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Abstract: Soft tissue sarcomas (STS) constitute a rare tumour entity comprising over 50 histological
subtypes. MicroRNAs (miRNAs) are short non-protein coding RNA molecules that regulate gene
expression by targeting the 3’-untranslated region of messenger RNAs. They are involved in a variety
of human diseases, including malignancies, such as endometrial cancer, osteosarcoma, bronchial
carcinoma and breast cancer. In STS, various miRNAs are differentially expressed, thus contributing
to development, progression and invasion. Therefore, the aim of the present review is to summarise
current knowledge on the role of miRNAs in STS. Furthermore, the potential role of miRNAs as
diagnostic, prognostic and predictive biomarkers is discussed.
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1. Introduction

Soft tissue sarcoma (STS) is a rare tumour entity, with an estimated incidence of 4–5 per 100,000 per
year [1]. STS may occur anywhere in the human body, from the extremities and trunk to the viscera
and the retroperitoneum. The diagnosis is aggravated by atypical symptoms of variable duration.
Consequently, unplanned excisions of STS, deemed benign, are not uncommon and may occur in
up to 40% of patients [2]. Over 50 different subtypes of STS can be distinguished, with the most
common types being liposarcoma, leiomyosarcoma and undifferentiated pleomorphic sarcoma [3].
Treatment of STS is complex and consists of wide en-bloc resection, combined with chemotherapy
(CTX) and radiotherapy (RTX) in select cases [4]. In contrast to other malignancies, and especially
those of epithelial origin, many STS subtypes show poor responses to CTX, which could be related
to the fact that different biological processes drive tumour growth and metastasis in mesenchymal
neoplasms [5]. Different clinico-pathological factors as well as laboratory biomarkers have been
proposed as potential prognostic factors, but due to the heterogeneity of underlying biology, many of
them lack generalizability and reliability [6].

MicroRNAs (miRNAs) are small non-protein coding RNA molecules, with a length of
21–25 nucleotides, that exert regulatory functions on gene expression. By binding—in the context of
the RNA-induced silencing complex (RISC)—to the 3′-untranslated region (3′UTR) of target mRNA,
miRNAs cause degradation of the respective mRNA and/or translation inhibition [7]. Their genes are
both located in intergenic and intronic regions [8]. Via complex nuclear and cytoplasmic mechanisms,
primary miRNAs (pri-miRNAs) are modified into precursor miRNAs (pre-miRNAs) [9]. Finally,
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the cytoplasmic RNAse-III enzyme, Dicer, produces mature miRNAs out of the hairpin-shaped
pre-miRNAs [10].

Dysregulation of specific miRNAs has been reported in many human malignancies [11,12],
including, for example, endometrial cancer [13], acute myeloid leukaemia [14], breast cancer [15,16],
diffuse large B-cell lymphoma [17], colorectal cancer [18–20], bronchial carcinoma [21], testicular
cancer [22], and osteosarcoma [23]. miRNAs can be involved in the pathogenesis, maintenance
or progression of malignancies. They can serve as tumour suppressors—and are consequently
downregulated in the respective malignancy—or exert oncogenic functions as overexpressed
miRNAs [11]. The dysfunction of miRNAs in human cancer is caused by similar events to proteins: a
deficiency in the processing pathway [24], epigenetic modifications [25] or miRNA gene mutations [26]
all alter miRNA expression.

In clinical oncology, miRNAs can have diagnostic, prognostic and predictive significance and
may even be used as therapeutic targets [27].

In the present review, the role of miRNAs in different STS subtypes will be highlighted (Figure 1,
Table 1). Moreover, their evolving role in clinical practice will be discussed. As different histologic
subtypes of STS considerably differ in their clinical behaviours and underlying pathobiologies, the
management of STS is evolving towards a histotype-specific approach. Our review follows this model
by discussing miRNAs within histologic STS subentities. The choice of literature discussed was based
on original works describing correlations between miRNAs and distinct STS subtypes.
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Figure 1. miRNA expression in different soft tissue sarcoma (STS) subtypes.
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Table 1. Expression pattern of miRNAs in different STS-subtypes and their target mRNAs.

microRNA Histological Subtype Expression Target

let-7b Well-/dedifferentiated liposarcoma Underexpression

let-7g Well-/dedifferentiated liposarcoma Underexpression

miR-1 Rhabdomyosarcoma Underexpression CCND2, PAX3

miR-143 Well-/dedifferentiated liposarcoma
Synovial sarcoma Underexpression PRC1, PLK1, BCL2

miR-145 Liposarcoma Underexpression

miR-152 Leiomyosarcoma Underexpression MET, KIT

miR-155
Myxoid/round cell liposarcoma

Dedifferentiated liposarcoma
Pleomorphic liposarcoma

Overexpression CK1α

miR-17 Synovial sarcoma Overexpression CDKN1A

miR-183
Synovial sarcoma Overexpression EGR1, PTEN

Rhabdomyosarcoma Overexpression EGR1, PTEN

miR-199b-5p Leiomyosarcoma Underexpression
UPS Overexpression

miR-206 Rhabdomyosarcoma Underexpression CCND2, PAX3

miR-21 MPNST Overexpression PDCD4

miR-26a-2 Liposarcoma Overexpression RCBTB1, HOXA5

miR-27a Rhabdomyosarcoma Overexpression RARA, RXRA

miR-29
Rhabdomyosarcoma Underexpression CCND2, PAX3, E2F7

Fibrosarcoma Underexpression MMP2

miR-29c MPNST Underexpression MMP2

miR-30d MPNST Underexpression KPNB1

miR-320a
Leiomyosarcoma Overexpression

UPS Underexpression

miR-34a MPNST Underexpression

miR-373 Fibrosarcoma Overexpression SIRT1, mTOR

miR-378a-3p Rhabdomyosarcoma Underexpression IGF1R

miR-451 Liposarcoma Underexpression

miR-486 Myxoid/round cell liposarcoma Underexpression PAI-1

miR-497-5p Angiosarcoma Underexpression KCa3.1

miR-520c Fibrosarcoma Overexpression SIRT1, mTOR

2. MicroRNAs in Human Soft Tissue Sarcoma

2.1. Liposarcoma

Liposarcomas account for approximately 15% of all STS [3]. Depending on their histological
appearance, liposarcomas can be subdivided into pleomorphic, myxoid/round cell, dedifferentiated
and well-differentiated liposarcomas [28].

In almost 90% of well- and dedifferentiated liposarcomas, an amplification of the 12q13-q22
gene region is present, as well as an overexpression of mouse double minute 2 homolog (MDM2)
and cyclin dependent kinase 4 (CDK4), proteins characteristic of these liposarcoma subtypes [29].
Additionally, miR-26a-2, which is located near the MDM2 gene region is overexpressed in well- and
dedifferentiated liposarcomas [30]. This overexpression results in enhanced cellular proliferation,
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survival and invasion [30]. On the other hand, the experimental overexpression of the miR-26a-2 target
regulator of chromosome condensation, and BTB domain containing protein 1 (RCBTB1), results in
enhanced susceptibility to apoptosis [30]. Homeobox protein A5 (HOXA5), which is downregulated
in liposarcoma, constitutes another target of miR-26a-2 [31]. By inhibiting miR-26a-2 expression
and concurrent HOXA5-overexpression, the susceptibility of liposarcoma cells to p-53 independent
apoptotic stimuli, significantly increases [31]. Consequently, the repression of miR-26a-2 may be used
in clinical practice to reduce liposarcoma growth and progression.

miR-155 is significantly overexpressed in myxoid/round cell-, dedifferentiated-, and
pleomorphic-liposarcomas, as compared with normal adipose tissue [32]. It is a strong oncogene
and promotes cellular growth by targeting casein kinase 1α (CK1α), which in turn enhances β-catenin
signalling and the expression of cyclin D1 [32]. The knockdown of miR-155 results in reduced tumour
growth, in vitro and in vivo, as the Gap1 (G1)-synthesis (S) cell-cycle progression is blocked [32].
In human plasma samples, miR-155 levels allow a distinction between healthy individuals, patients
with benign lipomas and those suffering from dedifferentiated liposarcomas [33].

In myxoid liposarcoma, a subtype characterised by the t(12;16)(q13;p11) translocation, miR-486 is
significantly downregulated [34]. This miRNA interacts with the plasminogen activator, inhibitor-1
(PAI-1), an important promoter of cellular proliferation and invasion [35]. Exogenous overexpression
of miR-486 is associated with the reduced growth of tumour cells in myxoid liposarcoma [34].
Consequently, miR-486 may represent a potential therapeutic avenue for reducing cellular proliferation
in this sarcoma entity.

In well-differentiated and dedifferentiated liposarcomas, miR-143 is significantly downregulated,
in comparison to normal adipose tissue [36]. As the expression levels of miR-143 decrease, from
well- to dedifferentiated liposarcomas, this miRNA seems to be already involved in the early
processes of tumourigenesis [36]. Apoptosis is induced, and cellular proliferation diminished, upon
experimental overexpression of miR-143 in dedifferentiated liposarcoma. Additionally, expression
levels of polo-like kinase 1 (PLK1), protein regulator of cytokinesis 1 (PRC1), B-cell lymphoma 2 (BCL2)
and topoisomerase 2A, decrease [36]. Both PRC1 and PLK1 are involved in cytokinesis [37], explaining
the inhibitory effect of miR-143 expression on cellular proliferation.

Moreover, the miR-143/miR-145 cluster (gene region 5q32) is downregulated along with the
miR-144/451 (gene region 17q11.2) cluster in liposarcoma, in contrast to benign adipocytic tumours [38].
The experimental overexpression of miR-145 and miR-451 results in diminished cellular proliferation,
impairs cell cycle progression and induces apoptotic cell death [38].

In well- and dedifferentiated liposarcomas, two members of the let-7 family of miRNAs—let-7b
and let-7g—are inhibited, in contrast to benign adipocytic tumours [39]. Moreover, the inhibition of
let-7 miRNA may be involved in the deregulation of high-mobility group AT-hook2 (HMGA2), whose
rearrangement is typically found in benign, as well as malignant, adipocytic tumours, since the
3′UTR of HMGA2 contains multiple-binding sites for the let-7 family [40,41]. According to recent
investigations, however, the inhibition of let-7 family members does not seem to be the main event
responsible for HMGA2 dysregulation, nor HMGA2 protein overexpression [39].

2.2. Leiomyosarcoma

Leiomyosarcomas are defined as demonstrating a smooth muscle phenotype with
immunohistochemistry and account for approximately 10% of all STS [42]. Leiomyomas, their benign
counterparts, occur far more frequently.

In leiomyosarcoma, miR-152 is downregulated [43]. This miRNA has been found to be involved
in various malignancies, including bladder and prostate cancer [44,45]. miR-152 has several targets,
such as DNA (cytosine-5)-methyltransferase-1 (DNMT1) in endometrial cancer and TNFRF6B in
hepatocellular carcinoma. In leiomyosarcoma, miR-152 targets the tyrosine-protein kinases: MET
and KIT [43]. MET plays a role in cellular invasion by binding hepatocyte growth factor (HGF)
and by activating signalling pathways involved in cellular migration [46]. KIT acts as a promoter in
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tumourigenesis via the activation of downstream pathways that result in cellular proliferation [47]. The
downregulation of miR-152 in leiomyosarcoma is associated with increased KIT and MET-levels [43].
On the other hand, experimental upregulation of miR-152 reduces levels of MET and KIT in
leiomyosarcoma cell lines [43]. Moreover, miR-152 diminishes proliferation and enhances apoptotic
cell death, reduces the activity of the PI3K/AKT cascade and leads to S phase cell cycle arrest [43].

As mentioned above, the molecular differentiation between UPS and leiomyosarcoma can be
difficult. In this respect, miRNA signatures have emerging potential as diagnostic biomarkers for
aiding subclassification. For example, miR-199b-5p-levels are significantly higher in UPS as compared
with leiomyosarcoma, while miR-320a is upregulated in leiomyosarcoma, whilst being downregulated
in UPS [48]. Consequently, these miRNAs may not only serve as diagnostic markers, but also as
therapeutic targets to influence tumour development and progression.

2.3. Synovial Sarcoma

In contrast to most STS that mainly occur in adults, synovial sarcomas generally arise in children,
teenagers and young adults [49]. They are characterised by fusion of the Synovial Sarcoma Translocation
(SYT) gene, located on chromosome 18, with Synovial Sarcoma, X breakpoint 1, 2 or 4 (SSX1, SSX2,
SSX4) on the X chromosome [50].

miR-183, located on chromosome 7, is overexpressed in synovial sarcoma as well as in
rhabdomyosarcoma and colon cancer [51,52]. It targets the tumour suppressors—early growth response
protein 1 (EGR1) and phosphatase and tensin homolog (PTEN)—and blocks their translation [51].
Moreover, EGR1 is repressed by the SS18-SSX fusion gene in synovial sarcoma [53]. The knockdown
of miR-183 results in the enhanced expression of EGR1 and PTEN mRNAs as well as protein levels.
Additionally, the knockdown of miR-183 is associated with decreased tumour cell migration [51].
In clinical practice, the targeting of miR-183 may result in enhanced EGR1 and PTEN-levels, thus
reducing cellular migration and invasion.

Another miRNA that is overexpressed in synovial sarcoma is miR-17, which is induced by
the SS18-SSX fusion gene and is organised in a cluster (miR-17-92 cluster) [54,55]. It acts as an
oncogene by directly impairing the expression of cyclin-dependent kinase inhibitor 1 (p21, CDKN1A),
a cyclin-dependent kinase inhibitor, which regulates the transition from the G1 into the S-phase of the
cell cycle [56]. Colony formation and cellular growth are enhanced by miR-17 overexpression, whilst
cellular mobility and invasion remain unaffected [54]. On the other hand, experimental blockage of
miR-17 leads to increased p21-levels, and thus, reduced cell proliferation [54].

Recently, a panel of seven blood-borne miRNAs, measured in the peripheral blood, was able to
discriminate synovial sarcoma patients from healthy individuals and patients with leiomyosarcoma,
Ewing sarcoma, malignant peripheral nerve sheath tumour (MPNST) and liposarcoma [57]. The seven
miRNAs which are upregulated in synovial sarcomas include miR-99a-5p, -146b-5p, -148b-3p, -195-5p,
-223-3p, -500b-3p and -505-3p [57]. By testing synovial sarcoma patients for this panel of upregulated
miRNAs, even earlier detection of local recurrence and distant metastasis could be made possible [57].

As with well- and dedifferentiated liposarcomas, miR-143 is significantly downregulated in
synovial sarcoma [58]. SSX1 is a potential target for miR-143, as predicted by miRBase and Target Scan
3.1. As the fusion protein SYT-SSX1 is characteristic of synovial sarcoma, miR-143 downregulation
may contribute to formation of this oncoprotein [58].

2.4. Malignant Peripheral Nerve Sheath Tumour (MPNST)

Malignant peripheral nerve sheath tumours (MPNSTs) constitute a rare subtype of STS. They
usually arise from large peripheral nerves and are associated with Neurofibromatosis Type 1 (NF1) in
up to 50% of patients [59]. Due to their often complicated location, necessitating wide resection, and
their high metastatic potential, the prognosis of MPNST is rather poor [60].

In MPNST, the histone methyltransferase, enhancer of zeste homolg 2 (EZH2), is significantly
upregulated, in comparison to healthy nerve tissue and neurofibromas [61]. EZH2 forms
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the polycomb-repressor complex 2 (PRC2) with two other molecules and thus represses gene
transcription [62]. However, the PRC2 complex itself is frequently inactivated in MPNST, due to
mutations in the SUZ12 and EED gene regions, which encode parts of the complex [63,64]. Therefore,
other mechanisms than the formation of the PRC2 complex may promote MPNST-tumourigenesis. For
example, EZH2 directly targets the promoter region of miR-30d, and thus represses its transcription [61].
miR-30d itself usually targets importin subunit beta-1 (KPNB1, encoded by KPNB1) and suppresses its
translation. The knockdown of KPNB1 results in enhanced apoptosis of MPNST cells, an effect also
observed with EZH2-knockdown and miR-30d overexpression [61]. Importantly, the overexpression of
EZH2 and KPNB1 in MPNST is negatively correlated with miR-30d expression [61]. Therefore, the
EZH2–miR-30d–KPNB1-axis could serve as a target in anticancer therapy for patients with MPNST.

Another potential therapeutic target is the p53–miR-34a interaction. miR-34a usually regulates
many genes involved in proliferation and cell cycle progression [65]. Moreover, it is upregulated
by the tumour suppressor, p53 [66]. In the majority of MPNSTs, p53 is inactivated, in contrast
to benign neurofibroma [67]. Consequently, miR-34a is also downregulated [67]. By adding
wt-p53-GFP-containing plasmids to MPNST cell lines, miR-34a levels significantly increase [67].
Moreover, both the overexpression of p53 and miR-34a promote apoptotic cell death of MPNST
cells in vitro [67]. Taking into account that a phase 1 clinical trial has already tested the restitution
of miR-34 via MRX34 as an anticancer therapeutic, miR-34a substitution may also be of value in
MPNST [68,69]. Notably though, the trial had to be terminated due to immune-related adverse events,
indicating that some adaptations still need to be performed.

miR-29c is another miRNA which is downregulated in MPNST, in contrast to benign
neurofibroma [70]. It targets extracellular matrix genes and matrix metalloproteinase (MMP)-2, which
play significant roles in cell migration and tumour invasion, by degrading collagens and glycoproteins
in the extracellular matrix [71]. The experimental upregulation of miR-29c results in reduced cellular
invasion, whilst cell proliferation remains unchanged [70]. Concurrently, higher miR-29c levels
correlate with lower activity of MMP-2 in MPNST cell lines [70]. Therefore, therapeutic administration
of miR-29c may be a worthwhile strategy to impair the invasive and metastatic potential of MPNST.

Conversely, miR-21 is upregulated in MPNST, in contrast to neurofibroma [72]. Its target,
programmed cell death protein 4 (PDCD4), normally acts as a tumour suppressor by inducing apoptosis
via a caspase cascade [73]. Neurofibromas and normal peripheral nerves express PDCD4 at significantly
higher levels than MPNSTs [72]. At the same time, the knockdown of miR-21 in MPNST cell lines
results in enhanced expression of PDCD4 [72]. Consequently, the blockage of miR-21 could be used in
clinical practice to induce tumour cell apoptosis.

2.5. Rhabdomyosaroma

Rhabdomyosarcoma constitutes the most frequent STS type in the paediatric population and can
be subdivided into alveolar, embryonal, pleomorphic and spindle cell/sclerosing rhabdomyosarcoma.
Whilst the molecular features of the latter are not well understood, alveolar rhabdomyosarcomas are
characterised by the fusion between PAX7 or PAX3, and FOXO1A [74,75].

As with synovial sarcoma, miR-183 is also overexpressed in rhabdomyosarcoma [51].
The knockdown of this miRNA leads to increased mRNA and protein levels of EGR1 and PTEN,
two tumour suppressors [51]. Moreover, cellular migration is mitigated by the knockdown of miR-183;
therefore, it could serve as a therapeutic target in the treatment of rhabdomyosarcoma.

miR-378a-3p, a member of the miR-378 family, is significantly downregulated in
rhabdomyosarcoma, as compared with healthy skeletal muscle [76]. It targets insulin-like growth factor
receptor 1 (IGF1R), an important component of the IGF1R/AKT-signalling pathway. This pathway is
known to be involved both in cellular proliferation and myogenic differentiation [77]. Experimental
overexpression of miR-378a-3p does not only lead to reduced expression of IGF1R but also results in
increased apoptosis via the blockage of phospho-AKT and induction of caspase-3 [76]. Additionally,
the presence of miR-378a-3p is associated with cell cycle arrest in the G2 phase [76]. Therefore,
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this miRNA might serve as a therapeutic target in rhabdomyosarcoma, with the administration of
miR-378a-3p-mimics reducing cellular proliferation and enhancing apoptotic cell death.

miR-1 and mir-206 are further miRNAs that are downregulated in both embryonal and alveolar
rhabdomyosarcoma [78]. They repress the protein expression of PAX3 in embryonal, but not alveolar,
rhabdomyosarcoma [78]. This discrepancy may be explained by the fact that the PAX3-FOXO1A fusion
gene is present in alveolar rhabdomyosarcoma, whilst the embryonal subtype is lacking this gene
fusion. Therefore, the PAX3-FOXO1A fusion might hamper the regulation of PAX3 by miRNAs in
alveolar rhabdomyosarcoma.

Moreover, miR-1, -206 and -29 usually target G1/S-specific cyclin-D2 (CCND2), a cell-cycle
protein found to be upregulated in several malignancies, and repress its translation [78,79].
Additionally, miR-29 also targets transcription factor E2F7, which is involved in DNA repair and
replication, mitosis and cell cycle regulation [78,80]. Consequently, miR-29, miR-1 and miR-206
have potential tumour-suppressive functions; therefore, their mimics may be used in the treatment
of rhabdomyosarcoma.

A miRNA that is upregulated in rhabdomyosarcoma is miR-27a. It is specifically found in the
aggressive, translocation-positive alveolar subtype [81]. There, it promotes cellular proliferation
and reduces the number of cells in the cell cycle’s G-phase. Moreover, miR-27a targets retinoic X
receptor alpha (RXRA) and retinoic acid receptor alpha (RARA). Retinoic acid receptors (RARs) usually
interact with retinoic X receptors (RXRs) as heterodimers, and act as growth inhibitors by regulating
transcription via bondage to retinoic acid response elements (RAREs) [82]. Upon experimental
overexpression of miR-27a, levels of RXRA and RARA significantly decrease [81]. Therefore, miR-27a
has oncogenic functions in rhabdomyosarcoma and its blockage could be used in practice to lessen
tumour cell growth.

2.6. Fibrosarcoma

Fibrosarcoma constitutes a rare subtype of STS. Its incidence has constantly decreased over the
years, due to the improved pathologic discrimination of fibrosarcoma subtypes and distinction from
fibrosarcoma-like mesenchymal neoplasms [83].

The miR-29 family is not only involved in the pathogenesis of MPNST, but also contributes to
the progression and invasion of fibrosarcoma cells [84]. Reduced invasion of fibrosarcoma cells can
be achieved by experimental overexpression of miR-29 family-members [84]. The impairment of
invasion is facilitated by a downregulation of MMP2, a matrix-metalloproteinase that is important for
modulation of the extracellular matrix [85]. In clinical practice, the administration of miR-29 could
therefore lessen the invasive and metastatic potential of fibrosarcomas.

miR-520c and miR-373 are two miRNAs which are also involved in the modulation of
the extracellular matrix of fibrosarcomas [86]. They indirectly upregulate the expression of
matrix-metalloproteinase (MMP)-9 by targeting the 3′-UTR of mechanistic target of rapamycin (mTOR)
and sirtuin 1 (SIRT1) [86]. As a result, the Ras–Raf–MEK–Erk signalling pathway is activated, and
phosphorylates the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κb), leading to
enhanced transcription and translation of MMP9 [86]. Consequently, cellular growth and migration is
enhanced [86].

2.7. Undifferentiated Pleomorphic Sarcoma (UPS)

UPS—formerly termed malignant fibrous histiocytoma (MFH)—is the most common type of
STS in adults over the age of 40. However, UPS is an exclusion diagnosis, only made after thorough
analysis of the histological specimen using modern technologies [75].

As with leiomyosarcoma, miR-152 is downregulated in UPS and negatively correlates with MET
and KIT mRNA levels [43]. Moreover, experimental upregulation of miR-152 results in reduced KIT
and MET mRNA as well as protein levels, down-regulates the PI3K/AKT-pathway, diminishes cellular
growth and enhances apoptotic cell death [43].
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Although leiomyosarcoma is characterised by smooth muscle differentiation and is usually
positive for desmin, h-caldesmon and smooth muscle actin (SMA), it lacks recurrent genetic
alterations [87]. On the other hand, UPS is defined as an STS lacking any precise cellular differentiation.
However, in UPS, recurrent genetic features are also missing [88]. Contrary to leiomyosarcoma,
miR-199b-5p is significantly upregulated in UPS [48]. Additionally, levels of miR-320a are significantly
lower in UPS compared with leiomyosarcoma [48]. Therefore, a distinction between leiomyosarcoma
and UPS is possible, through the analysis of miRNA-patterns.

2.8. Angiosarcoma

Angiosarcoma is a highly aggressive subtype of STS, with about half of patients dying from the
disease within one year following diagnosis [75]. The development of angiosarcoma is sometimes
associated with lymphoedema (e.g., following radical axillary lymph node resection). Most commonly,
angiosarcomas present as cutaneous neoplasms rather than deep-seated STS [75].

miRNAs that are downregulated in angiosarcoma are miR-497-5p, -378-3p and 483-5p, of
which miR-497-5p interacts with the potassium intermediate conductance calcium-activated channel
KCa3.1 [89,90]. This channel is involved in cancer cell growth and invasion, and is upregulated in
angiosarcoma [90]. Experimental upregulation of miR-497-5p results in reduced levels of KCa3.1 and
impairs cellular proliferation, progression of the cell cycle and cellular invasion. This effect is achieved
by the downregulation of cyclin D1, survivin and p53, which are all involved in the regulation of the
cell cycle [90]. In clinical practice, miR-497-5p could be used as a therapeutic agent, directly targeting
KCa3.1, and thus preventing tumour progression and invasion.

Other than miR-497-5p, the miR-17-92 cluster is significantly upregulated in MYC proto-oncogene
(MYC)-amplified angiosarcoma [91]. Of note, whilst secondary angiosarcomas that arise due to prior
irradiation usually carry an amplification of the oncogene MYC, this alteration is less common in
primary angiosarcomas [92]. MYC is involved in cellular differentiation, growth and apoptosis, and
plays a role in various human cancers [93]. The upregulation of the miR-17-92 cluster is associated
with the downregulation of thrombospondin 1 (THBS1), an adhesive glycoprotein, which mediates
cell–matrix and cell–cell interactions, with the potential to inhibit angiogenesis [94]. Therefore,
the miR-17-92 cluster could be therapeutically targeted to lessen angiogenetic tumour growth in
MYC-positive angiosarcomas.

3. Conclusions

Distinct miRNAs are differentially expressed in various soft tissue sarcoma subtypes. Depending
on the miRNA and tumour type, they have diagnostic, prognostic, predictive and therapeutic potential.
Yet, the usage of miR-inhibitors or mimics in clinical practice is still under investigation and has not
reached clinical routine. Nevertheless, the targeting of miRNAs or administering of miRNA-mimics
may pose promising therapeutic strategies in soft tissue sarcomas that show poor responses to
conventional chemotherapy.
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CDKN1a Cyclin-dependent kinase 1
CK1α Casein kinase 1α
CTX Chemotherapy
DNMT1 DNA (cytosine-5)-methyltransferase-1
EGR1 Early growth response protein 1
EZH2 Enhancer of zeste homolog 2
HGF Hepatocyte growth factor
HMGA2 High-mobility group AT-hook 2
HOXA5 Homeobox protein A5
IGF1R Insulin-like growth factor receptor 1
KCa3.1 Potassium intermediate conductance calcium-activated channel
KPNB1 Importin subunit beta-1
MDM2 Mouse double minute 2 homolog
miRNA Micro RNA
MMP-2 Matrix metalloproteinase-2
MPNST Malignant peripheral nerve sheath tumour
mRNA Messenger RNA
mTOR Mechanistic target of rapamycin
NF-κb Kappa-light-chain-enhancer of activated B cells
PAI-1 Plasminogen activator inhibitor-1
PDCD4 Programmed cell death protein 4
PLK1 Polo-like-kinase 1
PRC1 Protein regulator of cytokinesis
PRC2 Polycomb-repressor complex
Pre-miRNA Precursor miRNA
Pri-miRNA Primary miRNA
PTEN Phosphatase and tensin homolog
RARE Retinoic acid response element
RCBTB1 Regulator of chromosome condensation and BTB domain-containing protein 1
RTX Radiotherapy
RXR Retinoic X receptor
RXRA Retinoic X receptor alpha
SIRT1 Surtuin 1
SMA Smooth muscle actin
STS Soft tissue sarcoma
THBS1 Throbmospondin 1
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