gray) filled: 𝜕𝑇𝑀z >
0. In addition 𝛼R = 1.0𝑡 is used.

changes in the magnetization due to thermal excitations are thus adequate as a thermodynamic
quantity analyzed across topological phase transitions.

Taking the derivative of the magnetization
𝑀 = − 1


𝜕Ω
𝜕𝐻

|

|

|

|𝑉 ,𝜇,𝑇
(IV.2.1)

with respect to the temperature 𝜕𝑀∕𝜕𝑇 and using the symmetry 𝜆+(𝒌) = −𝜆−(𝒌) yields
∇𝒉
𝜕Ω
𝜕𝑇

= ∇𝒉𝑆 =
∑

𝒌

𝒅(𝒌)
𝑇 2 cosh2(𝜆+(𝒌)∕2𝑇 )

= ⟨𝒅⟩𝑇 ,E
∑

𝒌

cosh2(𝜆+(𝒌)∕2𝑇 )
𝑇 2

(IV.2.2)

where Ω is the grand canonical potential, 𝑆 is the entropy and  denotes the volume. The Bloch
vector 𝒅(𝒌) is defined in (II.3.3). The Maxwell relation is used to relate the derivative of the
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magnetization with respect to 𝑇 to the derivative of the entropy with respect to the magnetic field.
Here, it is defined

⟨𝒉⟩𝑇 =
∑

𝒌 𝒅(𝒌) cosh
−2(𝜆+(𝒌)∕2𝑇 )

∑

𝒌 cosh
−2(𝜆+(𝒌)∕2𝑇 )

(IV.2.3)

which is the mean thermal polarization excitation. The function cosh−2(𝜆+(𝒌)∕(2𝑇 ))∕𝑇 2 in
(IV.2.2) has a peak around 𝒌min and one can define a cut-off 𝒌c in the Brillouin zone by

𝛿𝜆1(𝒌c) = 2𝑇 arccosh
(

√

2 cosh
(

𝜆min
2𝑇

))

− 𝜆min, (IV.2.4)

where 𝜆+(𝒌) = 𝜆min + 𝛿𝜆+(𝒌) is used while the notation 𝜆min = 𝜆+(𝒌min) is introduced. One has
𝛿𝜆+(𝒌c) → 0 for 𝑇 → 0. It can thus be concluded that a finite temperature range exists for which
the Bloch vector 𝒅(𝒌) does not change significantly within the summation in (IV.2.2) which is
given by the numerator in (IV.2.2).

Rewriting hence the summation in (IV.2.2) as an integral while approximating cosh−2(𝜆+(𝒌)∕(2𝑇 ))
by a constant up to the cutoff and taking 𝒅(𝒌) ≈ 𝒅(𝒌min) yield

⟨ℎ⟩𝑇 = 𝑐(𝑇 , 𝜆min)𝒅(𝒌min) (IV.2.5)
with 𝑐(𝑇 , 𝜆min) being a constant for fixed temperature 𝑇 and 𝜆min. Within this approximation ⟨ℎ⟩𝑇
does only depend on 𝑇 through 𝑐(𝑇 , 𝜆min). The obtained vector in (IV.2.5) is therefore, at a given
temperature and band gap minimum, proportional to the 𝒅-vector at 𝒌min. For higher temperatures
or for band structures without distinct gap minima, Equation (IV.2.2) yields the average thermal
polarization excitation of the spins 𝒔 taking into account a broad region of k-values as depicted in
Figure III.9. As the spin-texture changes across a topological phase transition, a region around
the gap closing point in momentum space exists which induced a sign reversal of 𝜕𝑇𝑀z shown
in Figure IV.1 c). The change in the magnetization with respect to the temperature as a function
of 𝑇 is shown in Figure IV.1 a). In the topological phase 𝜕𝑇𝑀z > 0 up to a certain temperature
𝑇 ∗. Thus, as expected, 𝜕𝑇𝑀z changes its sign across the topological phase transition in the low
temperature regime. According to Equation (IV.2.2), this sign change in the derivative of the
magnetization as a function of the temperature is equivalent to a maximum of the entropy as a
function of the magnetic field. At 𝑇 = 0, 𝑠z(𝟎) = 0 for magnetic fields ℎz < ℎt,3 because the spin
expectation values of the chiral spin split bands compensate each other. However, 𝑠z turns into a
maximum if ℎz is tuned through the topological phase transition (the image in the spin map of the
momentum 𝒌 = 𝟎 switches from the south to the north pole). Finite temperature excitations have
a quantitatively different effect on the 𝑠z(𝒌 = 0)-values in the trivial and the topological phase
where 𝑠z(𝒌 = 0, 𝑇 ) is increasing and decreasing with temperature, respectively. This qualitative
difference extends to a finite region around the Γ-point such that the change from the minimum in
𝑠z to the maximum is visible as a sign change in 𝜕𝑇𝑀z.

On the other hand, a topological phase transition is accompanied by a Lifshitz transition [18].
At finite temperatures, the Lifshitz transition is visible as a peak in the third derivative of the
thermodynamic potential [97] as shown in Figure IV.1 b). Consequently, the Lifshitz transition
may be indicated as a peak in the second derivative of the magnetization with respect ℎz in the
vicinity of ℎt [104]. Therefore, around a topological phase transition the Lifshitz transition in
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combination with the sign change in 𝜕𝑇𝑀z should be present in the low temperature regime
around the topological phase transitions. The combination of the change in sign(𝜕𝑇𝑀z) (Figure
IV.1) and the signatures of the Lifshitz transition is shown in Figure IV.1 c).

The Lifshitz peak and the sign change in 𝜕𝑇𝑀z are found on different sites of the topological
phase transition. This observation may be used to enclose the topological ground state phase
transition in between the green dashed and solid blue line in Figure IV.1 c). Both, the Lifshitz
transition or the change in sign(𝜕𝑇𝑀𝑥,𝑦,𝑧) are not enough to conclude a topological phase transition.
The Lifshitz transition is not uniquely restricted to non-trivial topological phase transitions [105,
106] and the change in the derivative of the magnetization may be observable even without a gap
closing.

As mentioned above, the temperature derivative of the magnetization is, by the Maxwell relation,
the same as the derivative of the entropy with respect to the magnetic field. The sign change in
𝜕𝑇𝑀x,y,z is therefore related to a relative maximum in the entropy as a function of the magnetic
field. A similar analysis can be carried out for the topological superconductor where additionally
the self-consistent calculation of the superconducting order parameter needs to be taken into
account.

Topological s-wave superconductor

At first, the thermodynamics of the conventional superconductor is revisited on the level of
mean field approximation before the thermodynamics of the topological s-wave superconductor
is discussed. The conventional s-wave superconductor has an energy gap, which does not depend
on the applied magnetic field until the superconductivity breaks down. The gap is therefore
constant as a function of the magnetic field (this is the result in mean field approximation when the
coupling of the magnetic field to the electrons momentum is neglected) up to a critical magnetic
field at which superconductivity breaks down [107]. At 𝑇 = 0, the magnetization is always
vanishing in the superconducting phase because ↑-spin and ↓-spin are paired (known as Cooper
pairs) resulting in the vanishing magnetization. With increasing temperature, the magnetization
is increasing monotonously until the paramagnetic magnetization of the normal metal is reached
at the superconducting transition temperature 𝑇c and the order parameter ΔOP is monotonously
decreasing as the temperature increases until ΔOP vanishes at 𝑇c.

Due to Rashba spin-orbit coupling in the topological s-wave superconductor, the magnetization
does not vanish in the ground state when a finite Zeeman splitting is applied resulting in a non-
zero ground-state spin-texture. Far below the topological transition Zeeman splitting ℎz ≪ ℎt ,
the magnetization is still increasing monotonously as a function of the temperature. Likewise,
according to a Maxwell-relation, the entropy is a monotonous function of the magnetic field.

The energy gap in the topological s-wave superconductor Δmin depends on 𝒌 due to the Rashba
spin-orbit coupling but Δmin is not equal to ΔOP. This is discussed in more detail in Reference [48].
As in the QWZ model, at low temperatures 𝑇 ≪ Δmin, thermal excitations of the spin polarization
are restricted to a small neighborhood of the energy gap minima. Thus, information about
variations in the 𝑠z(𝒌)-values in the vicinity of the gap closing points can be obtained similarly.
Taking the partial derivative of the magnetization in z-direction with respect to temperature, and
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Chapter IV. Thermodynamic signatures at topological phase transitions

Figure IV.2.: Thermodynamic signatures of topological spin-texture changes in the ground state
close to the transition field ℎt,1 obtained from self-consistent calculations. (a)
𝜕𝑇𝑀z ⋅ 𝑇c∕(𝑀z(𝑇c) −𝑀z(0)) while (𝑀z(𝑇c) −𝑀z(0)) is positive. The magnetic
field values are (ℎz − ℎt,1)∕ℎt,1 = 0.19, ΔOP(𝑇 = 0) = 0.05𝑡 (blue curve) and
(ℎz − ℎt,1)∕ℎt,1 = −0.19, ΔOP(𝑇 = 0) = 0.06𝑡 (gray curve). The dashed gray curve
corresponds to a conventional s-wave superconductor without for ΔOP = 0.05𝑡 and
ℎz = 0.6ΔOP. (b) Entropy𝑆 as functions of (ℎz−ℎt,1)∕ℎt,1 for different temperatures
𝑇 ∕𝑇c = 0.11, 0.21, 0.23, 0.27 from bottom to top. The blue dashed line connects the
local maxima of 𝑆(ℎz, 𝑇 ). c) 𝜕𝑀z∕𝜕𝑇 < 0 (blue area); 𝜕𝑀z∕𝜕𝑇 > 0 (white area)
and minimum gap Δmin as a function of (ℎz − ℎt,1)∕ℎt,1 (solid black). d) Lifshitz
peak in 𝜕2𝑀z∕𝜕ℎ2z for different temperatures 𝑇 ∕𝑇c = 0.11, 0.21, 0.23. Further,
𝑉 ∕𝑡 = 1.5 corresponding to a 𝑇c ≈ 3 ⋅ 10−2𝑡, 𝑛 = 0.028 and 𝛼R∕𝑡 = 0.5 was used.
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neglecting contributions further away from the Fermi-level yields
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(IV.2.6)
which is the analogue to the result of the QWZ model given in (IV.2.2). In (IV.2.6), the symmetry
𝜆2(𝒌, 𝜇) = −𝜆3(𝒌, 𝜇) is used. 𝑇 ≪ Δmin is reflected in a peak in 𝑇 −2sech2(𝜆3(𝒌, 𝜇)∕2𝑇 ) at the
gap minimum 𝒌min where 𝜆3(𝒌, 𝜇) is minimal.

Figure IV.2 a) shows 𝜕𝑇𝑀z for ℎx = ℎy = 0 and ℎz above and below ℎ𝑡,1 (see blue and gray line,
respectively). In contrast to the conventional s-wave superconductor, 𝜕𝑇𝑀z is non-monotonous
and even negative as a function of 𝑇 for ℎz > ℎt,1 and 𝑇 ≪ 𝑇c. The temperature scale for
non-vanishing 𝜕𝑇𝑀z is set by the band gap minimum which is proportional to ℎz − ℎt,1 as shown
in Figure IV.2 a). The dependence of 𝜕𝑇𝑀z on 𝑇 for a superconductor without spin-orbit coupling
is given by the dashed gray curve.

At finite temperatures in the regime 𝑇 ≪ 𝑇c, the sign change of 𝜕𝑇𝑀z does not occur exactly
at the transition field ℎt,1 but in a magnetic field range where the two normal conducting bands
are still filled in the vicinity of the Γ-point similar to the situation in the QWZ-model above.
The points at which 𝜕𝑇𝑀z = 0 (as a function of ℎz and 𝑇 ) are given by the blue dashed line
in Figure IV.2 c). They correspond to the positions of the relative maxima in the entropy in the
region with 𝑇 ≪ Δmin around ℎt,1 as shown by the blue dashed line in Figure IV.2 b).

In the topological superconductor and the QWZ model signatures of the topological phase
transition at finite temperature related to the profound change in the spin-texture exist in particular
thermodynamic quantities.

The topological superconductor or the QWZ-model show a characteristic vortex structure of the
in-plane spin components at the momenta 𝒌t . The out-of-plane spin component at distinct vortex
centers flips from zero to one at a critical Zeeman splitting for 𝑇 = 0 and attains a maximum
in the topologically non-trivial phase even for 𝑇 > 0. This sudden change manifests itself in a
maximum of the entropy as function of magnetic field at constant temperature. Equivalently, it
corresponds to a sign change of the derivative of the magnetization with respect to temperature.
Other two-dimensional topological systems with non-trivial spin-textures such as the s+p-wave
superconductor are candidates for similar investigations close to topological phase transitions.

At this point, in distinction to the discussed thermodynamic quantities, it is pointed out that in
topological Chern systems the thermal Hall conductance is a finite temperature transport property
which is directly related to the Chern number. However, as for the Hall conductivity, the thermal
Hall conductivity is crucially related to the existence of edge modes [108] and does not stem from
the bulk which is the case for the thermodynamic signatures discussed above.

IV.3. Magnetic field gradients in the Bloch state basis

A topological spin-texture change leads to the above described thermodynamic signatures. How-
ever, like the signatures of a Lifshitz transition, these do not allow in general to infer a topological
phase transition. The reason is, that the above quantities only take into account one direction of
the spin at a time. Therefore, the information about vorticity and the additional spin expectation
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Figure IV.3.: Illustration of the analyzed model setup. The two-dimensional square lattice is
exposed to a homogeneous magnetic field in z-direction and to a magnetic field
gradient in x- or y-direction. The linear magnetic field gradient is applied such that
the net magnetic field is zero.

in z-direction cannot be obtained simultaneously which is however crucial for the topological
phases.

It is highly desirable to identify thermodynamic signatures of a topological phase transition,
which are bulk properties and which are uniquely related to non-trivial spin-texture transitions.
The following sections discuss the possibility for such a thermodynamic quantity.

Linear response theory has shown that the spin-polarization response to an electric field can
produce a collective spin magnetization [19, 109, 110] in systems among which possess non-trivial
topological spin textures. These magnetization effects are however also not confined to non-trivial
spin textures or transitions between them. It seems natural to assume that an in-plane magnetic
field gradient does likewise produce a net spin polarization in the out-of-plane component in a
two-dimensional system with non-trivial spin-texture topology. However, in-plane magnetic field
gradients can provide information about spin polarization in the plane. This leads to the idea, that
information about spin vorticity and spin polarizations in z-direction can be accessed by the spin-
polarization response to magnetic field gradients in the in-plane components which provide all
information about the topological nature of spin textures. The presented work on thermodynamic
response quantities clearly suggests that the second order out-of-plane magnetization response
to an applied magnetic field gradient linear in both in-plane directions shows thermodynamic
signatures connected to non-trivial spin-texture transitions. In this way, the response analysis may
be useful for the detection of non-trivial spin-texture transitions.

The discussed setup is sketched in Figure IV.3. The important terms in the spin polarization
under consideration are generated by mutually perpendicular magnetic field gradients.

Electrons in a periodic potential (in an infinite lattice) are described by Bloch states. First, an
expression for a magnetic field gradient in the Bloch states basis is derived. Without the use of a
specific representation basis, the Bloch state can be defined as [111]

|𝜓𝑛,𝒌⟩ = ei𝒌�̂�|𝑢𝑛,𝒌⟩e𝑖𝜙𝑛(𝒌) (IV.3.1)
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which reads in the position representation
𝜓𝑛,𝒌(𝒓) = ⟨𝒓|𝜓𝑛,𝒌⟩ = ei𝒌𝒓𝑢𝑛𝑘(𝒓) (IV.3.2)

where ei𝒌𝒓 is a plane wave-part and 𝑢𝑛𝑘(𝒓) is a lattice-periodic function
𝑢𝑛𝑘(𝒓 +𝑹) = 𝑢𝑛𝑘(𝒓). (IV.3.3)

The Bloch-state on the other hand fulfills twisted periodic boundary conditions with respect to a
unit cell [112]

𝜓𝑛,𝒌(𝒓 +𝑹) = ei𝒌𝑹𝜓𝑛𝑘(𝒓). (IV.3.4)
However, 𝜓𝑛,𝒌(𝒓) is periodic in the Brillouin zone

𝜓𝑛,𝒌+𝑮(𝒓) = 𝜓𝑛,𝒌(𝒓) (IV.3.5)
while 𝑮 denotes a lattice vector in reciprocal space.

Bloch states have been discussed in electric potential gradients many times [19, 111–113].
Here, the coupling of the magnetic field to the spin degree of freedom is added. Specifically, the
Bloch states are studied in potentials like

𝑉x =
1
2
(

�̂�x�̂�x + �̂�x�̂�x
)

. (IV.3.6)

The position operator can be expressed in the Bloch state basis which was discussed by Blount
[111] in much detail. The Bloch states are denoted with |𝜓𝑛,𝒌⟩ where 𝑛 is a band index. Blount
showed that the position operator in the Bloch state basis is given by

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ = −i∇𝒌𝛿𝒌,𝒌′𝛿𝑛,𝑛′ + 𝛿𝒌,𝒌′⟨𝑢𝑛′,𝒌|i∇𝒌|𝑢𝑛,𝒌⟩. (IV.3.7)
Here, it is important to note that ∇𝒌 acts on the 𝛿𝒌,𝒌′-distribution only in the first term in (IV.3.7)
but not in the second. One has to notice that the first term in (IV.3.7) grows with the position
𝒓 [113] and is therefore unbounded. The second term is well behaved since this term is lattice
periodic.

In order to analyze the effect of the magnetic field gradients in the Bloch state representation,
it is necessary to find the representation of the product of the spin-operator �̂� and the position
operator �̂�. It is shown in Appendix A.4 that the matrix elements of the operator �̂��̂� are given by

⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩ =
∑

𝑛′′
⟨𝑢𝑛′,𝒌′|�̂�|𝑢𝑛′′,𝒌′⟩

(

−i∇𝒌𝛿𝒌,𝒌′𝛿𝑛′′,𝑛 + 𝛿𝒌′,𝒌⟨𝑢𝑛′′,𝒌′|i∇𝒌|𝑢𝑛,𝒌⟩
) (IV.3.8)

in the Bloch basis where the second term is diagonal in 𝒌. Hence, quantities like
∑

𝑛

∑

𝑛′

∑

𝒌

∑

𝒌′
⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩𝑓𝑛(𝒌)

=
∑

𝑛

∑

𝑛′

𝑉
4𝜋2 ∫

d2𝑘⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛,𝒌⟩⟨𝑢𝑛,𝒌|i
(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝑓𝑛(𝒌). (IV.3.9)

60



Chapter IV. Thermodynamic signatures at topological phase transitions

can be evaluated showing that the contribution from the first term in (A.4.40) which are related to
momentum space surface contributions vanish as long as 𝑓𝑛(𝒌) is a periodic function which has
no discontinuities. Even if one allows for isolated point-like discontinuities in 𝑓𝑛(𝒌), they would
not affect the result as long as 𝑓𝑛(𝒌) is not divergent at those points. The matrix elements of the
product of the spin and the position operator are thus determined by

∑

𝒌

∑

𝒌′
⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩𝑓𝑛(𝒌) ≈


4𝜋2 ∫

d2𝑘
∑

𝑛′′
⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i

(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝑓𝑛(𝒌).

(IV.3.10)

IV.4. Perturbation theory up to second order in magnetic field
gradients

In the following, the representation of the position operator in the Bloch basis is discussed for
tight binding Hamiltonians. The Bravais-lattice vectors, specifying the unit cell, are denoted as 𝜼.
Within a unit cell, localized atomic states located at position 𝑹 + 𝜼 are defined where 𝜼 accounts
for the position of other atoms in the same unit cell. The different atoms are indexed by 𝜇 and
different orbitals (e.g. s, p or d) by 𝛼 and spin with 𝜎. The localized atomic wave functions are
denoted in position space 𝜑𝜇,𝛼,𝜎(𝒓 −𝑹 − 𝜼𝜇) with 𝒓 being the position vector. These definitions
are based on the presentation in Reference [112]. Summarizing the orbital and spin by one single
index 𝑗, the atomic wave function is written as 𝜑𝜇,𝛼,𝜎(𝒓−𝑹− 𝜼𝜇) =∶ 𝜙𝑹,𝑗,𝜇(𝒓). The atomic wave
functions are orthonormalized

⟨𝜙𝑹,𝑖,𝜇|𝜙𝑹′,𝑗,𝜈⟩ = 𝛿𝑖,𝑗𝛿𝜇,𝜈𝛿𝑹,𝑹′ . (IV.4.1)
Additionally, it is assumed that the position matrix is diagonal in the |𝜙𝑹,𝑗,𝜇⟩-space

⟨𝜙𝑹,𝑖,𝜇|�̂�|𝜙𝑹′,𝑗,𝜈⟩ =
(

𝑹 + 𝝉𝜇
)

𝛿𝑖,𝑗𝛿𝜇,𝜈𝛿𝑹,𝑹′ (IV.4.2)
Here it is noted that this assumption is not always fulfilled, the position operator is not diagonal
in the atomic wave function representation in sp-orbitals [114] for example. In such case, |𝜙𝑹,𝑗,𝜇⟩

denote some other wave functions where the position operator is diagonal. However, in tight
binding descriptions, a systems that couple to external magnetic fields or systems containing
spin-orbit coupling, the position operator has to be diagonal in the position space basis which is
discussed in [115] corroborating the use of (IV.4.2). A tight binding Hamiltonian with matrix
elements defined as

𝐻𝑖,𝑗,𝜈,𝜇(�̃�) ∶= ⟨𝜙𝑹′,𝑖,𝜇|𝐻|𝜙𝑹′+�̃�,𝑗,𝜇⟩ (IV.4.3)
is introduced. In second quantization, the corresponding Hamiltonian reads

𝐻 =
∑

𝑖

∑

𝑗

∑

𝑹′

∑

�̃�

∑

𝜇

∑

𝜈
𝑐†
𝑹′,𝑖,𝜈

𝐻𝑖,𝑗,𝜈,𝜇(𝑹′, �̃�)𝑐𝑹′+�̃�,𝑗,𝜇 (IV.4.4)

while 𝑐𝑹′,𝑗,𝜈 and 𝑐†
𝑹′,𝑗,𝜈

are the annihilation and creation operators of a state |𝜙𝑹′,𝑗,𝜈⟩, respectively.
Since the matrix defined by the matrix elements given in (IV.4.3) is not diagonal in the atomic
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orbital space with respect to 𝑹 + 𝜼𝜇, the Fourier transformed basis functions are given by [112]

|𝜒𝒌,𝑖,𝜇⟩ =
1

√

𝑁

∑

𝑹
ei𝒌(𝑹+𝜼𝜇)

|𝜙𝑹,𝑖,𝜇⟩ (IV.4.5)

which is the common procedure in a tight-binding problem in order to block-diagonalize 𝐻 .
Subsequently, only systems with one single atom per unit cell are considered. The vectors 𝜼 will
therefore not be considered further. However, it is important to mention that the inclusion of
additional atoms per unit cell would not affect the results described below. The matrix elements
of the Hamiltonian 𝐻 in the |𝜒𝒌,𝑖,𝜇⟩-basis are defined as

𝑖,𝑗,𝜇,𝜈(𝒌) ∶= ⟨𝜒𝒌,𝑖,𝜇|𝐻|𝜒𝒌,𝑗,𝜈⟩. (IV.4.6)
So in a regular tight-binding problem, the Hamiltonian 𝐻 is usually expressed in terms of the
Fourier-transformed basis functions |𝜒𝒌,𝑖,𝜇⟩. The expansion of the Bloch states in terms of these
Fourier-transformed atomic basis functions reads

|𝜓𝑛,𝒌⟩ =
∑

𝜇

∑

𝑗
𝐶𝑛,𝒌,𝑗,𝜇|𝜒𝒌,𝑗,𝜇⟩. (IV.4.7)

The eigenvalue equation then becomes in terms of the Fourier transformed atomic basis functions
after the projection onto a state ⟨𝜒𝒌,𝑖,𝜈|

∑

𝑗

∑

𝜇
𝑖,𝑗,𝜈,𝜇(𝑘)𝐶𝑛,𝒌,𝑗,𝜇 = 𝐸𝑛,𝒌𝐶𝑛,𝒌,𝑖,𝜈 . (IV.4.8)

Thus, the 𝐶𝑛,𝒌,𝑖,𝜇 are the elements of the eigenvector of the eigenequation in the |𝜒𝒌,𝑖,𝜈⟩-basis
(IV.4.8). In the next step, the matrix-elements of the position operator in the Bloch-state basis are
expressed in terms of the Fourier-transformed basis states (IV.4.5). In Appendix A.5, it is shown
that the second term of the position operator given in (IV.3.7) can be expressed in terms of the
expansion coefficients of the Bloch states

⟨𝜓𝑛′,𝒌|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ = ⟨𝑢𝑛′,𝒌|i∇𝒌|𝑢𝑛,𝒌⟩ = 𝑪†
𝑛′,𝒌i∇𝒌𝑪𝑛,𝒌. (IV.4.9)

In the discrete tight-binding formalism, the |𝑢𝑛,𝒌⟩ are replaced by the vector 𝑪𝑛,𝒌 where the
elements of the vector are given by 𝐶𝑛,𝒌,𝑖,𝜇.

In the following, the subscript V attached to the eigenstates such as |𝑛⟩𝑉 means that the
eigenstate is perturbed by the operator 𝑉 . Let the operator 𝑉 (here, the operator is expressed
through its matrix elements in the |𝜒𝒌,𝑖,𝜇⟩-basis) be composed of two parts
𝑉 TB
𝑖𝑗,𝜇𝜈(𝒌) = 𝑉 TB

1,𝑖𝑗,𝜇𝜈(𝒌) + 𝑉
TB
2,𝑖𝑗,𝜇𝜈(𝒌) (IV.4.10)

=
∑

𝑖

∑

𝑗

∑

𝜇

∑

𝜈
⟨𝜒𝒌,𝑖,𝜇|(−𝐺y)

(

�̂�x�̂�y + �̂�y�̂�x
)

+ 𝐺x
(

�̂�y�̂�x + �̂�x�̂�y
)

|𝜒𝒌𝑗,𝜈⟩. (IV.4.11)

This operator corresponds to in-plane magnetic field gradients linear in 𝑟x and 𝑟y, respectively
while 𝐺x and 𝐺y determine the strength of magnetic field gradient. In the following, the notation

|𝑛⟩ ∶= 𝑪𝑛,𝒌; ⟨𝑛| ∶= 𝑪†
𝑛,𝒌; 𝐸𝑛 ∶= 𝐸𝑛,𝒌 (IV.4.12)
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is used where the index 𝒌 in this abbreviated notation is dropped. One can thus write
𝑉1+𝑉2 ⟨̃𝑛|𝑂

TB
|̃𝑛⟩𝑉1+𝑉2 − ⟨𝑛|𝑂TB

|𝑛⟩ = 𝑉1 ⟨̃𝑛|𝑂
TB
|̃𝑛⟩𝑉1 + 𝑉2 ⟨̃𝑛|𝑂

TB
|̃𝑛⟩𝑉2 + 𝑉1+𝑉2 ⟨̃𝑛|𝑂

TB
|̃𝑛⟩

×
𝑉1+𝑉2

,
(IV.4.13)

where 𝑂TB is defined in the |𝜒⟩-basis similar as in (A.5.4). The change of the observable due to
the external perturbations 𝑉1 and 𝑉2 into contributions, which stem separately from perturbations
𝑉1 and 𝑉2 and a contribution which contains both 𝑉1 and 𝑉2 simultaneously. Here, 𝑉1 ⟨̃𝑛|𝑂TB

|̃𝑛⟩𝑉1
denotes the contributions containing exclusively 𝑉1 and likewise denotes 𝑉1 ⟨̃𝑛|𝑂

TB
|̃𝑛⟩𝑉1 the

contributions containing 𝑉2 only. The last terms in (IV.4.13) are the cross terms (denoted with
the superscript “×”) which consists of both 𝑉1 and 𝑉2. For example, the state |𝑛(1)⟩𝑉x is given by
(A.6.18) and |𝑛(2)⟩𝑉x is explicitly given though (A.6.19).

The first (and second) term in (IV.4.13) are given by
𝑉1(𝑉2)⟨̃𝑛|𝑂

TB
|̃𝑛⟩𝑉1(𝑉2) = 2Re

(

⟨𝑛|𝑂TB
|𝑛(1)⟩𝑉1(𝑉2)

)

+ 𝑉1(𝑉2)⟨𝑛
(1)
|𝑂TB

|𝑛(1)⟩𝑉1(𝑉2) + 2Re
(

𝑉1(𝑉2)⟨𝑛|𝑂
TB
|𝑛(2)⟩𝑉1(𝑉2)

)

. (IV.4.14)
The first term on the right contains the linear perturbations and the other terms consist of the
second order corrections. The cross terms contain only second order perturbation terms given by

𝑉1+𝑉2 ⟨̃𝑛|𝑂
TB
|̃𝑛⟩

×
𝑉1+𝑉2

= 𝑉1+𝑉2⟨𝑛
(1)
|𝑂TB

|𝑛(1)⟩×𝑉1+𝑉2 + 2Re
(

𝑉1+𝑉2⟨𝑛|𝑂
TB
|𝑛(2)⟩×𝑉1+𝑉2

)

(IV.4.15)
and these terms are the most important in the following analysis. One can obtain similar expres-
sions for the terms given in (IV.4.14), however these terms contain also the linear perturbations.
The linear terms are obtained such that

⟨𝑛|𝑂TB
|𝑛(1)⟩𝑉1(𝑉2) =

∑

𝑢

∑

𝑚≠𝑛
⟨𝑛|𝑂TB

|𝑚⟩
⟨𝑚|𝑉1(𝑉2)|𝑛⟩
𝐸𝑛 − 𝐸𝑚

(IV.4.16)

Using the definition of 𝑉1 and 𝑉2 defined in (IV.4.11), the first order response terms explicitly
read

⟨𝑛|𝑂TB
|𝑛(1)⟩𝑉1(𝑉2)

=
∑

𝑢

∑

𝑚≠𝑛
⟨𝑛|𝑂TB

|𝑚⟩

(

⟨𝑚| +
(−) 𝜎TBy(x)|𝑢⟩⟨𝑢|i𝜕𝑘x(𝑘y)|𝑛⟩

𝐸𝑛 − 𝐸𝑚
+

⟨𝑚|i𝜕𝑘x(𝑘y)|𝑢⟩⟨𝑢|
+
(−) 𝜎TBy(x)|𝑛⟩

𝐸𝑛 − 𝐸𝑚

)

=
∑

𝑢≠𝑛

∑

𝑚≠𝑛
⟨𝑛|𝑂TB

|𝑚⟩

(

⟨𝑚| +
(−) 𝜎TB𝑦(𝑥)|𝑢⟩⟨𝑢|i𝜕𝑘x(𝑘y)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑢)
+

⟨𝑚|i𝜕𝑘x(𝑘y)|𝑢⟩⟨𝑢| +
(−) 𝜎TB𝑦(𝑥)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑢 − 𝐸𝑚)

)

.

(IV.4.17)
where the derivative of an eigenvector (see Equation A.1.6) is used, while  is introduced as the
matrix whose elements are defined in (A.5.1).

The first quadratic expansion terms are given by

𝑉1(𝑉2)⟨𝑛
(1)
|𝑂TB

|𝑛(1)⟩×𝑉1(𝑉2) =
∑

𝑚≠𝑛

∑

𝑙≠𝑛

⟨𝑛|𝑉1(𝑉2)|𝑚⟩⟨𝑚|𝑂TB
|𝑙⟩⟨𝑙|𝑉1(𝑉2)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)
(IV.4.18)
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and the other second order terms read

𝑉1(𝑉2)⟨𝑛|𝑂
TB
|𝑛(2)⟩×𝑉1(𝑉2) =

∑

𝑚≠𝑛

∑

𝑙≠𝑛

⟨𝑛|𝑂TB
|𝑚⟩⟨𝑚|𝑉1(𝑉2)|𝑙⟩⟨𝑙|𝑉1(𝑉2)|𝑛⟩
(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)

(IV.4.19)

The first term in (IV.4.15) reads

𝑉1+𝑉2⟨𝑛
(1)
|𝑂TB

|𝑛(1)⟩×𝑉1+𝑉2 =
∑

𝑚≠𝑛

∑

𝑙≠𝑛

(

⟨𝑛|𝑉1|𝑚⟩⟨𝑚|𝑂TB
|𝑙⟩⟨𝑙|𝑉2|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)

+
⟨𝑛|𝑉2|𝑚⟩⟨𝑚|𝑂TB

|𝑙⟩⟨𝑙|𝑉1|𝑛⟩
(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)

)

(IV.4.20)

(IV.4.21)

Similarly, one obtains for the second term in (IV.4.15)

𝑉1+𝑉2⟨𝑛|𝑂
TB
|𝑛(2)⟩×𝑉1+𝑉2 (IV.4.22)

= 𝐺x𝐺y
∑

𝑚≠𝑛

∑

𝑙≠𝑛

(

⟨𝑛|𝑂TB
|𝑚⟩⟨𝑚|𝑉1|𝑙⟩⟨𝑙|𝑉2|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)
+

⟨𝑛|𝑂TB
|𝑚⟩⟨𝑚|𝑉2|𝑙⟩⟨𝑙|𝑉1|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)

)

(IV.4.23)

− 𝐺x𝐺y
∑

𝑚≠𝑛

(

⟨𝑛|�̂�|𝑚⟩⟨𝑚|𝑉1|𝑛⟩⟨𝑛|𝑉2|𝑛⟩
(𝐸𝑛 − 𝐸𝑚)2

+
⟨𝑛|𝑂TB

|𝑚⟩⟨𝑚|𝑉2|𝑛⟩⟨𝑛|𝑉1|𝑛⟩
(𝐸𝑛 − 𝐸𝑚)2

)

(IV.4.24)

− 1
2
⟨𝑛|𝑂TB

|𝑛⟩𝐺x𝐺y
∑

𝑚≠𝑛

(

⟨𝑚|𝑉1|𝑛⟩⟨𝑛|𝑉2|𝑚⟩
(𝐸𝑛 − 𝐸𝑚)2

+
⟨𝑚|𝑉2|𝑛⟩⟨𝑛|𝑉1|𝑚⟩

(𝐸𝑛 − 𝐸𝑚)2

)

(IV.4.25)

(IV.4.26)

In the following, the polarization is analyzed in z-direction and for the operator �̂� the spin
operator �̂�z is chosen. One can define

𝑡𝑛𝑚𝑙𝑢𝑣1,𝑉1𝑉2
(𝒌) ≡ 𝐺x𝐺y

⟨𝑛|𝜎TBx |𝑢⟩⟨𝑢|𝜕𝑘y|𝑚⟩⟨𝑚|𝜎TBz |𝑙⟩⟨𝑙|𝜎y|𝑣⟩⟨𝑣𝜕𝑘x|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑚 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣)
(IV.4.27)

𝑡𝑛𝑚𝑙𝑢𝑣1,𝑉2𝑉1
(𝒌) ≡ 𝐺x𝐺y

⟨𝑛|𝜎TBy |𝑢⟩⟨𝑢|𝜕𝑘x|𝑚⟩⟨𝑚|𝜎TBz |𝑙⟩⟨𝑙|𝜎TBx |𝑣⟩⟨𝑣|𝜕𝑘y|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑚 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣)
(IV.4.28)

𝑡𝑛𝑚𝑙𝑢𝑣2,𝑉1𝑉2
(𝒌) ≡ 2Re

(

𝐺x𝐺y

⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚|𝜎TB𝑥 |𝑢⟩⟨𝑢|𝜕𝑘y|𝑙⟩⟨𝑙|𝜎TB𝑦 |𝑣⟩⟨𝑣|𝜕𝑘x|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑛 − 𝐸𝑣)(𝐸𝑙 − 𝐸𝑢)

)

(IV.4.29)

𝑡𝑛𝑚𝑙𝑢𝑣2,𝑉2𝑉1
(𝒌) ≡ 2Re

(

𝐺x𝐺y

⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚|𝜎TB𝑦 |𝑢⟩⟨𝑢|𝜕𝑘x|𝑙⟩⟨𝑙|𝜎TB𝑥 |𝑣⟩⟨𝑣|𝜕𝑘y|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑛 − 𝐸𝑣)(𝐸𝑙 − 𝐸𝑢)

)

(IV.4.30)
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𝑡𝑛𝑚𝑢𝑣3,𝑉1𝑉2
(𝒌) ≡ 2Re

(

𝐺x𝐺y

⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚|𝜎TB𝑥 |𝑢⟩⟨𝑢|𝜕𝑘y|𝑛⟩⟨𝑛|𝜎TB𝑦 |𝑣⟩⟨𝑣|𝜕𝑘x|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣)

)

(IV.4.31)

𝑡𝑛𝑚𝑢𝑣3,𝑉2𝑉1
(𝒌) ≡ −2Re

(

𝐺x𝐺y

⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚|𝜎TB𝑦 |𝑢⟩⟨𝑢|𝜕𝑘x|𝑛⟩⟨𝑛|𝜎TB𝑥 |𝑣⟩⟨𝑣|𝜕𝑘y|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣)

)

(IV.4.32)

𝑡𝑛𝑚𝑢𝑣4,𝑉1𝑉2
(𝒌) ≡ −2Re

(

𝐺x𝐺y
1
2
⟨𝑛|𝜎TBz |𝑛⟩

⟨𝑚|𝜎TBx |𝑢⟩⟨𝑢|𝜕𝑘y|𝑛⟩⟨𝑛|𝜎TBy |𝑣⟩⟨𝑣|𝜕𝑘x|𝑚⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑚 − 𝐸𝑣)

)

(IV.4.33)

𝑡𝑛𝑚𝑢𝑣4,𝑉2𝑉1
(𝒌) ≡ −2Re

(

𝐺x𝐺y
1
2
⟨𝑛|𝜎TBz |𝑛⟩

⟨𝑚|𝜎TBy |𝑢⟩⟨𝑢|𝜕𝑘x|𝑛⟩⟨𝑛|𝜎TBx |𝑣⟩⟨𝑣|𝜕𝑘y|𝑚⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑚 − 𝐸𝑣)

)

(IV.4.34)
as an abbreviated notation for the cross terms and

𝑡𝑛𝑚𝑢0,𝑉1(2)
(𝒌) ≡ 2Re

(

𝐺y(𝐺x)⟨𝑛|𝜎TBz |𝑚⟩
⟨𝑚| (+)− 𝜎TB𝑥(𝑦)|𝑢⟩⟨𝑢|𝜕𝑘y(𝑘x)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑢)

)

(IV.4.35)

𝑡𝑛𝑚𝑙𝑢𝑣1,𝑉1(2)𝑉1(2)
(𝒌) ≡ 𝐺2

y(𝐺
2
x)
⟨𝑛| (+)− 𝜎TBx(y)|𝑢⟩⟨𝑢|𝜕𝑘y(𝑘x)|𝑚⟩⟨𝑚|𝜎TBz |𝑙⟩⟨𝑙| (+)− 𝜎x(y)|𝑣⟩⟨𝑣𝜕𝑘y(𝑘x)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑚 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣) (IV.4.36)
𝑡𝑛𝑚𝑙𝑢𝑣2,𝑉1(2)𝑉1(2)

(𝒌) ≡ 2Re
(

𝐺2
y(𝐺

2
x)

×
⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚| (+)− 𝜎TBx(y)|𝑢⟩⟨𝑢|𝜕𝑘y(𝑘x)|𝑙⟩⟨𝑙| (+)− 𝜎TBx(y)|𝑣⟩⟨𝑣|𝜕𝑘y(𝑘x)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)(𝐸𝑛 − 𝐸𝑣)(𝐸𝑙 − 𝐸𝑢)

)

(IV.4.37)

𝑡𝑛𝑚𝑢𝑣3,𝑉1(2)𝑉1(2)
(𝒌) ≡ 2Re

(

𝐺2
y(𝐺

2
x)

×
⟨𝑛|𝜎TBz |𝑚⟩⟨𝑚| (+)− 𝜎TBx(y)|𝑢⟩⟨𝑢|𝜕𝑘y(𝑘x)|𝑛⟩⟨𝑛| (+)− 𝜎TBx(y)|𝑣⟩⟨𝑣|𝜕𝑘y(𝑘x)|𝑛⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑛 − 𝐸𝑣)

)

(IV.4.38)
𝑡𝑛𝑚𝑢𝑣4,𝑉1(2)𝑉1(2)

(𝒌) ≡ −2Re
(

𝐺2
y(𝐺

2
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×1
2
⟨𝑛|𝜎TBz |𝑛⟩

⟨𝑚| (+)− 𝜎TBx(y)|𝑢⟩⟨𝑢|𝜕𝑘y(𝑘x)|𝑛⟩⟨𝑛| (+)− 𝜎TBx(y)|𝑣⟩⟨𝑣|𝜕𝑘y(𝑘x)|𝑚⟩

(𝐸𝑛 − 𝐸𝑚)2(𝐸𝑛 − 𝐸𝑢)(𝐸𝑚 − 𝐸𝑣)

)

(IV.4.39)
for the other terms. By use of the abbreviated notation, the change in the spin polarization in
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z-direction up to second order becomes

𝛿𝑠xy,z(𝒌) ≡
∑

𝑛(occ)

(

𝑉1+𝑉2 ⟨̃𝑛|𝜎
TB
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⎝
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𝑡𝑛𝑚𝑙𝑢𝑣𝑖,𝑉𝑗𝑉𝑝
(𝒌) +

∑

𝑣≠𝑛
𝑡𝑛𝑚𝑢𝑣𝑖,𝑉𝑗𝑉𝑝

(𝒌)
⎞

⎟

⎟

⎟

⎠

⎞

⎟
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. (IV.4.40)

The cross terms of the spin polarization response in second order perturbation theory are

𝛿𝑠×xy,z(𝒌) =
2
∑

𝑗=1

∑

𝑛(occ)

∑

𝑚≠𝑛
𝑢≠𝑛

4
∑
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∑
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⎛

⎜

⎜

⎜

⎝

∑

𝑙≠𝑛
𝑣≠𝑙

𝑡𝑛𝑚𝑙𝑢𝑣𝑖,𝑉𝑗𝑉𝑝
(𝒌) +

∑

𝑣≠𝑛
𝑡𝑛𝑚𝑢𝑣𝑖,𝑉𝑗𝑉𝑝

(𝒌)
⎞

⎟

⎟

⎟

⎠

(IV.4.41)

containing only products of 𝑉1 and 𝑉2. The magnetization is simply the summation of all spin
polarizations over momentum space denoted as

𝛿𝑚xy,z =
∑

𝒌
𝛿𝑠xy,z(𝒌) (IV.4.42)

𝛿𝑚×
xy,z =

∑

𝒌
𝛿𝑠×xy,z(𝒌). (IV.4.43)

In the following, the changes in the magnetization 𝛿𝑚xy,z given in (IV.4.41) are analyzed for the
Chern insulator and the topological s-wave superconductor. In the case of the Chern insulator, the
pseudo-spin is supposed to couple to a pseudo-magnetic field and the operator being measured is
the pseudo-spin polarization in the z-direction of the pseudo-spin. In the case of the topological
s-wave superconductor, the magnetization in z-direction is analyzed and the system is perturbed
in x- and y-direction with magnetic fields linearly dependent on 𝑟x and 𝑟y, respectively.

IV.5. Higher orders and finite temperature

The Schrödinger equation (A.6.1) can be solved yielding higher orders in 𝑉 given in (IV.4.11).
For this purpose, the perturbing term in the Hamiltonian can be represented in the eigenbasis
(the Bloch basis) of the lattice periodic Hamiltonian ̂. The position operator given in 𝑉 is
unbounded and therefore problematic, since 𝑉 diverges as the size of the systems goes to infinity.
However, as investigated in Section III, the spin polarization in the systems analyzed are in good
approximation translation invariant. Thus, the contributions of 𝑉 to the analyzed polarization
can be regularized. It is then concluded that the lattice periodic part of the position operator
which is given by the first term in (IV.3.7) is the important part. The consequence is that the
matrix elements of the Hamiltonian in the Bloch basis can be written down more explicit using
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the representation of the position operator in the Bloch basis given in (A.4.40) yielding
𝑉 TB =

∑

𝑛,𝑛′
𝑉 TB
𝒌,𝑛𝑛′|𝑛⟩⟨𝑛

′
|
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∑

𝑛′′
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′′
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′
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(

∇𝑘x|𝑛
′′
⟩

)

⟨𝑛′′|�̂�y|𝑛
′
⟩

))

|𝑛⟩⟨𝑛′|. (IV.5.1)

The assumption that 𝑉 defined in (IV.4.11) can be well approximated by (IV.5.1) is confirmed by
the obtained numerical results shown below. The total Hamiltonian �̂� of the perturbed system
reads

�̂� = ̂ + 𝑉 . (IV.5.2)
while the matrix elements of ̂ in the Bloch basis is simply given by

̃ =
∑

𝑛
|𝑛⟩⟨𝑛|̂|𝑛′⟩⟨𝑛′| =

∑

𝑛
𝐸𝑛|𝑛⟩⟨𝑛| (IV.5.3)

Now, the total Hamiltonian can be diagonalized and the eigenvectors |𝑛⟩H and eigenvalues
𝐸𝑛,H(𝒌) can be obtained. With these, the expectation value for the polarization in z-direction can
be calculated. In general, the matrix-elements of 𝐻(𝒌) are changed in the eigenbasis of (𝒌) due
to the gradient field.

𝜎TBz,H =
𝜕𝐻(𝒌)
𝜕ℎz

. (IV.5.4)
The magnetization is in general determined through Equation (A.7.51). The magnetization can
thus be calculated for the perturbed system 𝐻(𝒌) to all orders with

𝑀z = − 1
𝑁
𝜕Ω
𝜕ℎz

= 1
2𝑁

∑

𝒌
⟨𝑛|𝜎TBz,H|𝑛⟩H tanh

(𝛽𝜆𝑛,𝐻
2

)

. (IV.5.5)

where 𝜆𝑛,𝐻 denotes the eigenvalues of the total Hamiltonian𝐻 . On the other hand, the Hamiltonian
can directly be expressed in real space, which avoids the description of the position operator
in the Bloch-state basis. There are thus in principle two different approaches to describe the
Hamiltonian containing the magnetic field gradients. It can be described in momentum space
using the Bloch-state representation of the position operator or alternatively in real space. The
real space description has the advantage, that open boundaries can analyzed and the subtlety of the
divergent parts of the position operator in a periodic system in momentum space can be avoided.

IV.6. Response in the spin polarization to external magnetic
field gradients

Numerical results for the spin-polarization response in the z-direction to an in-plane applied
magnetic field gradient are discussed in this section. There, the response is analyzed in the
Bloch state basis and alternatively in real space with either periodic or open boundary conditions.
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Figure IV.4.: The total ground state magnetization in z-direction𝑚xy,z with respect to the saturation
magnetization𝑚0 in the presence of the magnetic field gradients in x- and y-direction,
obtained from the real space description for open boundary conditions and for
periodic boundary conditions from real and momentum space (in the Bloch state
basis) calculations. ℎt,3 is indicated by the black dashed line. Further, 𝛼R = 0.25𝑡
was used. 𝑁 counts the number of lattice points of a square lattice in one direction
𝑁 = 𝑁x = 𝑁y. The open boundary calculations have been performed for two
different values of 𝑁 . The results from real space calculations and from the Bloch
state description coincide and are labeled as “periodic”.

Periodic boundary conditions signify in that case that the Hamiltonian without the gradient field
contributions is periodic. Obviously, the inclusion of the gradient breaks translation invariance.

First, the total magnetization and the total response to the gradient field is analyzed. Subse-
quently, the linear and quadratic response terms are discussed. The calculations are performed in
real and in momentum space. The results agree well with each other, which confirms the validity of
the results. Moreover, the real space calculations have the advantage that edge state contributions
can be taken into account as well. On the other hand, the representation in Bloch-state basis for
systems with periodic boundary conditions — as described above — allow to calculate the first
and second order perturbations in the states explicitly.
Response in the magnetization at open and periodic boundary conditions

The results of the total magnetization per lattice point normalized with the saturation mag-
netization 𝑚0 in z-direction are analyzed. The numerical data is displayed in Figure IV.4. The
calculation of the real space Hamiltonian is performed for system sizes of 𝑁 ≡ 𝑁x = 𝑁y = 40
and 𝑁 = 60. The results for open boundary conditions are clearly dependent on the system
size. The results obtained from the calculation at open boundary conditions converge towards the
results for periodic boundary conditions as one would expect. The influence of the edge on large
systems is seen to be very small.

From the perturbation theory in the Bloch-state representation, described in Sections IV.4,
the first and second order perturbations can be calculated explicitly. On the other hand, these
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Figure IV.5.: Evaluation of the response 𝛿𝑚xy,z with a) open boundary conditions b) periodic
boundary conditions. c) Comparison of the results with open and periodic boundary
conditions. d) Comparison of the signature for a spin-texture transition around the
momentum 𝒌t,3 with either a vortex or an antivortex texture. The magnetic fields
are ℎx(0, 𝑦) = −0.0228𝑡, ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and ℎx(𝑥, 𝐿) =
0.0228𝑡 and 𝛼R = 0.25𝑡.

calculations in real space provide the results to all orders.
The results for the thermodynamic response to an in-plane magnetic field gradient denoted with

𝛿𝑚xy,z is discussed for open boundary conditions for systems with 𝑁 = 40 × 40 or 𝑁 = 60 × 60
lattice points. The results are displayed in Figure IV.5 a). The change of the magnetization is
given as a function of the homogeneous magnetic field in z-direction ℎz while additional magnetic
field gradients are applied in both x- and y-direction simultaneously. In the smaller system, a
pronounced jump in 𝛿𝑚xy,z is visible around the phase transition. This vast change in 𝛿𝑚xy,z
turns into a smooth curve which is steepest around the phase transitions in the larger system. The
discontinuous transition in the smaller system is suggested to originate from the influence of edge
modes which becomes less important in the larger system. This assumption is reinforced by the
observation that the most pronounced signatures are present in the topologically non-trivial state
at which the edge states are identified.

The results of the real space calculations with periodic boundary conditions are shown in
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Subfigure IV.5 b). As expected, the results are independent of the system size. Like for open
boundary conditions, a steep change in 𝛿𝑚xy,z is obtained close to the topological transition
field ℎt . The comparison of the results for open and periodic boundary conditions are given in
Subfigure IV.5 c). The difference between the results are small in the trivial phase at which edge
states are absent and the open boundary conditions are converging towards the results for periodic
boundary conditions. In the non-trivial phase displayed on the left hand side of the subfigure,
this difference is much more pronounced. For both calculated system sizes, the contributions
of the edge modes to the signatures in the magnetization are significant. The results, however,
indicate that the differences between the open and periodic boundary conditions converge for
larger systems. This is consistent with the expectation that a thermodynamic signature should
depend on the bulk in the thermodynamic limit.

The topology of a spin-texture does not depend on whether the spin-texture is of a vortex or
antivortex type. Therefore, the change in the magnetization across a topological phase transition
is shown in Figure IV.5 d) for both vortex and antivortex spin textures around the gap closing
point 𝒌t,3. The results obtained for 𝛿𝑚xy,z are strongly different for vortices and antivortices. The
signatures obtained for the antivortex spin-texture is two orders of magnitude smaller than the
results obtained for the vortex type texture. This is the result of additive or subtractive regions in
momentum space dependent on the directions of the applied magnetic field gradient as shown
in Figure A.3 in Appendix A.2. A topologically trivial spin-texture transition of a vortex in
combination with an antivortex does therefore not yield vanishing results in 𝛿𝑚xy,z underpinning
that the incorporation of the total change in the magnetization does not yield sufficient information
about the topological character of a spin-texture transition even though clear signatures can be
identified.

However, the signature in 𝛿𝑚xy,z clearly indicates a structural change in the spin-texture. In
order to encounter the question whether the total change in the magnetization is a sufficient
indication for a topological phase transition, the analysis of total change in the magnetization in
the in-plane magnetic field gradient setup is split into the linear contributions and the quadratic
perturbations.

Linear perturbation theory

Fist, the linear response in the magnetization to an in-plane magnetic field gradient is discussed.
The question is examined whether thermodynamic response signatures — linear in the magnetic
field gradient — indicate a topological phase transition and if the observation of those are sufficient
to conclude that a non-trivial phase transitions is seen.

The numerical results are given in Figure IV.6. The results confirm that the linear response in the
in-plane magnetic field gradient can yield perceptible signatures at topological phase transitions.
These signatures from first order Rayleight-Schrödinger perturbation theory are, however, not
limited to non-trivial spin-texture transitions.

There are important requirements for a signature to be in accordance with non-trivial spin-
texture transitions. These involve an exclusive dependence of the signature on the vorticity. On
the other hand, it must not matter whether the spins (for example a Bloch-type vortex) wind
clockwise or counterclockwise around a vortex center. Therefore, a class of Hamiltonians was
introduced in Section IV.6 III.4 to test whether the thermodynamic signatures described below
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unambiguously indicate topological spin-texture transitions. This model allows for vorticities
 ≠ 1 and thus for higher vorticities and also for trivial spin-textures where, however, the bulk
gap closes and reopens as a function of the parameter ℎz, which is also a prerequisite for the
existence of topological phase transitions.

In Subfigure IV.6 a), the linear response in the magnetization 𝛿𝑚𝑥,z across a topological spin-
texture transition is displayed for three distinct cases. These include the spin-texture transition at
𝒌t = (0, 0) for ℎt,3 introduced in Section II.3 for three different vorticities (𝒌t) = 0, 1, 2 around
the momentum 𝒌t = (0, 0) in the QWZ-model. First, the case (𝒌t) = 1, which is given by
the blue curve, is discussed. The topological trivial phase is identified at ℎt,3 − ℎz < 0 and the
non-trivial phase is given in the range of ℎt,3 − ℎz > 0. The linear response is negative and its
absolute value is increasing towards ℎz = ℎt,3 in the trivial phase.

s

Figure IV.6.: Linear response terms 𝛿𝑚x,z in the vicinity of a topological phase transition. Subfig-
ure a) shows 𝛿𝑚x,z∕𝑚0 for different parameters 𝜆 and 𝑤. Subfigures b) display ΩB
(figures above) and 𝛿𝑠x,z(𝒌)∕𝑚0 (figures below) for  = 𝜆𝑤 = 1. The figures in the
left correspond to the trivial phase and the figures on the right correspond to the
non-trivial phase. The green arrows represent the in-plane spin vector normalized
to unit length.
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Figure IV.7.: ΩB(𝒌) (figures above) and 𝛿𝑠x,z(𝒌)∕𝑚0 (figures below) for the trivial state (left) and
the topological state (right) for a)  = 0 and b)  = 2.
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At the phase transition, the response term is increasing rapidly to a much larger absolute
value with opposite sign. In the non-trivial phase, the magnetization response is decreasing
with increasing ℎz. The increase of the signal towards ℎt,3 is attributed to a reduction of the
band gap such that perturbations are amplified. The results show that signatures are smaller in
the trivial phase than in the non-trivial phase which can be understood by the analysis of the
momentum-resolved signals. In such a momentum-resolved presentation, the liner response
signatures show mutually canceling regions in the trivial phase which are absent in the non-
trivial phase shown in Subfigure IV.6 b). Interestingly, the occurrence of canceling regions in the
signature is correlated with the occurrence of such regions in the Berry curvature as depicted in
the Subfigure fig:LinearResponseTerms b). In contrast to the Berry curvature, the linear response
term depends on whether the in-plane component of the spins winds around the vortex center
point clockwise or anticlockwise. The sign change in the linear perturbation signature across the
topological phase transition stems from the fact that the 𝑠z-expectation value changes its sign
around the momentum 𝒌t at which the essential topological spin-texture transition occurs. The
linear response for an anti-clockwise winding of these Bloch-type spin texture is equal but with
an inverted sign as depicted in Figure A.3 a) and b) in Appendix A.2. This dependence on the
direction of the spin-texture winding around the momentum 𝒌t testifies the importance of the
in-plane spin texture evolution in reciprocal space to the response signature.

These results suggest the existence of clear linear response signatures at topological phase
transitions. However, the linear response terms can be vanishing even at non-trivial phase
transitions which is the case, for example, for spin textures with vorticity  = 2 which is given by
the orange curve in Subfigure IV.6 a). The corresponding momentum space response is depicted
in Figure IV.7 a) showing the cancellation in the Brillouin zone. The linear response term is thus
not sufficient to draw conclusions about topological phase transitions.

This observation is corroborated by the results on the trivial spin-texture transition with  = 0
which is realized by setting 𝑓 (𝜑) = sin(𝜑) in Equations (III.4.1) to (III.4.3). The response
signature is given by the green curve in Figure IV.6 a) which is not vanishing. The corresponding
signature in momentum space for trivial and topological phase are shown in Figure IV.6 b) clearly
showing the non-canceling contributions. The Berry curvature, on the other hand, is not vanishing.
This example of a trivial spin-texture transition proves that the linear response terms are not
indicative of non-trivial texture transitions in all cases.

These examples suggest that distinct signatures in the linear response terms of the spin mag-
netization are possible. These, however, imply not necessarily a topological phase transition.
The question arises whether non-zero signatures restricted to non-trivial topological spin-texture
transitions exist. As shown in the following, the second order cross terms defined in (IV.4.27) to
(IV.4.34) included in 𝛿𝑠×xy,z(𝒌) indeed satisfy this condition.

Second order perturbation

Using the expression obtained from perturbation theory, 𝛿𝑠×xy,z(𝒌) can be calculated and analyzed
directly. In the real space calculations 𝛿𝑠×xy,z(𝒌) contains the second order terms plus higher
perturbations, these higher order terms are, however, small as long as the perturbation is weak
compared to the energy gap. The results are shown in Figure IV.8 a) and IV.8 b) for open and
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periodic boundary conditions, respectively. The results for open boundary conditions show distinct
differences between a small and a larger system size.

Figure IV.8.: Evaluation of the response 𝛿𝑚×
xy,z across a topological spin-texture transition for

open and periodic boundary conditions in a magnetic gradient field setup with
ℎx(0, 𝑦) = −0.0228𝑡, ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and ℎx(𝑥, 𝐿) =
0.0228𝑡. The figures show in a) and b) 𝛿𝑚xy,z∕𝑚0 and 𝛿𝑚×

xy,z(ℎz)∕𝑚0 for open and
periodic boundary conditions, respectively. Figure c) shows the direct comparison
of the results obtained from open and periodic boundary conditions. The results for
vortex and anti-vortex spin-textures are analyzed in d). In figure e), the comparison
of the results obtained from real and momentum space is depicted.
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Figure IV.9.: a) Quadratic response of the spin magnetization showing signatures at the topological
phase transition for distinct  = 𝜆𝑤. The figures in b) show 𝛿𝑠×xy,z(𝒌) for ℎz =
ℎt − 0.1𝑡 (left side) and ℎz = ℎt − 0.1𝑡 (right side) for  = 𝜆𝑤 = 1 (figures above)
and  = 𝜆𝑤 = 2 (figures below).
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Figure IV.10.: a) 𝛿𝑠×xy,z(𝒌) for  = 0 with 𝑓 (𝜑) = sin(𝜑). b) ΩB(𝒌) (figures above) and 𝛿𝑠×xy,z(𝒌)
(figures below) for  = 0 realized with 𝑓 (𝜑) = sin(𝜑2 − 2𝜋𝜑). The angle is given
by 𝜑 = arctan 2(𝑘y∕𝑘x). In the figures on the left side ℎz = ℎt,3 − 0.1𝑡 was used
and in the figures on the right side ℎz = ℎt,3 + 0.1𝑡 was chosen.
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However, as the figures indicate, the system approaches the results obtained from the periodic
boundary conditions as the system size in increased as one would expect since magnetizations
are non-zero in the bulk which should be dominating in large systems displayed in Figure IV.8 c)
where the results obtained from open and periodic boundary conditions are compared directly.
Changing the vorticity of the spin-texture from  = 1 to  = −1 yields the same absolute
values of 𝛿𝑚×

xy,z but opposite signs. On the other hand, changing the winding of the spin-textures
from clockwise to anticlockwise and vice versa does not have any effect on the signature as
depicted in Figure A.4 in Appendix A.2. These are very important observations since the topology
does exclusively depend on the vorticity and is not dependent on whether the spins point in a
clockwise or anticlockwise direction around the vortices. Thus, the simultaneous change of the
spin-polarization at a vortex type and an antivortex type spin texture — which corresponds to a
topologically trivial spin-texture transition — cancels resulting in a vanishing signal in 𝛿𝑚×

xy,z.
In order to analyze the dependence of the signatures in 𝛿𝑚×

xy,z on non-trivial spin-texture
transitions, similar to the analysis of the linear order terms, the signatures are investigated for
four distinct cases. These include the vorticities  = 0, 1, 2 while two different realizations of
 = 0 are analyzed which are described in more detail below. The dependence of 𝛿𝑚×

xy,z on the
magnetic field ℎz is depicted in Figure IV.9 a) for all of these cases. The blue curve corresponds to
the situation with  = 1 at the topological spin-texture transition around 𝒌t at which the essential
spin-texture transition occurs. For this situation, a clear signature is obtained in 𝛿𝑚×

xy,z. The other
non-trivial spin-texture transition realized with  = 2 is given by the orange curve which also
shows distinct signatures at the topological spin-texture transition. There are also two distinct
situations with trivial spin-texture transitions. Both include a spin-texture with  = 0 but the
function 𝑓 (𝜑) defined in Equation (III.4.1) is different in both cases.

The green curve is realized by 𝑓1(𝜑) = sin(𝜑). The signature is absent for this spin-texture
transition. To exclude the possibility that the contributions only cancel each other out by chance a
second realization of  = 0 is analyzed with 𝑓2(𝜑) = sin(𝜑2−2𝜋𝜑) which fulfills the requirement
𝑓 (0) = 𝑓 (2𝜋). Also in this second realization of a trivial spin-texture transition, the signature in
𝛿𝑚×

xy,z vanishes yielding the green curve in Figure IV.9 a). Figure (IV.9) b) displays the momentum-
resolved change in the spin-polarization 𝛿𝑠×xy,z(𝒌) for the non-trivial phase transition with  = 1
(figure above) and  = 2 (figures below) for values of ℎz > ℎt (right panel) and ℎz < ℎt (left
panel). The corresponding Berry curvatures are given in Figure IV.6 b). Similarly 𝛿𝑠×xy,z(𝒌)is shown in Figures IV.10 a) and b) for  = 0 realized by 𝑓1(𝜑) and 𝑓2(𝜑), respectively. The
corresponding Berry curvatures for the latter are given in Figure IV.6 b) in the above panels. All
these examples indicate a distinct correlation between the Berry curvature and 𝛿𝑠×xy,z(𝒌). The
momentum-resolved results of 𝛿𝑠×xy,z(𝒌) are confirmed by the real space calculations for the
example of  = −1 shown in Figure IV.11.

These results demonstrates that the response of the polarization is of topological quality, since
they indeed provide information about the spin vorticity and the spin polarization in the z-direction.
The numerical observations therefore strongly suggest that the signatures are a clear indication of
non-trivial spin-texture transitions and moreover imply that a momentum-resolved measurement
of the spin polarization obtained from photoelectron spectroscopy [116] of the spin polarization
could be used to visualize phase information about the Berry curvature.
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Figure IV.11.: Comparison of 𝛿𝑠×xy,z(𝒌) for a) N=20 with open boundary conditions with b)
the results from second order perturbation theory using the representation of
the position operator in the Bloch state basis. The values ℎx(0, 𝑦) = −0.0228𝑡,
ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and ℎx(𝑥, 𝐿) = 0.0228𝑡, 𝛼 = 0.25𝑡 and
ℎz = ℎt,3 − 0.1𝑡 and (𝒌t) = −1 have been used.

The dependence of 𝛿𝑚xy,z on the direction of the magnetic field gradients is investigated.
This dependence is displayed in Figure IV.12 a) and shows that the ratio of the system response
depends on the direction of the magnetic field gradients. There, 𝛿𝑚xy,z(𝜙) and 𝛿𝑚×

xy,z(𝜙) are
plotted as a function of 𝜙 which is the angle between the directions of both applied magnetic field
gradients. Of course, 𝛿𝑚×

xy,z(0) = 𝛿𝑚×
xy,z(𝜋) = 0 since “cross” terms do not exist when both field

gradients are parallel and these cross terms are largest for fully perpendicular field gradients. The
dependence of 𝛿𝑚xy,z on the angle 𝜙 is similar as in 𝛿𝑚×

xy,z(𝜙) but at 𝜙 = 0 the total change in
the magnetization 𝛿𝑚xy,z ≠ 0. Its change is minimal at 𝜙 = 𝜋∕2 where the contributions from
the gradient in y-direction and the gradient in x-direction are partially canceling and maximal at
𝜙 = 3𝜋∕4 where both gradient directions are constructively adding.

These results strongly suggest that the signature in 𝛿𝑠×xy,z(𝒌) is related to the Berry curvature
and sufficient to conclude non-trivial spin-texture transitions. Furthermore, these results imply
that analyzing 𝛿𝑚×

xy,z allows one to conclude whether the skyrmion number has increased or
decreased since trivial combinations of spin-texture transitions at distinct vortices seem to lift
away and the transitions for a vortex-texture and an antivortex texture differs by a sign.

Topological s-wave superconductor

To confirm the applicability of the above analysis of magnetization in a second-order perturbation
theory, the topological s-wave superconductor is studied analogously. However, the following
solutions were not generated in self-consistent calculations which may lead to additional peculiar-
ities in the results not considered in this thesis. At first, the results are analyzed in the immediate
vicinity of the topological phase transition. The contributions to the linear response terms around
the topological phase transition in the low filling regime are equivalent to those of the QWZ-model
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Figure IV.12.: Figures a) and b) show 𝛿𝑚xy,z(𝜙) (left) and 𝛿𝑚×
xy,z(𝜙) right). The definition of 𝜙

is given in the main text. The magnetic field gradient is used such that ℎx(0, 𝑦) =
−0.0228𝑡, ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and ℎx(𝑥, 𝐿) = 0.0228𝑡.
Further, ℎz = ℎt,3 − 0.1𝑡 was taken.

which can show distinct signatures at the phase transitions, but the existence of such signals are
not dependent on topologically non-trivial spin-texture transitions.

As further confirmation, the solutions obtained from the real space calculations with open
and periodic boundary conditions are shown in Figure IV.13 a) for 𝛿𝑚×

xy,z. The topological phase
transition is clearly indicated in 𝛿𝑚×

xy,z. The blue and the green curve show the results applying
open boundary conditions for a system with size 𝑁 = 𝑁x = 𝑁y = 40 and 𝑁 = 60, respectively.
The orange curve corresponds to the calculations with periodic boundary conditions. As for the
QWZ-model, the difference between the results for periodic boundary conditions and for open
boundary conditions is larger in the topological non-trivial phase which could be attributed to
the occurrence of topological edge modes. The analysis of the edge mode contributions are still
under investigation. Nevertheless, the results allow to conclude that the solutions for the open
boundary conditions converge to the solutions for the periodic boundary conditions as a function
of the system size.

The linkage of the response in the spin polarization from second order perturbation theory with
the Berry curvature is also confirmed for the topological s-wave superconductor. Figure IV.13 b)
displays the Berry curvature ΩB(𝒌) and 𝛿𝑚×

xy,z(𝒌) in momentum space. The agreement of the
results compared with those of the two-band model is apparent. Just like the Berry curvature,
𝛿𝑚xy,z does not depend on the direction how the spins point around the vortex cores, but on the
vorticity.

Thus, the results demonstrate that the signatures of the topological phase transition for the QWZ
model also apply to the topological s-wave superconductor. After all, these topological systems
are quite different. The QWZ model is a two-band model while the superconductor is effectively
a four-band model. Also, both systems are significantly different in terms of their topological
spin textures. The QWZ model possesses skyrmion type spin textures whereas the topological
s-wave superconductor has a meron like spin texture. However, this example demonstrates the
applicability of the study of 𝛿𝑚×

xy,z to a system other than the QWZ model.
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Figure IV.13.: a) 𝛿𝑚×
xy,z in the topological s-wave superconductor for different system sizes for

open boundary conditions and for periodic boundary conditions. b) ΩB (figures
above) and 𝛿𝑠×xy,z(𝒌) (figures below) in the trivial phase (left) and the non-trivial
phase (right).
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IV.7. Scales and temperature dependence

In the analyses above, a magnetic field gradient is applied to a translation invariant system while
the magnetic field is set to a specific value at the ends of a finite size system (in the two dimensional
setup as sketched in Figure IV.3). Then, the size of the system is changed while keeping the
magnetic field at the system edges constant. This way it is guaranteed that the magnetic fields do
not become too large at the edges of the system. As shown in the results above, the thermodynamic
signatures of the topological phase transition is increasing towards the topological phase transition.
The signatures in the finite size systems or in periodic systems with the Bloch state representation
are finite. The question arises, how large the signature can become and if they are measurable.

For this purpose, the linear perturbation theory term and 𝛿𝑚×
xy,z are analyzed for large𝑁 for the

QWZ-model and the topological s-wave superconductor. In the discussions above, the scale of the
energy was in the range of the hopping energy 𝑡 and units were used such that 𝑘B = 1 and ℏ = 1.
In order to examine the size of the signatures, it is advantageous to specify the the quantities in
common units. The magnetic induction is specified in Tesla (T) and the volume magnetization is
given in the commonly used unit of emu/cm3 while this converts into the SI units as 1 emu/cm3=
103 A/m. In the following, the lattice spacing 𝑎=4Å is assumed and the tight binding hopping
energy 𝑡=0.25 eV is set which corresponds roughly to the energy range of LAO/STO for such
nearest neighbor tight binding hopping energies. The Rashba spin-orbit coupling 𝛼R = 25meV is
chosen which is large but reasonable as the Rashba coupling in LAO/STO is within this range
[43, 117].

Thus, in the equations used above, it is necessary to replace the magnetic field 𝒉 → 𝜇B𝑩 in
order to perform the calculations in SI units. The expectation values for the operator 𝜎z are to be
replaced such that ⟨𝑛|𝜎TBz |𝑚⟩ → 𝜇B⟨𝑛|𝜎TBz |𝑚⟩. Further, the wave vector 𝒌 has to be replaced by
𝒌 ⋅ 𝑎 in the matrix elements of the tight-binding Hamiltonian. The changes in the spin polarization
are thus given by

𝛿𝑠xy,z(𝒌) = 𝜇3B
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and one has

𝜇B ≈ 5.8 ⋅ 10−5 eV
T
. (IV.7.1)
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Figure IV.14.: a) Comparison of the linear perturbation terms 𝛿𝑚x,z with 𝛿𝑚×
xy,z; b) finite tem-

perature calculations of 𝛿𝑚×
xy,z using Equation (IV.5.5). The parameters used

are 𝛼R = 0.2 eV, 𝐵x(0, 𝑦) = −0.1T, 𝐵x(𝐿, 𝑦) = 0.1T, 𝐵y(𝑥, 0) = −0.1T,
𝐵y(𝑥, 𝐿) = 0.1T.

In the following, the QWZ model is analyzed. There, a linear magnetic field gradient is applied
such that 𝐵x(0, 𝑦) = 𝐵y(𝑥, 0) = −0.1T and 𝐵x(𝐿, 𝑦) = 𝐵y(𝑥, 𝐿) = 0.1T while 𝐿 = 𝐿x = 𝐿y.
The (pseudo-) magnetic field ℎz − ℎt is varied from −2T up to 2T. These values are reasonable
for the usual magnetic fields and in pseudo-magnetic fields where the latter can even be several
hundred Tesla in size [118]. Figure IV.14 a) depicts the comparison of the linear perturbations
𝛿𝑚x,z and the second order perturbation terms 𝛿𝑚×

xy,z for the ground state. Close to the topological
phase transition, the second order terms exceed the linear order terms until orders higher than
the second order dominate where 𝛿𝑚×

xy,z vanishes as ℎz − ℎt,3. The previous results have been
calculated for the ground state 𝑇 = 0. It is very important to determine how temperature affects
the results. Therefore, 𝛿𝑚×

xy,z is given as a function of ℎz − ℎt,3 at the distinct temperatures
𝑇 = 0, 0.8, 1.2, 2.5K. The results are within a common measuring range with a maximum of
roughly 3⋅10−1 emu/cm3 in the ground state. Due to the finite temperatures, the signal is broadened.
Further away from the phase transition, the signature is thus increased. In the vicinity of the
phase transition, the signature is, on the other hand, decreased and the maximal amplitude of
the signal is suppressed. This observation is in accordance with the expected usual broadening
of thermodynamic signatures at finite temperatures. For the chosen parameter set, the maximal
amplitude of the signature at 2.5 K is roughly eight times smaller than the maximum of ground
state amplitude.

Such magnetizations may be measured using SQUID (Superconducting Quantum Interference
Device) magnetometers [119, 120]. Common SQUID magnetometers can measure magnetization
with very high sensitivity allowing to measure magnetic moments ≤ 10−8 emu [121] in external
magnetic inductions up to several Tesla [122]. In the context of pseudo-spins, pseudo-magnetic
fields have to be measured [57, 123]. Such investigation capabilities depend on the particular
systems in question. A detailed discussion of possible implementations in specific pseudo-spin
systems is extensive and is beyond the scope of this thesis.
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Figure IV.15.: Dispersion in the QWZ model for a gradient field with a) ℎx(0) = −0.1𝑡 and
ℎx(𝐿) = 0.1𝑡 and b) ℎx(0) = −0.3𝑡 and ℎx(𝐿) = 0.3𝑡. Edge modes found at
𝑟x = 0 are yellow and edge modes found at the 𝑟x = 𝐿 are light blue. Further,
ℎz = ℎt,3 − 0.2𝑡 and 𝛼R = 0.25𝑡 was used.

IV.8. Influence of magnetic gradient fields on topological edge
states

Topological states are most often characterized by topological edge states rather than by topological
bulk properties. It is thus the question how the magnetic gradient terms affect the edge states
and whether topological phase transitions can be driven by the gradient terms. This question
is discussed exemplarily for the QWZ model and the topological s-wave superconductor. The
findings described in Section III.3 show that the bulk boundary correspondence is fulfilled in the
s-wave superconductor but chiral edge states exist even in the topological trivial phase in this
system. The matrix elements of the current density operator is defined as [2]

⟨𝒌, 𝑛|�̂� |𝒌, 𝑛⟩ = 𝑛e�̂� = 𝑛e⟨𝒌, 𝑛|𝜕𝐻
𝜕𝒌

|𝒌, 𝑛⟩ (IV.8.1)
where 𝑛 and e denote the density and the elementary charge, respectively. The edge currents for
the QWZ model and the topological s-wave superconductor in the topological and trivial bulk
phases are shown in Figures A.1 and A.2, respectively. In those figures, the expectation values
have been calculated spin-resolved, distinguishing ↑-spins and ↓-spins through the calculation of
the matrix elements

𝐽𝑛(𝑠,𝒌) = ⟨𝒌, 𝑛|�̂��̂� |𝒌, 𝑛⟩ (IV.8.2)
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with �̂� ∈ {↑̂, ↓̂} where ↑̂ and ↓̂ denote the ↑-spin and ↓-spin operators, respectively. Boundary
states and edge currents are absent in the topologically trivial phase in the QWZ model. It is
therefore important to investigate how the magnetic field gradients affect the boundary states in
both systems.

The topological edge states are displayed in Figure IV.15 a) to d) for the QWZ model at a nonzero
magnetic field gradient. Subfigure IV.15 a) shows the dispersion in the non-trivial phase. The bulk
states are black and the edge modes are colored analogously as introduced in Section III.3. For a
vanishing magnetic field gradient, the band crossing is found at 𝐸∕𝑡 = 0 as given in Figure III.12.
However, for this non-vanishing field gradient, the band crossing is lifted in energy. The linear
band crossing of the edge modes is, nevertheless, preserved. The comparison of Subfigure IV.15 a)
and b) shows that the edge states remain within the bulk gap for ↑-spin and ↓-spin at the edges.
For a large enough field gradient the band crossing is moved into the bulk bands. While the states
in the bulk gap retain a ↓-spin expectation value at the edge, shown in Subfigure IV.15 c). The
↑-spin states are moved into the bulk as the colors indicate in Subfigure IV.15 d).

The effect of the magnetic field gradient on the states higher in energy is weaker then on the
states smaller in energy. The effect on the bulk states is therefore weaker than on the edge states
which is evident from the comparison of Figures IV.15 a and b) with c) and d). The edge modes
are shifted by around 0.2𝑡 which corresponds to the energy scale of the applied magnetic field at
the boundary. This observation is consistent with the expectation that the states localized at the
edge are most strongly modified by the magnetic field gradient. As a result, the band crossing is
shifted in energy into the energy range of the bulk states. This creates touching points of the bulk
bands with the boundary bands which show a non-linear dispersion at the touching point.

The effects of the dispersion on the trivial phase is not shown. However, the gradient terms
have not been identified to drive topological ground state phase transitions.

The topological superconductor, on the other hand, has edge states in the trivial and topological
phases. Figures IV.17 shows the dispersion when a small (relative to the band gap) gradient field
is used. As in the QWZ model, the boundary states are lifted in energy. The non-trivial phase is
given in Subfigure IV.17 c) and d) for the corresponding expectation values. The dependence of
the edge states on the gradient field is analogous to that in the QWZ-model. In the trivial phase,
however, the states in the bulk gap close to the Γ-point are shifted towards the bulk states, The
edge states in between ±𝜋∕2 and ±𝜋∕4 are lifted in energy. Figures IV.17 a) and b) show the
dispersion for an applied magnetic gradient field in the trivial phase for a small applied magnetic
field gradient. Like in the non-trivial phase, two band crossings emerge for even larger magnetic
field gradients. Subfigures IV.17 c) and d) shows the bandcrossing to be shifted into the bulk
states just as in the QWZ-model for a larger magnetic field gradient.

Similar results are shown in Figures IV.17 e) to h) for the dispersion in the topologically non-
trivial phase. In small magnetic field gradients the bands of the edge modes are lifted in energy
and a magnetic field gradient exists at which the edge modes are energetically shifted into the
energy range of the bulk modes.

Edge states, which are energetically still in the band gap, are not significantly pushed from the
edge into the bulk. Thus, edge states do not disappear by the application of gradient fields. A
topological state can thus be described by the existence of edge states even in the presence of the
gradient fields. However, topological band crossing points are energetically shifted.
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Figure IV.16.: Dispersion in the topological phase of the topological s-wave superconductor for
ℎz = ℎt,3 −0.2𝑡 for a gradient field with a) and b) ℎx(0) = −0.1𝑡 and ℎx(𝐿) = 0.1𝑡,
and c), d) ℎx(0) = −0.3𝑡 and ℎx(𝐿) = 0.3𝑡. Edge modes found at 𝑟x = 0 are yellow
and edge modes found at the 𝑟x = 𝐿 are light blue. Further, 𝛼R = 0.25𝑡, 𝜇 = −3.2𝑡
and Δ = 0.5𝑡 was used.
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Figure IV.17.: Dispersion in the topological phase of the topological s-wave superconductor for
ℎz = ℎt,3 −0.2𝑡 for a gradient field with a) and b) ℎx(0) = −0.1𝑡 and ℎx(𝐿) = 0.1𝑡,
and c), d) ℎx(0) = −0.3𝑡 and ℎx(𝐿) = 0.3𝑡. Edge modes found at 𝑟x = 0 are yellow
and edge modes found at the 𝑟x = 𝐿 are light blue. Further, 𝛼R = 0.25𝑡, 𝜇 = −3.2𝑡
and Δ = 0.5𝑡 was used.
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V. Outlook

The thermodynamic response signals for in-plane magnetic field gradients are shown to be related
to non-trivial spin-texture transitions. This relation has been verified for arbitrary vorticities and
qualitative information about whether a skyrmion number is increased or decreased across a phase
transition has been extracted from such signals. Furthermore, it is of great interest to quantitatively
evaluate the response in the magnetization to possibly extract information about the value of the
topological invariants in the respective phases. These investigations are still ongoing. If such
quantitative information can be identified from a bulk measurement, it would be a significant
finding and provide an alternative to measuring changes in topological invariants. Therefore, it
is important to gain a deeper understanding of the relation between the Berry curvature and the
signature in the magnetization due to the in-plane magnetic field gradients. The results presented
here suggest that the signatures in the magnetization are directly associated with non-trivial
spin-texture transitions. A rigorous analytical proof has not been accomplished yet and further
studies may be necessary.

The experimental realization seems to be possible in general. However, further discussion is
needed concerning the experimental implementation. The realization of the necessary gradient
fields can, for example, be achieved by common gradient coils [124]. Another possibility could
be magnetic surface engineering which allows for very large magnetic field gradients [125]. In
Reference [126], for example, magnetic field gradients of up to 5 ⋅ 105 T/m have been reported.
The measurability in pseudo-spin systems depends on the system in question. Highly strained
graphene for example, where strain acts as a pseudo-magnetic field, fields up to 300 T have been
attained [127]. Pseudo-spins have been measured [57] and therefore an investigation as presented
in this work could be carried out in principle.

As a further step, especially in the superconducting systems, the orbital coupling effects of the
magnetic field should be taken into account by the inclusion of the Peierls phase as discussed
in Section II.2. Such orbital coupling is responsible for the formation of vortex states and thus
largely determines the critical field at which superconductivity breaks down. The study of
superconducting systems is special in many ways. The topological s-wave superconductor studied
in this work was treated partially self-consistent. In particular, in the case of gradient fields,
a self-consistent calculation of the order parameter was waived. Such self-consistency is very
significant, but also requires a considerable effort that could not yet be accomplished within the
scope of this work. It is suggested that the self-consistent investigation be addressed in further
studies.

A particular difficulty of the topological s-wave superconductor is the realization of non-trivial
topological states. Other topological superconductors may be better suited to realize topologically
non-trivial states. It is therefore important to investigate whether the response of magnetization in
the z-direction to in-plane magnetic gradient fields in other superconducting systems is suitable
for an unambiguous identification of topological phase transitions.
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Chapter V. Outlook

Edge states and edge currents have been identified in the topologically trivial phase of the
s-wave superconductor. A closer study of the influence of the edge states on the response of the
magnetization to the magnetic field gradients is an interesting task that should be addressed in
future investigations.
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VI. Summary

Topological phases in two-dimensional electronic systems are usually described by a non-trivial
Berry phase which is related in many cases to non-trivial topological pseudo-spin textures. Within
this thesis, connections between topological spin-texture transitions and thermodynamic signatures
are investigated. Thermal responses of topological spin textures in homogeneous external magnetic
fields can show signatures at the topological phase transitions. These are, however, not limited to
non-trivial topological phase transitions.

The results in this thesis strongly suggest the existence of unique signatures of topological
phase transitions manifest in the quadratic response terms of the spin polarization to external
magnetic field gradients. These signatures in the spin magnetization are generated by mutually
perpendicular magnetic field gradients. The signatures are contained in cross terms defined by
the difference between the total magnetization response to the magnetic field gradient in two
mutually perpendicular directions within the plane and the sum of the individual magnetization
responses to the respective gradient field directions. These signatures represent a new type of
thermodynamic analysis appropriate to analyze topological phase transitions.

The signals show to be significantly enhanced towards the phase boundary with a sign change
across the phase transition. The sign in the change of the magnetization yields information
about changes in the skyrmion number characterizing the non-trivial spin textures. The quadratic
response of the spin polarization does therewith also yield information about Chern number
transitions because, if existent, non-trivial spin-textures are related to non-trivial Berry phases.
While linear response of conductivity of topologically non-trivial systems in electric fields depends
on boundary states, magnetization response in magnetic gradient fields is a bulk quantity. Besides
the quadratic response signature, linear response terms in the magnetization to a magnetic field
gradient can also show signatures at the phase transitions. It is shown that the linear response is,
however, not sufficient to describe non-trivial spin-texture transitions.

Both, the response of the magnetization in homogeneous magnetic fields and in magnetic
gradient fields are discussed exemplarily in the Qi-Wu-Zhang model, a non-trivial Chern insulating
system, and in the topological s-wave superconductor with Rashba spin-orbit coupling. The
dependence on the temperature and on finite size effects of thermodynamic signatures were also
discussed in these systems. Finite temperatures are manifest in a broadening of the signatures,
where the scale for which the cross terms in the magnetization response remain in the range
of the ground state signature is set by the scale of the Zeeman splitting at the boundaries. The
explicit calculation with usual energy scales shows that the described cross terms provide signals
in the measurable range. The finite size calculations show distinct dependencies on the boundary
conditions in small systems which however vanish as the system increases.

Because non-trivial spin phases are only defined in the continuum description, topological
phases cannot be described in finite size systems. Here a topological spin-texture character is
introduced which is equivalent to the topological phase invariant in the continuum limit but which
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can be defined in finite size lattice models by the identification of vortex textures. It is shown that
the topological character of the spin textures depends on the size of the system and transitions
between topological character phases can be caused by a change of the systems size. Therefore, the
character of the spin texture is a function of the parameters of the Hamiltonian and the size of the
system. In contrast to the QWZ-model, the topological spin-texture character is found to be trivial
at any finite size in the topological s-wave superconductor. A similar conclusion can be drawn
from finite temperature calculations. The topological phases in the QWZ-model are stable against
finite temperature, whereas the topological character in the topological s-wave superconductor is
destroyed. The spin-texture of the topological s-wave superconductor is therefore highly fragile
due to a meron-like spin texture.

Furthermore, a connection between the Chern number and the skyrmion number in terms of
topological spin textures is shown to be still present in mixed parity superconductors with s-wave
and 𝑝x+i𝑝y triplet admixture. At topological phase transitions, vortex-antivortex pairs can emerge
or disappear showing that the type of vorticity and the total number of vorticities can vary at
different topological phases.

As pointed out, another possibility to describe non-trivial topological bulk states is the identifi-
cation of chiral and gapless edge states showing linear crossing points of the edge modes within
the bulk gap (in finite size systems) which is referred to as the bulk-boundary correspondence.
In both analyzed systems, the bulk boundary correspondence is fulfilled. However, the analysis
in this thesis shows that significant differences in the QWZ-model and the topological s-wave
superconductor regarding the edge states exist. While edge states are only present in topological
non-trivial phases in the QWZ-model, chiral but gapped edge modes have been identified in
the topological s-wave superconductor also in the trivial phase. Moreover, chiral edge currents
can be obtained in the topological s-wave superconductor in both, the trivial and the topological
phase. These observations suggest that a topological characterization of the topological s-wave
superconductor through edge modes may be fraught with difficulties. A bulk thermodynamic
description of topological phase transitions can therefore be essential in particular in topological
superconductors.
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Additional information and derivations of equations from main text are given below. The appendix
consists on the one hand of detailed summaries of known results from the literature, on the other
hand detailed calculations of the results of this thesis are presented.

A.1. Derivative of eigenvalues and eigenvectors

The first derivative of an eigenvector can be found with the normalization condition together
with the eigenvalue equation. The following derivation of the derivative of an eigenvector or an
eigenvalue can be found in the literature [128–130]. The eigenequation and the normalization
condition reads

(𝑀 − 𝜆𝑖)𝑣𝑖 = 0; 𝑣†𝑖 𝑣𝑖 = 1 (A.1.1)
where 𝑀 denotes some hermitian matrix with eigenvalues 𝜆 and eigenvectors 𝑣. The derivative
of the eigenvalue equation is taken, yielding

(𝑀 − 𝜆𝑖)�̇�𝑖 + (�̇� − �̇�𝑖)𝑣𝑖 = 0; (A.1.2)
Multiplying with 𝑣†𝑖 on the left hand side of (A.1.2) yields �̇�

𝑣†𝑖 (𝑀 − 𝜆𝑖)�̇�𝑖 + 𝑣
†
𝑖 (�̇� − �̇�𝑖)𝑣𝑖 = 0

⇔ (𝜆𝑖 − 𝜆𝑖)�̇�𝑖 + 𝑣
†
𝑖 (�̇� − �̇�𝑖)𝑣𝑖 = 0

⇔ 𝑣†𝑖 �̇�𝑣𝑖 = �̇�𝑖. (A.1.3)
The derivative of the eigenvector can be obtained by multiplying (A.1.2) with 𝑣†𝑗 while 𝑗 ≠ 𝑖,
yielding

𝑣†𝑗𝑀�̇�𝑖 − 𝜆𝑖𝑣
†
𝑗 �̇�𝑖 + 𝑣

†
𝑗�̇�𝑣𝑖 − �̇�𝑣

†
𝑗𝑣𝑖 = 0 (A.1.4)

from 𝑣†𝑗𝑣𝑖 = 0 one has �̇�†𝑗𝑣𝑖 + 𝑣†𝑗 �̇�𝑖 = 0. We have
𝑣†𝑗𝑀�̇�𝑖 − 𝜆𝑖𝑣

†
𝑗 �̇�𝑖 + 𝑣

†
𝑗�̇�𝑣𝑖 = 0

⇐ 𝑣†𝑗 �̇�𝑖 =
𝑣†𝑗�̇�𝑣𝑖
𝜆𝑖 − 𝜆𝑗

(A.1.5)

and thus, the derivative of an eigenvector can be determined by

�̇�𝑖 =
∑

𝑗≠𝑖

𝑣†𝑗�̇�𝑣𝑖
𝜆𝑖 − 𝜆𝑗

𝑣𝑗 . (A.1.6)
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A.2. Supplemental figures on the magnetization response and
on edge state calculations

Below, additional figures are provided to supplement the results of the main text where the
references to these figures are given.

Figure A.1.: Edge currents in the QWZ model. a) Edge currents with ↑-spin or similarly ↑-spin
expectation values for ℎz = ℎt,3 − 0.2𝑡 and 𝛼R = 0.25 𝑡.

Figure A.2.: Edge currents in the topological s-wave superconductor in a) the trivial and b) the
non-trivial phase. The results are clearly similar. Parameters used are ℎz = ℎt,1±0.1𝑡,
𝛼R = 0.25𝑡, Δ = 0.5𝑡 and 𝜇 = −3.2𝑡. The results are not obtained from self consistent
calculations.
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s
s

Figure A.3.: Linear response in the polarization to an in-plane magnetic field gradient. 𝛿𝑠x,z∕𝑚0 is
shown for a) = 1 and for b) = −1 in the QWZ model. In addition, the total change
in the magnetization 𝛿𝑠xy,z for  = 1 in c) an anticlockwise spin alignment and d) an
clockwise spin alignment around a vortex center are depicted. The magnetic fields
are ℎx(0, 𝑦) = −0.0228𝑡, ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and ℎx(𝑥, 𝐿) =
0.0228𝑡 and 𝛼R = 0.25𝑡.
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s

Figure A.4.: The figure shows the cross terms 𝛿𝑠×xy,z for  = 1 in a) an anticlockwise spin
alignment and b) a clockwise spin alignment around a vortex center. The mag-
netic fields are ℎx(0, 𝑦) = −0.0228𝑡, ℎx(𝐿, 𝑦) = 0.0228𝑡, ℎx(𝑥, 0) = −0.0228𝑡 and
ℎx(𝑥, 𝐿) = 0.0228𝑡. Further, 𝛼R = 0.25𝑡.

A.3. Thermodynamic potential of the topological s-wave
superconductor

By use of the Grassmann algebra of which the basics are given in Appendix A.7, the partition
function and therefore the grand canonical potential for the topological s-wave superconductor can
be obtained. These results are well known and found for example in References [131]. However,
for completeness, the calculation is presented in the following. The Hamiltonian for the topological
s-wave superconductor is given in the introduction of the main text. Using Equation (A.7.25) and
(A.7.26), the partition function of the topological s-wave superconductor can be obtained which
reads

 =∫ 𝜙∗𝜙 exp

[

𝑁𝛽
𝜇
2
+ 1

2 ∫

ℏ𝛽

0
d𝜏

[

− 1
ℏ
∑

𝒌
𝝓∗
𝒌(𝜏)

[

ℏ 𝜕
𝜕𝜏

+ 𝜖(𝒌) + 𝜖R(𝒌) + 𝜖Z
]

𝝓𝒌(𝜏)
]

+ 𝑉
𝑁ℏ

∑

𝒌,𝒌′

∑

𝒒

∑

𝑠,𝑠
(i𝜎y)𝑠,𝑠′𝜙∗

𝒌,𝑠𝜙
∗
−𝒌+𝒒,𝑠′𝜙−𝒌′+𝒒,𝑠′

𝜙
𝒌′,𝑠

]

. (A.3.1)

where 𝜖(𝒌) and 𝜖R(𝒌) are defined in the main text (Equation II.2.7 and II.2.11, respectively) and
𝜖Z = 𝑩𝝈 denotes the Zeeman splitting while the vector notation 𝝓∗

𝒌 = (𝜙∗
𝒌,↑, 𝜙

∗
𝒌,↓)

T is introduced.
Combining two Grassmann fields such that [51]

𝐵†(𝒒) =
∑

𝒌

∑

𝜎1,𝜎2

(i𝜎𝑦)𝜎1,𝜎2𝜙
∗
𝒌,𝜎1

𝜙∗
−𝒌+𝒒,𝜎2

(A.3.2)
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the partition function can be brought to the form

 =∫ 𝜙∗𝜙 exp

[

𝑁
𝛽𝜇
2 ∫

ℏ𝛽

0
d𝜏

[

− 1
ℏ
∑

𝒌
𝝓∗
𝒌(𝜏)

[

ℏ 𝜕
𝜕𝜏

+ 𝜖(𝒌) + 𝜖R(𝒌) + 𝜖Z
]

𝝓𝒌(𝜏)
]

+𝑉
ℏ
∑

𝒒
𝐵†(𝒒)𝐵(𝒒)

]

. (A.3.3)

The two particle interaction term contains the product of four Grassmann fields included in the
product of the two 𝐵(𝒒). It is well known how to solve the one-particle partition functions with
the use of the Gaussian integrals. Therefore, it is highly advantageous to rewrite the two-particle
interaction term in a form of one particle terms by use of the Hubbard-Stratonovich transformation
[132, 133] which introduces an auxiliary scalar complex field Δ. Let 𝑎, 𝑏 ∈ ℂ and Δ = 𝑢 + 𝑖𝑣
with 𝑢, 𝑣 ∈ ℝ, then the Hubbard-Stratonovich transformation reads [134]

e𝑎𝑏 = 1
𝜋 ∫ Δ∗Δe𝑎Δ+𝑏Δ∗−|Δ|2 . (A.3.4)

By use of (A.3.4) the interaction term in the partition function (A.3.3) becomes

exp

[

𝑉
2ℏ ∫

ℏ𝛽

0
d𝜏

∑

𝒒
𝐵†(𝒒)𝐵(𝒒)

]

=

∫ ΔΔ∗ exp

[

1
ℏ ∫

ℏ𝛽

0
d𝜏

∑

𝒒

(

𝐵†(𝒒)Δ(𝒒) + 𝐵(𝒒)Δ∗(𝒒) −
|Δ(𝒒)|2

𝑉

)

]

. (A.3.5)

Inserting (A.3.5) leads to a form of the partition function (A.3.3) that is only dependent on
one particle terms — which means that only products of two Grassmann fields occur and the
integration of the fermionic degree of freedom is hence possible in with a Gaussian integration. It
has to be emphasized that the partition function given in (A.3.5) is exact — approximations are
however necessary for the following analysis and are discussed in the following.

Defining the order parameter
Δ𝜎1,𝜎2(𝒒,𝒌, 𝜏) = Δ(𝒒, 𝜏)i𝜎y𝜎1,𝜎2 (A.3.6)

in the Nambu spin basis
�̃�† = (𝜙∗

𝒌,↑, 𝜙
∗
𝒌,↓, 𝜙−𝒌+𝒒1,↑

, 𝜙−𝒌+𝒒1,↓
, 𝜙−𝒌+𝒒2,↑

, 𝜙−𝒌+𝒒2,↓
,…)T, (A.3.7)

the partition function can be integrated out with the use of (A.7.31) yielding the grand canonical
potential

Ω = − 1
𝛽
ln

(

∫ ΔΔ∗ exp

[

𝑁𝛽
𝜇
2
− 1
ℏ ∫

ℏ𝛽

0
d𝜏

(

−1
2
∑

𝒌

∑

𝒒
Tr

(

ln
[

−1(𝜏,𝒌, 𝒒)
])

+
∑

𝒒

|Δ(𝒒)|2

𝑉

)])

,

(A.3.8)
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where −1 is the inverse Matsubara Green’s function. In general, Equation (A.3.8) allows for many
distinct 𝒒 vectors. Most often, the simple situation where the magnetic field points in z-direction
is discussed. In the general scheme, the inverse Green’s function is given by Equation (II.2.20)
In order to make further progress, an approximation is used. The simplest possible is the saddle
point approximation which is commonly used to describe superconductors [51–54] yielding

Ω ≈ −1
𝛽
ln
(

exp
(

−𝑆eff (Δ0)
)) (A.3.9)

with the effective action 𝑆eff given by

𝑆eff (Δ) = 𝑁𝛽
𝜇
2
− 1
ℏ ∫

ℏ𝛽

0
d𝜏

(

−1
2
Tr (ln)

[

−1(𝜏)
]

Δ(𝒒)=Δ(𝒒) +
∑

𝒒

|Δ(𝒒)|2

𝑉

)

. (A.3.10)

which is the effective action (II.2.17) used in the main text.
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A.4. Electron spin in a magnetic field gradient

In this thesis, the effects of magnetic gradient fields on electron spins on lattice models with peri-
odic boundary conditions are studied. In the following a detailed derivation of Equation (A.4.42)
is presented. For this reason it is necessary to begin with some properties of electrons in periodic
potentials. The Hamiltonian 𝐻 describing the energy of electrons in a periodic potential

𝑉 (𝒓) = 𝑉 (𝒓 +𝑹) (A.4.1)
with 𝑹 being a lattice vector is given in the most simple case by

𝐻 =
𝒑2

2𝑚
+ 𝑉 (𝒓) (A.4.2)

while 𝒑 is the momentum of an electron with mass 𝑚. It is well known, that the eigenstates of
periodic lattice Hamiltonians are the Bloch states [135] |𝜓𝑛𝑘⟩ which are expressed in position
space as

𝜓𝑛,𝒌(𝒓) = ⟨𝒓|𝜓𝑛,𝒌⟩ = ei𝒌𝒓𝑢𝑛𝑘(𝒓) (A.4.3)
where ei𝒌𝒓 is a plane wave-part and 𝑢𝑛𝑘(𝒓) is a lattice-periodic function

𝑢𝑛𝑘(𝒓 +𝑹) = 𝑢𝑛𝑘(𝒓). (A.4.4)
The Bloch-state on the other hand fulfills twisted periodic boundary conditions with respect to a
unit cell.

𝜓𝑛,𝒌(𝒓 +𝑹) = ei𝒌𝑹𝜓𝑛𝑘(𝒓). (A.4.5)
However, 𝜓𝑛,𝒌(𝒓) is periodic in the Brillouin zone

𝜓𝑛,𝒌+𝑮(𝒓) = 𝜓𝑛,𝒌(𝒓) (A.4.6)
while 𝑮 denotes a lattice vector in reciprocal space. Without the use of a specific representation
basis, the Bloch state can be defined as

|𝜓𝑛,𝒌⟩ = ei𝒌�̂�|𝑢𝑛,𝒌⟩e𝑖𝜙𝑛(𝒌) (A.4.7)
where �̂� is introduced as the position operator. The phase 𝜙𝑛(𝒌) is arbitrary and set to zero since
it has no influence on the signatures discussed below. It can be verified that (A.4.7) yields (A.4.3)
in position space representation

⟨𝒓|𝜓𝑛,𝒌⟩ = ⟨𝒓|ei𝒌�̂�|𝑢𝑛,𝒌⟩ = ei𝒌𝒓⟨𝒓|𝑢𝑛,𝒌⟩ = ei𝒌𝒓𝑢𝑛,𝒌(𝒓). (A.4.8)
The eigenequation of a lattice periodic Hamiltonian reads

𝐻|𝜓𝑛,𝒌⟩ = 𝐸𝑛𝒌|𝜓𝑛,𝒌⟩. (A.4.9)
This eigenequation can be written in terms of |𝑢𝑛,𝒌⟩ which yields

𝐻𝒌|𝑢𝑛,𝒌⟩ = 𝐸𝑛,𝒌|𝑢𝑛,𝒌⟩ (A.4.10)
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where 𝐻𝒌 ∶= e−i𝒌�̂�𝐻ei𝒌�̂� [111] is introduced. The Bloch states are orthonormalized

⟨𝜓𝑛′,𝒌′|𝜓𝑛,𝒌⟩ = 𝛿𝑛,𝑛′𝛿𝒌,𝒌′ = ⟨𝑢𝑛′,𝒌′|ei�̂�(𝒌−𝒌
′)
|𝑢𝑛,𝒌⟩ (A.4.11)

and hence one has
⟨𝑢𝑛′,𝒌|𝑢𝑛,𝒌⟩ = 𝛿𝑛,𝑛′ . (A.4.12)

The translation operator 𝑇R which shifts the argument of a function 𝑓 (𝒓) by a lattice vector 𝑹
can be written such that

𝑇R𝑓 (𝒓) = 𝑓 (𝒓 −𝑹) (A.4.13)
and likewise the inverse translation operator 𝑇 −1

𝑹 is defined through

𝑇 −1
R 𝑇R = 1̂ (A.4.14)

where 1 is the identity operator. The inverse translation operator can equivalently be defined
through

𝑇 −1
R 𝑓 (𝒓) = 𝑓 (𝒓 +𝑹). (A.4.15)

The translation operator 𝑇R commutes with any Hamiltonian who’s eigenstates are Bloch-states
since

𝐻 =
∑

𝑛

∑

𝒌
|𝜓𝑛,𝒌⟩𝐸𝑛,𝒌⟨𝜓𝑛,𝒌| = ∫ d𝒓∫ d𝒓′

∑

𝑛

∑

𝒌
|𝒓′⟩𝐸𝑛,𝒌𝜓𝑛,𝒌(𝒓′)𝜓∗

𝑛,𝒌(𝒓)⟨𝒓| (A.4.16)

and hence

𝑇R𝐻𝑇
−1
R = ∫ d𝒓∮ d𝒓′

∑

𝑛

∑

𝒌
|𝒓′ +𝑹⟩𝐸𝑛,𝒌𝜓𝑛,𝒌(𝒓′)𝜓∗

𝑛,𝒌(𝒓)⟨𝒓 +𝑹|

= ∫ d𝒓∫ d𝒓′
∑

𝑛

∑

𝒌
|𝒓′ +𝑹⟩𝐸𝑛,𝒌e−i𝒌𝑹𝜓𝑛,𝒌(𝒓′ +𝑹)𝜓∗

𝑛,𝒌(𝒓 +𝑹)ei𝒌𝑹⟨𝒓 +𝑹|

(A.4.17)
= ∫ d𝒓∫ d𝒓′

∑

𝑛

∑

𝒌
|𝒓′⟩𝐸𝑛,𝒌𝜓𝑛,𝒌(𝒓′)𝜓∗

𝑛,𝒌(𝒓)⟨𝒓| = 𝐻. (A.4.18)

Therefore, for the commutator the identity
[

𝑇R,𝐻
]

= 0 (A.4.19)
holds. More general, operators that are translationally invariant commute with 𝑇R. In the main text,
the thermodynamic response to magnetic field gradients are analyzed. Therefore it is necessary to
describe the position operator �̂� as the magnetic field is proportional to �̂�. Such a description is
straightforward in finite size systems in real-space representation. In order to obtain an expression
for the position operator for periodic systems, it is natural to represent the position operator in
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the Bloch-state basis. The position operator is of course not translation invariant, specifically it
transforms as

𝑇R�̂�𝑇 −1
R =

∑

𝒓
𝑇R|𝒓⟩𝒓⟨𝒓|𝑇 −1

R =
∑

𝒓
|𝒓 +𝑹⟩𝑟⟨𝒓 +𝑹| =

∑

𝒓
|𝒓 +𝑹⟩ (𝒓 +𝑹 −𝑹) ⟨𝒓 +𝑹|

(A.4.20)
=
∑

𝒓
|𝒓 +𝑹⟩ (𝒓 +𝑹) ⟨𝒓 +𝑹| −

∑

𝒓
|𝒓 +𝑹⟩𝑹⟨𝒓 +𝑹| = �̂� −𝑹. (A.4.21)

The commutator of 𝑇R and �̂� is thus given by
[

𝑇R, �̂�
]

= −𝑹𝑇R. (A.4.22)
The representation of the velocity operator in the Bloch basis is in general defined as

𝒗 = −i
ℏ

[

�̂�,𝑯
] (A.4.23)

and furthermore, the matrix elements of the position operator in Bloch Basis can be written in
terms of the velocity operator as [113]

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ =
⟨𝜓𝑛′,𝒌′|

[

�̂�,𝐻
]

|𝜓𝑛,𝒌⟩
(

𝐸𝑛′,𝒌′ − 𝐸𝑛,𝒌
) =

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩
(

𝐸𝑛′,𝒌′ − 𝐸𝑛,𝒌
) for 𝐸𝑛,𝒌 ≠ 𝐸𝑛′,𝒌′ . (A.4.24)

The velocity operator commutes with the translation operator 𝑇R since
[

𝑇R,
[

�̂�,𝐻
]]

= −
[

𝐻,
[

𝑇R, �̂�
]]

−
[

�̂�,
[

𝐻, 𝑇R
]]

= −𝑅
[

𝐻, 𝑇R
]

= 0 (A.4.25)
where it is used that [𝐻, 𝑇R] = 0 and [�̂�, 𝑇R] = 𝑹𝑇R. It is thus found that

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ = ⟨𝜓𝑛′,𝒌′|𝑇
−1
R 𝑇R�̂�𝑇 −1

R 𝑇R|𝜓𝑛,𝒌⟩ = ⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩e−i(𝒌−𝒌
′)𝑹. (A.4.26)

So, the off-diagonal elements in (A.4.24) with respect to 𝒌 and 𝒌′ vanish because ei(𝒌−𝒌′)𝑹 ≠ 1 in
general. So, 𝒗 is block-diagonal in the quantum numbers 𝒌 and 𝒌′ labeling the eigenvalues of 𝑇𝑅
yielding

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ =
⟨𝜓𝑛′,𝒌|�̂�|𝜓𝑛,𝒌⟩
(

𝐸𝑛′,𝒌 − 𝐸𝑛,𝒌
)𝛿𝒌,𝒌′ . (A.4.27)

The velocity operator for a Hamiltonian of the form (A.4.2) is given by

�̂� =
�̂�
𝑚
. (A.4.28)

In this simple case one can find [113]

⟨𝜓𝑛′,𝒌|𝒗|𝜓𝑛,𝒌⟩ = ⟨𝜓𝑛′,𝒌|
�̂�
𝑚
|𝜓𝑛,𝒌⟩ = ⟨𝑢𝑛′,𝒌|

�̂� + ℏ𝒌
𝑚

|𝑢𝑛,𝒌⟩ =
1
ℏ
⟨𝑢𝑛′,𝒌|

𝜕𝐻𝒌
𝜕𝒌

|𝑢𝑛,𝒌⟩. (A.4.29)
In a different approach, the position operator can also be expressed in terms of derivatives with
respect to 𝒌 as shown in the following.
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In the following, the position operator is expressed in the Bloch-state basis where the matrix
elements are given by [111]

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ = ⟨𝜓𝑛′𝒌′|(−i∇𝒌)|𝜓𝑛,𝒌⟩ + ⟨𝜓𝑛′,𝒌′|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ (A.4.30)
= −i∇𝒌𝛿𝒌,𝒌′𝛿𝑛,𝑛′ + ⟨𝜓𝑛′,𝒌′|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ (A.4.31)
= −i∇𝒌𝛿𝒌,𝒌′𝛿𝑛,𝑛′ + ⟨𝑢𝑛′,𝒌′|i∇𝒌|𝑢𝑛,𝒌⟩. (A.4.32)

The second term in (A.4.32) is translation invariant since

⟨𝜓𝑛′,𝒌′|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ = ⟨𝜓𝑛′,𝒌′|𝑇
−1
R 𝑇Rei𝒌�̂�i∇𝒌e−i𝒌�̂�𝑇 −1

R 𝑇R|𝜓𝑛,𝒌⟩ (A.4.33)
= ⟨𝜓𝑛′,𝒌′|ei𝒌

′𝑹ei𝒌�̂�e−i𝒌𝑹𝑇Ri∇𝒌𝑇
−1
R e−i𝒌�̂�ei𝒌𝑹e−i𝒌𝑹|𝜓𝑛,𝒌⟩ (A.4.34)

= ⟨𝜓𝑛′,𝒌′|ei(𝒌
′−𝒌)𝑹ei𝒌�̂�𝑇R𝑇 −1

R i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ (A.4.35)
= ei(𝒌

′−𝒌)𝑹
⟨𝜓𝑛′,𝒌′|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ (A.4.36)

= 𝛿𝒌,𝒌′⟨𝜓𝑛′𝒌|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩. (A.4.37)

The matrix elements of the second part of the position operator in Bloch-space given in (A.4.31)
are thus diagonal with respect to 𝒌 and one obtains the result Equation(IV.3.7) given in the main
text

⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛,𝒌⟩ = −i∇𝒌𝛿𝒌,𝒌′𝛿𝑛,𝑛′ + 𝛿𝒌,𝒌′⟨𝜓𝑛′,𝒌|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩. (A.4.38)
= −i∇𝒌𝛿𝒌,𝒌′𝛿𝑛,𝑛′ + 𝛿𝒌,𝒌′⟨𝑢𝑛′,𝒌|i∇𝒌|𝑢𝑛,𝒌⟩. (A.4.39)

A spin operator �̂� which acts only on the spin states commutes with the translation operator 𝑇R.
In spin-orbit coupled Hamiltonians, the spin is not independent of the momentum. However, as
discussed in section III, the in-plane spin-components of the spin-expectation value are even for
open boundary conditions translation invariant within the system boundaries. The z-component
is dependent in the position in space. However, 𝑠z is almost homogeneous in position space
especially for larger systems. Therefore, the approximation that sigma in the Bloch basis is
diagonal in momentum space is justified. Thus, it is assumed in the following that the spin-
operator �̂� is diagonal with respect to 𝒌. In order to analyze the effect of the magnetic field
gradients in the Bloch state representation, it is necessary to find the representation of the product
of the spin-operator �̂� and the position operator �̂� and so the matrix elements of the operator �̂��̂�
are given by

⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩ =
∑

𝑛′′
⟨𝜓𝑛′,𝒌′|�̂�|𝜓𝑛′′,𝒌′⟩⟨𝜓𝑛′′,𝒌′|�̂�|𝜓𝑛,𝒌⟩

=
∑

𝑛′′
⟨𝑢𝑛′,𝒌′|�̂�|𝑢𝑛′′,𝒌′⟩

(

−i∇𝒌𝛿𝒌,𝒌′𝛿𝑛′′,𝑛 + 𝛿𝒌′,𝒌⟨𝑢𝑛′′,𝒌′|i∇𝒌|𝑢𝑛,𝒌⟩
) (A.4.40)
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in the Bloch basis where the second term is diagonal in 𝒌. Hence, quantities like
∑

𝑛

∑

𝑛′

∑

𝒌

∑

𝒌′
⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩𝑓𝑛(𝒌)

=
∑

𝑛

∑

𝑛′

∑

𝒌

∑

𝒌′

∑

𝑛′′
⟨𝑢𝑛′,𝒌′|�̂�|𝑢𝑛′′,𝒌′⟩

(

−i
(

∇𝒌𝛿𝒌,𝒌′
)

𝛿𝑛,𝑛′′ + 𝛿𝒌,𝒌′ i⟨𝑢𝑛′′,𝒌′|
(

∇𝒌|𝑢𝑛,𝒌⟩
))

𝑓𝑛(𝒌)

≈ −
∑

𝑛

∑

𝑛′

𝑉
4𝜋

(−i)⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛,𝒌⟩𝛿𝑛,𝑛𝑓𝑛(𝒌)||
𝑘x=𝜋
𝑘x=0

+
∑

𝑛

∑

𝑛′

𝑉
4𝜋

(

(−i)⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛,𝒌⟩𝛿𝑛,𝑛𝑓𝑛(𝒌)
)

|

|

|

𝑘x=𝜋

𝑘x=0

+
∑

𝑛

∑

𝑛′

𝑉 2

16𝜋2 ∫
d𝒌∫ d𝒌′⟨𝑢𝑛′,𝒌′|�̂�|𝑢𝑛,𝒌′⟩𝛿(𝒌 − 𝒌′)⟨𝑢𝑛,𝒌′|i

(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝑓𝑛(𝒌)

=
∑

𝑛

∑

𝑛′

𝑉
4𝜋2 ∫

d2𝑘⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛,𝒌⟩⟨𝑢𝑛,𝒌|i
(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝑓𝑛(𝒌) (A.4.41)

can be evaluated showing that the contributions from the first term in (A.4.40) which are related to
momentum space surface contributions vanish. The first term in (IV.3.7) yields therefore surface
contributions which vanish as long as 𝑓𝑛(𝒌) is a periodic function which has no discontinuities.
Even if one allows for isolated point-like discontinuities in 𝑓𝑛(𝒌), they would not affect the result
as long as 𝑓𝑛(𝒌) is not divergent at those points. The matrix elements of the product of the spin
and the position operator are thus determined by

∑

𝒌

∑

𝒌′
⟨𝜓𝑛′,𝒌′|�̂��̂�|𝜓𝑛,𝒌⟩𝑓𝑛(𝒌) ≈

𝑉
4𝜋2 ∫

d2𝑘
∑

𝑛′′
⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i

(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝑓𝑛(𝒌).

(A.4.42)

A.5. Electron spin in a magnetic field gradient in the tight
binding formalism

In the main text, the matrix elements of a tight binding Hamiltonian are expressed in terms of the
Fourier transformed atomic basis functions where only the diagonal elements are considered

𝑖,𝑗,𝜇,𝜈(𝒌) ∶= ⟨𝜒𝒌,𝑖,𝜇|𝐻|𝜒𝒌,𝑗,𝜈⟩ (A.5.1)
(See Equation (IV.4.6)). It is straightforward to confirm that the non-diagonal matrix elements of
𝐻 with respect to 𝒌 vanish since

𝑖,𝑗,𝜇,𝜈 ∶= ⟨𝜒𝒌′,𝑖,𝜇|𝐻|𝜒𝒌,𝑗,𝜈⟩ =
1
𝑁

∑

𝑹′

∑

𝑹′′

e−i𝒌
′𝑹′

⟨𝜙𝑹′,𝑖,𝜇|𝐻|𝜙�̃�,𝑗,𝜈⟩ei𝒌𝑹
′′

= 1
𝑁

∑

𝑹′

∑

�̃�

e−i𝒌
′(𝑹′)

⟨𝜙𝑹′,𝑖,𝜇|𝐻|𝜙𝑹′+�̃�,𝑗,𝜈⟩ei𝒌(𝑹
′+�̃�)

=
∑

�̃�

𝐻(�̃�)ei𝒌�̃�𝛿𝒌,𝒌′ . (A.5.2)
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The part of the position operator in the Bloch-state basis ⟨𝜓𝑛′,𝒌|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩ contained
in (IV.3.7) can be expressed in terms of the tight-binding expansion coefficients. There, the
expansion of the Bloch-states given in Equation (IV.4.7) yields

⟨𝜓𝑛′,𝒌|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜓𝑛,𝒌⟩

= 1
𝑁

∑

𝑖

∑

𝑗

∑

𝜇

∑

𝜈
𝐶∗
𝑛′,𝒌,𝑗,𝜇

∑

𝑹′

∑

𝑹
e−i𝒌𝑹

′
⟨𝜙𝑹′,𝑗,𝜇|ei𝒌�̂�i∇𝒌e−i𝒌�̂�|𝜙𝑹,𝑖,𝜈⟩𝐶𝑛,𝒌,𝑖,𝜈ei𝒌𝑹

=
∑

𝑖

∑

𝑗

∑

𝜇

∑

𝜈
𝐶∗
𝑛′,𝒌,𝑗,𝜇i∇𝒌𝐶𝑛,𝒌,𝑖,𝜈

= 𝑪†
𝑛′,𝒌i∇𝒌𝑪𝑛,𝒌. (A.5.3)

In the discrete tight-binding formalism, the 𝑢𝑛,𝒌 are replaced by the vector 𝑪𝑛,𝒌 where the elements
of the vector are given by 𝐶𝑛,𝒌,𝑖,𝜇. Likewise for the matrix elements ⟨𝜓𝑛′,𝒌|�̂�|𝜓𝑛,𝒌⟩ one obtains

⟨𝜓𝑛′,𝒌|�̂�|𝜓𝑛,𝒌⟩ =
∑

𝑖

∑

𝑗

∑

𝜇

∑

𝜈
𝐶∗
𝑛′,𝒌,𝑗,𝜇 ⟨𝜒𝒌,𝑗,𝜇|�̂�|𝜒𝒌,𝑖,𝜈⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝜎TB𝒌,𝑗𝑖,𝜇𝜈

𝐶𝑛,𝒌,𝑖,𝜈

= 𝑪†
𝑛′,𝒌𝝈

TB𝑪𝑛,𝒌 (A.5.4)
where 𝜎TB𝒌,𝑗𝑖,𝜇𝜈 are the matrix elements of 𝝈TB in the basis of the tight-binding states.
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A.6. Rayleigh Schrödinger perturbation theory for Bloch
states

In order to describe the modifications to a Hamiltonian due to some small perturbations, the
Rayleigh Schrödinger perturbation theory, where the perturbed eigenstates are expressed in terms
of the unperturbed states, is used. The expectation value of a hermitian operator �̂� can be written
in standard Rayleigh-Schrödinger perturbation theory [136] assuming some state |𝑛⟩ is perturbed
due to an (external) perturbation. The explicit terms of the perturbation theory are usually given
in the literature only up to the first order in the states but, in this thesis, perturbations up to the
second order in the states are important. The Schrödinger equation reads

�̂� |̃𝑛⟩ = 𝐸𝑛|̃𝑛⟩ (A.6.1)
with

�̂� = �̂�0 + 𝜆𝑉 . (A.6.2)
Here, |̃𝑛⟩ denotes the exact form of an (unknown) eigenstate of some Hamiltonian �̂� consisting of
�̂�0 for which the eigenstates are known and 𝜆𝑉 which is a perturbation to �̂�0. If the perturbation
𝜆𝑉 is assumed to be small, the eigenstates and the eigenvalue of the Schrödinger equation can be
expanded in terms of a series in 𝜆. Such expansions are, however, only useful when the expansions
are truncated at some finite order. In the following, the expansions are considered up to second
order, assuming that the truncation in second order yields a sufficient description of the states.
The corrections of the states in first and second order are well known. These are given through
[136]

|𝑛(1)⟩ =
∑

𝑘≠𝑛
|𝑘⟩

⟨𝑘|𝑉 |𝑛⟩
𝐸𝑛 − 𝐸𝑘

(A.6.3)

|𝑛(2)⟩ =
∑

𝑚≠𝑛

∑

𝑙≠𝑛
|𝑚⟩

⟨𝑚|𝑉 |𝑙⟩⟨𝑙|𝑉 |𝑛⟩
(𝐸𝑛 − 𝐸𝑚)(𝐸𝑛 − 𝐸𝑙)

−
∑

𝑚≠𝑛
|𝑚⟩

⟨𝑚|𝑉 |𝑛⟩⟨𝑛|𝑉 |𝑛⟩
(𝐸𝑛 − 𝐸𝑚)2

− 1
2
∑

𝑚≠𝑛
|𝑛⟩

|⟨𝑚|𝑉 |𝑛⟩|2

(𝐸𝑛 − 𝐸𝑚)2
.

(A.6.4)
The perturbed eigenstates are thus given through

|̃𝑛⟩ = |𝑛⟩ + |𝑛(1)⟩ + |𝑛(2)⟩ (A.6.5)
where the first and second order corrections to the eigenstates are denoted as |𝑛(1)⟩ and |𝑛(2)⟩,
respectively. The unperturbed eigenstate is denoted as |𝑛⟩ and |̃𝑛⟩ is the perturbed eigenstate
consisting of the first and second order corrections. The expectation value of an operator can thus
be written as

⟨̃𝑛|�̂�|̃𝑛⟩ ≈ ⟨𝑛|�̂�|𝑛⟩ + (⟨𝑛(1)|�̂�|𝑛⟩ + ⟨𝑛|�̂�|𝑛(1)⟩) +
(

⟨𝑛(1)|�̂�|𝑛(1)⟩ + ⟨𝑛(2)|�̂�|𝑛⟩ + ⟨𝑛|�̂�|𝑛(2)⟩
)

(A.6.6)
= ⟨𝑛|�̂�|𝑛⟩ + 2Re(⟨𝑛|�̂�|𝑛(1)⟩) +

(

⟨𝑛(1)|�̂�|𝑛(1)⟩ + 2Re
(

⟨𝑛|�̂�|𝑛(2)⟩
)) (A.6.7)
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up to second order. The first order corrections are linear with a perturbation parameter 𝜆, whereas
the second order terms are proportional to 𝜆2.

Now (A.6.3), (A.6.4) and (A.4.27) are used to find the first and second order corrections of a
Bloch-state which is perturbed by the operator

𝑉x =
1
2
𝐺x

(

�̂�x�̂�x + �̂�x�̂�x
) (A.6.8)

with
𝐺x = constant (A.6.9)

and �̂�x being the x-component of the spin-operator in x-direction while �̂�x denotes the position
operator in x-direction. The operator 𝑉 corresponds to a magnetic field in x-direction which is
linearly dependent on �̂�x with the magnetic field gradient given by 𝐺x. The first and second order
corrections of a Bloch state are thus

|𝜓 (1)
𝑛,𝒌⟩ =

∑

𝒌′,𝑚≠𝒌,𝑛
|𝜓𝑚,𝒌′⟩

⟨𝜓𝑚,𝒌′|𝑉x|𝜓𝑛,𝒌⟩
𝐸𝑚,𝒌′ − 𝐸𝑛,𝒌

(A.6.10)

|𝜓 (2)
𝑛,𝒌⟩ =

∑

𝒌′,𝑚≠𝒌,𝑛

∑

𝒌′′,𝑙≠𝒌,𝑛
|𝜓𝑚,𝒌′⟩

⟨𝜓𝑚,𝒌′|𝑉x|𝜓𝑙,𝒌′′⟩⟨𝜓𝑙,𝒌′′|𝑉x|𝜓𝑛,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌′)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌′′)

−
∑

𝒌′,𝑚≠𝒌,𝑛
|𝜓𝑚,𝒌′⟩

⟨𝜓𝑚,𝒌′|𝑉x|𝜓𝑛,𝒌⟩⟨𝜓𝑛,𝒌|𝑉x|𝜓𝑛,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌′)2

− 1
2

∑

𝒌′,𝑚≠𝒌,𝑛
|𝜓𝑛,𝒌⟩

|⟨𝜓𝑚,𝒌′|𝑉x|𝜓𝑛,𝒌⟩|2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌′)2
. (A.6.11)

The position operator can either be represented in terms of the velocity operator or it can be
directly expressed in the Bloch basis. The first requires inserting (A.4.27) into (A.6.10) and
(A.6.11) while using (A.4.23). The latter option is to directly insert the matrix elements of the
presentation of the position operator in Bloch-space yielding

⟨𝜓𝑛′,𝒌′|𝑉x|𝜓𝑛,𝒌⟩ =
∑

𝑛′′
⟨𝑢𝑛′,𝒌′|�̂�x|𝑢𝑛′′,𝒌′⟩

(

−i∇𝑘x𝛿𝒌,𝒌′𝛿𝑛′′,𝑛 + 𝛿𝒌′,𝒌⟨𝑢𝑛′′,𝒌′|i∇𝑘x|𝑢𝑛,𝒌⟩
) (A.6.12)

(see (IV.3.7)). The corrections of the Bloch states to first and second order become

|𝜓 (1)
𝑛,𝒌⟩ = 𝐺x

∑

𝑛′

∑

𝑚≠𝑛

(

|𝜓𝑚,𝒌⟩
⟨𝑢𝑚,𝒌|�̂�|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i

(

∇𝒌|𝑢𝑛,𝒌⟩
)

𝐸𝑚,𝒌 − 𝐸𝑛,𝒌

+|𝜓𝑚,𝒌⟩
⟨𝑢𝑚,𝒌|i

(

∇𝒌|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|�̂�|𝑢𝑛,𝒌⟩
𝐸𝑚,𝒌 − 𝐸𝑛,𝒌

)

(A.6.13)
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A.6. Rayleigh Schrödinger perturbation theory for Bloch states

|𝜓 (2)
𝑛,𝒌⟩ = 𝐺2

x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
|𝜓𝑚,𝒌⟩

(

⟨𝑢𝑚,𝒌|�̂�x|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i
(

∇𝒌x|𝑢𝑙,𝒌⟩
)

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

+
⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌| ̂𝜎𝑘x|𝑢𝑙,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

×

(

⟨𝑢𝑙,𝒌|�̂�x|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i
(

∇𝒌x|𝑢𝑛,𝒌⟩
)

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)
+

⟨𝑢𝑙,𝒌|i
(

∇𝑘x|𝑢𝑛′′,𝒌⟩
)

⟨𝑢𝑛′′,𝒌|𝜎x|𝑢𝑛,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

− 𝐺2
x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
|𝜓𝑚,𝒌⟩

(

⟨𝑢𝑚,𝒌|�̂�x|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

+
⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|𝜎x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

×

(

⟨𝑢𝑛,𝒌|�̂�x|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2
+

⟨𝑢𝑛,𝒌|i
(

∇𝑘x|𝑢𝑛′′,𝒌⟩
)

⟨𝑢𝑛′′,𝒌|𝜎x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

− 1
2
𝐺2

x

∑

𝑛′

∑

𝑚≠𝑛
|𝜓𝑛,𝒌⟩

(

|⟨𝑢𝑚,𝒌|�̂�x|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩|
2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

+
|⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|𝜎x|𝑢𝑛,𝒌⟩|2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

. (A.6.14)

Instead of (A.6.13) and (A.6.14) the change in |𝑢𝑛,𝒌⟩ can be expressed as

|𝑢(1)𝑛,𝒌⟩ = 𝐺x
∑

𝑛′

∑

𝑚≠𝑛
|𝑢𝑚,𝒌⟩

⟨𝑢𝑚,𝒌|�̂�|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝒌|𝑢𝑛,𝒌⟩
𝐸𝑚,𝒌 − 𝐸𝑛,𝒌

+
⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|�̂�x|𝑢𝑛,𝒌⟩
𝐸𝑚,𝒌 − 𝐸𝑛,𝒌

(A.6.15)

|𝑢(2)𝑛,𝒌⟩ = 𝐺2
x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
|𝑢𝑚,𝒌⟩

(

⟨𝑢𝑚,𝒌|�̂�|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝒌|𝑢𝑙,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

+
⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|�̂�x|𝑢𝑙,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

×

(

⟨𝑢𝑙,𝒌|�̂�|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i
(

∇𝒌|𝑢𝑛,𝒌⟩
)

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)
+

⟨𝑢𝑙,𝒌|i
(

∇𝑘x|𝑢𝑛′′,𝒌⟩
)

⟨𝑢𝑛′′,𝒌|�̂�x|𝑢𝑛,𝒌⟩
(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

− 𝐺2
x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
|𝑢𝑚,𝒌⟩

(

⟨𝑢𝑚,𝒌|�̂�x|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

+
⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|�̂�x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

(A.6.16)
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×

(

⟨𝑢𝑛,𝒌|�̂�x|𝑢𝑛′′,𝒌⟩⟨𝑢𝑛′′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2
+

⟨𝑢𝑛,𝒌|i
(

∇𝑘x|𝑢𝑛′′,𝒌⟩
)

⟨𝑢𝑛′′,𝒌|�̂�x|𝑢𝑛,𝒌⟩

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

− 1
2
𝐺2

x

∑

𝑛′

∑

𝑚≠𝑛
|𝑢𝑛,𝒌⟩

(

|⟨𝑢𝑚,𝒌|�̂�x|𝑢𝑛′,𝒌⟩⟨𝑢𝑛′,𝒌|i∇𝑘x|𝑢𝑛,𝒌⟩|
2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

+
|⟨𝑢𝑚,𝒌|i

(

∇𝑘x|𝑢𝑛′,𝒌⟩
)

⟨𝑢𝑛′,𝒌|�̂�x|𝑢𝑛,𝒌⟩|2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

. (A.6.17)

In the tight-binding formalism, the states |𝑢𝑛,𝒌⟩ in (A.6.13) and (A.6.14) are to be replaced by
𝑪𝑛,𝒌 which is the vector with elements 𝐶𝑛,𝒌,𝑗,𝜇 defined in (IV.4.7) while the operators need to be
expressed in the |𝜒⟩-basis (see Section A.5) yielding

𝑪 (1)
𝑛,𝒌 = 𝐺x

∑

𝑛′

∑

𝑚≠𝑛
𝑪𝑚,𝒌

(

𝑪†
𝑚,𝒌𝜎

TB
x 𝑪𝑛′,𝒌𝑪

†
𝑛′,𝒌i

(

∇𝑘x𝑪𝑛,𝒌
)

𝐸𝑚,𝒌 − 𝐸𝑛,𝒌
+

𝑪†
𝑚,𝒌i

(

∇𝑘x𝑪𝑛′,𝒌
)

𝑪†
𝑛′,𝒌𝜎

TB
x 𝑪𝑛,𝒌

𝐸𝑚,𝒌 − 𝐸𝑛,𝒌

)

(A.6.18)

𝑪 (2)
𝑛,𝒌 = 𝐺2

x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
𝑪𝑚,𝒌

(

𝑪†
𝑚,𝒌𝜎

TB
x 𝑪𝑛′,𝒌𝑪

†
𝑛′,𝒌i

(

∇𝒌𝑪 𝑙,𝒌
)

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

+
𝑪†
𝑚,𝒌i

(

∇𝑘x𝑪𝑛′,𝒌
)

𝑪†
𝑛′,𝒌𝜎

TB
x 𝑪 𝑙,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

×

(

𝑪†
𝑙,𝒌𝜎

TB
x 𝑪𝑛′′,𝒌𝑪

†
𝑛′′,𝒌i

(

∇𝒌𝑪𝑛,𝒌
)

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)
+

𝑪†
𝑙,𝒌i

(

∇𝑘x𝑪𝑛′′,𝒌
)

𝑪†
𝑛′′,𝒌𝜎

TB
x 𝑪𝑛,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)(𝐸𝑛,𝒌 − 𝐸𝑙,𝒌)

)

− 𝐺2
x

∑

𝑛′′

∑

𝑛′

∑

𝑚≠𝑛

∑

𝑙≠𝑛
𝑪𝑚,𝒌

(

𝑪†
𝑚,𝒌𝜎

TB
x 𝑪𝑛′,𝒌𝑪

†
𝑛′,𝒌i∇𝑘x𝑪𝑛,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

+
𝑪†
𝑚,𝒌i

(

∇𝑘x𝑪𝑛′,𝒌
)

𝑪†
𝑛′,𝒌𝜎

TB
x 𝑪𝑛,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

×

(

𝑪†
𝑛,𝒌𝜎

TB
x 𝑪𝑛′′,𝒌𝑪

†
𝑛′′,𝒌i∇𝑘x𝑪𝑛,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2
+

𝑪†
𝑛,𝒌i

(

∇𝑘x𝑪𝑛′′,𝒌
)

𝑪†
𝑛′′,𝒌𝜎

TB
x 𝑪𝑛,𝒌

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

)

− 1
2
𝐺2

x

∑

𝑛′

∑

𝑚≠𝑛
𝑪𝑛,𝒌

⎛

⎜

⎜

⎜

⎝

|

|

|

𝑪†
𝑚,𝒌𝜎

TB
x 𝑪𝑛′,𝒌𝑪

†
𝑛′,𝒌i∇𝑘x𝑪𝑛,𝒌

|

|

|

2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2
+

|

|

|

𝑪†
𝑚,𝒌i

(

∇𝑘x𝑪𝑛′,𝒌
)

𝑪†
𝑛′,𝒌𝜎

TB
x 𝑪𝑛,𝒌

|

|

|

2

(𝐸𝑛,𝒌 − 𝐸𝑚,𝒌)2

⎞

⎟

⎟

⎟

⎠

(A.6.19)
These expressions for the change in the Bloch states in the tight binding formalism are used to find
the expression for the different terms contained in Equation (IV.4.41) discussed in Section IV.4
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A.7. Basics from field theory

Kubo formula

In the main text, it is mentioned that the transverse Hall conductivity 𝜎xy is proportional to
the Chern number. The transverse Hall conductivity can be derived from the perturbation theory
as this has been done in the References [19, 137] yielding the well known Kubo formula [138].
Instead of a magnetic field gradient, an electric potential gradient is used as a perturbative term
given by 𝐸x𝑟x and instead of the spin operator, the current-density operator is analyzed. Thus,
using Equation (IV.4.16) and 𝑉 = 𝐸x�̂�x while considering the expectation value of the current
density operator 𝑗 = 𝑛𝑒�̂�x leads directly to the Kubo formula [2]

𝛿⟨𝑗⟩ = 2Re
(

⟨𝑛|𝑛𝑒�̂�|𝑛(1)⟩
)

= 2Re

⎛

⎜

⎜

⎜

⎝

𝐸x𝑛e
∑

𝑛occ

∑

𝑚≠𝑛

⟨𝑛|�̂�x|𝑚⟩⟨𝑚|i
(

∇𝑘y |𝑛⟩
)

𝜆𝑛 − 𝜆𝑚

⎞

⎟

⎟

⎟

⎠

(A.6.20)

= 2Im

(

𝐸x𝑛𝑒
∑

𝑛occ

∑

𝑗≠𝑛

⟨𝑛|∇𝑘x(𝒌)|𝑚⟩⟨𝑚|∇𝑘y(𝒌)|𝑛⟩

(𝜆𝑛 − 𝜆𝑚)2

)

(A.6.21)

where 𝑛 is the electron density and e is the elementary charge.

A.7. Basics from field theory

In this work, thermodynamic signatures for the QWZ model and for a topological s-wave super-
conductor are discussed. Decisive for the thermodynamics are the thermodynamic potentials. In
the following, the basics from the field theory are discussed, which have been used to calculate
the grand canonical potentials used in the main text.
Grassmann algebra

The Grassmann algebra was introduced in the context of exterior algebras which is a part of
differential geometry [139]. The Grassmann algebra is often applied in physics, especially in
quantum field theory due to their useful mathematical properties [55]. Most important in partition
functions of fermionic systems, the Grassmann algebra is used to integrate out the fermionic
degrees of freedom.

In the following, the major aspects of the Grassmann algebra which is of direct relevance within
this work is revisited. The following content can be found for example in the References [55,
140]. There, complex valued Grassmann fields 𝜙𝑖 are defined such that they obey a number of
properties which are:

1. The Grassmann fields anticommute with each other such as the fermionic creation and
annihilation operators

[𝜙1, 𝜙2]+ = 0. (A.7.1)
2. Additionally, one defines the Grassmann fields such that they anticommute with the

fermionic annihilation and creation operators.
[𝜙, �̂�]+ = 0; [𝜙, �̂�†]+ = 0. (A.7.2)
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3. The Grassmann fields obey special integration and differentiation rules. There are three
distinct integrations over Grassmann fields possible, these are

∫ d𝜙 = 0 (A.7.3)

∫ d𝜙𝜙 = 1 (A.7.4)

∫ d𝜙𝜙∗𝜙 = −𝜙∗. (A.7.5)

Due to the property
𝜙2 = 0 (A.7.6)

resulting from the anticommutativity of the Grassmann fields all higher integrals over
Grassmann fields are zero.

4. The derivatives of Grassmann fields are defined such that
𝜕
𝜕𝜙
𝑐 = 0; with 𝑐 being a constant (A.7.7)

𝜕
𝜕𝜙
𝜙 = 1 (A.7.8)

𝜕
𝜕𝜙
𝜙∗𝜙 = − 𝜕

𝜕𝜙
𝜙𝜙∗ = −𝜙∗. (A.7.9)

Therefore, as a very special property, the integration of Grassmann fields behaves effectively like
the derivative with respect to the Grassmann field which is apparent from (A.7.3) to (A.7.9). The
benefit of the Grassmann fields is explained below.

One of the most important benefits is that it is possible to define coherent fermionic states
which are eigenstates of the fermionic annihilation operator with by use of these Grassmann fields.
These coherent fermionic states can be defined through

|𝜙⟩ = e−
∑

𝛼 𝜙𝛼�̂�𝛼
|0⟩. (A.7.10)

It is not obvious that this state fulfills the desired properties, however, the property of this state
being an eigenstate of the fermionic annihilation operator can of course easily be verified directly
by applying the annihilation operator to that state yielding

�̂�𝛾 |𝜙⟩ = �̂�𝛾
∏

𝛼

(

1 − 𝜙𝛼�̂�†
𝛼
)

|0⟩ =
∏

𝛽≠𝛾
(1 − 𝜙𝛽�̂�

†
𝛽 )�̂�𝛾 (1 − 𝜙𝛾 �̂�

†
𝛾 )|0⟩. (A.7.11)

=
∏

𝛽≠𝛾
(1 − 𝜙𝛽�̂�

†
𝛽 )𝜙𝛾 |0⟩ = 𝜙𝛾

∏

𝛽≠𝛾
(1 − 𝜙𝛽�̂�

†
𝛽 )(1 − 𝜙𝛾 �̂�

†
𝛾 )|0⟩ (A.7.12)

= 𝜙𝛾
∏

𝛼
(1 − 𝜙𝛼�̂�†

𝛼 )|0⟩ = 𝜙𝛾 |𝜙⟩. (A.7.13)
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Thus, the state (A.7.10) is indeed the eigenstate of �̂�𝛾 with eigenvalue 𝜙𝛾 . By use of these coherent
fermionic states, the identity operator can be expressed in terms of these states and is given by

∫ 𝜙∗
∫ 𝜙e−

∑

𝛼 𝜙
∗
𝛼𝜙𝛼

|𝜙⟩⟨𝜙| =
∏

𝛼

∏

𝛽

∏

𝛾 ∫ d𝜙∗𝛼d𝜙𝛼e−𝜙
∗
𝛼𝜙𝛼e−𝜙𝛽 �̂�

†
𝛽
|0⟩⟨0|e−𝜙

∗
𝛾 �̂�𝛾 (A.7.14)

=
∏

𝛼

∏

𝛽

∏

𝛿
∫ d𝜙∗

𝛼d𝜙𝛼(1 − 𝜙
∗
𝛼𝜙𝛼)(1 − 𝜙𝛽�̂�

†
𝛽 )|0⟩⟨0|(1 − 𝜙

∗
𝛾 �̂�𝛾 ) = |0⟩⟨0| +

∑

𝛼
|𝛼⟩⟨𝛼| = 1.

(A.7.15)
Using the representation of the identity operator given in (A.7.15) the trace of an operator at
which fermionic creation and annihilation operators occurs in even products as

∫ 𝜙∗𝜙 exp

(

−
∑

𝛼
𝜙∗
𝛼𝜙𝛼

)

⟨−𝜙|�̂�|𝜙⟩ =
∏

𝛼

∏

𝛽

∏

𝛾 ∫ d𝜙∗
𝛼d𝜙𝛼e

𝜙∗
𝛼𝜙𝛼

⟨0|e−𝜙
∗
𝛽 �̂�𝛽 �̂�e−𝜙𝛾 �̂�

†
𝛾
|0⟩

(A.7.16)
=
∏

𝛼

∏

𝛽

∏

𝛾 ∫ d𝜙∗
𝛼d𝜙𝛼(1 − 𝜙

∗
𝛼𝜙𝛼)⟨0|(1 + 𝜙

∗
𝛽�̂�𝛽)�̂�(1 − 𝜙𝛾 �̂�

†
𝛾 )|0⟩ (A.7.17)

= ⟨0|�̂�|0⟩ +
∑

𝛼
⟨𝛼|�̂�|𝛼⟩ = Tr(�̂�). (A.7.18)

Here, the integration rules of the Grassmann algebra and the anticommutation property of the
Grassmann fields is used. This notation of the trace of a fermionic operator is useful to calcu-
late fermionic partition functions due to the simple integration and differentiation rules of the
Grassmann fields.
Partition function

From statistical physics, it is well known that the grand canonical partition function is defined as

𝑍G = Tr
[

e−𝛽(�̂�−𝜇�̂�)
]

. (A.7.19)

By use of the expression of a trace of an operator in terms of an integral over Grassmann fields
given in (A.7.18), the grand canonical partition function can be written as

𝑍G = ∫ 𝜙∗𝜙 exp

(

−
∑

𝛼
𝜙∗
𝛼𝜙𝛼

)

⟨−𝜙|e−𝛽(�̂�−𝜇�̂�)
|𝜙⟩; ∫ 𝜙 ∶=

∏

𝑖 ∫ d𝜙𝑖. (A.7.20)

In order to make further progress the time 𝜏 = ℏ𝛽 is introduced and split into 𝑁𝛼 parts such that
𝜏𝛼 = 𝛼ℏ𝛽∕𝑁𝛼 = 𝛼Δ𝜏 with 𝛼 ∈

{

1, 2,… , 𝑁𝛼
} and 𝑁𝛼 → ∞. Therefore one obtains

e−𝜏(�̂�−𝜇�̂�)∕ℏ =
𝑁𝛼
∏

𝛼=1
e−Δ𝜏(�̂�−𝜇�̂�)∕ℏ. (A.7.21)
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The final fermionic state is now denoted as ⟨𝜙f | and the initial fermionic coherent state is denoted
by |𝜙i⟩. Inserting the identity operator (A.7.15) between each element of the product in (A.7.21)
yields

 = ∫ 𝜙∗𝜙
𝑁𝛼
∏

𝛽=1
exp

(

−
∑

𝛼
𝜙∗
𝛼,𝛽𝜙𝛼,𝛽

)

⟨𝜙𝛽|𝜙𝛽−1⟩

× exp
(

−Δ𝜏
ℏ

(𝐻[𝜙∗
𝛼,𝛽 , 𝜙𝛼,𝛽−1] − 𝜇𝑁[𝜙∗

𝛼,𝛽 , 𝜙𝛼,𝛽−1])
)

. (A.7.22)
Here, it is used that the coherent state is the eigenstate of the creation operator such that the
fermionic creation and annihilation operators in the Hamiltonian are replaced by the eigenstates
of the fermionic coherent states, the Grassmann fields. This is possible if the Hamiltonian is in
normal order since the coherent state is the eigenstate of the fermionic annihilation operator as
shown in (A.7.13). The partition function can then be further brought to the form

 = ∫ 𝜙∗𝜙
𝑁𝛼
∏

𝛽=1
exp

(

−ℏΔ𝜏
ℏ

∑

𝛼
𝜙∗
𝛼,𝛽

(𝜙𝛼,𝛽 − 𝜙𝛼,𝛽−1
Δ𝜏

)

)

(A.7.23)

× exp

(

−Δ𝜏
ℏ

∑

𝛼

(

𝐻[𝜙∗
𝛼,𝛽 , 𝜙𝛼,𝛽−1] − 𝜇𝑁[𝜙∗

𝛼,𝛽 , 𝜙𝛼,𝛽−1]
)

)

. (A.7.24)

Taking the limit 𝑁𝛼 → ∞ and so Δ𝜏 → 0 yields

 = ∫
⟨𝜙(ℏ𝛽)|=−⟨𝜙(0)|

𝜙∗𝜙 exp
(

−1
ℏ
𝑆[𝜙∗, 𝜙]

)

(A.7.25)

with

𝑆 = ∫

ℏ𝛽

0
d𝜏

∑

𝛼
ℏ𝜙∗

𝛼(𝜏)
(

𝜕𝜙𝛼(𝜏)
𝜕𝜏

)

+
(

𝐻[𝜙∗
𝛼(𝜏), 𝜙𝛼(𝜏)] − 𝜇𝑁[𝜙∗

𝛼(𝜏), 𝜙𝛼(𝜏)]
)

. (A.7.26)

In general, the Hamiltonian 𝐻 can be expanded to Nambu space, doubling the number of bands
and the commutator relations for creation and annihilation operators have to be taken into account
which reads

{�̂�†
𝑎 , �̂�𝑏} = 𝛿𝑎𝑏 (A.7.27)

and a factor of 1/2 has to be included where {. . . ,. . . } is the anticommutator, yielding

𝑆 = 1
2 ∫

ℏ𝛽

0
d𝜏

∑

𝛼

[

ℏ𝜙∗
𝛼(𝜏)

(

𝜕𝜙𝛼(𝜏)
𝜕𝜏

)

+
(

𝐻[𝜙∗
𝛼(𝜏), 𝜙𝛼(𝜏)] − 𝜇𝑁[𝜙∗

𝛼(𝜏), 𝜙𝛼(𝜏)]
)

]

(A.7.28)

+
𝛽
2
𝐾 − 1

2 ∫

ℏ𝛽

0
d𝜏

∑

𝛼

[

−ℏ𝜙𝛼(𝜏)
(𝜕𝜙∗

𝛼(𝜏)
𝜕𝜏

)

+
(

𝐻[𝜙𝛼(𝜏), 𝜙∗
𝛼(𝜏)] − 𝜇𝑁[𝜙𝛼(𝜏), 𝜙∗

𝛼(𝜏)]
)

]

(A.7.29)
in particle-hole space with 𝐾 denoting a constant that has to be included due to the commutator
relations of the Fermion operators. The fermionic degree of freedom in the partition function can

111



A.7. Basics from field theory

be integrated out. It has to be emphasized at this point that 𝜙∗𝜕𝜏𝜙 = −𝜕𝜏𝜙𝜙∗ = 𝜙𝜕𝜏𝜙∗ because
of the definition of the derivative of a Grassmann field and the use of the anticommutativity of the
Grassmann fields. Therefore the second term containing 𝜕𝜏 possesses the minus sign. In general,
one finds

∫
∏

𝑖
d𝜙∗

𝑖 d𝜙𝑖 exp

(

−
∑

𝛼,𝛽
𝜙∗
𝛼𝑂𝛼𝛽𝜙𝛽

)

= ∫ 𝜙∗
𝑖𝜙𝑖

∏

𝑖

∏

𝑗
(1 − 𝜙∗

𝑖𝑂𝑖𝑗𝜙𝑗) (A.7.30)

= det𝑂 = exp(ln(det (𝑂))). (A.7.31)
Using (A.7.31), the partition function given in (A.7.25) can be expressed as

 = e−
𝛽
2𝐾

(

det
(

−1
))1∕2 (A.7.32)

where −1 is the inverse Matsubara Green’s function given through
−1 = ℏ 𝜕

𝜕𝜏
+ (A.7.33)

where  denotes the matrix elements of the Hamiltonian. As mentioned above, by integrating
the partition function, one has to obey the antiperiodicity in the imaginary Matsubara time. This
antiperiodicity needs to be considered when transforming the Green’s function Matsubara time into
the fermionic Matsubara frequency space. There one defines the fermionic Matsubara frequency

𝜔𝑛 =
(2𝑛 + 1)𝜋

ℏ𝛽
with 𝑛 ∈ {0,±1,±2,±3,…} (A.7.34)

and the fermionic Grassmann fields transform into the fermionic Matsubara frequency space as

𝜙𝛼(ℏ𝜔) = ∫

ℏ𝛽

0
d𝜏𝜙𝛼(𝜏) exp

(

i𝜔𝑛𝜏
) (A.7.35)

𝜙𝛼(𝜏) =
∞
∑

−∞
𝜙𝛼(ℏ𝜔𝑛) exp

(

−i𝜔𝑛𝜏
)

. (A.7.36)

Sums over Matsubara frequencies and thermodynamics

The grand canonical potential Ω can, with the use of (A.7.32), be written as
Ω = −1

𝛽
ln = 𝐾

2
− 1
𝛽
∑

𝜔𝑛

ln
(

(

det
[

ℏ−1(𝜔𝑛)
])1∕2) . (A.7.37)

Assuming that the inverse Green’s function is diagonal in momentum space, Equation (A.7.37)
becomes

Ω = 𝐾
2

− 1
2𝛽

∑

𝜔𝑛

∑

𝒌
ln
(

det
[

−1(𝜔𝑛,𝒌)
])

. (A.7.38)

= 𝐾
2

− 1
2𝛽

∑

𝜔𝑛

∑

𝒌
ln

[

∏

𝑖

(

𝜆𝑖(𝒌) − iℏ𝜔𝑛
) (

−𝜆𝑖(𝒌) − iℏ𝜔𝑛
)

]

. (A.7.39)
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where 𝜆𝑖 are the different eigenvalues of the Hamiltonian . The subsequent calculations of the
Matsubara sums follow the presentation in Reference [141]. Further information about Matsubara
frequency sum evaluations can be found in Reference [142]. In order to carry out the summation
over the Matsubara frequencies 𝜔𝑛 is written as

𝜔𝑛 =
2𝜋(𝑛 + 1∕2)

𝛽
= 2𝜋𝑛
ℏ𝛽

+ 𝜋
ℏ𝛽

≡ 𝜔0𝑛 + 𝜅. (A.7.40)

The derivative of Ω with respect to 𝜆𝑖 yields

− 𝜕Ω
𝜕𝜆𝑖

= 1
2

∞
∑

𝑛=−∞

2𝜆𝑖
(−(i(𝜔0𝑛 + 𝜅))2 + 𝜆2𝑖

= 1
2𝜔0

∞
∑

𝑛=−∞

⎡

⎢

⎢

⎣

1
𝜆𝑖
𝜔0

− i𝑛 − i 𝜅
𝜔0

+ 1
𝜆𝑖
𝜔0

+ i𝑛 + i 𝜅
𝜔0

⎤

⎥

⎥

⎦

.

(A.7.41)
In the last step the numerator and denominator was multiplied by 1∕𝜔0. Further, using the known
sum

∞
∑

𝑛=−∞

1
𝑦 ± i𝑛

= 𝜋 coth(𝜋𝑦) (A.7.42)

the term in (A.7.41) can be rewritten as

1
2𝜔0

∞
∑

𝑛=−∞

⎡

⎢

⎢

⎣

1
𝜆𝑖
𝜔0

− i𝑛 − i 𝜅
𝜔0

+ 1
𝜆𝑖
𝜔0

+ i𝑛 + i 𝜅
𝜔0

⎤

⎥

⎥

⎦

(A.7.43)

=
𝛽
2

[

coth
(

𝛽
2

(

𝜆𝑖 + i𝜋
𝛽

))

+ coth
(

𝛽
2

(

𝜆𝑖 − i𝜋
𝛽

))]

(A.7.44)

And therefore,
𝜕Ω
𝜕𝜆𝑖

= −
∑

𝒌

𝛽
2

[

coth
(

𝛽
2

(

𝜆𝑖 + i𝜋
𝛽

))

+ coth
(

𝛽
2

(

𝜆𝑖 − i𝜋
𝛽

))]

. (A.7.45)

One can then integrate with respect to 𝜆𝑖 obtaining

∫ d𝜆𝑖 coth
(

𝛽
2

(

𝜆𝑖 − i𝜋
𝛽

))

= 𝐶 +
2 ln

(

cosh
(

𝛽𝜆𝑖
2

))

𝛽
. (A.7.46)

Hence, the grand canonical potential Ω is given by

Ω = 𝐾 −
∑

𝑖

1
𝛽
ln
(

2 cosh
(

𝛽𝜆𝑖
2

))

. (A.7.47)

The factor 2 in front of cosh is necessary to obtain the correct entropy as will be more obvious
below and stems from the determination of the integration constant 𝐶 in (A.7.46).
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From the grand canonical potential (A.7.47), all thermodynamic quantities can be determined.
The total differential of the grand canonical potential reads

dΩ = −𝑆d𝑇 − 𝑃 d −𝑁d𝜇 −𝑀d𝐻 (A.7.48)
identifying the natural variables of Ω being the temperature 𝑇 , the volume  , the chemical
potential 𝜇 and the magnetic field 𝐻 . From (A.7.48), three important thermodynamic quantities,
analyzed within this thesis are obtained; these are

𝑆 = − 𝜕Ω
𝜕𝑇

|

|

|

| ,𝜇,𝐻
(A.7.49)

𝑁 = − 𝜕Ω
𝜕𝜇

|

|

|

| ,𝐻,𝑇
(A.7.50)

𝑀 = − 1
𝑉

𝜕Ω
𝜕𝐻

|

|

|

| ,𝜇,𝑇
(A.7.51)

with 𝑆, 𝑁 and 𝑀 denoting the entropy, particle number and magnetization, respectively. The
entropy can be written down explicitly in terms of the eigenvalues of a given system using (A.7.49)
and (A.7.47) yielding

𝑆 = −𝑘B
𝜕Ω
𝜕𝑇

|

|

|

|ℎ,𝜇,𝑉
= 𝑘B

∑

𝒌

∑

𝑖

(

ln
(

2 cosh
(

𝛽
2
𝜆𝑖

))

− 1
2
𝜆𝑖
𝑘B𝑇

tanh
(

𝛽
2
𝜆𝑖

))

∶ (A.7.52)

Using the identities
1
2
tanh

(𝑥
2

)

= −𝑛F(𝑥) (A.7.53)
and

cosh
(𝑥
2

)

= 1
2
exp

(

−𝑥
2

)

𝑛−1F (𝑥) (A.7.54)
with the Fermi distribution

𝑛F(𝑥) =
1

exp (𝑥) + 1
(A.7.55)

yields the well known result for the entropy of a fermionic system which is given by
𝑆 = −𝑘B

∑

𝒌

∑

𝑖

[

(1 − 𝑛F(𝒌, 𝑖)) ln(1 − 𝑛F(𝒌, 𝑖)) + 𝑛F ln(𝑛F(𝒌, 𝑖))
]

. (A.7.56)

The particle number and the magnetization are hence

𝑛 = −1
2
𝜕Ω
𝜕𝜇

= 1
2
∑

𝒌

∑

𝑖

(

𝜕𝐾
𝜕𝜇

+ 1
2
tanh

(

𝛽
2
𝜆𝑖

)

𝜕𝜆𝑖
𝜕𝜇

)

(A.7.57)

𝒎 = 1
2
∑

𝒌

∑

𝑖
tanh

(

𝛽
2
𝜆𝑖

)

𝜕𝜆𝑖
𝜕𝒉
. (A.7.58)

These thermodynamic quantities are used in the main text to determine and analyze topological
phase transitions.
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