
Rigoutsos et al. Genome Biology  (2017) 18:98 
DOI 10.1186/s13059-017-1224-0
RESEARCH Open Access
N-BLR, a primate-specific non-coding
transcript leads to colorectal cancer
invasion and migration

Isidore Rigoutsos1*†, Sang Kil Lee2,3†, Su Youn Nam2,4†, Simone Anfossi2†, Barbara Pasculli2,5†, Martin Pichler2,6†,
Yi Jing1, Cristian Rodriguez-Aguayo2,8, Aristeidis G. Telonis1, Simona Rossi2,7, Cristina Ivan2,8, Tina Catela Ivkovic2,9,
Linda Fabris2, Peter M. Clark10, Hui Ling2, Masayoshi Shimizu2, Roxana S. Redis2,35, Maitri Y. Shah2, Xinna Zhang8,11,
Yoshinaga Okugawa12, Eun Jung Jung13, Aristotelis Tsirigos14, Li Huang15, Jana Ferdin2,16, Roberta Gafà17,
Riccardo Spizzo2,18, Milena S. Nicoloso2,18, Anurag N. Paranjape19,36, Maryam Shariati19, Aida Tiron20, Jen Jen Yeh21,
Raul Teruel-Montoya2,22, Lianchun Xiao23, Sonia A. Melo24,25, David Menter26, Zhi-Qin Jiang26, Elsa R. Flores27,
Massimo Negrini17, Ajay Goel12, Menashe Bar-Eli15, Sendurai A. Mani19, Chang Gong Liu2, Gabriel Lopez-Berestein2,8,
Ioana Berindan-Neagoe28,29,30, Manel Esteller31,32,33, Scott Kopetz26, Giovanni Lanza34 and George A. Calin2,8*
Abstract

Background: Non-coding RNAs have been drawing increasing attention in recent years as functional data suggest
that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that
modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer
invasion.

Results: We performed multivariate analyses of data from two independent cohorts of colorectal cancer patients
and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient
survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk
with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long
DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these
findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We
found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer
and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the
colorectal cancer patients’ overall survival.

Conclusions: The primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie
metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional
pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human
genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of
biomarkers and therapeutic targets that are primate-specific.

Keywords: Non-coding RNA, Pyknons, Transcription, ncRNA, lncRNA, N-BLR, EMT, CRC, CLL
* Correspondence: isidore.rigoutsos@jefferson.edu; gcalin@mdanderson.org
†Equal contributors
1Computational Medicine Center, Sidney Kimmel Medical College at Thomas
Jefferson University, Philadelphia, PA, USA
2Department of Experimental Therapeutics, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-017-1224-0&domain=pdf
mailto:isidore.rigoutsos@jefferson.edu
mailto:gcalin@mdanderson.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Rigoutsos et al. Genome Biology  (2017) 18:98 Page 2 of 21
Background
Novel experimental methods and recent technological
advances have established that in addition to the
protein-coding regions, significant parts of the human
and other genomes give rise to short and long non-
coding RNAs (ncRNAs) [1]. In terms of diversity,
ncRNAs handily outnumber protein-coding transcripts
complicating functional investigations [2]. Indeed, many
classes of experimentally identified ncRNAs have been
reported in the literature, including microRNAs (miR-
NAs), Piwi-interacting RNAs (piRNAs), long intergenic
non-coding RNAs (lincRNAs), transcription initiation
RNAs (tiRNAs), miRNA-offset RNAs (moRNAs), sno-
derived RNAs (sdRNAs), transfer RNA (tRNA) frag-
ments [3–5] or long enhancer ncRNAs (eRNAs) [6], and
others. However, the full repertoire of ncRNAs and their
functional involvement in the regulation of cellular pro-
cesses and, by extension, in the onset and progression of
human disorders remains largely unknown [6, 7].
The best-studied ncRNA transcripts are miRNAs.

Between 19 and 23 nucleotides (nt) in length, miR-
NAs bind their target messenger RNAs (mRNAs) in a
sequence-dependent manner thereby regulating their
targets’ levels [8, 9]. During the past 15 years, miR-
NAs have been implicated in many disease settings
including cancers [10] and also found to act as medi-
ators of molecular interactions that obviate direct mo-
lecular contact [11].
Long non-coding RNA (lncRNAs) burst onto the

scene much later than miRNAs and many of them are
currently known in the public domain [7, 12]. Although
the full spectrum of lncRNAs remains unclear, several
have been shown to be important in diverse contexts
such as chromatin modification and remodeling [13, 14],
X chromosome inactivation [15–17], lineage-specific
transcriptional silencing [18], regulation of mRNA ex-
port [19], activation of a growth-control gene program
[20] or of homeobox genes [21], and lineage-specific si-
lencing [22]. LncRNAs have also been linked to human
conditions such as brachydactyly [23] and Prader–Willi
syndrome [24], and to cancers such as melanoma [25],
colon [26, 27], and prostate cancer [28].
Pyknons (“peak-non-s”) are a class of short DNA se-

quence motifs that were initially identified computation-
ally in the human genome using an unsupervised motif
discovery process [29, 30]. A core property of pyknons is
that they have multiple exact copies in the intergenic
and intronic regions of the genome and in at least one
mRNA. It is worth noting that nearly all mRNAs contain
one or more pyknons, suggesting the possibility of long-
distance interactions without direct molecular contact
[11, 31]. A comparison of human and mouse pyknon se-
quences showed that pyknons are not syntenic, their se-
quences are organism-specific and not conserved across
genomes, and their intronic copies are over-represented
in the same groups of protein-coding genes in human
and mouse [30, 32, 33]. The pyknons’ numerous gen-
omic copies raise intriguing prospects for regulatory
control [32], something that received experimental sup-
port recently [33, 34]. Pyknons have also been reported
in plants where they are found to have the same proper-
ties as their animal counterparts [35]. It has also been
reported that the DNA methyltransferase DNMT1 binds
RNAs at pyknon loci and that the corresponding regions
are hypo-methylated [36].
In what follows, we describe our discovery and

characterization of a novel pyknon-containing lncRNA
that we termed N-BLR (pronounced: eNaBLeR). We
examine N-BLR’s expression in normal colon and colo-
rectal cancer (CRC) and elucidate its role in shaping the
epithelial-to-mesenchymal transition (EMT) and in en-
abling migration and invasion. We further examine,
in vitro and in vivo, the molecular mechanism under-
lying the phenotype induced by N-BLR and discuss how
a pyknon motif in N-BLR’s sequence can modulate N-
BLR’s abundance in CRC. With the help of a microarray
panel that we custom-designed, we investigate the tran-
scription patterns of an additional 2500+ human genome
loci that contain pyknons and find that many of these
sequences are transcribed and associated, in various
combinations, with the normal or pathological states of
several tissues.

Results
Transcription of pyknon-containing segments of DNA cor-
relates with clinical parameters and the overall survival of
CRC patients
Initially, we sought to examine whether pyknons repre-
sent “passive” DNA motifs (e.g. genomic locations to
which transcription factors could bind) or “active”
sources of novel transcripts. We reasoned that regions
associated with loss of heterozygosity (LOH) and “fragile
sites” might represent good starting points, given that
both have been shown to contain an excess of function-
ally relevant regulatory sequences [37]. To this end, we
designed an exploratory collection of 11 quantitative
real-time polymerase chain reaction (qRT-PCR) assays
for pyknon instances in these regions; we denoted these
11 regions as pyk-reg-14, pyk-reg-17, pyk-reg-26, pyk-
reg-27, pyk-reg-40, pyk-reg-41, pyk-reg-42, pyk-reg-43,
pyk-reg-44, pyk-reg-83, and pyk-reg-90, respectively
(Additional file 1: Table S1 and Additional file 2: Table
S2). Owing to our long-standing interest in CRC [26],
we used the 11 assays to explore the possibility of tran-
scription across several microsatellite stable (MSS) and
microsatellite instable high (MSI-H) cell lines: Colo320,
SW480, HCT116, LS174, HT-29, Colo205, and SW620.
We observed transcription from all 11 genomic pyknon
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locations with expression levels that varied among the
seven cell lines (Additional file 3: Figure S1).
Spurred by these findings, we expanded our investiga-

tions to tissue samples from human normal colon and
CRC and evaluated a first set of 81 tumor samples (ran-
domly selected among the 127 samples of the first CRC
patient cohort; see Additional file 4: Table S3) and 28
adjacent normal mucosa samples of Caucasian ancestry.
In this group of 81 tumor and 28 normal samples, we
found significant differences in CRC compared with nor-
mal tissue in the abundance of pyk-reg-14, pyk-reg-40,
pyk-reg-41, pyk-reg-42, pyk-reg-44, and pyk-reg-90
Fig. 1 Pyknon loci expression in CRC samples by qRT-PCR. a Expression an
CRC and paired normal samples (first set, see Additional file 4: Table S3) by qR
between MSS and MSI-H CRC by qRT-PCR. The number of samples with meas
The numbers of cancer and normal samples in some cases differ from one an
pyknon regions were excluded. Two-sided t-test was used to evaluate differen
region to U6: ratios were calculated with the 2–ΔCt method using U6 levels fo
for patients with high pyk-reg-90 expression in both cohorts (the first s
was statistically significant with p = 0.016 and p = 0.013 for each set, respectiv
according to a cutoff value corresponding to the mean value of all patients
(Fig. 1a). Additionally, we detected significant differences
between MSS and MSI-H CRCs for pyk-reg-14, pyk-reg-
17, pyk-reg-40, pyk-reg-41, and pyk-reg-42 (Fig. 1b).
One of the loci in particular, pyk-reg-90, stood apart
from the rest. Both univariate and multivariate logistic
regression analysis performed on this first CRC patient
cohort revealed a significant correlation between high
levels of pyk-reg-90 and high tumor stage (stages III and
IV) with an odds ratio of 3.72 (p = 0.001) and 3.49 (p =
0.011), respectively (Additional file 5: Table S4a). More-
over, we found that high levels of pyk-reg-90 were also
associated with poor overall survival (OS) (p = 0.016,
d distribution of pyknon-containing regions were analyzed between
T-PCR. b Expression and distribution of pyknon-regions were analyzed
urable expression values (under Ct of 35) is presented in parentheses.
other because patients with no expression values for the U6 or for
ces between two groups. Y-axis values represent ratio of each pyknon
r normalization. c, d Kaplan–Meier curves reveal a poor clinical prognosis
et had n = 114 and the second set n = 170 patients); the association
ely (log-rank test). The high/low pyk-reg-90 expression was determined
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Fig. 1c and Additional file 6: Table S4b). When we ana-
lyzed a second independent cohort of 170 CRC patients
(Additional file 7: Table S5), we observed a similar cor-
relation between high levels of pyk-reg-90 and poor sur-
vival (Fig. 1d), high tumor stage (Additional file 8: Table
S6a), and OS (Additional file 9: Table S6b). We also ex-
amined a third independent cohort (Additional file 10:
Table S7) consisting exclusively of 21 metastatic CRC
patient-derived xenografts and found pyk-reg-90 to be
present in 15 of the 21 samples (p = 0.026 when com-
pared with the probability of observing this frequency
accidentally; Additional file 3: Figure S2).
Cloning of the N-BLR lncRNA and expression by in situ
hybridization
The pyk-reg-90 instance of interest is located in the
3p21.1–3p21.2 region on the forward strand of chromo-
some 3. By performing GeneRacer cloning, we were able
to clone N-BLR (a novel pyk-reg-90-containing lncRNA)
in HCT116 and Colo320 cells as well as normal colon
and establish its identity as an 844-nt mono-exonic tran-
script (Additional file 3: Figure S3A and C left), without
any other species homolog except a primate predicted
ncRNA (Additional file 3: Figure S3E). Subsequent
Sanger sequencing carried out independently at two dif-
ferent locations (Calin laboratory and Rigoutsos labora-
tory) confirmed that the same exact sequence, in terms
of nucleotide content and length, was cloned from all
three sources. N-BLR is transcribed from a contiguous
block of genomic DNA (i.e. it is not spliced) on the for-
ward strand of chromosome 3, in the intergenic space
between the POC1A locus and the ALAS1 locus. POC1A
is located on the reverse strand of chromosome 3, i.e. on
the strand opposite from N-BLR, and its transcription
start site (TSS) is approximately 1.2 kb upstream from
N-BLR (Additional file 3: Figure S3B). ALAS1 is on the
same strand as N-BLR but more than 40 kb downstream
from it. Notably, N-BLR does not harbor any long open
reading frame: this suggests lack of protein-coding po-
tential, which we were able to verify by using an in vitro
transcription-translation assay (Additional file 3: Figure
S3C right). This was also corroborated independently
using two software tools that evaluate a transcript’s pro-
tein coding potential (Additional file 3: Figure S3D).
Moreover, we verified that in the genomic neighborhood
of pyk-reg-90 transcription preferentially favors the for-
ward strand, i.e., it is sense to the N-BLR transcript
(Additional file 3: Figure S4A). We also searched for
additional transcripts using primers targeting flanking
regions at 1 kb, 2.5 kb, and 5 kb beyond N-BLR, on both
the forward and the reverse strands: except for the re-
gion immediately 5′ to N-BLR, where the POC1A gene
is located, all other qRT-PCR-identified transcripts were
expressed at levels lower than N-BLR’s (Additional file 3:
Figure S4B).
We also used custom-designed LNA probes against N-

BLR to carry out in situ hybridization (ISH) on a large
commercially obtained tissue microarray (TMA) con-
taining normal tissue, adenocarcinoma, metastatic, be-
nign/polyp, and colitis samples from colon (Additional
file 3: Figure S5A). As can be seen in Fig. 2a and b and
Additional file 3: Figure S5B, we observed significantly
higher expression levels of N-BLR in cancer (primary
adenocarcinoma and metastatic tumors) compared with
normal colon tissue, which is concordant with our qRT-
PCR findings on N-BLR expression levels (Fig. 1a).
Moreover, we did not measure significant differences
comparing colitis and benign/polyp lesions with normal
tissue, suggesting that overexpression of N-BLR occurs
specifically in epithelial malignant cells and not in the
tumor microenvironment or in premalignant or inflam-
matory lesions. ISH images from cancer tissue at high
magnification also indicated that the N-BLR transcript
was present in both the nucleus and the cytoplasm, with
a predominance in the latter (Fig. 2c and Additional file
3: Figure S5C). The same cellular distribution of N-BLR
was also observed in HCT116 and SW480 CRC cell
lines, with SW480 exhibiting the highest cytoplasm/nu-
cleus N-BLR ratio (Additional file 3: Figure S5D).
N-BLR is a novel regulator of the apoptotic pathway
To address the function of N-BLR in CRC cells, we si-
lenced its expression in Colo320 and SW620. Colo320
cells have high endogenous levels of N-BLR, whereas
SW620 cells express it at minimal levels (Additional file
3: Figure S1); therefore, we used SW620 cells as negative
control to exclude off-target effects of the silencing ap-
proach. We designed four siRNAs against N-BLR (la-
beled N-BLR siRNA1, N-BLR siRNA2, N-BLR siRNA3,
and N-BLR siRNA4) and tested their ability to target N-
BLR. SiRNA1 and siRNA3 were the most effective
against N-BLR. Therefore, we combined them in a
siRNA pool (N-BLR siRNA1 + 3 pool) that could reduce
N-BLR levels to less than 30%, in a dose-dependent
manner (Additional file 3: Figure S6A). Following a titra-
tion from 50 nM to 300 nM (Additional file 3: Figure
S6B), we selected the concentration of 100 nM for sub-
sequent experiments, in accordance to our N-BLR
knockdown results and previously reported studies
showing efficient lncRNAs knockdown at this concentra-
tion [38–41]. Following transfection with the siRNA
pool, N-BLR levels began decreasing at 48 h and they
remained low at a second measurement at 96 h (Add-
itional file 3: Figure S6C). Cell counts of Colo320, but
not of SW620 (data not shown), were significantly de-
creased at 96 h following treatment with either N-BLR



Fig. 2 Properties of N-BLR. a ISH of the tissue microarray (described in Additional file 3: Figure S5) shows differential expression of N-BLR in colon
cancer (Adenocarcinoma) and normal colon (Normal tissue). Hematoxylin and eosin (H&E) staining of matched tissues was added to distinguish
tissue morphology. Increasing magnifications were provide to evaluate the distribution of N-BLR in the nucleus and in the cytoplasm of cells (5X,
20X, and 60X). b Image analysis of ISH was conducted to measure the expression levels of N-BLR in the different tissues. Adenocarcinoma and
metastatic colon cancer tissues expressed higher levels of N-BLR compared with normal colon tissue. There were not significant differences
between normal tissue and benign/polyp and colitis tissues. c ISH data on cytoplasmic/nuclear localization of N-BLR. The full arrows point
to cytoplasm and the dashed arrows to nucleus. Those two cellular compartments were identified using H&E staining. The H&E staining
and ISH for N-BLR were done on serial sections; therefore, perfect overlapping of tissue morphology did not occur between the two images that show
the same tissue area. d PARP-1 expression following transfection of Colo320 and SW620 cells with siRNAs (N-BLR siRNA1 + 3 pool) against N-BLR.
Profiling was carried out at 96 and 120 h of siRNA transfection. e left Expression of survivin, c-IAP-1, XIAP after 96 h following transfection
of Colo320 and SW620 cells with siRNAs (N-BLR siRNA1 + 3 pool) against N-BLR. right Quantification of survivin, c-IAP-1, XIAP in Colo320
cells. f Activity of Caspase 3/7, Caspase 8, and Caspase 9 following transfection of Colo320 and SW620 cells with siRNAs (N-BLR siRNA1 +
3 pool) against N-BLR. Profiling was carried out after 96 and 120 h (siR = N-BLR siRNA 1 + 3 pool; Ctr = scramble control siRNA; N = lipofectamine
only; GAPDH was used as loading control). (Student’s t-test; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001)
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siRNA1 or siRNA3, or the N-BLR siRNA1 + 3 pool
(Additional file 3: Figure S6D).
Apoptotic profiling of Colo320 cells following siRNA

treatment with the N-BLR siRNA1 + 3 pool revealed sig-
nificantly increased levels of cleaved PARP-1, a substrate
for activated cell-death proteases Caspases-3 and Cas-
pase-7 compared with scrambled control siRNA (Fig. 2d).
Expression of the X-linked inhibitor of apoptosis (XIAP),
an inhibitor of Caspase-3 and Caspase-7, was abolished
in Colo320 cells treated with N-BLR siRNA1 + 3 pool (p
< 0.001), but not in SW620 “control” cells (Fig. 2e). We
also confirmed the decreased mRNA levels of XIAP in
Colo320 cells after 96 h transfection with N-BLR
siRNA1 + 3 pool (Additional file 3: Figure S6E left). We
did not observe any significant variations in the levels of
the other two IAP family members, namely survivin and
c-IAP1. The levels of activity of both initiator Caspase-
8/9 and effector Caspase-3/7 were significantly increased
in Colo320 cells, but not in SW620 “control” cells after
N-BLR siRNA1 + 3 pool transfection (Fig. 2f ). The
higher apoptosis in Colo320, but not SW620, was fur-
ther confirmed by cell cycle analyses (Additional file 3:
Figure S6F and G).
N-BLR’s levels were profiled in additional colon cancer

cell lines (Additional file 3: Figure S7A). In addition, the
effect of siRNA-mediated N-BLR knockdown on apop-
tosis was assessed in two additional cell lines, SW480
and RKO. We found that downregulation of N-BLR was
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significantly associated with increased apoptosis at 96 h
and 120 h following N-BLR siRNA1 + 3 pool transfec-
tion (Additional file 3: Figure S7B). Conversely, the
stable overexpression of N-BLR in two independent cell
lines, SW620 and HCT116, was associated with a de-
creased apoptosis (Additional file 3: Figure S7C), confirm-
ing that the apoptotic phenotype identified in Colo320
MSS cells can be reproduced in multiple colon cancer
models of both MSS and MSI phenotype by using both
upregulation and downregulation of N-BLR expression.

N-BLR promotes invasion and migration
To further investigate the effect of N-BLR downregula-
tion during tumorigenesis, we evaluated the ability to
modulate the migratory and invasive properties of can-
cer cells, which support the dissemination from the pri-
mary tumor and the metastatic spread to distant organs.
To this end, we selected the HCT116 cells because their
endogenous N-BLR levels are relatively high among the
panel of colon cancer cell lines examined. Moreover,
HCT116 cells exhibit greater adhesive capabilities com-
pared with Colo320 cultures that have both adherent
and non-adherent populations. We established HCT116
clones (Clone #3-1 and Clone #4-7) that stably
expressed N-BLR shRNA and had significantly reduced
levels of N-BLR (Fig. 3a). With regard to their motility
ability, both clones showed a concomitant decrease by
more than 50% in their invasion ability (Fig. 3b) and
more than 60% reduction in their migration ability
(Fig. 3c) compared with HCT116 cells transfected with
empty vector (clone control). The ability of N-BLR to
affect the motility of tumor cells was also evaluated by
transiently overexpressing N-BLR in RKO cells that have
relatively low levels of endogenous N-BLR. The transient
increase in the levels of N-BLR resulted in enhanced
capability of RKO cells to migrate and invade (Add-
itional file 3: Figure S8A–C).
To understand the molecular basis regulating the mo-

bility ability, we used microarrays to evaluate the effect
of N-BLR on the expression of protein-coding genes in
the two HCT116 clones (Clone #3-1, Clone #4-7). We
found E-cadherin (CDH1) to be among the most upreg-
ulated and vimentin (VIM) among the most downregu-
lated genes (Fig. 3d). This is notable since CDH1 and
vimentin are involved in the EMT and cell motility con-
trol in human colon carcinoma [42]. We confirmed
these findings by qRT-PCR (Fig. 3e) and immunofluores-
cence (Fig. 3f and Additional file 3: Figure S9A–C). Fur-
thermore, the downregulation of vimentin, associated
with N-BLR knockdown, was accompanied by downreg-
ulation of ZEB1 (Fig. 3f–h). ZEB1 is a known transcrip-
tion factor that acts as negative regulator of E-cadherin
and positive regulator of a number of other mesenchy-
mal markers, including vimentin, N-cadherin, and
matrix metalloproteinases; thereby, ZEB1 facilitates cell
migration, invasion, and the eventual metastasis to dis-
tant organs [43].

N-BLR and endogenous miRNAs are reciprocally regulated
In light of N-BLR’s presence also in the cytoplasm, we
next examined the possibility that its transcript can
interact with mature miRNAs. It was previously reported
that the miR-200 family is involved in the regulation of
EMT through a negative feedback loop with the ZEB1
and ZEB2 transcription factors [44]. Therefore, we fur-
ther investigated the possibility of an interaction be-
tween N-BLR and the miR-200 family. To prioritize
among the miR-200 family’s members, we used the
rna22 algorithm [45] to predict putative miRNA targets:
miR-141-3p and miR-200c-3p were predicted to target
N-BLR (Additional file 3: Figure S10A). Interestingly,
when we transiently knocked down N-BLR in Colo320
cells, we noted a concomitant increase in the levels of
miR-141-3p and miR-200c-3p (Fig. 4a). We observed the
same pattern in HCT116 shRNA N-BLR clones (#3-1
and #4-7) as well (Additional file 3: Figure S10B). We
also confirmed these results in RKO cells, where N-BLR
was transiently knocked down using the N-BLR siRNA1
+ 3 pool (Additional file 3: Figure S10C). On the con-
trary, in the transiently overexpressing N-BLR RKO cells
that were used for the migration/invasion assays shown
in Additional file 3: Figure S8, the levels of miR-141-3p
and miR-200c-3p were significantly reduced compared
with cells transfected with empty vector control (Add-
itional file 3: Figure S10D). Similarly, when we
transfected RKO cells with either miR-141-3p or miR-
200c-3p mimics, the levels of N-BLR were decreased by
~30% (Additional file 3: Figure S11). We confirmed a
direct molecular coupling between both miR-141-3p and
miR-200c-3p and N-BLR using luciferase assays and
constructs carrying either the wild-type (WT) or the
mutant miRNA response element sites within N-BLR
(Fig. 4b). Given the above-mentioned involvement of N-
BLR in the EMT, and of the miR-200 family in the EMT,
we conclude that N-BLR and the two miRNAs are
linked into a feedback loop that regulates the events oc-
curring during EMT.
We also wanted to assess whether this interaction

also occurs in tumor tissue. To this end, we mea-
sured the levels of miR-141-3p and miR-200c-3p and
compared them with those of N-BLR by pair-
matching individual tissue cores. We found an inverse
correlation between the levels of miR-141-3p and
miR-200c-3p on one hand and those of N-BLR on
the other, as measured by ISH in the same tissue
cores from the TMA (Fig. 4c and d). Particularly in
adenocarcinoma, high N-BLR levels were associated
with low levels of miR-141-3p and miR-200c-3p.



Fig. 3 The effect of N-BLR knockdown on invasion by specific siRNAs. a N-BLR abundance is decreased in stably silenced clones. b Invasion assays
at 36 h show significant reduction of stably silenced N-BLR invading cells. c Migration assay at 24 h identified also significant reduction in migra-
tion of stably silenced N-BLR clones. d The 12 most significantly differentially expressed genes for both upregulated and downregulated genes.
The data originated from 44 K Agilent microarray where HCT116 stable shRNA N-BLR clones #3-1 and #4-7 were compared with HCT116 empty
vector control clone. The probes recognizing E-cadherin and vimentin are in red and blue, respectively. e Confirmation of microarray data by
real time PCR shows that E-cadherin is increased and vimentin is markedly decreased in stably silenced clones (#3-1 and #4-7). f E-
cadherin, vimentin, and ZEB1 were identified in vitro by immunofluorescence with specific antibodies. Immunofluorescence signal of E-
cadherin (green color) was markedly increased in both clones. The ZEB1 signal was present in cells with empty vector (green color) but
not in clones #3-1 and #4-7. Blue color indicate nuclei. Single green, blue, and merged channel images of ZEB1 are reported in Additional
file 3: Figure S9B. g ZEB1 mRNA downregulation in HCT116 stable shRNA N-BLR clones #3-1 and #4-7 compared with control HCT116
empty vector clone. h Western blotting for E-cadherin and ZEB1 measured in the same clones; vinculin was used as loading control. (Stu-
dent’s t-test; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001)
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Furthermore, the levels of miR-141-3p and miR-200c-
3p, as measured by qRT-PCR, were significantly lower
in CRC tumors than in normal colon samples (Add-
itional file 3: Figure S12A and B left). We also evalu-
ated if this inversed correlation between the levels of
miR-141-3p and miR-200c-3p and those of N-BLR
was associated with the clinical outcome of CRC pa-
tients. We found that low levels of both miR-141-3p
and miR-200c-3p were associated with a poor OS of
CRC patients (Additional file 3: Figure S12A and B
right), and high levels of N-BLR associated with poor
OS (Fig. 1c and d). This further confirmed indirectly
the inverted correlation between the two short ncRNAs
(miR-141-3p and miR-200c-3p) and the lncRNA N-BLR.
Having established that the levels of N-BLR are in-

versely correlated to those of miR-141-3p and miR-200c-
3p, we sought to determine whether this finding persists
in clinical samples as well. Indeed, we observed an in-
verse relationship between N-BLR and E-cadherin levels
in our first cohort (Additional file 4: Table S3) of CRC
patients (Fig. 4e). We observed the same pattern when
we compared adenocarcinoma cases having tumor posi-
tive lymph-nodes (i.e. metastases to the lymph nodes)
with tumor negative (Fig. 4f ). These results showed that



Fig. 4 Interaction between N-BLR and miR-200 family members. a The effect of transient transfection of N-BLR siRNA3 and siRNA4 on the miR-
200 family in Colo320 cells. MiR-141-3p and miR-200c-3p were increased in both N-BLR siRNAs transfected cells compared with scramble control.
b A luciferase vector including the full N-BLR sequence (pGL3-N-BLR) as well as vectors that were mutated separately at the interaction sites of ei-
ther miR-141-3p or miR-200c-3p [pGL3-N-BLR(M)] were constructed. Luciferase activity is decreased only when miR-141-3p and miR-200c-3p are
co-transfected with the WT construct but not when a mutated vector is used. c Most representative images from ISH of tissue microarray showed
lower levels of both miR-141-3p and miR-200c-3p in adenocarcinoma tissue compared with normal tissue, whereas an inverse pattern was found
for N-BLR levels. d Image analysis were performed to evaluate the association between the levels of miR-141-3p and miR-200c-3p and those of N-
BLR. The quantification was performed in a pair-matched fashion, so that the levels of the three targets were quantified on the same tissue spot
of the microarray. e N-BLR and E-cadherin expression in tumor and normal samples: N-BLR was increased and E-cadherin was decreased in CRC
when compared to normal colon. f The same is true when CRC with lymph node invasion (LN+) were compared with cases without lymph node
involvement (LN–). Asterisks mark cases with statistically significant difference compared with scrambled. (Student’s t-test; *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001)
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the N-BLR expression levels can affect the epithelial
phenotype of tumor cells (E-cadherin levels) and accord-
ingly regulate their ability to migrate.

N-BLR modulates resistance to 5-fluorouracil (5-FU)
through miR-200c-3p and XIAP
Because it has been reported that miR-200c-3p can tar-
get XIAP in pancreatic beta cells [46], we sought to de-
termine whether the finding extends to the CRC
context. Indeed, increased levels of miR-200c-3p were
associated with significant decreased levels of the mRNA
of its target gene XIAP (Additional file 3: Figure S6E).
Interestingly, increased levels of XIAP are known to re-
duce the 5-FU-induced apoptosis and increase 5-FU
resistance in CRC [47]. Having established above that N-
BLR can regulate miR-200c-3p levels, we assessed
whether N-BLR and miR-200c-3p play a role in regulat-
ing the 5-FU-induced apoptosis. To this end, we transi-
ently transfected Colo320 with miR-200c-3p mimic.
After 72 h, we treated the cells with different concentra-
tions of 5-FU. The ectopic expression of miR-200c-3p
led to the downregulation of XIAP at both mRNA and
protein level (Additional file 3: Figure S13A left) and
rendered Colo320 cells more susceptible to 5-FU-
induced apoptosis (Additional file 3: Figure S13A right).
To corroborate these results, we tested the HCT116 and
RKO clones that stably overexpressed WT N-BLR. Both
cell clones exhibited a small but statistically significant
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increase in their ability to resist to 5-FU-induced apop-
tosis compared with clones that stably expressed the
empty vector (Additional file 3: Figure S13B). When
RKO cells were transiently transfected to overexpress
WT N-BLR, we measured a decrease in the levels of
miR-200c-3p, as expected, and, again, a concomitant
small but statistically significant increase in the levels of
XIAP and in the ability to resist 5-FU-induced apoptosis
(Additional file 3: Figure S13C).

The 20-nt pyknon motif in N-BLR influences its interaction
with miRNAs
Next, we examined whether the 20-nt pyknon motif
from the 844-nt long N-BLR transcript could affect the
direct coupling of miR-141-3p and miR-200c-3p to N-
BLR. According to our in silico miRNA target predic-
tions, a segment of the miR-200c-3p binding site is
shared with the 5′ region of the pyk90 motif (Additional
file 3: Figure S14A). We constructed pcDNA3.1 plasmids
containing either WT N-BLR or pyk90-deleted N-BLR
(pyk90-DEL construct from position 779 to 798 of N-
BLR); then, for each of the two N-BLR variants we
constructed a set of mutant vectors carrying the deletion
either for miR-141-3p or miR-200c-3p binding sites or
both (Additional file 3: Figure S14B). N-BLR overex-
pressing vectors were transiently co-transfected with ei-
ther miR-141-3p or miR-200c-3p into HT-29 cells. As
expected, ectopic expression of WT N-BLR significantly
reduced the levels of miR-200c-3p and miR-141-3p com-
pared with the corresponding variants containing the de-
leted binding sites for each miRNA (Fig. 5a and
Additional file 3: Figure S14C-E). In both cases, a non-
significant effect of the double deletion was observed
compared with the single deletion, supporting the speci-
ficity of each miRNA for the correspondent N-BLR
interaction region and the reliability of our predictions.
More interestingly, the ectopic expression of the pyk90-
DEL N-BLR transcript, which lacks part of the miR-
200c-3p binding site, could not induce the reduction of
miR-200c-3p levels (Fig. 5b and c), whereas it was still
able to significantly affect miR-141-3p levels (Additional
file 3: Figure S14E and F). These results suggest the im-
portance of this primate-specific pyknon motif (pyk90).
They also suggest that other valuable pyknon-containing
transcripts await discovery.

miR-141-3p and miR-200c-3p interaction with N-BLR influence
ZEB1 expression
Having shown the inverse correlation between N-BLR and
N-BLR and the ZEB1-targeting miR-141-3p and miR-
200c-3p, we sought to determine whether the modulation
of N-BLR could influence the expression levels of ZEB1
and, by extension, the levels of E-cadherin. To this end,
we ectopically induced the expression of N-BLR in HT-29
cells, which have low endogenous levels of N-BLR (Add-
itional file 3: Figure S7A). We used individual vectors
containing the following sequences: (1) WT N-BLR; (2)
N-BLR with the miR-141-3p binding site deleted (WT N-
BLR del miR-141-3p); (3) N-BLR with the miR-200c-3p
biding site deleted (WT N-BLR del miR-200c-3p); and (4)
N-BLR with both the miR-200c-3p and miR-141-3p bind-
ing sites deleted (WT N-BLR double del). We found that
upon overexpression of WT N-BLR, the levels of ZEB1
were increased compared to the empty vector control, in
concordance with the rest of our findings. On the other
hand, we did not measure any change in ZEB1 levels
compared with the empty vector control when we over-
expressed the three N-BLR constructs carrying the
deletions for miR-141-3p and miR-200c-3p binding sites
(Additional file 3: Figure S15A). We also confirmed in
RKO cells that transient transfection with the WT N-BLR
vector could lower the levels of miR-141-3p and miR-
200c-3p (Additional file 3: Figure S10D) and could in-
crease the levels of ZEB1 (Additional file 3: Figure S15B).
In an analogous experiment, when we transfected RKO
cells with miR-141-3p and miR-200c-3p mimics, we were
able to lower the levels of ZEB1 measured at 48 h follow-
ing the transfection (Additional file 3: Figure S15C). These
results suggest that the upregulation of N-BLR expression
in colon cancer cells could regulate the acquisition of
EMT phenotype by buffering the levels of both miR-141-
3p and miR-200c-3p resulting in the upregulation of their
target gene ZEB1.

Deletion of the pyknon motif from the N-BLR transcript
has functional consequences
In light of the above data, we further investigated the
impact of deleting the 20-nt pyknon motif on N-BLR’s
ability to regulate migration, invasion, and colony forma-
tion. As expected, stably overexpressing WT N-BLR in
HCT116 cells significantly increased their ability to mi-
grate and invade compared with cells stably expressing
empty vector control. On the other hand, when we over-
expressed the pyk90-DEL N-BLR vector we did not ob-
serve any notable increase in migration and invasion
(Fig. 5d and e). We independently confirmed these re-
sults by transiently overexpressing N-BLR vectors in
HCT116 cells (Rigoutsos laboratory) (Additional file 3:
Figure S16A). We also found that overexpression of the
WT N-BLR increased the cells’ ability to form colonies
compared to the empty vector, whereas the overexpres-
sion of the pyk90-DEL N-BLR vector did not have any
significant effect (Additional file 3: Figure S16B). Fur-
thermore, by immunofluorescence analysis, we observed
a reduction of the expression of E-cadherin and an in-
creased expression of both ZEB1 and vimentin in WT
N-BLR HCT116 cells compared with the empty vector
clone (Fig. 5f and Additional file 3: Figure S9C). We also



Fig. 5 The 20-nt pyknon motif influences the functional role of N-BLR. a. miR-200c-3p levels following 48 h of co-transfection with empty pcDNA
3.1 vector, WT N-BLR vector, WT N-BLR del miR-200c-3p, WT N-BLR double del for both miR-200c-3p and miR-141-3p binding sites in HT-29 cell
lines. The levels of miR-200c-3p were significantly reduced by the overexpression of the WT N-BLR compared to the empty vector, whereas they
were restored by the overexpression of the mutant vector. b miR-200c-3p expression levels following 48 h of co-transfection with empty pcDNA
3.1 vector, pyk90-DEL N-BLR vector, pyk90-DEL N-BLR del miR-200c-3p, pyk90-DEL N-BLR double del for both miR-200c-3p and miR-141-3p
binding sites. The lack of the pyk90 motif within N-BLR is likely to critically impair the binding between N-BLR and miR-200c-3p, thus the levels of
the miRNA do not decrease significantly compared to the empty vector. c Comparison of miR-200c-3p expression levels between WT N-BLR and
pyk90-DEL N-BLR cells: the binding of miR-200c-3p to N-BLR is partly dependent on the presence of the pyk90 motif. Y-axis values represent the
ratio of miR-200c-3p and miR-141-3p to U6. Ratios were calculated with the 2–ΔCt method using U6 levels for normalization. For each set of co-
transfection experiments, the expression levels of miR-200c-3p were corrected by subtracting the values derived from the corresponding miRNA
mimic negative control. Data are shown as mean ± SEM: n = 4. d Migration assays at 24 h show a significant increase of migrating cells with stable
overexpression of WT N-BLR. Conversely, stable overexpression of pyk90-DEL N-BLR leads to a dramatic decrease of migratory capabilities even
compared to the empty vector stable clone. e Similarly to migration, invasion assays at 36 h identified a significant increase of the invading
population among the stable WT BLR overexpressing cells compared with the empty vector stable clone. While overexpression of pyk90-DEL
N-BLR did not produce such gain of function, although not significant, it still conferred an edge of invasion over the empty clones. Data are
shown as mean ± SEM: n = 3. f E-cadherin, ZEB1, and vimentin detection by immunofluorescence in HCT116 N-BLR overexpressing clones. The
signal of E-cadherin (green color) was markedly decreased in WT N-BLR clone. The ZEB1 signal was absent in cells with empty vector (green color)
but visible in WT N-BLR overexpressing clone. Blue color indicates nuclei. Single green, blue, and merged channel images of ZEB1 are reported in
Additional file 3: Figure S9C. g Representative H&E images and immunohistochemical staining of Ki67 in liver metastases from nude mice after
approximately four to six weeks of intrasplenic injection with empty vector, WT N-BLR, and pyk90-DEL N-BLR overexpressing HCT116 clones are
shown. h Quantification of Ki-67 staining is reported. i WT N-BLR enhances liver metastases in the injected mice. Weekly imaging was performed
using the Xenogen IVIS spectrum system within 12 min following injection of D-Luciferin (150 mg/mL). Living image 4.1 software was used to
determine the regions of interest (ROI), and average photon radiance (p/s/cm2/sr) was measured for each mouse. Data were log-transformed before
analysis. Data are shown as mean ± SEM: EMPTY n = 4, WT N-BLR n = 5, pyk90-DEL N-BLR n = 7. (Student’s t-test; *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001)
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evaluated the effect of deleting only the portion of the
pyk90 motif that is in between the miR-141-3p and miR-
200c-3p binding sites (pyk90-DEL2 N-BLR, from
position 784 to 798 of N-BLR). This deletion did not
affect the migration and invasion ability of RKO and
HCT116 cells, which continued to behave similarly to
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cells transfected with the WT N-BLR (Additional file 3:
Figure S17A and B). These results further supported the
critical role of the WT pyk90 motif in affecting N-BLR’s
functions, which regulate key molecular factors involved
in the development of the aggressive cancer cell pheno-
type (EMT phenotype, increased migration and invasion,
and increased colony formation ability).
Finally, to corroborate the relevance of these findings,

we evaluated the ability of N-BLR to regulate the
malignant phenotype of tumor cells using an in vivo
model of metastasis. Nude mice underwent intra-splenic
injection of stably overexpressing either WT N-BLR or
pyk90-DEL N-BLR or expressing the empty vector
(control). The metastatic spread to the liver of HCT116
was assessed by histological examination and bio-
luminescence assay. HCT116 cells that overexpressed
WT N-BLR showed an increased ability to colonize and
invade the liver, as demonstrated by the massive infiltra-
tion of liver tissue by tumor cells and higher proliferative
index (Ki-67 levels) resulting in increased metastatic
burden. On the other hand, the HCT116 cells that over-
expressed the control or the pyk90-DEL N-BLR vectors
showed reduced metastatic potential (Fig. 5 g and h).
These findings were confirmed independently by bio-
luminescence assay (Fig. 5i). These in vivo data further
support the biological importance of the pyknon motif
within the span of the N-BLR transcript.

Genome-wide profiling of pyknon transcripts
In light of the many and diverse observations we re-
ported above, we conjectured that the genomic instances
of the pyknon DNA motifs could serve as “homing bea-
cons” that might allow us to locate lncRNAs with poten-
tial functional relevance. To investigate this possibility,
we built a custom microarray. We prioritized among the
more than 209,000 human pyknons [30, 32] by focusing
on a subset of pyknon instances that occur in the previ-
ously reported “cancer associated genomic regions” or
“CAGRs” [37] and are either intergenic or intronic. We
identified 1292 such locations that are distributed across
all chromosomes (Additional file 3: Figure S18A) and
correspond to 300 unique pyknon motifs. The probes of
the array were designed to investigate transcription from
the forward and the reverse strands of the genome at
these 1292 locations. Specifically, we centered a 100 nt
window at each pyknon instance and designed a 40 nt
probe within the window that overlapped with the corre-
sponding pyknon (Additional file 3: Figure S18B). At
each location, probes were designed separately for each
strand. In 230 instances, the candidate probe sequences
did not pass quality control leaving us with a grand total
of 2354 array probes. For comparison purposes, probes
for human miRNAs were added to the microarray. A
standardized list of all known human pyknons together with
a complete list of their coordinates across the span of the
human genome can be found at http://cm.jefferson.edu/
pyknons.html.

Unique and non-unique probes reveal tissue-specific
expression profiles and disease-specific profiles that
correlate with patients’ OS
We collected 15 normal samples from different individ-
uals that spanned nine different tissues (four colon, two
breast, one lung, one heart, one skeletal muscle, one tes-
ticle, one liver, two mononuclear cells, and two B-
lymphocytes). We used our microarray to examine
potential expression from the genomic regions interro-
gated by the probes. By analyzing normal samples, we
found several pyknon profiles that clustered according
to the tissue of origin, which in turn suggests the exist-
ence of tissue-specific pyknon signatures (Fig. 6a and b).
In fact, the pyknon probes exhibited higher tissue speci-
ficity in normal tissues compared to miRNAs as gauged
by the Spearman correlation (Additional file 3: Figure
S19). Furthermore, pyknon transcript signatures distin-
guished healthy colon from CRC samples and CLL from
healthy B-cell samples (Additional file 3: Figure S20).
Using an independent approach (qRT-PCR), we con-
firmed the data obtained from the array for selected
pyknon-regions comparing leukemia samples with nor-
mal B cell counterparts (pyk-reg-14 in Additional file 3:
Figure S21A) and normal colon samples with colon can-
cer samples (pyk-reg-10 and pyk-reg-40 in Additional
file 3: Figure S21B and C).
We also used the array to examine the expression of

pyknon-containing transcripts in diseased samples. We
identified that pyknon expression differentiates CRC tis-
sues from the most frequent leukemia in the Western
world, the chronic lymphocytic leukemia (CLL) [48]
(Fig. 6c and d). We also showed that pyknon signatures
could distinguish CLL samples with good versus poor
prognosis as characterized by the levels of the tyrosine
kinase ZAP-70, one of the most widely used prognostic
marker in CLL and also by 17p deletion (Fig. 6e).
Since we determined that N-BLR expression was sig-

nificantly associated with the OS in CRC patients, we
further explored if the full set of pyknon transcripts we
identified using this custom array was also associated
with OS. To this end, we collected a fourth set of 165
CRC patients (Additional file 11: Table S8) for which
clinical data were available as well as enough RNA ma-
terial for the array hybridization. By performing COX
analysis, we identified a set of six pyknon-transcript
probes of unambiguous genomic origin (unique probes),
associated at a p < 0.01 with patients’ survival (Fig. 6f ).
We further identified that pyknon-containing transcripts
probed by unique probes exhibit higher expression levels
than the miRNAs in these samples (Fig. 6 g).

http://cm.jefferson.edu/pyknons.html
http://cm.jefferson.edu/pyknons.html


Fig. 6 Pyknon expression across tissues and tissue states. a–e Pyknon clusters showing tissue and disease specificity among normal (a, b) or
diseased (c–e) tissue samples. a, c Heatmaps of standardized pyknon expression profiles. Dendrograms were constructed with Hierarchical
Clustering using Pearson correlation as a metric. b, d Principal component analysis (PCA) of the normal (b) or the diseased (d) samples. The X-axis
corresponds to the first principal component (PC1) and the Y-axis to the second principal component (PC2). The numbers next to the PC labels
represent the amount of information from the original dataset that is projected on each one. e Partial Least Squares-Discriminant Analysis
showing the perfect separation of the samples with normal (CLL-NFZ) or aberrant (CLL-AFZ) FISH profile of chromosome arm 17p and ZAP-70
levels. CRC-MSS colorectal cancer sample without microsatellite instability, CRC-MSI colorectal cancer sample with microsatellite instability, Lympho
B-lymphocytes, NBreast normal breast tissue, NColon normal colon tissue, NHeart normal heart tissue, NLiver normal liver tissue, NLung normal lung
tissue, NSMuscle normal skeletal muscle tissue, NTesticle normal testicle, PBMC mononuclear cells. f The COX OS analyses of the pyknon expression
using the genome-wide array identified a set of six transcribed pyknons that are associated at a p < 0.01 with OS in CRC. All these six probes were
chosen for the analyses because they correspond to an unambiguous genomic location. The blue bars correspond to a negative HR, meaning an
association with good prognosis, while the red bar correspond to a positive HR, meaning an association with poor prognosis. g Expression of
probed pyknons in comparison with human miRNAs. Pyknon transcription levels are higher than those of miRNAs—probability density values of
normalized intensities for the miRNA and pyknon probes across all 165 CRC arrays used for the data from Fig. 6f
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Furthermore, the expression of a set of 122 pyknon tran-
script probes was an independent prognostic factor for
OS when analyzed by the COX model (Additional file
12: Table S9). These data demonstrate that the expres-
sion of transcripts containing the organism-specific
pyknon motifs are not only tissue-specific but also
disease-specific and support their potential use as novel
biomarkers for the identification of tissue-specific and
cancer-specific pathogenic mechanisms.

Discussion
In this work, we presented our findings on N-BLR, a
pyknon-containing primate-specific lncRNA and a novel
modulator of the EMT process and apoptotic pathway
in CRC. N-BLR localizes to the cytoplasm where it dir-
ectly interacts with miR-141-3p and miR-200c-3p, two
members of the highly conserved miR-200 family known
to inhibit EMT [44]. We particularly observed that an
increase in the levels of N-BLR was associated with de-
creased levels of miR-141-3p and miR-200c-3p and ac-
cordingly increased levels of ZEB1, whereas a decrease
of N-BLR levels was associated with opposite effects on
miR-141-3p, miR-200c-3p, and ZEB1 expression. In
addition, the increase in the levels of ZEB1 induced by
N-BLR upregulation was associated with acquisition of
EMT phenotype (downregulation of E-cadherin and up-
regulation of vimentin), whereas the decrease of ZEB1
levels induced by N-BLR knockdown had opposite ef-
fects. These results made us conclude that these three
non-coding transcripts (N-BLR, miR-141-3p, and miR-
200c-3p) and three coding genes (E-cadherin, vimentin,
and ZEB1) comprise a new component of signaling in-
teractions in the EMT pathway. N-BLR also plays an im-
portant role in vivo: indeed, we found that the
overexpression of WT N-BLR endowed colon cancer
cells with increased ability to metastasize and invade
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liver compared with the overexpression of N-BLR
harboring a pyk90 deletion (pyk90-DEL N-BLR). Our re-
sults are in concordance with the recent finding that
miR-200c-3p plays an important role in controlling
EMT and the metastatic process of colon cancer cells to
the liver [49].
A key element to the discovered interactions is the

20 nt pyknon motif that is contained near the 3′ end of
N-BLR. This human-specific motif partially overlaps
with the binding of the EMT-regulating miR-200c-3p
and our deletion studies proved that these interactions
are functionally important. Indeed, we showed that tar-
geted deletion of the motif affected colony formation, in-
vasion, and migration, whereas the minimal deletion of
the part of pyknon region that is not included in the
miRNA binding site (the direct interaction is not abol-
ished in this case) had no functional effects. It is import-
ant to stress that many more interactions are likely to
occur between N-BLR and miRNAs and influence the
malignant phenotype and these have to be further ex-
plored in a systematic way.
We also found that N-BLR acts as an inhibitor of

apoptosis. We particularly showed that increased levels
of N-BLR were associated with a decrease in miR-200c-
3p and increase in XIAP expression levels. It was re-
ported that miR-200c-3p could target XIAP, thereby
leading to decreased levels of XIAP and cell viability
[46]; tumor cells were more resistant to the apoptosis in-
duced by 5-FU, when they express higher levels of XIAP
[47]. Unsurprisingly, we found that ectopic expression of
miR-200c-3p induced increased susceptibility to 5-FU-
induced apoptosis. Conversely, N-BLR-mediated de-
crease of levels of miR-200c-3p was associated with in-
creased levels of XIAP and resistance to 5-FU-induced
apoptosis. On the other hand, the decreased levels of N-
BLR were associated with a concomitant increase in
miR-200c-3p levels, downregulation of the inhibitor of
apoptosis XIAP and a subsequent upregulation of cas-
pase activity (Caspases 3/7, 8, and 9) and levels of
cleaved PARP-1, resulting in increased levels of apop-
tosis. Based on all these findings, we would expect an as-
sociated increased resistance to apoptosis in those CRC
settings where N-BLR is upregulated. This might ex-
plain, at least in part, the association between increased
N-BLR levels and poor prognosis that we observed in
two independent cohorts from two different patient pop-
ulations (Ferrara, Italy and Dallas, Texas).
In summary, our findings suggest a model whereby N-

BLR may mediate the switch from an epithelial to a mes-
enchymal cell phenotype by sequestering miR-141-3p
and miR-200c-3p. This would result in the upregulation
of ZEB1, which in turn directly suppresses E-cadherin.
Thus, in this context, an increase in the expression levels
of N-BLR, such as we observed in the cell lines and the
CRC samples, can induce a concomitant interaction
between N-BLR and available copies of the endogenous
miR-141-3p/miR-200c-3p pool resulting in a reduced
targeting of ZEB1. In turn, the increase of ZEB1 expres-
sion levels can induce a consequent decrease of E-
cadherin levels and the transition toward a mesenchymal
phenotype resulting in an increase in migratory and
invasive potential. Moreover, the reduction of free miR-
200c-3p can increase the levels of its target XIAP, result-
ing in an increased ability to resist apoptotic stimuli,
including those related to the current chemotherapy
drugs for CRC patients (such as 5-FU).
Analogous interactions for a different lncRNA

(lncRNA-ATB) were recently reported in a different dis-
ease context [50]. LncRNA-ATB was shown to promote
invasion and metastasis in hepatocellular carcinoma
through interactions with members of the miR-200 fam-
ily and with ZEB1/ZEB2. Inspection of the genomic se-
quence of lncRNA-ATB reveals that it is a composite of
three LINE-1 retrotransposon fragments and one full-
length SINE retrotransposon. The latter has numerous
other instances in the human genome. This raises the
possibility that N-BLR may be one of several lncRNAs
that could be involved in very complex interactions such
as those that we described in [29, 30, 32, 51] and more
recently in [31].
Furthermore, our work expands the potential number

of primate-specific transcripts from the few already iden-
tified to date (for an interesting example, see ref [52]) to
potentially tens of thousands, as most of the pyknon
DNA regions that we examined show evidence of tran-
scription. We already generated several lines of evidence
that additional genomic instances for pyk90 outside the
chromosome 3 location of N-BLR are actively tran-
scribed (Ling H and Calin GA, data not shown). There-
fore, the pyknon-containing-transcripts, even if each is
expressed at lower levels than coding genes, due to their
much larger number could represent an efficient system
that uses sequence-complementarity to buffer highly
expressed miRNAs and potentially exogenous sequences
such as viral transcripts or to achieve regulatory control
as part of normal post-transcriptional regulation [51]. It
is also worth mentioning that the N-BLR transcript is
primate-specific and thus not conserved in rodents. As
such, N-BLR’s activity cannot be captured by mouse
models of colon cancer. This represents another intri-
guing dimension of the intricacies of human disease and
highlights the importance of discovering N-BLR’s regula-
tory control of the EMT and apoptosis. In this regard,
N-BLR and other similar molecules would be different
from miRNAs [10], transcribed UCRs [53], or lincRNAs
[54]. In fact, organism-specific transcripts can be
thought of as representing a paradigm shift supported
by the increasing realization that human cancers differ
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from animal models involving the same gene and the
specific human mutation [55]. These properties of
primate-specific transcripts make N-BLR and similar
molecules promising as novel prognostic indicators. Our
data also have potential implications for the cell-to-cell
communication and the development of new lncRNA-
based therapeutics [56].

Conclusions
Our work discussed the discovery and study of N-BLR, a
primate-specific lncRNA. Our analyses indicate that N-
BLR is a novel molecular player in the mechanisms
underlying the metastatic potential in CRC. This, to-
gether with our pyknon microarray findings, suggests
that N-BLR and likely other transcripts among those
that were profiled by the microarray could prove import-
ant to our understanding of key molecular processes and
might potentially find uses as novel biomarkers or novel
therapeutics in human cancers and other diseases.

Methods
Patient samples
This study made use of four cohorts of patients. The
first cohort, including 127 colon samples and 28 adja-
cent normal mucosa collected between 2003 and 2008,
was obtained from the Department of Experimental and
Diagnostic Medicine, University of Ferrara, Ferrara, Italy
(Dr. Giovanni Lanza and Dr. Roberta Gafà) (Additional
file 4: Table S3). For 114 samples, complete follow-up in-
formation was available and was used for the survival
analyses. The second cohort of 170 colorectal cancer
samples was obtained from the Center for Gastrointes-
tinal Research and Center for Epigenetics, Baylor Re-
search Institute and Charles A. Sammons Cancer
Center, Dallas, Texas, USA (Additional file 7: Table S5).
The third cohort of 21 metastatic colon cancer samples
was obtained from an independent source (Dr. Jen-Jen
Yeh, University of North Carolina, USA) (Additional file
10: Table S7). The fourth cohort of patients included
165 patients with primary CRC adenocarcinoma that
underwent surgical resection of primary tumor at the
University of Texas MD Anderson Cancer Center
(UTMDACC) during July 2001 to July 2009 (Additional
file 11: Table S8). There were 85 male and 80 female pa-
tients with a median age of 53 years (range = 29–94
years). Most of them were stage II–III (153 patients) and
12 were stage IV CRC; none of them had received neo-
adjuvant treatment. Among the stage II-III patients, 95
received adjuvant chemotherapy of 5-FU based regimen
plus oxaliplatin or irinotecan with a median of eight cy-
cles (range = 1–12 cycles). Median follow-up time was
8.6 years. All these tissue samples were obtained from
fresh surgical specimens, snap-frozen in liquid nitrogen,
and stored at –80 °C. All samples were obtained after
histology confirmation. Nineteen peripheral blood sam-
ples (15 CLL and four normal) were also used in this
study.

RNA extraction and qRT-PCR
Total RNA from both tissues and cell lines was isolated
by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
and DNase-digested (Ambion), according to manufac-
turers’ instructions. RNA from nuclear and cytoplasmic
compartment was isolated using Ambion’s Protein and
RNA Isolation System, PARIS™ Kit (ThermoFisher Scien-
tific). Total complementary DNA (cDNAs) was reverse
transcribed using SuperScript III cDNA kit (Invitrogen)
with random hexamers, according to the manufacturer’s
protocol. qRT-PCR analysis was carried out with iQ
SYBR Green Supermix (Bio-Rad) and gene-specific
primers (Additional file 2: Table S2). For the quantifica-
tion of XIAP mRNA, TaqMan Gene Expression Assay
probe (ThermoFisher Scientific) was used. For the quan-
tification of N-BLR, either specific primers from Add-
itional file 2: Table S2 or customized TaqMan Gene
Expression Assay probe were used. For the quantifica-
tion of ZEB1 and GAPDH mRNA, either specific
primers from Additional file 2: Table S2 or TaqMan
Gene Expression Assay probes were used. For pyknon-
containing regions, we centered a 100-nt region at each
pyknon and used the Primer3 program to design 20-nt
primers for each window manually. We carried out qRT-
PCR and then products were loaded on 3% agarose gels.
Only primers that showed a single clear band and good
melting curve were selected and products were con-
firmed by sequencing. U6 snRNA was employed as en-
dogenous control. For miRNA analysis, 10 ng of RNA
were used for cDNA synthesis with specific stem-loop
RT primers for miR-200c-3p, miR-141-3p, and U6
snRNA by TaqMan MicroRNA Reverse Transcription
Kit (ThermoFisher Scientific) according to the manufac-
turer’s protocol. Real-time PCR was performed as above,
using TaqMan microRNA assays (#002300, #000463, and
#001973, ThermoFisher Scientific). The 2–ΔCt method
was used to calculate the relative amount of each tran-
script compared with expression of endogenous control
(U6 and GAPDH). If expression values for the RNA of
interest were not obtained after 35 cycles of amplifica-
tion in two successive experiments in duplicate wells,
then the specific values were considered not available.

Cloning pyknon-containing regions
We used the GeneRacer kit (Invitrogen) to carry out the
rapid amplification of cDNA ends (RACE) method for
N-BLR. The kit was used in accordance with the manu-
facturers’ protocols. We obtained cDNA from DNase-
treated total RNA from HCT116 cell (2 μg). The 5′- and
3′-RACE products were cloned into pCR4-TOPO
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(Invitrogen) and transformed into E. coli TOP10 cells.
Cloned RACE products were fully sequenced in both
directions.

In vitro translation assay
To test the translation potential of investigated
lncRNAs, we performed in vitro translation assay using
TnT® T7 Quick Starter Bundle Chemiluminescent (Cat
No. L1210, from Promega, Madison, WI, USA) accord-
ing to the manufacturer’s instructions. Briefly, reaction
components including TNT® T7 Quick Master Mix,
Methionine, plasmid DNA template (pcDNA3.1 empty
vector or luciferase T7 positive control vector or
pcDNA-pyk90 vector) and Transcend™ Biotin-Lysyl-
tRNA were incubated at 30 °C for 90 min. Once the
50 μL translation reaction is complete, 1 μL aliquot was
added into 15 μL of SDS sample buffer, heated at 90–
100 °C for 2 min, loaded on an SDS-polyacrylamide gel,
and transferred to a nitrocellulose membrane using a
semi-dry system. The Transcend™ Non-Radioactive
Translation Detection Systems (Cat No. L50811, from
Promega, Madison, WI, USA) was used for the detection
of proteins synthesized in vitro according to the manu-
facturer’s instructions. Additionally, the luciferase activ-
ity in the positive control was verified with a luciferase
assay measured with a microplate luminometer.

SiRNA studies
We designed siRNAs against N-BLR using the Dharmacon
algorithm (Dharmacon siDESIGN http://www.dharmacon.
com/sidesign/). Each of four highest-ranking siRNA se-
quences for N-BLR was tested in our experiments.
These siRNAs were re-suspended in 1X siRNA buffer
(Dharmacon, LaFayette CO, USA) to a stock concen-
tration of 50 μM. The performance was assessed at
24 h intervals post-transfection by qRT-PCR. The
cells were transfected with the corresponding siRNA
pool at the final concentrations indicated in the main
text by using Lipofectamine 2000 (Invitrogen) accord-
ing to the manufacturer’s protocol for further analysis.
As control, we used a pool of non-targeting siRNAs
(Dharmacon).

Cell count and viability
Colo320, SW620, and SW480 cells were cultured in
RPMI 1640 1X with L-Glutamine medium (#10-040-CV,
Corning Cellgro), whereas HCT116, RKO, and HT-29
cells were cultured in McCoy’s 5A 1X with L-Glutamine
medium (#10-050-CV, Corning Cellgro), supplemented
with 10% fetal bovine serum and 1% penicillin and
streptomycin. CRC cell lines were plated in 24-well
plates at a concentration of 1 × 105 cells/well in an
antibiotic-free medium one day before transfection.
After transfection, cells were collected using trypsin-
ethylenediaminetetraacetic acid (EDTA) (Mediatech) and
the cell count and viability were determined by using the
Vi-cell Viability Analyzer 1.01 (Beckman Coulter, Fuller-
ton, CA, USA) at 0, 24, 48, 96, and 120 h following
siRNA transfection. The cell viability for the apoptosis
induced by 5-FU was measured with CellTiter 96®
AQueous One Solution Cell Proliferation Assay (MTS)
(Promega).
Apoptotic assays
Cells were plated in six-well plates at a concentration
of 5 × 105 cells/well in an antibiotic-free medium one
day before transfection. We harvested cells at 48, 96,
and 120 h following transfection, using trypsin-EDTA
(Mediatech) and dissolved in NP40 lysis buffer (0.5%
NP40, 250 mM NaCl, 50 mM Hepes, 5 mM EDTA,
0.5 mM egtazic acid) freshly supplemented with a
complete protease inhibitor and phosphatase inhibitor
cocktails 1 and 2 (Roche). Proteins were purified and
the levels of PARP protein quantified with the rabbit
polyclonal anti-PARP1 antibody (Cell Signaling Tech-
nology) using standard procedures for Western blot-
ting. Normalization was performed with mouse
monoclonal anti-ACTB antibody (Cell Signaling Tech-
nology). For further confirmation of apoptosis,
Colo320, SW620, SW480, RKO, and HCT116 cell
lines were analyzed using the Caspase-3/7, 8, and 9
assays according to the manufacturer’s protocol (Pro-
mega, Madison, WI, USA). To dissect the detailed
pathway of apoptosis, we used antibodies specific to
XIAP (Cell Signaling Technology) and c-IAP1 (Cell
Signaling Technology).
N-BLR shRNA and overexpressing stable clone
establishment
We transfected vectors containing pSuper.retro.puro
shRNA (OligoEngine, Seattle, WA, USA) specifically
designed against the gene in HCT116 cells by Lipo-
fectamine 2000 (Invitrogen), according to manufac-
turer’s guidelines. Clone selection was performed with
G418 (2 mg/mL), and the expression level of N-BLR
was tested by qRT-PCR. For construction of lentiviral
vector expressing N-BLR gene, human N-BLR was
PCR-amplified by Pfu Ultra II Fusion HS DNA
Polymerase (Stratagene, Agilent Technologies) from
commercial Human Genomic DNA and subcloned
into the XbaI and NotI sites of pCDH-CMV-MCS-
EF1-puro lentiviral vector. The pyk90-DEL N-BLR
variant was produced by using Quick Change II XL
Site-Directed Mutagenesis kit (Stratagene, Agilent
Technologies). Following infection, the cells were
selected with puromycin (2 μg/mL).

http://www.dharmacon.com/sidesign/
http://www.dharmacon.com/sidesign/
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Vector construction and transient N-BLR/miRNA co-
transfection
The WT and pyk90-DEL N-BLR sequences were PCR-
amplified by Platinum® Taq DNA Polymerase High
Fidelity (Invitrogen, Life Technologies) from the pCDH-
CMV-MCS-EF1-Puro vectors used for the establishment
of stable N-BLR overexpressing HCT116 clones and
subcloned into the HindIII and XhoI sites of the
pcDNA3.1 vector (Invitrogen). The pcDNA3.1-WT N-
BLR and pcDNA3.1-pyk90-DEL N-BLR constructs
carrying the single deletion for either miR-200c-3p or
miR-141-3p binding sites, the double deletion for both
miRs’ binding sites and the deletion between the miR-
200c-3p and miR-141-3p binding sites synthesized by
using Quik-Change II XL Site-Directed Mutagenesis kit
(Stratagene, Agilent Technologies) and named WT N-
BLR-del-miR200c, WT N-BLR-del-miR141, WT N-BLR
double del, pyk90-DEL N-BLR-del-miR200c, pyk90-DEL
N-BLR-del-miR141, pyk90-DEL N-BLR double del, and
pyk90-DEL2 N-BLR. Transfections were performed
using the Lipofectamine 2000 kit (Invitrogen) according
to the manufacturer’s instructions. The mirVana miRNA
Mimics hsa-miR-200c-3p, hsa-miR-141-3p (MC11714,
MC10860, Life Technologies), and mirVana miRNA
Mimic Negative Control #1 were used for transfection at
a final concentration of 50 nM. The cells were harvested
and RNA was extracted for qRT-PCR analysis after 48 h
following transfection.

Luciferase reporter assay
Luciferase reporter assay to confirm miRNA interactions
were executed as we previously described [57].

Cell cycle analyses
Cells were synchronized by serum starvation (0.1% FBS)
for 48 h at 37 °C and then transfected with either siRNA
scramble control or N-BLR siRNA1 + 3 at the concen-
tration 100 nM. Cell cycle was analyzed 48 and 96 h
after transfection by cytometry (BCI Gallios Analyzer,
Beckman Coulter).

Migration assays
Cell migration assays were performed according to
modified protocol described previously [58]. Stable N-
BLR shRNA expressing clones #3-1 and #4-7, stable N-
BLR variants (WT and pyk90 DEL)-overexpressing
clones, and the empty vector clone were re-suspended in
serum free media (65,000 cells/insert) and seeded onto a
0.1% gelatin-coated inserts. After 24 h, cells that mi-
grated to the bottom of the wells were fixed and stained
with HEMA 3™ (Fisher Scientific, MA, USA) and
counted by microscope. For each well, ten random fields
were counted and the average number of cells was deter-
mined. The experiments were performed in triplicate.
For transient transfection, RKO and HCT116 cells were
harvested after 48 h following transfection with vectors
containing either WT N-BLR, pyk90 DEL N-BLR,
pyk90-DEL2 N-BLR, or empty control vector and seeded
onto 0.1% gelatin-coated inserts for assessing migration
as described above. Migration results were normalized
by the total number of cells to minimize the effect of
proliferation/viability.

Invasion assays
Invasion assays were performed by using transwells with
8.0 μm porous membrane coated with an invasion
matrix containing Type IV Collagen (#C6745-1ML,
Sigma Aldrich), Human Laminin (# l6274), and Gelatin
diluted in 1X PBS. HCT116 cells were transfected with
siRNAs against N-BLR (N-BLR siRNAs1 + 3 pool) and
control siRNAs at a final concentration of 100 nM for
48 h and then 300,000 cells were plated on the top of
the transwell. The same number of cells was also plated
in a separate culture well for normalization purposes
(total cells). Each experiment was performed in tripli-
cate. The same experiments were performed also with
HCT116 stable shRNA N-BLR expressing clones #3-1
and #4-7, stable WT and pyk90 DEL N-BLR variants
overexpressing clones, and the empty vector clone. The
invasion assay was stopped after 36 h and cells were
fixed and stained with HEMA 3. For each well, ten ran-
dom fields were counted and the average number of
cells was determined. For transient transfection of RKO
and HCT116 cells, we followed the same protocol as for
the migration assay. The invasion results were normal-
ized by the total number of cells to minimize the effect
of proliferation/viability.

Colony formation assay
Colony formation assay was performed in HCT116 clones
transiently overexpressing either WT N-BLR or pyk90-
DEL N-BLR and compared to empty vector containing
cells. Five hundred cells were seeded into a 60 mm dish
and cultured for two weeks. Afterwards, cells were fixed
by 100% methanol and stained with 0.2% crystal violet.
Pictures were captured by GE imager (GE Healthcare Life
Sciences) and colony number was counted.

Colony formation in semi-solid agar
Six-well plates were pre-coated with 0.5% bottom agar
layer with culture media. Then, cells were trypsinized,
re-suspended in 0.4% upper agar layer, and seeded into
the pre-coated six-well plate at the density of 500 cells
per well, in triplicate. Each well was further overlaid with
0.3% agar on top. Colonies were checked after two
weeks. Pictures were captured by GE imager (GE
Healthcare Life Sciences) and colony number was
counted.
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Immunofluorescence assays for E-cadherin and vimentin
About 0.8 × 105 cells from clones #3-1 and #4-7 and
empty vector clone were seeded on a 96-well plate. The
experiments were done as previously described [59]. The
cells were then incubated with anti-vimentin (V9,
Novus) and anti-E-cadherin (BD Transduction) over-
night, washed three times with PBST for 5 min, and fi-
nally incubated with secondary antibodies (Invitrogen)
and DAPI. All matched samples were photographed
(clones and empty cells) using a immunofluorescence
microscope and identical exposure times. Each experi-
ment was performed in triplicate.
ISH for N-BLR
The frozen tissue sections were first digested with 5 μg/
mL proteinase K for 5 min at room temperature and
then loaded onto a Ventana Discovery Ultra system
(Ventana Medical Systems, Inc, Tucson, AZ, USA) for
ISH or immunohistochemistry analysis. The tissue slides
were incubated with double-DIG labeled custom LNA
probe for N-BLR (Exiqon) for 2 h at 55 °C. The miR-
200c-3p and miR-141-3p LNA probes were purchased
from Exiqon. The digoxigenins were detected with a
polyclonal anti-DIG antibody and Alkaline Phosphatase
conjugated second antibody (Ventana) using NBT-BCIP
as the substrate. The double-DIG labeled control U6
snRNA probe is also from Exiqon. CK19 was detected
using mouse anti-CK 19 antibody (1:200, Biogenex) and
HRP conjugated anti-mouse antibody using DAB as the
substrate (Ventana).
Western blots
The western blot analysis was performed as previously
described [60]. In brief, cells were lysed with Cell Lysis
Buffer (Cell Signaling) containing Protease Inhibitor
Cocktail (Sigma). Total proteins were separated by a 4–
20% Criterion TGX Precast Gel (Bio-rad) and then
transferred onto Trans-Blot® Turbo™ Midi Nitrocellulose
Transfer Packs (Bio-rad). The membrane was incubated
with primary followed by secondary antibodies after
blocking with 5% non-fat milk (Bio-rad). Immunochemi-
cal detection was performed using either the Thermo
Scientific™ SuperSignal™ West Femto Chemiluminescent
Substrate (Thermo Scientific) or Amersham™ ECL™
Western Blotting Detection Reagent (GE Healthcare Life
Science). The following antibodies were used at the dilu-
tion recommended by the manufacturer: β-actin (Sigma
Aldrich, AC-15), GAPDH (Santa Cruz, sc-51905), XIAP
(Cell Signaling, #2042), PARP (Cell Signaling, #9542),
Survivin (Cell Signaling, 6E4), c-IAP (Cell Signaling,
#4952), ZEB1 (Santa Cruz, sc-10572), and vinculin (Cell
Signaling, E1E9V).
Image analysis
To quantify the levels of N-BLR, miR-141-3p, and miR-
200c-3p in the ISH of tissue microarray, images of each
tissue core were automatically captured using a Perkin
Elmer Caliper Vectra 2 microscope and then analyzed
using inForm 2.0 image analysis software (Perkin Elmer,
Inc., Waltham, MA, USA) [61, 62]. In particular, the
quantification of N-BLR, miR-141-3p, and miR-200c-3p
expression was automatically calculated as mean inten-
sity measured within the tumor tissue (adenocarcinoma
and metastatic), normal tissue, benign/polyp tissue, and
colitis tissue. Non-epithelial tissue (e.g. stromal tissue)
was excluded from the analysis. We excluded individual
TMA cores, when they did not have enough tissue (epi-
thelial versus non-epithelial tissue) for inForm 2.0 image
analysis. Both image acquisition and analysis were per-
formed at the North Campus Flow Cytometry and Cellu-
lar Imaging Core Facility at the UTMDACC (Co-
director: Jared K. Burks, Department of Leukemia).
Animal models and tissue processing experiments
Female athymic nude mice were purchased from the
NCI, Frederick Cancer Research and Development
Center (Frederick, MD, USA). These animals were cared
for according to guidelines by the American Association
for Accreditation of Laboratory Animal Care and the
U.S. Laboratory Animals. All mouse studies were ap-
proved and supervised by the UTMDACC Institutional
Animal Care and Use Committee. All animals used were
aged six to eight weeks at the time of injection. For all
the animal experiments, cells were trypsinized, washed,
and re-suspended in Hanks’ balanced salt solution
(HBSS; Gibco) before injection. For the intrasplenic can-
cer model, 1 × 106 HTC116 cells per mouse in 50 uL
HBSS were injected intrasplenic (experimental liver me-
tastases model). The mice were anesthetized under iso-
fluorane for splenic isolation and cell line injection (day
1), as well as the following day after injection (day 2) to
perform splenectomy [50]. Liver metastases continued
until mice in any group became moribund (approxi-
mately four to six weeks). Weekly imaging was per-
formed using the Xenogen IVIS spectrum system within
12 min following injection of D-Luciferin (150 mg/mL).
Living image 4.1 software was used to determine the re-
gions of interest (ROI) and average photon radiance (p/
s/cm2/sr) was measured for each mouse. For all the ex-
periments, once mice became moribund in any group,
they were all sacrificed, necropsied, and livers were har-
vested. The number of liver metastases and location of
tumor nodules were recorded. Tumor tissue was either
fixed in formalin for paraffin embedding, frozen in opti-
mal cutting temperature (OCT) media to prepare frozen
slides, or snap-frozen for lysate preparation.
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Protein-coding gene expression by 44 K Agilent array and
data analyses
Agilent 44 K two color arrays of the N-BLR siRNA
transfected clones (#3-1 and #4-7) were performed in
duplicate, along with RNA from empty vector trans-
fected clone in each array. The analysis was performed
in R using the functions of the LIMMA library. Probe
intensities were background corrected, log2 transformed,
log-normalized within arrays, and quantile-normalized
between arrays. Finally, replicate spots were averaged. A
linear model was fitted to each gene and empirical Bayes
methods were used to obtain the statistics. Genes were
considered statistically significant if their p value was
less than 0.001. This stringent significance threshold was
used to limit the number of false-positive findings.

Array design and experiments
The MDACC Expression Bioarrays are transcriptional
profiling products designed to monitor the expression of
miRNAs and other ncRNAs. The arrays utilize nucleic
acid hybridization of a 52 nt biotin-labeled cDNA target
with DNA oligonucleotide probes attached to a gel
matrix. The biotin-labeled cDNA targets are prepared by
a simple reverse transcription into first strand cDNA.
Total RNA is primed for reverse transcription by a ran-
dom octamer conjugated with two biotins and a 52 nt
long poly-A tail. This procedure results in an equal copy
number of biotin cDNA targets to the ncRNA templates.
The chip MDACCv5 array version (Array Express Ac-
cession Number A-MEXP-1738) includes 2354 probes
for pyknon sequences (each in duplicate).

Pyknon array data analysis
The MDACCv5 arrays were processed according to a pre-
viously optimized processing pipeline for Agilent miRNA
arrays [50]. Raw image files were imported into Matlab
and not-annotated probes were removed. The median
foreground signal from each array was normalized using
robust multichip averaging (RMA). Background correc-
tion was done with the Limma package in R. Duplicate
probes were averaged and the data were standardized
before multivariate statistical analysis. Hierarchical clus-
tering, PCA, Partial Least Squares-Discriminant Analysis,
and correlation computations were carried out in R.

Statistical analysis
The relationship between non-dichotomized expression
of pyknon-containing regions and cancer (cancer versus
normal) was assessed using the independent sample t-
test. We also used the Mann–Whitney U-test to com-
pare values between groups of samples. For multiple
analyses, a multivariate logistic regression model was
used to assess the effect of pyknon-containing region ex-
pression on CRC stage and metastasis. We identified
pyknon-containing regions whose dichotomized expres-
sion was significantly related to the cancer stage and me-
tastasis. We defined correlation and significance levels
for pyknon-containing region expressions and clinical
factors based on a univariate Cox proportional hazard
regression model. For multivariate analysis, a full Cox
proportional hazards model was initially fitted that in-
cluded variables with a p value < 0.25 (first CRC cohort),
or all of covariates (second CRC cohort) in the univariate
analysis. Statistical analysis was performed using the SPSS
software (SPSS for Windows Version 16.0, SPSS Inc.,
Chicago, IL, USA). All tests were two-sided and an effect
was considered to be statistically significant at p < 0.05.
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