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The COVID-19 pandemic has caused massive humanitarian and economic damage.
Teams of scientists from a broad range of disciplines have searched for methods to
help governments and communities combat the disease. One avenue from the
machine learning field which has been explored is the prospect of a digital mass
test which can detect COVID-19 from infected individuals’ respiratory sounds. We
present a summary of the results from the INTERSPEECH 2021 Computational
Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).
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Introduction

Significant work has been conducted exploring the possibility that COVID-19 yields unique

audio biomarkers in infected individuals’ respiratory signals (1–14). This has shown promising

results although many still remain sceptical, suggesting that models could simply be relying on

spurious bias signals in the datasets (15, 12). These worries have been supported by findings that

when sources of bias are controlled, the performance of the classifiers decreases (16, 17). Along

with this, cross dataset experiments have reported a marked drop in performance when models

trained on one dataset are then evaluated on another dataset, suggesting dataset specific bias (18).

Last summer, the machine learning community were called upon to address some of these

challenges, and help answer the question whether a digital mass test was possible, through the

creation of two COVID-19 challenges within the Interspeech Computational Paralinguistics

challengE (ComParE) series: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS) (19).

Contestants were tasked to create the best performing COVID-19 classifier from user cough

and speech recordings. We note that another COVID-19 detection from audio challenge was

run at a similar time to ComParE, named DiCOVA (20), and point the inquisitive reader to

their blog post1 which details a summary of the results.
1https://dicova2021.github.io
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Challenge methodology

Both COVID-19 cough and speech challenges were binary

classification tasks. Given an audio signal of a user coughing or

speaking, challenge participants were tasked with predicting

whether the respiratory signal came from a COVID-19 positive or

negative user. After signing up to the challenge, teams were sent

the audio files along with the corresponding labels for both the

training and development set. Teams were also sent the audio files

from the test set without the corresponding labels. Teams were

allowed to submit five predictions for the test set from which the

best score was taken. The number of submissions was limited to

avoid overfitting to the test set.

The datasets used in these challenges are two curated subsets of

the crowd sourced Cambridge COVID-19 Sounds database (1, 21).

COVID-19 status was self-reported and determined through either

a PCR or rapid antigen test, the exact proportions of which are

unknown. The number of samples of both positive and negative

cases for these selected subsets are detailed in Table 1. The

submission date for both COVID-19 positive and negative case

recordings are detailed in Figure 1A. Figure 1B shows the age

distribution for both CSS and CCS challenges.
TABLE 1 ComParE COVID-19 sub-challenges dataset splits. Values specify
the number of audio recordings. We note that disjoint participant train,
development, and test splits were ensured.

CCSa CSSb

Train Dev Test Train Dev Test

COVID-19-positive 71 48 39 72 142 94

COVID-19-negative 215 183 169 243 153 189

Total 286 231 208 315 295 283

aCCS – COVID-19 Cough Sub-Challenge.
bCSS – COVID-19 Speech Sub-Challenge.

FIGURE 1

(A) Is a cumulative plot detailing when COVID-19 positive and negative subm
distribution of COVID-19 positive and negative participants for the CCS and CS
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Overview of methodologies used in
accepted papers at interspeech 2021

Last year, 44 teams registered in both the ComParE COVID-19

Cough Sub-Challenge (CCS) and the COVID-19 Speech Sub-

Challenge (CSS) of which 19 submitted test set predictions. Five of

the 19 teams submitted papers to INTERSPEECH which were then

accepted. Results for both CCS and CSS were reported in two of

these papers, while two papers reported results exclusively for CCS

and one paper exclusively for CSS. In this section, we provide a

brief overview of methodologies used in these accepted works

which included data augmentation techniques, feature types,

classifier types, and ensemble model strategies. Teams that did not

have their work accepted at INTERSPEECH 2021 will be named

NN_X to preserve anonymity. NN refers to nomen nescio and X is

the order in which they appear in Figure 2. The performance

measured in Unweighted Average Recall (UAR) achieved by these

methodologies is summarised in Table 2; UAR has been used as a

standard measure in the Computational Paralinguistics Challenges

at Interspeech since 2009 (26). It is the mean of the diagonal of

the confusion matrices in percent and by that, fair towards sparse

classes. Note that UAR is sometimes called “macro-average,’ see (27).
Data augmentation

To combat the limited size and imbalance of the Cambridge

COVID-19 Sounds database, the majority of the teams used data

augmentation techniques in their implementation. Team Casanova

et al. exploited a noise addition method and SpecAugment to

augment the challenge dataset (23). Team Illium et al. targeted

spectrogram-level augmentations with temporal shifting, noise

addition, SpecAugment and loudness adjustment (25). Instead of

using a data augmentation method to manipulate the challenge

dataset, team Klumpp et al. used three auxiliary datasets in
ission to both the CCS and CSS were made. (B) Details the age and sex
S Sub-Challenges.
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FIGURE 2

Team performance on the held out test set for the COVID-19 Cough Sub-Challenge.

TABLE 2 Summary of methodologies used in accepted papers at Interspeech 2021 along with their classification performance. Unweighted Average Recall
(UAR) and Unweighted Average F1 (UF1) metrics are provided [%].

Team name Data
Aug.

Feature type Classifiers Ensemble Cough Speech

UAR UF1 UAR UF1

Solera-Urena et al.
(22)

✗ TDNN-F, VGGish, PASE+ SVM ✓ 69.3 65.2 – –

Casanova et al.
(23)

✓ MFCC, mel-spectrogram SpiraNet, CNN14, ResNet-38,
MobileNet

✓ 75.9 69.6 70.3 71.0

Klumpp et al. (24) ✓ mel-spectrogram CNN, LSTM, SVM, LR ✗ – – 64.2 64.3

Illium et al. (25) ✓ mel-spectrogram Vision transformer ✗ 72.0 71.1 – –

Baseline (19) ✗ openSMILE, openXBOX, DiFE,
DeepSpectrum, auDeep

SVM, End2You ✓ 73.9 – 72.1 –

Coppock et al. 10.3389/fdgth.2023.1058163
different languages aiming their deep acoustic model to better learn

the properties of healthy speech (24).
Feature type

The teams chiefly used spectrogram-level features including mel-

frequency cepstral coefficients (MFCC) and mel-spectrograms. For

higher-level features, the teams used the common feature extraction

toolkits openSMILE (28), openXBOX (29), DeepSpectrum (30), and

auDeep (31), where a simple support vector machine (SVM) model

was built on top of these features. Team Solera-Urena et al.

exploited transfer learning to extract feature embeddings by using
Frontiers in Digital Health 03
pre-trained TDNN-F (32), VGGish (33), and PASE+ (34) models

with appropriate fine-tuning on the challenge dataset. Team Klumpp

et al. targeted to extract their own phonetic features by using an

acoustic model consisting of convolutional neural network (CNN)

and long short-term memory (LSTM) parts.
Classifier type

Team Solera-Urena et al. (22) and the challenge baseline (19)

fitted a SVM model to high level audio embeddings extracted using

TDNN-F (32), VGGish (33), and PASE+ (34) models, and the

openSMILE framework (28), respectively. While the challenge
frontiersin.org
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baseline (19) searched for the complexity parameter of the SVM

ranging from 10�5 to 1, team Solera-Urena et al. (22) explored

different kernels (linear, RBF), data normalisations (zero mean and

unit variance, [0,1] range) and class balancing methods (majority

class downsampling, class weighting). In addition to the SVM

model, the baseline explored using the multimodel profiling toolkit

End2You (35) to train a recurrent neural network using Gated

Recurrent Units (GRUs) with hidden units of 64. Team Casanova

et al. (23) utilised the deep models: SpiraNet (36), CNN14 (37),

ResNet-38 (37), and MobileNetv1 (37) where they explored kernel

size, convolutional dilatation, dropout, number of fully connected

layer neurons, learning rate, weight decay and optimizer. Team

Klumpp et al. (24) trained SVM and logistic regression (LR)

models to perform COVID-19 classification on top of phonetic

features extracted by their deep acoustic model. They explored the

complexity parameter of the SVM ranging from 10�4 to 1. Team

Illium et al. (25) adapted a vision transformer (38) for mel-

spectrogram representations of audio signals. Tree-structured

Parzen Estimator-algorithm (TPE) (39) was exploited in (25) for

hyperparameter search mainly exploring embedding size, learning

rate, batch size, dropout, number of heads and head dimension.

The teams Solera-Urena et al., Casanova et al., and the baseline

also reported classification results by using the fusion of their best

features and classifiers. To conclude, Casanova et al. performed

best among the accepted papers with a consistent performance

over both CCS and CSS. This showed the importance of using

proper data augmentation techniques and exhaustive exploration of

deep models and hyperparameters for a transfer learning approach.
2UAR is the established ComParE evaluation metric. UAR is equivalent to

balanced accuracy. We note that if F1 had been the evaluation metric, Illium,

et al. (25) would have infact won the cough sub challenge. This is thanks to

their model’s superior precision performance, i.e., what proportion of the

model’s positive predictions are correct.
Assessment of performance measures

Figure 4 visualises a two-sided significance test (based on a

Z-test concerning two proportions, (40), section 5B) employing the

CCS and CSS test sets and the corresponding baseline systems

(19). Various levels of significance (a-values) were used for

calculating an absolute deviation with respect to the test set, being

considered as significantly better or worse than the baseline

systems. Due to the fact that a two-sided test is employed, the

a-values must be halved to derive the respective Z-score used to

calculate the p-value of a model fulfilling statistical significance for

both sides (40). Consequently, significantly outperforming the best

CCS baseline system (73.9% and 208 test set samples) at a

significance level of a ¼ 0:01 requires at least an absolute

improvement of 6:7%; for CSS (best baseline system with 72.1%

and 283 test set samples), the improvement required is 6:0%. Note

that Null-Hypothesis-Testing with p-values as criterion has been

criticised from its beginning; see the statement of the American

Statistical Association in Wasserstein and Lazar (41) and Batliner

et al. (42). Therefore, we provide this plot with p-values as a

service for readers interested in this approach, not as a guideline

for deciding between approaches.

Another way of assessing performance measures as for their

“uncertainty” is computing confidence intervals (CIs). Schuller

et al. (19) employed two different CIs: first, 1000� bootstrapping

for test (random selection with replacement) and UARs based on

the same model that was trained with Train and Dev; in the
Frontiers in Digital Health 04
following, the CIs for these UARs are given first. Then, 100�
bootstrapping for the corresponding combination of Train and

Dev; the different models obtained from these combinations were

employed to get UARs for test and subsequently, CIs; these results

are given in second place. Note that for this type of CI, the test

results are often above the CI, sometimes within and in a few cases

below, as can be seen in (19); obviously, reducing the variability of

the samples in the training phase with bootstrapping results on

average in somehow lower performance. For CCS with a UAR of

73.9%, the first CI was 66.0%–82.6%; the second one could not be

computed because this UAR is based on a fusion of different

classifiers. For CSS with a UAR of 72.1%, the CIs were 66.0%–

77.8% and 70.2%–71.1%, respectively. Both Figure 4 and the

spread of the CIs reported demonstrate the uncertainty of the

results, caused by the relatively low number of data points in the

test set.
Results and discussion

Figures 2 and 3 detail the rankings for the 19 teams which

submitted predictions for the test set. We congratulate (23) for

winning the COVID-19 Cough Sub-Challenge with an UAR of

75.9% on the held out test set.2 We note that for the COVID-19

Speech Sub-Challenge, no team exceeded the performance of the

baseline which scored 72.1% UAR on the held out test set. To

significantly outperform the baseline system for the cough

modality, with a significance level of a ¼ 0:1, as detailed in

Figure 4, would require an improvement of 6.7%, an improvement

which the winning submission fell short of by 4.7%.

For both Sub-Challenges, teams struggled to outperform the

baseline. Postulating why this could be the case one could suggest

one, or a combination, of the following: COVID-19 detection from

audio is a particularly hard task, the baseline score—being already

a fusion of several state-of-the-art systems for CCS—represents a

performance ceiling and that higher classification scores are not

possible for this dataset, or, as a result of the limited size of the

dataset, the task lends itself to less data hungry algorithms, such as

the openSMILE-SVM baseline models for CSS.

It is important to analyse the level of agreement of COVID-19

detection between participant submissions. This is shown

schematically in Figures 5 and 6. From these figures, we can see

that there are clearly COVID-19 positive cases which teams across

the board are able to correctly predict, but there are also positive

COVID-19 cases which all teams have missed. These findings are

reflected in the minimal performance increase of 0.3% and 0.8%

for cough and speech tasks, respectively, obtained when fusing n

best submission predictions through majority voting schemes. The
frontiersin.org
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FIGURE 4

Two-sided significance test on the COVID-19 Cough (A) and Speech (B) test sets with various levels of significance according to a two-sided Z-test.

FIGURE 3

Team performance on the held out test set for the COVID-19 Speech Sub-Challenge.

Coppock et al. 10.3389/fdgth.2023.1058163
results from fusing n best models using majority voting are detailed

in Figures A2 and A3 . This suggests that models from all teams are

depending on similar audio features when predicting COVID-19

positive cases.

Figures 5 and 6B,C detail the level of agreement across

submissions for curated subset of the test set, where participants

were selected if they were displaying at least one symptom (b) and

when they were displaying no symptoms (c). These figures can be

paired with Figure A1 which details the recall scores for positive

cases across these same curated test sets. From this analysis, it does

not appear that there was a trend across teams to perform
Frontiers in Digital Health 05
favourably on cases where symptoms were being displayed or vice

versa. While this does not disprove worries that these algorithms

are simply cough or symptom identifiers, it does not add evidence

in support of this claim.
Limitations

While this challenge was an important step in exploring the

possibilities of a digital mass test for COVID-19, it has a

number of limitations. A clear limiting factor of the challenge
frontiersin.org
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FIGURE 5

Schematic detailing the level of agreement between teams for each test instance for the COVID-19 Cough Sub-Challenge. Each row represents a team’s
submission results. The teams have been ordered by Unweighted Average Recall, from the bottom up (team Casanova et al.’s predictions represent the
highest scoring submission). Each column represents all teams predictions, across the competition, for one test instance. The test instances appear in the
order in which they are in the test set. (A) Details all the test instances, (B) details only the test instances which were experiencing symptoms at the time
of recording, and (C) details only the test instances which were experiencing no symptoms at the time of recording.

Coppock et al. 10.3389/fdgth.2023.1058163
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FIGURE 6

Schematic detailing the level of agreement between teams for each test instance for the COVID-19 Speech Sub-Challenge. Each row represents a team’s
submission results. The teams have been ordered by Unweighted Average Recall (UAR), from the bottom up (team yoshiharuyamamoto’s predictions
represent the highest scoring submission). Each column represents all teams’ predictions, across the competition, for one test instance. The test instances
appear in the order which they are in the test set. note: There are more test cases in the COVID-19 Speech Sub-Challenge than in the COVID-19 Cough
Sub-Challenge. (A) Details all the test instances, (B) details only the test instances which were experiencing symptoms at the time of recording, and (C)
details only the test instances which were experiencing no symptoms at the time of recording.

Coppock et al. 10.3389/fdgth.2023.1058163
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was the small size of the dataset. While many participants

addressed this through data augmentation and regularisation

techniques, it restricted the extent to which conclusions could

be taken from the results, particularly investigating teams’

performance on carefully controlled subsets of the data.

We look forward to the newly released COVID-19 sounds

dataset (21) which represents a vastly greater source of

COVID-19 samples.

A further limitation of this challenge is the unforeseen

correlation between low sample rate recordings, below 12 kHz,

and COVID-19 status. In fact all low sample rate recordings in

the challenge for both CCS and CSS were COVID-19 positive.

For CCS and CSS there were 30 and 37 low sample rate cases,

respectively. The reason for this is that at the start of the study

the label in the survey for COVID-19 negative was unclear, and

could have been interpreted as either “not tested” or “tested

negative.” For this reason no negative samples from the time

period were used. This can be seen in Figure 1A. This early

version of data collection also correlated with the study

allowing for lower sample rate recordings, a feature which later

was changed to restrict submissions to higher sample rates.

This resulted in all the low sample rate recordings being

COVID-19 positive. As can be seen in Figures A4, A5, A6 and

A7, teams’ trained models were able to pick up on the sample

rate bias, with most teams correctly predicting all the low

sample rate cases as COVID-19 positive. When this is

controlled for and low sample rate recordings are removed

from the test set, as shown in Figures A6 and A7, teams’

performances drop significantly. For the challenge baselines this

too was the case, with the fusion of baseline models for CCS

falling from 73.8% to 68.6% UAR and the opensmile-SVM

baseline for CSS dropping from 72.1% to 70.9% UAR. This is a

great example of the effect of overlooked bias which expresses

itself as an identifiable audio feature, leading to inflated

classification scores. We regret that this was not found earlier.

Inspecting Figure 1A) further, one will also realise that all the

COVID-19 negative individuals were collected in the summer

of 2020, one could argue that this ascertainment bias injected

further imbalance between COVID-19 negative and positive

individuals. An example of this is that individuals are much

less likely to have the flu in summer (43), resulting in

respiratory symptoms having an inflated correlation with

COVID-19 status in the collected dataset compared to the

general population. This has been shown to artificially boost

model performance at COVID-19 detection (44–46). In future

more factors, which can be a source of bias, should be

controlled for, namely in this case, age of participant,

gender, symptoms, location of recording and date of recording.

Matching on these attributes would yield more realistic

performance metrics.

As with most machine learning methods, it still remains

unclear how to interpret the decision making process at

inference time. This results in it being tricky to determine

which acoustic features the model is correlating with COVID-

19. Whether that be true, acoustic features caused by the

COVID-19 infection or other acoustic bias (15, 44). We also

note that this is a binary classification task, in that models
Frontiers in Digital Health 08
only had to decide between COVID-19 positive or negative.

This “closed word fallacy” (42) leads to inflated performance

as models are not tasked with discerning between confounding

symptoms such as heavy cold or asthma. Tasking models to

predict COVID-19 out of a wide range of possible conditions/

symptoms would be a harder task. The test set provided saw a

complete temporal overlap with the training set, in future it

would be nice to experiment with time disjoint test sets, as in

(44) to investigate whether the signal for COVID-19

changes over time. Collecting a dataset which yields a test set

with a higher proportion of COVID positive individuals is

also desirable.

In this challenge, participants were provided with the test set

recordings (without the corresponding labels). In future challenges,

test set instances should be kept private, requiring participants to

submit trained models along with pipeline scripts for inference.

Teams’ test set predictions can then be run automatically by the

challenge organisers. This will help in reducing the possibility of

overfitting and foul play. We note that there was no evidence of

foul play, e.g., training in an unsupervised manner on the test set,

in this challenge.

Another limitation of this challenge was the lack of meta data

that organisers could provide to participants. This tied teams’

hands to some extent in evaluating for themselves the level of

bias in the dataset and so their opportunity to implement

methods to combat it. This was not a desired feature. However,

we now point teams towards the newly open sourced COVID-

19 Sounds database (21) which also provides collected meta

data. It is this dataset from which a subset of samples was taken

for this challenge.
Conclusion

This challenge demonstrated that there is a signal in

crowdsourced COVID-19 respiratory sounds that allows for

machine learning algorithms to fit a classifier which achieves

moderate detection rates of COVID-19 in infected individuals’

respiratory sounds. Exactly what this signal is, however, still

remains unclear. Whether these signals are truly audio biomarkers

in respiratory sounds of infected individuals uniquely caused by

COVID-19 or rather identifiable bias in the datasets, such as

confounding flu like symptoms, is still an open question to be

answered next.
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Appendix

Here we present some results from ablation studies of teams’

performances through evaluating performance on curated subsets

of the test set. Figure A1 details the effect of controlling for

symptom cofounders on teams’ performance. Figures A6 and
FIGURE A1

Team performance on the full test set (NoControl) and two curated test sets
symptom (AnySymptoms) or were displaying no symptoms at all (NoSymptoms
are shown, calculated via the normal approximation method. (A) Correspond
Speech Sub-Challenge, CSS.
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A7 repeats this analysis however controlling for sample rate.

Figures A4 and A5 details the level of agreement between

teams for the low Figures A4A, A5A and high A4B, A5B

sample rate test cases. Figures A2 and A3 detail the

classification performance of a fusion of teams’ predictions on

the test set.
featuring only test instances where the participants either had at least one
). The metric reported is recall for positive cases. 95% confidence intervals
s to the COVID-19 Cough Sub-Challenge, CCS, and (B) the COVID-19
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FIGURE A2

The performance of the fusion model of n-best models for the COVID-19 Cough Sub-Challenge using majority voting.

FIGURE A3

The performance of the fusion model of n-best models for the COVID-19 Speech Sub-Challenge using majority voting.
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FIGURE A4

Schematic detailing the level of agreement as in Figure 5 with test instances
with either a low sample rate (below 12 kHz) (A) or high sample rate (above
12 kHz) (B).

FIGURE A5

Schematic detailing the level of agreement as in Figure 6 with test
instances with either a low sample rate (below 12 kHz) (A) or high
sample rate (above 12 kHz) (B).
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FIGURE A6

Team performance on two curated test sets from the COVID-19 Cough Sub-Challenge. (A) Controls for test samples with a sample rate of greater than 12 kHz
and (B) controls for test samples with a sample rate of 12 kHz and below. The metric reported is recall for positive cases. 95% confidence intervals are shown,
calculated via the normal approximation method.
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FIGURE A7

Team performance on two curated test sets from the COVID-19 Speech Sub-Challenge. (A) Controls for test samples with a sample rate of greater than 12 kHz
and (B) controls for test samples with a sample rate of 12 kHz and below. The metric reported is recall for positive cases. 95% confidence intervals are shown,
calculated via the normal approximation method.
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