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Abstract: Metastatic melanoma is the most deadly type of skin cancer. Despite the success of
immunotherapy and targeted agents, the majority of patients experience disease recurrence upon
treatment and die due to their disease. Long non-coding RNAs (lncRNAs) are a new subclass of
non-protein coding RNAs involved in (epigenetic) regulation of cell growth, invasion, and other
important cellular functions. Consequently, recent research activities focused on the discovery of
these lncRNAs in a broad spectrum of human diseases, especially cancer. Additional efforts have been
undertaken to dissect the underlying molecular mechanisms employed by lncRNAs. In this review,
we will summarize the growing evidence of deregulated lncRNA expression in melanoma, which is
linked to tumor growth and progression. Moreover, we will highlight specific molecular pathways
and modes of action for some well-studied lncRNAs and discuss their potential clinical implications.
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1. Introduction

Although melanoma only represents a small fraction of all skin cancer types, it is responsible
for the majority of skin cancer related deaths [1]. Therefore, it is the most lethal cutaneous neoplasm.
Unfortunately, melanoma incidence is rising worldwide and despite the development of new
treatment options, metastatic disease in melanoma is still associated with high rates of mortality [2].
Prognoses of melanoma patients depend on the tumor thickness, ulceration and metastatic spread,
with the 10-year survival varying from 93% to 39%, respectively [3]. The major risk factor for
melanoma is ultraviolet (UV) radiation, which is responsible for a characteristic genetic signature [4].
Effectively mutational rate in melanoma is the highest within all cancer types and considered
responsible for the success of immunotherapy [4]. The two main pathways of interest in melanoma
nowadays are the PI3K/PTEN/Akt/mTOR signaling pathway and the RAS/RAF/MEK/ERK signal
transduction cascade (Mitogen-activated protein kinase (MAPK) Signaling Pathway) [5]. The most
common genetic mutation suitable for targeted therapy within the MAPK pathway, is located in the
B-Raf proto-oncogene, serine/threonine kinase (BRAF) accounting for approximately 40–60% of all
melanomas [6,7]. The mutation occurs at codon 600 of the BRAF gene in approximately 95% of all
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cases, the most common exchange being a valine to glutamic acid referred as BRAFV600E mutation [8].
The majority of BRAF mutations lead to a hyper-activation of the MAPK pathway, resulting in
enhanced cell growth and survival [9,10]. Usually Rat sarcoma (RAS) activates Rapidly Accelerated
Fibrosarcoma (RAF), which propagates down-stream signaling through MAPK/ERK Kinase (MEK) to
extracellular signal-regulated kinase (ERK). When a high-kinase activity mutation in BRAF occurs,
it can independently activate the MAPK pathway and in fact BRAFV600E has a ~500-fold increased
activity compared to BRAFwt [11].

The second most common mutation found in melanoma is affecting the NRAS proto-oncogene,
GTPase (NRAS) gene with a frequency of ~20% [7,12]. Therefore, the MAPK pathway is one of the
major oncogenic drivers in melanoma. However, recent studies revealed additional mutations involved
in growth and progression of malignant melanoma, e.g., KIT proto-oncogene receptor tyrosine kinase
(KIT) gene in mucosal melanoma, telomerase reverse transcriptase (TERT) gene, germline cyclin
dependent kinase inhibitor 2A (CDKN2A) gene, tumor protein p53 (TP53) gene, neurofibromin 1 (NF1)
gene and others [13–15].

1.1. Therapeutic Modalities

Currently, cutaneous melanoma are classified into four subgroups: BRAFmt, NRASmt, NF1mt

and triple wild type [16,17]. Therefore, patients with metastatic diseases have three pharmacological
therapeutic options: (i) immunotherapy; (ii) targeted therapy, focusing on the mutational status
of melanoma cells; and (iii) conventional chemotherapy, if the first two options are not suitable or
available [18–22].

1.1.1. Targeted Therapy

BRAF Mutated Melanoma

There are two BRAF inhibitors, which are widely used for systemic treatment in metastatic
melanoma: vemurafenib and dabrafenib [23,24]. In the BRAF Inhibitor in Melanoma 3 (BRIM-3)
study, vemurafenib was more effective in BRAFV600E mutated melanoma compared to conventional
chemotherapy (dacarbazine and DTIC) [21]. Similar results could be obtained when another BRAF
inhibitor, dabrafenib, was used in patients with metastatic melanoma and further BRAF inhibitors
(e.g., encorafenib) are now in clinical trials [25,26]. However, a major problem of targeted therapy is
the emergence of receptor tyrosine kinase (RTK) mutations upon treatment with BRAF inhibitors [27].

Another common side effect of BRAF inhibitors is the development of new BRAFwt and RASmt

melanoma, which may be explained by a paradoxical activation of the MAPK pathway in BRAFwt

melanoma [28,29]. To increase the efficiency of MAPK pathway blockage, MEK inhibitors have been
developed in combination with BRAF inhibitors [30–32]. Effectively, dual inhibition has improved
progression-free survival, overall survival and response rates [19,33]. Therefore, dual inhibition is now
considered the standard of care in BRAFV600 mutated melanoma.

NRAS Mutated Melanoma

Approximately twenty percent of all melanomas have a hotspot mutation in the NRAS gene [34].
Due to its downstream signaling to the MAPK pathway and the knowledge that BRAF inhibitors lead
to enhanced growth of BRAFwt melanomas, several trials investigated the efficiency of MEK inhibition
in this subset of melanoma [29]. However, the response rate to MEK inhibitors is variable, suggesting
that NRAS signaling does not solely act on the MAPK pathway [35]. In the literature, new mutations in
the MAPK pathway and other pathways involved in proliferation and growth have been suggested as
putative escape mechanism, but it might also be possible that there are some epigenetic modifications
involved [36].
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NF1 Mutated Melanoma

The Cancer Genome Atlas proposed that NF1 mutations should be included for classification
in BRAFwt/NRASwt melanoma, since reports were available showing that mutations in NF1 led
to hyper-activation of the MAPK pathway and were responsive to MEK inhibition [16,37,38].
On the downside, another study suggested loss of NF1 mediates resistance to MEK inhibition
(selumetinib) [39]. However, Krauthammer and colleagues showed that not all NF1 mutated melanoma
were responsive to MEK inhibition and that many NF1 mutated melanoma had concurrent mutations
in RAS related genes [40]. Therefore it seems that there might be some patients with NF1mt melanoma
suitable for MEK inhibitor treatment, although further studies are necessary to elucidate the role
of NF1.

KIT Mutated Melanoma

The KIT proto-oncogene receptor tyrosine kinase gene is frequently mutated in acral and mucosal
melanoma as well as in melanomas of chronically sun-damaged skin [41]. KIT acts as a bona fide
oncogene, resulting in higher cell proliferation, cell migration and progression through the activation
of the MAPK pathway and the PI3K/mTOR pathway [42,43]. Imatinib-a receptor tyrosine kinase
inhibitor-showed high response rates and beneficial effects in patients harboring a melanoma with
mutations in the exons 11 and 13 of the KIT gene [44]. In addition, nilotinib, a tyrosine kinase inhibitor
used in imatinib-resistant chronic myeloid leukaemia, as well as sunitinib, provided promising results
in the treatment of KIT mutated metastatic melanoma [45,46]. However, it has to be mentioned that
this is confined to a subset of an already small subpopulation of patients.

1.1.2. Immunotherapy

The second pharmacological option in metastatic melanoma nowadays is immunotherapy.
Boosting the immune system of patients with metastatic melanoma has a long history despite low
success rates [47].

However, the first immunotherapy approved for metastatic melanoma was Ipilimumab in
2011 [48]. Ipilimumab improved the overall survival of patients with advanced melanoma (compared
to dacarbazine) and showed a durable long-term survival of approximately 20% [49]. However, one
of the major disadvantages of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) monoclonal
antibody (mAb) was the low response rate of ~20%. A major contribution to immunotherapy was
the discovery of the immune evasion mechanism, mediated through the expression of B7-H1 on the
surface of melanoma cells, which was later described as programmed cell death ligand-1 (PD-L1) [50].

PD-L1 was able to suppress in vivo activated T-cells, which in turn reduced the immune response.
When PD-L1 was blocked by a mAb, immune response was restored and a significant reduction
in tumor size was achieved [50,51]. In 2012 nivolumab-a mAb against programmed cell death 1
(PD-1)-improved progression-free survival, overall survival, demonstrated an increased response rate
and could achieve an up to 35% long term survival in patients with metastatic melanoma [52,53].
However, the response rate was raised up to 53%, when ipilimumab was added to nivolumab [54].
Although the rate of adverse side effects was rising as suspected, it was manageable [55].

Immunotherapy is now a major field of anti-cancer treatment and is evolving at high speed,
with new substances constantly being tested. There are ongoing clinical trials for mAb against T-cell
immunoglobulin and mucin-domain containing-3 (TIM-3), OX40 and CD73 [56,57]. However, similar
to targeted therapy, a significant proportion of patients developed resistance upon treatment, whereas
the mechanism(s) are still widely unknown.
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2. Long Non-Coding RNAs

The ENCyclopedia of DNA Elements (ENCODE) project revealed that a surprisingly large fraction
(70%–90%) of the human genome is transcribed into RNA. However, only 1%–3% of the transcriptome
carries the blueprint for the synthesis of proteins, leaving the question whether or not the remaining
non-coding RNA (ncRNA) transcripts are just “nature’s trash” [58,59].

NcRNAs can be classified into small ncRNAs (<200 nucleotides (nt)) and long ncRNAs (lncRNAs),
depending on their size. Multiple types of small ncRNA (microRNAs (miRNAs), small interfering
RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs)) have been studied extensively, especially
their effects on cancer development and their involvement in regulation of immune checkpoint
pathways [60–63]. Long ncRNAs represent a highly heterogeneous group of RNAs, which have
an extensive variability in their cellular effects, as well as their molecular influences. They can be
classified by their length (>200 nt) and by their lack of a functional open reading frame, meaning they
encompass less than 100 amino acids [64–67]. Hence, lncRNAs constitute a very heterogeneous group
of RNA molecules, which allows them to cover a broad spectrum of molecular and cellular functions
by implementing different modes of action [68–71]. From an evolutionary perspective, circumventing
the energy intensive protein translation by regulating various processes through ncRNAs seems quite
reasonable [72]. This regulation by lncRNA can occur via multiple mechanisms, which Wang et al.
divided into four types, which we will discuss here briefly [73].

2.1. Signal LncRNA

lncRNAs are generally transcribed by polymerase II and their expression and stimulus response
are very cell type specific, indicating a strong transcriptional control [74]. Since they are under
transcriptional control, they can be seen as a signal able to detect the chromatin state of regulatory
elements, or simply, the expression of associated genes. An interesting point to consider is that the
cell saves resources and time by producing regulatory RNAs and circumventing protein translation.
This category sees lncRNAs as a signal of gene expression patterns and is associated with time, location
and developmental state. One lncRNA in this category, which is regulated by external stimuli—namely,
DNA damage—is LincRNA-p21, which plays a key regulatory role in p53 transcriptional response.
It acts as a transcriptional repressor of the p53 pathway. p53 directly regulates LincRNA-p21 expression
by binding to the promotor of LincRNA-p21 [75].

2.2. Decoy LncRNA

One major mechanism of transcription regulation involves lncRNAs acting as decoys, by binding
to various transcription factors, chromatin modifiers and other regulatory factors, to prevent them
from executing their designated function [76]. One described mode of action involves lncRNAs acting
as “miRNA sponges”, by sequestering and thus down-regulating respective miRNAs. Consequently
target genes of these miRNAs are influenced significantly in their expression [77]. Experiments
involving gene knockout of lncRNA should therefore indicate increased effects of the speculated
bound effector molecule [78]. For example, depletion of Metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) in tumor cells resulted in a reduction of tumorigenicity, while transient
overexpression induced tumor proliferation and formation [79]. Based on studies by Tripathi et al.
double knockdown of lncRNA MALAT1 and its suspected effectors with siRNA resulted in a rescue
phenotype [80].

2.3. Guide LncRNA

Guide lncRNAs are categorized by their ability to bind proteins and afterwards direct the complex
to a specific location. Gene expression changes can occur either in cis (on neighboring genes) or in trans
(more distant genes), although this is impossible to predict based solely on the lncRNA sequence [81].
Mechanisms in cis could include a co-transcriptional chromatin change alongside the RNA polymerase,
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or serve as complementary targets for small regulatory RNAs. The in trans guidance is thought to
be based upon lncRNAs binding to target DNA as heteroduplexes or RNA:DNA:DNA triplexes,
or even RNA recognition sites on the surface of specific chromatin features. Whatever the mechanism,
the result of lncRNA guidance is to regulate and bring about epigenetic changes in target genes [82].

This class/archetype encompasses lncRNAs such as Homebox (HOX) transcript antisense
RNA (HOTAIR) and would be characterizable in knockdown lncRNA experiments by the missing
functionality of the effector, due to its malfunctioning localization or even a phenotype resembling
an effector knockout. In comparison to the decoy archetype, the guide archetype would exhibit an
exacerbated phenotype instead of a rescue.

2.4. Scaffold LncRNA

Until now, it was thought that only proteins play a key role in scaffolding complexes and therefore
the control of intermolecular interactions and signaling [83]. Recent evidence has shown, that lncRNAs
may possess similar functions [84,85]. The lncRNA in this class is characterized by its ability to bind
multiple effector molecules over specific domains, which brings them closer together and supports
their specific functions, such as activation or repression of gene transcription. By furthering our
understanding of these complex interactions and their regulation, we would then be able to exploit
these mechanisms to influence cells according to our needs. This archetype would be characterizable in
knockdown of the lncRNA by malfunctioning of the involved pathway or even a loss of function due to
interference in the lncRNA-effector-scaffold assembly. Any further knockout of effectors would likely
exacerbate the phenotype instead of saving it. When manipulating the specific lncRNA domains, there
might be effects on different effectors and functions [73]. One scaffold lncRNA is the antisense lncRNA
in INK4 locus (ANRIL), which directly interacts with polycomb repressive complexes (PRC1 and PRC2).
Interaction with ANRIL interrupts transcriptional repression of the INK4b locus [73,86].

2.5. Multifunctionality and Novel Mechanisms

Classification of one lncRNA into multiple archetypes is not unlikely, as already described for cold
induced long antisense intragenic RNA (COOLAIR) and Homebox A (HOXA) transcript at the distal
tip (HOTTIP), which both fall into the signal as well as the guide class [87]. HOX transcript antisense
RNA (HOTAIR) is also a multifunctional lncRNA transcribed in distal and posterior cells, thus being
an anatomically specific signal, which is also involved in both PRC2 and Lysine-specific histone
demethylase 1 (LSD1) complex assembly, therefore fitting the scaffold category and the localization of
PRC2 as a guide [88].

However, ongoing research efforts will very likely identify lncRNAs with new modes of action
that cannot be included in the aforementioned subtypes. For example, a new mechanism how lncRNA
can affect metabolism and regulatory processes has recently been described by Liu and colleagues [89].
They demonstrated that the lncRNA neighbor of BRCA1 gene 2 (NBR2) directly targets the adenosine
monophosphate-activated protein kinase (AMPK) during energy-stress periods. Furthermore, NBR2
depletion led to altered apoptosis/autophagy and unchecked cell cycling with increased tumor
development in vivo [89,90].

These examples highlight the diverse and complex biological functions that can be executed or
mediated by lncRNAs. Consequently, lncRNA deregulation can have a severe impact on cellular
behavior and is often found in human diseases, especially cancer. In the following paragraph,
we highlight examples of lncRNAs, whose expression is altered in human melanoma and which
have been shown to functionally contribute to melanoma development and progression.



Int. J. Mol. Sci. 2017, 18, 715 6 of 19

3. Long Non-Coding RNAs in Melanoma

3.1. ANRIL

In the well-studied INK4 locus the interplay between ANRIL and chromatin-modifying
complexes can be observed, in which ANRIL serves as a scaffold lncRNA. ANRIL was found in
the INK4B/ARF/INK4A locus, has 19 exons and spans 126.3 kb. Due to alternative splicing, several
long, short and circular isoforms of ANRIL exist [91]. ANRIL expression has been linked to several
conditions, including the risk of melanoma [92,93].

It has been proposed that ANRIL negatively regulates INK4b/ARF/INK4a in cis through chromatin
remodeling. It achieves this by binding to PRC1 and PRC2, which in turn controls lysine 27 methylation
of histone H3 in the INK4B/ARF/INK4A tumor suppressor locus (Figure 1A) [94]. This implies that
ANRIL is significantly involved in cell proliferation and furthermore in cell proliferation after DNA
damage repair (see Table 1) [94,95]. Xu et al. indicated that ANRIL was overexpressed in cutaneous
melanoma and uveal melanoma compared to normal tissue [96]. Knockdown of ANRIL by siRNA
restored the ability of two tumor cell lines (A375 and OM431) to transcribe INK4A and INK4B.
This reduced the cell’s ability to migrate and form colonies and ANRIL might therefore be a valid
therapeutic target [96].

3.2. BANCR

BRAF-activated non-coding RNA (BANCR) is a 693nt lncRNA, which is encoded by chromosome 9
and acts as a decoy lncRNA [97]. BANCR is notable, because it is highly upregulated in human primary
malignant melanoma and induced by BRAFV600E in comparison to BRAFwt melanoma. Depletion
experiments demonstrated that BANCR has a regulatory function in melanoma cell migration, whereas
its absence significantly decreases cellular migration. In BANCR depleted cells CXCL11 could
be identified as a factor simultaneously down-regulated. When the authors supplied CXCL11 to
BANCR deficient cells, CXCL11 was capable of rescuing and restoring the migratory abilities of
BANCR-depleted cells [97].

Another study revealed that BANCR expression directly correlates with tumor stage and might
contribute to the development of melanoma [98]. Li and colleagues demonstrated that BANCR can
activate ERK1/2, its upstream molecule CRAF and JNK in-vitro and in-vivo, which led to proliferation
of melanoma cells (summarized in Figure 1A and Table 1). They concluded that the link between these
pathways indicates a novel regulation mechanism in melanoma proliferation [98].

3.3. CASC15

The lncRNA cancer susceptibility candidate 15 (CASC15) spans ~530 kb and is located on
chromosome 6 between the SOX4 and PRL genes [99]. It was frequently expressed in metastatic
melanoma cell lines independent of their BRAF mutational status and was absent in normal
melanocytes. Furthermore, brain metastases showed significantly higher CASC15 expression levels
compared to the cutaneous cell lines [99]. Intriguingly, CASC15 expression in patient-derived FFPE
samples from brain and lung metastases was found to be significantly higher compared to normal
tissue and naevi. Analysis of the 10-year disease-free survival rates and CASC15 expression in
stage III melanoma lymph node metastases revealed that patients with high CASC15 expression
had a significantly reduced DFS. Additional in vitro experiments could show that CASC15 regulates
melanoma cell phenotype switching between proliferative and invasive states (Table 1) [99].
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Figure 1. Overview of all melanoma related lncRNAs. (A) Llme23 binds the protein associated 
splicing factor which in turn can not bind to the promoter of the proto-oncogene RAB23. BANCR 
increases the activity of ERK, CRAF and JNK. ANRIL inhibits the transcription of p14/p15/p16 
expression by methylation of the histone H3 of the INK4b/ARF/INK4a tumor suppressor locus. 
targets and inactivates miR-507 and this leads to increased levels of the pro-oncogenic transcription 
factor FoxM1. RMel3 decreases the level of PTEN, p27 and p38 and increases the activity of BRAF 
and Akt; (B) GAS5 inhibits the matrixmetalloprotease 2 which in turn decreases the ability of 
migration of melanoma cells. HOTAIR leads together with PRC2 to increased chromatin 
MALAT1 binds to miR-22 in cutaneous melanoma promoting MMP14 and SNAIL expression. In 
uveal melanoma it binds to miR-140 decreasing SLUG and ADAM10 expression. PAUPAR 
HES1 expression by inhibiting histone H3K4 demethylation; (C) SPRY4-IT1 inhibits Lipin2 which 
converts phosphatidate to diacylglycerol. SAMMSON is co-amplified with MITF and forms a 
complex with p32 which stabilized mitochondrial biogenesis. Red and black T shaped bars signify 
reduced or downregulated proteins/miRNAs or genes. Black arrows indicate overexpressed or 
upregulated proteins or genes. ERK: extracellular signal-regulated kinase; CRAF: C-Raf 
proto-oncogene, serine/threonine kinase; JNK: JUN N-terminal kinase; ANRIL: antisense lncRNA in 
INK4 locus; UCA1: Urothelial carcinoma-associated 1; PTEN: phosphatase and tensin homolog; 
BRAF: B-Raf proto-oncogene, serine/threonine kinase; GAS5: growth arrest-specific transcript 5; 
HOTAIR: HOX transcript antisense RNA; PRC2: polycomb repressive complexe 2; MMP14: matrix 
metalloproteinase 14; SNAIL: snail family transcriptional repressor; SLUG: snail family 
transcriptional repressor 2; ADAM10: ADAM metallopeptidase domain 10; PAUPAR: PAX6 
upstream antisense RNA; SPRY4-IT1: SPRY4 intronic transcript 1; SAMMSON: Survival associated 
mitochondrial melanoma-specific oncogenic non-coding RNA; MITF: melanogenesis associated 
transcription factor. 

Figure 1. Overview of all melanoma related lncRNAs. (A) Llme23 binds the protein associated splicing
factor which in turn can not bind to the promoter of the proto-oncogene RAB23. BANCR increases
the activity of ERK, CRAF and JNK. ANRIL inhibits the transcription of p14/p15/p16 expression by
methylation of the histone H3 of the INK4b/ARF/INK4a tumor suppressor locus. UCA1 targets and
inactivates miR-507 and this leads to increased levels of the pro-oncogenic transcription factor FoxM1.
RMel3 decreases the level of PTEN, p27 and p38 and increases the activity of BRAF and Akt; (B) GAS5
inhibits the matrixmetalloprotease 2 which in turn decreases the ability of migration of melanoma cells.
HOTAIR leads together with PRC2 to increased chromatin remodeling. MALAT1 binds to miR-22 in
cutaneous melanoma promoting MMP14 and SNAIL expression. In uveal melanoma it binds to miR-140
decreasing SLUG and ADAM10 expression. PAUPAR represses HES1 expression by inhibiting histone
H3K4 demethylation; (C) SPRY4-IT1 inhibits Lipin2 which converts phosphatidate to diacylglycerol.
SAMMSON is co-amplified with MITF and forms a complex with p32 which stabilized mitochondrial
biogenesis. Red and black T shaped bars signify reduced or downregulated proteins/miRNAs or
genes. Black arrows indicate overexpressed or upregulated proteins or genes. ERK: extracellular
signal-regulated kinase; CRAF: C-Raf proto-oncogene, serine/threonine kinase; JNK: JUN N-terminal
kinase; ANRIL: antisense lncRNA in INK4 locus; UCA1: Urothelial carcinoma-associated 1; PTEN:
phosphatase and tensin homolog; BRAF: B-Raf proto-oncogene, serine/threonine kinase; GAS5: growth
arrest-specific transcript 5; HOTAIR: HOX transcript antisense RNA; PRC2: polycomb repressive
complexe 2; MMP14: matrix metalloproteinase 14; SNAIL: snail family transcriptional repressor; SLUG:
snail family transcriptional repressor 2; ADAM10: ADAM metallopeptidase domain 10; PAUPAR: PAX6
upstream antisense RNA; SPRY4-IT1: SPRY4 intronic transcript 1; SAMMSON: Survival associated
mitochondrial melanoma-specific oncogenic non-coding RNA; MITF: melanogenesis associated
transcription factor.
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3.4. GAS5

The lncRNA growth arrest-specific transcript 5 (GAS5) is located on chromosome 1 and consists
of 650 bases (12 exons) [100]. Chen et al. investigated the functional role of GAS5 in melanoma
and revealed that some cell lines had a reduced expression of GAS5. Moreover, GAS5-depleted
cells showed a higher ability to migrate, whereas induced overexpression in such cells reduced their
migratory ability and went along with decreased levels of matrix metalloproteinase (MMP) 2 protein
production (Figure 1B and Table 1) [101].

3.5. HOTAIR

The lncRNA HOTAIR is transcribed from the HOXC cluster and regulates the transcription of the
HOXD cluster (including HOXD8, HOXD9, HOXD10, and HOXD11) located on chromosome 2 [87].

HOTAIR expression was found to be significantly higher in lymph node metastases
compared to primary melanoma, whereas several other lncRNAs, including MALAT1, Urothelial
carcinoma-associated 1 (UCA1), and nuclear-enriched transcript 1 (NEAT1), showed no change in their
expression patterns [102]. This result supports the idea that HOTAIR contributes to the metastatic
behavior in melanoma, which is in line with findings from other groups that established HOTAIR
as a crucial regulator of metastases in several cancer types [88,103]. In fact, HOTAIR knockdown
experiments led to a decreased melanoma cell motility and invasiveness in conjunction with a reduced
capability to degrade the extracellular matrix [102].

Mechanistically, HOTAIR acts as a guide lncRNA in trans by recruiting PRC2 to its target genes,
which in turn results in H3K27 tri-methylation and an epigenetic silencing of metastasis suppressor
genes (Figure 1B and Table 1) [87,104].

3.6. Llme23

Llme23 was found exclusively in human melanoma cell lines and it was shown to act as a decoy
lncRNA, binding to the protein associated splicing factor (PSF), a known tumor suppressor [105].
Competitive binding of Llme23 to PSF prevents this negative regulatory protein from binding to
the promotor of the proto-oncogene RAB23, a RAS-related small GTPase (Figure 1A and Table 1).
Importantly, expression levels of RAB23 and Llme23 have been reported to be concordant [106].

3.7. MALAT1

MALAT1 is also known as nuclear-enriched transcript 2 (NEAT2) and has a length of ~8000 nt.
It was discovered as a prognostic marker for lung cancer metastasis, although it has also been linked
to multiple other human tumors [107,108]. MALAT1 knockdown resulted in impaired melanoma
migration, implying possible effects on tumor dissemination. Patient-derived melanoma samples
demonstrated a significantly higher MALAT1 expression in lymph node metastases, compared to the
primary tumor and to adjacent tissue [109].

The molecular mode of action of MALAT1 is still not fully understood, but might involve
transcriptional and epigenetic mechanisms [79,108,110]. In addition, recent studies suggest that
MALAT1 may act as a competing endogenous RNA (ceRNA) by binding to tumor-suppressive
miRNAs [111]. For example, MALAT1 acts as decoy lncRNA by targeting miR-22. Its depletion leads
to increased cell migration and proliferation and miR-22 levels inversely indirectly correlate with
MALAT1 levels. Functionally, miR-22 binds to MMP14 and SNAIL and suppresses their oncogenic
function [112]. In uveal melanoma, Sun et al. could demonstrate that MALAT1 plays a similar
role by targeting miR-140, which was down-regulated in tumor samples compared to normal tissue
(summarized in Table 1) [113].
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3.8. PAUPAR

The lncRNA PAX6 upstream antisense RNA (PAUPAR) was found in uveal melanoma tissues
and uveal melanoma cell lines at low levels, suggesting that it might act as a tumor suppressor
lncRNA [114]. Effectively it impacts tumorigenesis in vitro and in vivo by reducing tumor metastases
significantly. Further experiments showed that PAUPAR acts as a guide lncRNA by inducing the
silencing of the transcription factor hairy and enhancer of split-1(HES1) by inhibiting histone H3K4
tri-methylation at the HES1 locus (Figure 1B and Table 1) [114].

3.9. RMEL3

RMEL3 was first described together with RMEL1 and RMEL2 by Sousa et al. who revealed that all
RMEL lncRNAs were almost exclusively expressed in melanocytes and melanoma [115]. Interestingly,
RMEL3 was significantly higher in BRAFmt melanoma compared to triplewt (RAS/BRAF/NF1)
melanoma and expression levels were negatively correlated with melanoma progression [115].

However, RMEL3 experiments could not confirm these clinical findings and suggested that
RMEL3 plays a pro-oncogenic role, since knockdown experiments resulted in a 95% decrease of
colony formation in different BRAFV600E melanoma cell lines. Additionally, MAPK and PI3K pathway
activators and effectors were also impacted negatively. Multiple genes for these activators and effectors
were found to be correlated with RMEL3, thus indicating the requirement of RMEL3 for MAPK and
PI3K signaling (see Figure 1A). Because RMEL3 depletion decrease cell survival and proliferation in
BRAFV600E melanoma cell lines, it might represent a potential therapeutic target gene in this subset of
melanomas (summarized in Table 1) [116].

3.10. SAMMSON

Survival associated mitochondrial melanoma-specific oncogenic non-coding RNA (SAMMSON) is
located 30 kb downstream of the melanoma-specific oncogene melanogenesis associated transcription
factor (MITF) and is co-amplified in around 10% of all melanoma cases, although studies demonstrated
that SAMMSON acts in trans as a decoy lncRNA by targeting p32. In melanoma, SAMMSON is the
target of the melanoblast/melanoma-specific transcription factor SOX10 and its co-factor (Figure 1C).
Expression of SAMMSON was detectable in over 90% of human primary melanoma and metastasis,
whereas SAMMSON was undetectable in normal healthy tissue. Knockdown experiments established
a role for this lncRNA in melanoma cell viability and growth, irrespective of their mutational
status (BRAF, NRAS, TP53) [117]. By targeting SAMMSON, cell sensitivity towards MAPK-targeting
therapeutics could be enhanced and MAPK-resistant cell lines were still susceptible to SAMMSON
targeting (summarized in Table 1) [117].

3.11. SNHG5

SnoRNA host gene 5 (SNHG5) is part of the non-coding multiple small nucleolar RNA host
gene family and encompasses 524 base pairs [118]. The site is known to be involved in human β-cell
lymphoma [118]. Serum levels of SNGH5 were significantly increased in malignant melanoma patients
of all stages compared to normal subjects and patients with squamous cell carcinoma. This indicates
that SNGH5 may play a role in melanoma genesis (see Table 1) [119].

3.12. SPRY4-IT1

SPRY4 intronic transcript 1 (SPRY4-IT1; also known as SPRIGHTLY) is initiated in intron 1 of the
SPRY4 gene and extends to exon 3 [120]. Even though SPRY4-IT1 is located within an intron of SPRY4,
both genes were found to be functionally and transcriptionally independent [121].

SPRY4-IT1 was shown to be over-proportionally represented in melanoma cell lines as well as in
human melanoma samples compared to melanocytes [122]. It is mainly located in the cytoplasm of
melanoma cells and was shown to be associated with polysomes [120,121]. Furthermore, SPRY4-IT1
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reduces the abundance of the lipid phosphatase lipin 2. Hence, it may impair apoptosis, because of
lipin 2-mediated alterations in lipid metabolism and the resulting lipotoxicity (see Figure 1C) [120].
Additional studies reported a decreased cell growth, invasion and differentiation, but increased
apoptosis in SPRY4-IT1-depleted melanoma cells [120,121,123]. Zhao et al. demonstrated that
SPRY4-IT1 expression is lower in melanocytes compared to melanoma. Interestingly, one month
after ectopic overexpression of SPRY4-IT1 in melanocytes induced dendritic-like cell morphologies
together with enlarged nuclei in 25% of the cells. These melanocytes were more proliferative, invasive,
and formed anchorage-independent colonies, suggesting that SPRY4-IT1 plays an important role
in melanomagenesis and progression [122]. Melanoma patients had significantly higher SPRY4-IT1
expression in comparison to healthy patients and furthermore higher SPRY4-IT1 levels were associated
with lower overall survival as well as higher tumor stage (summarized in Table 1) [123].

3.13. UCA1

UCA1 was first discovered in bladder transitional cell carcinoma and so far two isoforms have
been identified [124].

A study comparing the expression of six cancer-implicated lncRNAs in melanoma to their
respective expression in paired adjacent healthy tissue, found elevated expression of UCA1 in
melanoma, especially at advanced stages [109,125]. Knockdown of UCA1 inhibited melanoma cell
migration suggest that it might be involved in tumor dissemination [109]. In fact, UCA1 might act
as a decoy lncRNA targeting miR-507, an inhibitor of the pro-oncogenic transcription factor FoxM1
(Figure 1A). Depletion of UCA1 increased the levels of miR-507 and reduced FoxM1 levels which led
to cell cycle progression defects [125]. In turn, this led to decreased cell proliferation through G1 cell
cycle arrest (functionally summarized in Table 1).

Table 1. Overview of lncRNA function(s) in melanoma.

LncRNA Name Function References

ANRIL Represses the transcription of CDKN2A/B which leads to perturbation in the cell
cycle, increased migration and colony formation. [94–96]

BANCR
High levels of BANCR lead to increased migration (by targeting CXCL11) and
proliferation. High levels of BANCR directly correlated with tumor stage and
indirectly with survival.

[97,98]

CASC15 Promotes melanoma progression and invasiveness. Direct correlation between
tumor stage and expression levels. [99]

GAS5 Indirectly correlates with melanoma migration and invasiveness over reduced
levels of MMP2. [101]

HOTAIR HOTAIR is up-regulated in metastases compared to the primary tumor, favoring
a pro-metastatic role. [102]

Llme23 Llme23 promotes the expression of the proto-oncogenic RAS-related small
GTPase Rab23. [106]

MALAT1 Possibly involved in cell proliferation and invasion. It does this by targeting
miR-22 in cutaneous melanoma and miR-140 in uveal melanoma. [109,112,113]

PAUPAR It is a tumor suppressor lncRNA and reduces cell migration and metastases. [114]

RMEL3 Depletion led to decreased cell survival and proliferation in BRAFV600E

melanoma cell lines.
[116]

SAMMSON Promotes cell viability and growth irrespective of melanomas mutational status. [117]

SNGH5 Increased serum levels in patients with melanoma. [119]

SPRTY4-IT1
(SPRIGHTLY)

Associated with melanoma-genesis; Associated with higher tumor stage and
worse prognosis. [122,123]

UCA1 Promotes invasion and cell proliferation. [109,125]



Int. J. Mol. Sci. 2017, 18, 715 11 of 19

4. Conclusions and Outlook

Long noncoding RNAs are now widely recognized as contributing factors which play diverse
and complex roles in cancer. Moreover, they are gaining increasing attention as potential biomarkers
and represent a novel class of target molecules. However, we are only beginning to understand the
complexity of tumorigenic processes and the role of lncRNAs in melanoma as well as in other cancer
types. The clinical integration of lncRNAs as prognostic and predictive biomarkers in conjunction with
additional cancer targets, could provide a chance to increase the therapeutic benefit.

Nevertheless, several challenges lie ahead of us. First of all, we have to learn more about the
molecular mechanisms and processes employed and controlled by lncRNAs. This task is not trivial
and requires multiple techniques as well as the development of novel methods that allow us to observe
and capture the lncRNAs and their respective interaction partners and sites in a highly specific manner.
For example, in addition to our current understanding that lncRNAs exert their biological effect
through interaction with DNA/RNA or proteins, it might be possible that lncRNAs directly interact
with other metabolites, such as lipids or sugars [126]. Identifying and studying these lncRNAs will
require novel technologies and an open mind.

Secondly, the in vivo function of lncRNAs is difficult to study, due to the low conservation of
most lncRNAs [127]. Additionally, multiple strategies have to be considered to generate knockout
mouse models for lncRNAs [128]. Once established, these models should be combined with melanoma
mouse models to investigate the functional relevance and molecular mechanisms of the lncRNA
under investigation.

Finally, these novel animal models could represent valuable tools to develop effective therapeutic
reagents against lncRNAs, which are currently considered difficult to target. Reducing the expression
or blocking the function of oncogenic lncRNAs with, e.g., small molecules, might pave the way to
novel treatment strategies and their clinical application in the future.
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AMPK adenosine monophosphate-activated protein kinase
ANRIL antisense lncRNA in INK4 locus
BANCR BRAF-activated non-coding RNA
BRAF B-Raf proto-oncogene, serine/threonine kinase
BRIM-3 BRAF Inhibitor in Melanoma 3
CASC15 cancer susceptibility candidate 15
CDKN2A cyclin dependent kinase inhibitor 2A
ceRNA competing endogenous RNA
COOLAIR cold induced long antisense intragenic RNA
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DTIC dacarbazine
ENCODE ENCyclopedia of DNA Elements
ERK extracellular signal-regulated kinase
GAS5 growth arrest-specific transcript 5
HES1 hairy and enhancer of split-1
HOTAIR HOX transcript antisense RNA
HOTTIP HOXA distal transcript antisense RNA
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HOX homebox
HOXA homebox A
KIT KIT proto-oncogene receptor tyrosine kinase
lncRNA long non-coding RNA
LSD1 lysine-specific histone demethylase 1
mAb monoclonal antibody
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MAPK mitogen-activated protein kinase
MEK MAPK/ERK Kinase
miRNA microRNA
MITF melanogenesis associated transcription factor
MMP matrix metalloproteinase
NBR2 lncRNA neighbor of BRCA1 gene 2
ncRNA non-coding RNA
NEAT nuclear-enriched transcript
NF1 neurofibromin 1
NRAS neuroblastoma RAS viral (v-ras) oncogene homolog
nt nucleotides
PAUPAR PAX6 upstream antisense RNA
PD-1 programmed cell death 1
PD-L1 programmed cell death ligand-1
piRNA PIWI-interacting RNA
PRC polycomb repressive complexe
PSF protein associated splicing factor
RAF rapidly Accelerated Fibrosarcoma
RAS rat sarcoma
RTK receptor tyrosine kinase
SAMMSON survival associated mitochondrial melanoma-specific oncogenic non-coding RNA
siRNA small interfering RNA
SNHG5 SnoRNA host gene 5
SPRY4-IT1 SPRY4 intronic transcript 1
TERT telomerase reverse transcriptase
TIM-3 T-cell immunoglobulin and mucin-domain containing-3
TP53 tumor protein p53
UCA1 urothelial carcinoma-associated 1
UV ultraviolet
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