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Abstract

Background: The currently available immunotherapies already changed the strategy

how many cancers are treated from first to last line. Understanding even the most

complex heterogeneity in tumor tissue and mapping the spatial cartography of the

tumor immunity allows the best and optimized selection of immune modulating

agents to (re-)activate the patient's immune system and direct it against the individual

cancer in the most effective way.

Recent Findings: Primary cancer and metastases maintain a high degree of plasticity

to escape any immune surveillance and continue to evolve depending on many intrin-

sic and extrinsic factors In the field of immune-oncology (IO) immune modulating

agents are recognized as practice changing therapeutic modalities. Recent studies

have shown that an optimal and lasting efficacy of IO therapeutics depends on the

understanding of the spatial communication network and functional context of

immune and cancer cells within the tumor microenvironment. Artificial intelligence

(AI) provides an insight into the immune-cancer-network through the visualization of

very complex tumor and immune interactions in cancer tissue specimens and allows

the computer-assisted development and clinical validation of such digital biomarker.

Conclusions: The successful implementation of AI-supported digital biomarker

solutions guides the clinical selection of effective immune therapeutics based on

the retrieval and visualization of spatial and contextual information from cancer

tissue images and standardized data. As such, computational pathology (CP) turns

into “precision pathology” delivering individual therapy response prediction. Preci-

sion Pathology does not only include digital and computational solutions but also

high levels of standardized processes in the routine histopathology workflow and the

use of mathematical tools to support clinical and diagnostic decisions as the basic

principle of a “precision oncology”.
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1 | INTRODUCTION

There is already a significant number of publications using AI and deep

learning (DL) to identify novel diagnostic and prognostic biomarker

signatures on tissue images of different cancer types.1–6 Understand-

ing the morphological and immunological complexity and plasticity of

the cancer-related immune system in tissue is still one of the existing

challenges in cancer immunotherapy.7–11 The visualization of any con-

textual and spatial relationship of different immune, tumor and stro-

mal cells, the communication network including humoral (extrinsic)

and molecular (intrinsic) factors5 will determine the selection of effec-

tive immune agents as a single compound or combination regimens.

This becomes possible through the application of digital approaches,

big data analysis and mathematical models, which go far beyond con-

ventional techniques to answer important questions also in precision

oncology.12

2 | ARTIFICIAL INTELLIGENCE

With the advent of modern computing, many efforts are underway to

replace, assist and augment human cognitive and analytic effort. It

might not always be desirable, but it certainly allows addressing cur-

rent objectives like the detection and readiness of complex immune

biomarker. Such efforts are using AI attempting to create machine

models for almost all aspects of human intelligence.13

Some common definitions name AI as the heading for machine

learning (ML), of which among others like deep learning (DL) and con-

volutional neural networks (CNN) are usually considered further sub-

disciplines. However, different and sometimes conflicting definitions

exist, of which none are wrong or correct. Both utilize machine cogni-

tion technologies with different levels of supervision and guidance by

human experts having domain knowledge.14,15 The development of AI

relies to some degree on already existing and conventional expert

knowledge creating rule sets or algorithms that support clinical

decision-making. AI's ability to describe current problems or anticipat-

ing problems of the future is also depending on the domain experts

supporting such development.16

2.1 | Machine learning

AI will be pivotal for the future practice of pathology and oncology.

As mentioned above experts like pathologists and oncologists need to

be involved in the development of AI-based decision support to

ensure a professional digitization of the medical practice and the gen-

eration of clinically relevant algorithms through their already existing

knowledge and clinical experience. ML usually applies stochastic

methods to analyze data sets creating independent and sometimes

novel rules. ML is considered an attempt to support human

experience and expert knowledge.17

A less ambitious goal is termed “narrow AI” which focuses on

modeling presumably simpler tasks to support medical decision-

making. If successful, it will allow the transition from narrow AI to

broader AI. This comprises also different layers of advanced algebra

and topology,18 which describes the spatial relationship of immune

cells and tumor cells and allows the functional cartography of

tissue.19–21

Mathematical and computer science techniques allow domain

experts but also others to extract relevant data from large data sets.22

Such algorithms can be trained or supervised by human experts or in

this case by expert pathologists. ML can also assist experts in execut-

ing difficult and tedious tasks. An automated ML method will be able

to consistently read multicolor immunohistochemistry or in-situ

hybridization images always in the same reliable manner,23,24 produc-

ing the identical result over and over again. Such a machine-assisted

solution provides the basis for global comparability of even complex

and larger data sets without otherwise non-acceptable inter- and

intra-observer variability.25,26

The field of AI-based solutions and algorithms in pathology

provide an increasing number of diagnostic and therapeutic decision

support tools.27 The scanning and imaging of a whole (glass) slide has

become a pivotal and prerequisite technology in histopathology that

transfers conventional (analog) information into a high-quality digital

image to apply existing algorithms or solutions for further and spatial

analysis.28 Only the precise, robust and reproducible diagnosis from

tissue images will lead to an acceptance by pathologists with enough

trust in such a disruptive technology. Already today, it is impressive

how a computer can “read” a digitized image and “deliver” an accu-

rate and quantitative interpretation, which goes beyond plain human

eyeballing on a microscopic without computer assistance. Neverthe-

less, for the time being it is still necessary to confirm and validate

any AI-assisted diagnosis through a highly skilled and well-trained

pathologist concerning accuracy and plausibility.29

2.2 | Visualization and explanation of data

Another important topic and prerequisite for the sustainable

development of computational solutions in pathology as well as oncol-

ogy is the use of curated data. Incorrect or inconsistent data will lead

to incorrect conclusions and provide misleading decision paths. The

cleaning and cleansing of data have a fundamental impact on the qual-

ity of such results. Therefore, data management and analytics needs

to become an integrated part of the standard quality management and

quality control throughout the entire workflow using computer-

assisted decision in clinical practice.30

An intuitive visual representation of complex data to pathologists

and oncologists allows the understanding of the used algorithms and

extracted information explaining the rationale behind AI-based deci-

sion rules. The subject of topology as well as the cartography of the

tissue microenvironment and its heterogeneity makes it now possible

to further understand and visualize complex AI-based solutions of

multidimensional data sets.31 With the growing field of immune and

combination therapies in precision oncology, a multitude of biomarker

hypothesis will be integrated into topological networks, which will
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intuitively describe spatial relationships and relevant communication

networks,32 possibly leading to relevant treatment decisions.33

AI tries to go beyond the “hidden secrets” or the “black box”
nature of ML, which includes techniques such as convolutional neural

networks, and DL. Those techniques allow an even deeper under-

standing and / or visualization of the complexity also of multidimen-

sional features and cellular networks in heterogeneous tissue

specimens to provide hypothesis or explanations of the results for

pathologists' consumption and use.34 Expert pathologists still verify

the concordance between the AI-based decision rules and an already

existing or accepted expert ground-truth.35 As such explainable

AI (X-AI) or counterfactual explanations have developed as new disci-

plines in computational science with focus on explaining otherwise

complex ML models, which are sometimes perceived as irrational or

non-conclusive. X-AI tries to rationalize decision rules in analogy to

what is already known by pathology and oncology experts. Naturally,

human expert knowledge, which has been accumulated during many

years of training and medical education and the rules of ML can be an

area of conflict. However and in the ideal world, both approaches

converge in their clinical validity with automated rule sets contributing

significantly to machine-based decisions in pathology and proving the

sustainable correctness of medical and diagnostic practice.

3 | PRECISION PATHOLOGY

Digital and computational pathology have become essential elements

in translational research and transforming tissue-based biomarker

strategies and has put pathology back into the center of drug develop-

ment or repurposing.36 Such technological innovation in the tissue

biomarker space generates novel and big data, which is a continuous

challenge for data analysts and clinical teams working to bring new

drugs to market. The deployment and the adoption of precision

pathology requires the preservation and scrutiny on the integrity of

data to deliver novel and effective medicines. A multidisciplinary

approach with the intense engagement of experienced pathologists,

computer scientists, data analysts and biopharma specialists enables

the discovery and validation of relevant tissue biomarker data to reach

all desired biomarker endpoints from early phase clinical trials to mar-

ket approval and across diverse therapeutic areas. The adoption of

digital workflows will foster the best and future practice of pathology

and the delivery of such relevant data and biomarker assays from pre-

clinical discovery to clinical trials. Digital and computational pathology

enables multidimensional image analysis that will become the stan-

dard for tissue biomarker delivery along with the continuous refine-

ment of the laboratory workflow and implementation of machine

intelligence-supported technologies.37–39

3.1 | Workflow automation

Precision Oncology or Personalized Cancer Medicine is based on

the principle of optimized decisions proposing the most effective

treatment for the certain cancer types or the individual subtype. This

requires the development of complex assays that allow the identifica-

tion of druggable targets in the tumor microenvironment as accurately

and precisely as possible. The specificity and sensitivity of novel can-

cer biomarker tests are largely determined by the applied accuracy

and precision of the respective analytical method. The necessary qual-

ity of the tissue sample(s) and the applied analytical method require

the standardization of all steps from the pre-analytical handling of the

tissue specimen to the post-analytical interpretation and scoring of

the results. However, the potential variability associated with an indi-

vidual patient sample must be monitored to ensure that only the

correct test result is reported.

Preanalytical variables like different fixation times and processes

still cause inconsistencies in the immune staining in many histopathol-

ogy labs. Image analysis results cannot necessary be trusted entirely

unless resolving such issues and implementing a vigorous quality man-

agement. Documented and proper sample handling, standardized pro-

cessing of specimens including skilled embedding and sectioning,

automated staining and scanning are important to develop and imple-

ment robust computational algorithms. These are the minimum

requirements to maintain digital image consistency and robustness

prior to any sustainable analysis and feature extraction. Anatomical or

surgical pathologist together with the laboratory staff need perform

such quality control measures throughout the entire workflow until

this is also supported by computational solutions. Image analysis is an

essential element of digital and computational pathology, and it

demands special attention and competencies by the pathology staff

and an understanding of the issue by the interacting computer and

data scientists as well as software engineers.40 The number of publi-

cations and textbooks on these topics along with the advancement of

necessary hardware technologies are steadily growing as well as the

need for adequate image and data storage and processing capabilities.

The pivotal role of the pathologists is to master their responsibil-

ity from the bench to the bedside through their ability and growing

experience and to implement and execute any type of (biomarker)

assay robustly and sustainably, also in the routine diagnostic practice.

As digital and computational pathology advances, the role of patholo-

gists will transform and extend including the documented manage-

ment of stringent quality control measures of the laboratory workflow

and the handling of biomarker analytics that generates more and more

data to stratify patients. Increasingly more insights that are therapeu-

tic important will also come from multidimensional tests including

spatial transcriptomics and other context-driven information.41

3.2 | Computational pathology

Recent advances in ML have accelerated computational pathology

(CP) in medical research and clinical practice. Computational solutions

will continue to support the diagnostic practice of pathology for yet

well-defined and selected tasks but in a reliable, consistent, and

standardized way. Pathologists who are faced with an increased and

complex workload will appreciate computational support.
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The potential of ML techniques in pathology ranges from

computer aided support for tasks that are simple but tedious like

counting colored dots but also the discovery of innovative biomarker

signature. Basic applications with simple dichotomous decisions are

the detection of lymph node metastases or counting the density of

mitotic or Ki-67 positive tumor cells. CP is expected to increase the

efficiency and precision in the entire tissue diagnostic workflow. First

“simple” algorithms are already available and clinically viable. There

are also computer-modeling solutions that can extract sub-visual mor-

phological information relevant in personalized medicine and precision

oncology.42 However, the increasing complexity of such applications

requires large, curated, and cleaned datasets to leverage the full

potential of CP in the future of pathology.43

Modern multiplexing technologies allow the simultaneous

visualization of virtually hundreds of biomarker candidates on a single

slide, visualizing the tumor heterogeneity.44–46 The standardized

visualization of the spatially resolved complexity of immune and

other markers requires a robust analysis of single and multiple

(molecular or protein) marker molecules. This process starts with the

digitization of images, followed by computer-based image analysis,

and further data breakdown through AI. As already stated before, CP

leverages mathematical tools and implements data-driven methods

for large data sets and complex image interpretation in modern tissue

diagnosis. The value proposition of CP as a part of digital pathology

(DP) is especially high when clinical and pathology departments as

well as informatics units work closely together on an interdisciplinary

scale. CP will also become an integral part in the training of future

pathologists, who will utilize their pathology and computational skills

leading the field of CP and delivering an indispensable skill set for

data-related patient care.

3.3 | Analysis of immune and tumor heterogeneity

As an integral part of CP image analysis allows the discovery and

description of histomorphological features with diagnostic, prognostic

and possibly predictive features relevant in the practice of precision

medicine.47 The use of ML algorithms in CP along with advanced

image analysis tools allows also the standardized assessment of

known biomarker but likewise the discovery of novel immune signa-

tures. Many relevant signatures in precision medicine are too subtle

or not obvious to be recognized by human experts. The generation of

a novel hypothesis from digital tissue images and supported by AI

along with all available sets of big data will generate additional novel

insights into the cancer biology and immune oncology.

With the clinical use of modern analytic and diagnostic tools such

as multiplexed immune- and genotyping48,49 along with AI comes a

deeper understanding of the spatial relationship of immune and other

cells in individual tissues, revealing the existing and relevant intra-

tumor heterogeneity which might have significant consequences for

immune-related and combination treatment options.30,50 There are

more and more warheads in the immune arsenal but there must be a

scientific, financial, and medical rational for their clinical use.51–53

Many authorities, policy makers and payers demand the use

of modern therapeutic modalities to be rationalized through a

biomarker-based and AI-supported analytical and diagnostic strategy.

The understanding of the tumor (immune) heterogeneity is a task of

pathologists who advice the oncologist to select the best treatment

option for each individual cancer patient. The microscopic inspection

of the tumor, its associated microenvironment and surrounding

normal tissue is no longer sufficient without the use of learning

software solutions. Especially for advanced therapeutics (cell- and

gene therapy) it is the only path towards a statement on the prognosis

and possible predictions for the most effective treatment.54

A significant number of relevant biomarkers including proteins

and genetic alterations have already been identified which guide ther-

apeutic strategies and decisions in many tumor entities.55 Galon

et al.56 demonstrated that the combination of two spatially resolved

immune cell markers in different cancer tissue compartments show a

better predictive value than each single marker alone.57 Such a devel-

opment was only possible with a sound understanding of the cancer

immunology, local tumor heterogeneity and an open mind towards

computer-assisted image analysis. Galon's group proposed a classifica-

tion of a prognostic signature – the ImmunoScore - based on the

quantity and quality of immune infiltrates.58

Tumor and immune heterogeneity heavily influence the biology

of each tumor and its response to treatment, including therapy resis-

tance and some uncertainty of the histomorphological diagnoses.

Genetic and epigenetic aberrations also influence the immune

microenvironment and its plasticity and frequently vary from tumor

entity to entity with or without previous therapy. Any failure of its

identification may imply therapy relevant misinterpretations.59–61

3.4 | Digital biomarker

Digital biomarker are generally defined as a combined software-

hardware solution to quantify measurable parameters that provide

indications of a therapeutic response in a clinical environment. Digital

biomarker also utilize data from different sources and measures to

advance the understanding of a certain disease and guide the

decision-making also in the diagnosis and treatment of cancer.62 The

idea of clinical immunotherapy is to (re)activate the immune system

against uncontrolled tumor growth and spreading.63 This is an espe-

cially difficult task in certain cancer types with all the existing and

known immune escape mechanisms64–66 that otherwise do not ade-

quately respond to current strategies.67–69 Some tumor entities are

anyway hard to treat for various and sometimes obvious reasons.70–72

Currently, there are no accepted biomarker signatures available for

many immunotherapies.73 One of the known diagnostic challenge is

to understand, visualize and determine the biologically relevant spatial

relationship and communication network in the tumor microenviron-

ment and retrieve actionable and clinically relevant information.

Likewise, the analysis of multiple variables requires advanced techni-

cal tools and laboratory skills like high-resolution image acquisition

and analysis and the application of ML-based algorithms to select

4 of 9 HUSS ET AL.
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patients for their best possible treatment option. Mathematical tools and

AI-based solutions will help to gain confidence in technically assisted

decision making along with necessary clinical trials and experience. This is

exemplified in the description of tumor infiltrating lymphocytes74 or the

assessment of metastases in various tumors under immune therapy.75

4 | PRECISION ONCOLOGY

The importance for advanced diagnostics to guide patient treatment

decisions is growing fast. Table 1 describes the basic principles of AI

and the use of ML in precision pathology as the foundation of preci-

sion oncology and their deliverables for best patient care.76

Patients that lack access to advanced cancer pathology guided by

computer-assisted diagnostic tools and expert decision boards are

usually inadequately managed in their care. Expert pathologists are an

increasingly scarce healthcare resource and therefore the “optimiza-

tion” of their use especially important in times when their work is

becoming more and more complex through AI-based tools.77 Patholo-

gists should engage with the AI development in pathology and its clin-

ical implementation especially in precision oncology to assess its true

value to the healthcare team.

Computer-assisted decisions are also based on data from the real

world or selected cohorts or named register like TCGA and are further

supported by modalities like “systems medicine” and “in-silico” model-

ing and simulation” approaches. AI will refine existing hypothesis of

pathologists and immunologists to support diagnosis and therapy

decisions.

4.1 | Cancer immunotherapy

Cancer Immunotherapy has been named “Breakthrough of the Year”
in 2013 and since then Nobel Prizes were awarded to scientists in this

field. The clinical pertinence on the use of immune modulating agents

like checkpoint inhibitors has been demonstrated in many clinical trials

alone as a combination with other potent immune oncology (IO) drugs

but also other non-IO anti-cancer agents.78–80 With the advancement

and integrative use of analytical methods like immunohistochemistry

(IHC), molecular pathology, and computational pathology it becomes

increasingly possible to understand the morphological and immuno-

logical heterogeneity of individual tumors54 and better select appro-

priate clinical immunotherapies.81 Machine-assisted diagnostic tools

such as automated image analysis are available for the un-biased and

standardized assessment of multiple markers and simultaneously

quantify the total numbers of different immune cells and in parallel

the spatial relationships in different tumor compartments even on

a single slide or image.82 Immune cells are a key component of

predictive biomarker in the tumor immune microenvironment.83,84

While technical solutions become available through the imple-

mentation of machine intelligence and digital biomarker, other existing

barriers like some initially hesitant pathologists are fading away and

digital pathology starts to spread. This is shown by the adoption of

automated imaging solutions for primary diagnosis through available

computational and imaging system. More and more pathology labs are

starting to use digital pathology in their practice supported by guide-

lines, workshops, validation and accreditation procedures allowing the

implementation of clinical grade digital pathology. Eventually it is

computer science to assist diagnostic decision-making and the accep-

tance of digital pathology especially in such a growing and demanding

field such as precision oncology. By any means, it will increasingly be

an interdisciplinary approach of domain experts from different

biomedical fields and computer sciences with their focus on the

well-being and cure of cancer patients.

4.2 | AI-supported immunotherapy

Many genetic factors explicitly modulate the immune microenviron-

ment and can influence the selection of IO drugs or the combination

of IO molecules with non-IO treatment regiments.85–91 Similarly,

cancer-associated fibroblasts (CAF) can also have a role in tumor pro-

gression and tissue remodeling secreting a wide range of humoral fac-

tors.92 Moreover, CAFs can be the reason for developing a resistance

to guideline-based therapies, as shown by Hirata et al. for BRAF-

inhibitor therapy in melanoma.93 The understanding of the tumor-

wide heterogeneity and the contextual information concealed with

TABLE 1 Describes the basic principles of AI and precision
pathology as the foundation of precision oncology. Their deliverables
and effects will lead to a deeper understanding of the tumor biology

and explaining even complex cancer networks that will better guide
therapy selection for individual patients

Basic principles of
action

Deliverables and
effects

Artificial
intelligence

Providing machine

and deep

learning

solutions to

pathology and

tissue

diagnostics

Developing learning

algorithms and

describing the

contextual

information of

immune and tumor

cells

Explaining relevant

spatial and

communication

networks through

tissue cartography

Precision
pathology

Using artificial

intelligence to

build and deploy

predictive

computational

pathology

Establishing a

consistent digital

pathology

workflow with

standardized

reporting

Automated image

and data analyses

delivering

treatment relevant

“Digital

Biomarker”

Precision oncology

Deep

understanding of

tumor biology

and treatment

relevant spatial

immunity

Visualization of the

tumor and immune

heterogeneity to

predict therapy

response

Immune therapy

selection through

AI-supported

diagnostic decision

tools
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the individual tumor is important for treatment selection especially in

the field of immune therapies.

The immunohistochemical evaluation of PD-L1 is currently the

diagnostic backbone for the response prediction of most IO therapies

including checkpoint inhibitors, while routine histopathology still

heavily relies on H&E stained slides and images. However, PD-L1 test-

ing is more complex than the familiar Ki-67 or the current Her2/neu

scoring due to different antibodies, different testing algorithms, and

almost constantly changing cut-offs for an increasing number of indi-

cations. The standard reporting of PD-L1 scores requires skilled and

trained pathologists always taking into account the substantial intra-

tumor heterogeneity.94–97 There is already published evidence on the

relevant heterogeneity of PD-L1 expression between the primary

tumor versus metastases98,99 proving further evidence of the environ-

mental (extrinsic) immune environment. More robust and validated dig-

ital biomarkers are needed that reflect the individual tumor immune

microenvironment and its intrinsic (genomic) factors.100–102,105 Further

studies emphasized the relevance of cellular components in the

immune system besides (epi)genetic biomarker. Both and in particular

their spatial co-existence have a significant prognostic value and need

be included in therapeutic considerations.103–106 Table 2 lists examples

of AI-assisted and digital biomarker in precision pathology and

oncology with a special emphasis on immunotherapy.

The future of precision cancer care will not only include the use

of AI-based algorithms in precision pathology and the diligent use of

digital biomarker, but also major efforts to detect cancer earlier and

with greater accuracy. The availability of larger data sets and a wider

range of information from many sources (e.g. liquid biopsies, other

imaging techniques) will help to identify the most effective treatments

in a particular cancer and individual patient. Precision oncology will

stratify many patients towards the most optimal cancer care right

from the beginning which might be more effective, less costly and

more likely to result in better overall outcomes.

5 | CONCLUSION

Precision pathology will be the foundation and driver for precision

oncology and immune therapies extending treatment regiments

including oligo-metastatic diseases or targeting the tumor microenvi-

ronment independent of the origin of the primary cancer. The basic

principle is briefly summarized in Figure 1. Besides managing the

“tumor data business”, also the technical and laboratory pathology

workflow will change drastically leaving glass slides, conventional

stains and eventually the light microscope behind and embracing

3D-imaging including augmented and multiplex visualization tech-

niques supported by AI. The implementation and execution of preci-

sion oncology including immune and combination therapies will be

part of the medicine of the 21st century and pathologists will (co)lead

such efforts embracing precision pathology.
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TABLE 2 Lists examples of AI‐assisted decision support in precision pathology and those tools that have an even broader clinical impact in
precision (immune) oncology. Digitale biomarker are also AI based but combine more digital and quantifiable characteristics from different
sources that have a relevant impact on the clinical practice, here especially in the selection of immune therapies

Precision pathology Precision oncology

AI‐assisted support • Metastases detection1,35

• Multiplex immunohistochemistry23,24,49,51

• Whole sllide imaging5

• Image analysis27,43

• PD‐L1 quantification72,94,95,99

• Large date extraction22

• Multidimensional data analysis31,48,49

• Mutation detection and analysis6,89,107

• Spatial transcriptomics41

• Drug development36

Digitale Biomarker • Disease diagnosis2

• (Tumor) Immune infiltrates58,73

• Prognostic biomarker30,105,106

• Personalized medicine and response prediction23,42,47

• Cell‐ and Gene therapy54,68

• IO/non‐OI combination therapies55,64,70,77

• Immune escape prediction63,64

• Metastases assessment39,74,98

F IGURE 1 Simplified scheme of the proposed path from a regular
diagnostic pathology workflow to delivering a precision oncology
approach through the AI-supported application of digital biomarker
that allow the best possible response prediction of immune therapies.
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