
Received: 15 November 2021 Revised: 13 April 2022 Accepted: 2 June 2022

DOI: 10.1002/nla.2459

S P E C I A L I S S U E PA P E R

Local convergence of alternating low-rank optimization
methods with overrelaxation

Ivan V. Oseledets1 Maxim V. Rakhuba2 André Uschmajew3

1Skolkovo Institute of Science and
Technology, Moscow, Russia
2HSE University, Moscow, Russia
3Max Planck Institute for Mathematics in
the Sciences, Leipzig, Germany

Correspondence
André Uschmajew, Max Planck Institute
for Mathematics in the Sciences, 04103
Leipzig, Germany.
Email: uschmajew@mis.mpg.de

Funding information
Russian Science Foundation,
Grant/Award Number: 21-71-00119;
Ministry of Science and Higher Education
of the Russian Federation, Grant/Award
Number: 075-10-2021-068

Abstract
The local convergence of alternating optimization methods with overrelaxation
for low-rank matrix and tensor problems is established. The analysis is based on
the linearization of the method which takes the form of an SOR iteration for a
positive semidefinite Hessian and can be studied in the corresponding quotient
geometry of equivalent low-rank representations. In the matrix case, the optimal
relaxation parameter for accelerating the local convergence can be determined
from the convergence rate of the standard method. This result relies on a version
of Young’s SOR theorem for positive semidefinite 2 × 2 block systems.
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1 INTRODUCTION
We consider a low-rank matrix optimization problem of the form

min
rank(X)≤k

f (X), (1)

where f ∶ Rm×n → R is a smooth function on the space of real m × n matrices. It will be mostly assumed that f is
strongly convex. This generic problem appears in a large number of applications, where low-rank matrices serve as non-
linear model classes, such as in matrix recovery, or are employed for reducing numerical complexity when dealing with
large-scale matrices.

Since the constraint set admits the explicit parameterization X = UV⊤, the problem can be rewritten as

min
U∈Rm×k

, V∈Rn×k
F(U,V) = f (UV⊤). (2)

One of the basic methods for solving (2) is the alternating optimization (AO) method, which optimizes the factor matrices
U and V in an alternating manner. Conceptually, ignoring the question of unique solvability of subproblems, the method
looks as follows:

U𝓁+1 = argminU F(U,V𝓁),
V𝓁+1 = argminV F(U𝓁+1,V). (3)

While this is certainly a standard approach from the viewpoint of nonlinear optimization, where such a scheme is also
known as nonlinear Gauss–Seidel method, it is worth emphasizing that the special structure of low-rank problems is
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particularly amenable to it. This is due to the bilinearity of the parameterization UV⊤, which turns the subproblems of (3)
into optimization problems for the same initial function f , but on lower dimensional linear subspaces. Therefore, when
f is a quadratic function, this method is called the alternating least squares (ALS) method.

While the study of global convergence of the AO method (3) is usually difficult, its local convergence properties are
well-understood.1-3 The local analysis is based on the fact that the linearized version of the method at a critical point
(U∗,V∗) takes the form of a block Gauss–Seidel method for the Hessian ∇2F(U∗,V∗). Due to the intrinsic overparame-
terization of rank-k matrices by the representation UV⊤, the Hessian is at best positive semidefinite, but never positive
definite. The Gauss–Seidel error iteration matrix is not contractive on the null space of the Hessian, but it turns out that
this problem can be overcome by passing to the corresponding quotient geometry of equivalent low-rank representations
X = UV⊤. This is possible thanks to an invariance of the AO method under changes of the representation. In fact, this
invariance allows one to regard the method (3) as a well-defined iteration on the set of rank-k matrices.

In this work, we consider the acceleration of the local convergence of the AO method (3) by means of overrelaxation.
This is a classic idea in nonlinear optimization; see, for example, References 4-7 to mention some early works. Several
variants of such acceleration have been proposed for low-rank matrix problems, for example, for matrix completion.8,9 The
basic overrelaxation method that we consider has already been proposed in Reference 10 for the more general low-rank
tensor train (TT) format and in the matrix case reads as follows:

U𝓁+1 = (1 − 𝜔)U𝓁 + 𝜔 argminU F(U,V𝓁),
V𝓁+1 = (1 − 𝜔)V𝓁 + 𝜔 argminV F(U𝓁+1,V). (4)

Here𝜔 > 0 is a relaxation parameter, which sometimes is also called a shift. It can be observed numerically that a suitable
choice of the shift significantly improves the convergence speed.

Our goal is to study the local convergence of this iteration for low-rank optimization in a similar spirit as for the plain
AO method (3), which corresponds to the case 𝜔 = 1. This will be done in Section 2. The linearization of (4) at a critical
point (U∗,V∗) leads to a 2 × 2 block SOR method for the Hessian ∇2F(U∗,V∗). Using the fact that for 0 < 𝜔 < 2 and a
positive semidefinite Hessian with positive definite block diagonal the SOR error iteration is contractive on any subspace
complementary to the null space of the Hessian, we obtain local convergence results for this range of 𝜔. This result is
stated in Theorem 1.

It is then natural to ask for the optimal shift𝜔 achieving the fastest local convergence rate, which requires to minimize
the spectral radius of the SOR error iteration matrix. For positive definite 2 × 2 block systems this can be achieved using a
well-known theorem of Young. It is however possible to adjust the arguments to the positive semidefinite case, as will be
done in Lemma 1. This yields the expected, yet not entirely trivial, formula for the asymptotically optimal shift in terms
of the convergence rate of the standard AO method with 𝜔 = 1. The result is stated in Theorem 2. In practice, this means
that the optimal shift can be estimated adaptively and at practically zero cost from the observed convergence rate of the
standard method.

Of course, overrelaxation can also be applied to AO methods for low-rank tensor optimization. In Section 3, we focus
on the low-rank TT format as in Reference 10. Like low-rank matrix factorization, the TT decomposition is subject to an
intrinsic overparameterization which can be described by a simple group action in parameter space, but leads to formally
semidefinite Hessians in critical points. By passing to suitable quotient spaces, the local convergence of the method can
be established in essentially the same way as for low-rank matrices (Theorem 3). However, a main difference to the matrix
case is that the formula for the optimal shift cannot be made rigorous under reasonable assumptions, although it can still
serve as a useful heuristic.

In Section 4, we report on some numerical experiments that illustrate the advantage of using shifts in low-rank AO
methods, and validate our theoretical findings regarding the optimal shift in the matrix case. We also demonstrate the
adaptive procedure for choosing an almost optimal shift based on the observed convergence rate of the standard method.

2 ALTERNATING OPTIMIZATION WITH RELAXATION
FOR LOW-RANK MATRICES

In this section, we first formalize the basic AO iteration (3) for low-rank matrix problems and recall some of its basic
properties. We then proceed to the method with overrelaxation, establish its local convergence and determine the optimal
shift parameter.
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2.1 Standard AO method

Consider the scheme (3) and assume f to be strongly convex. Then the first argmin is uniquely defined if rank(V𝓁) = k,
since it corresponds to minimizing the strongly convex function f on a linear subspace of Rm×n which is the image of the
injective linear map U → UV⊤

𝓁 . Likewise, the second argmin is well-defined if rank(U𝓁+1) = k and returns the unique
minimum of f on the linear subspace V → U𝓁+1V⊤. Therefore, in some open and dense subsets both argmins define
smooth maps ̂S1 and ̂S2, respectively, such that

U𝓁+1 = ̂S1(V𝓁), V𝓁+1 = ̂S2(U𝓁+1). (5)

One full update of the method then takes the form of a fixed point iteration

(
U𝓁+1

V𝓁+1

)
= S

(
U𝓁

V𝓁

)
∶=

(
̂S1(V𝓁)

̂S2( ̂S1(V𝓁))

)
. (6)

The map S is well-defined and smooth on any open subset of

 = {(U,V) ∈ R
m×k ×R

n×k ∶ V and ̂S1(V) have full column rank k}.

In particular, any critical point (U∗,V∗) of F in (2) for which U∗ and V∗ have full column rank belongs to  and is a
fixed point of S. To see this, note that U → F(U,V∗) = f (UV⊤

∗ ) is strongly convex since U → UV⊤

∗ is injective. Since U∗
is a critical point of that function, it is the global minimum and hence ̂S1(V∗) = U∗. The argument for V∗ is the same.
Such a critical point of F possesses an open neighborhood in  in which S is well-defined and smooth. Conversely,
any fixed point (U∗,V∗) ∈  of S must be a critical point of F since it implies that U∗ is the global minimum of U →
F(U,V∗) and V∗ is the global minimum of V → F(U∗,V). Hence the partial gradients ∇U F(U∗,V∗) and ∇V F(U∗,V∗) are
both zero.

By passing from the initial constrained problem (1) to the factorized problem (2), we formally introduced an ambiguity
arising from the fact that the factorization X = UV⊤ of a rank-k matrix is not unique. In particular, X = UAA−1V⊤ for any
invertible k × k matrix A so that the function F has level sets of at least dimension k2 (when U,V have full column rank).
Therefore, a fixed point (U∗,V∗) ∈  of S is never locally unique. However, this issue of nonuniqueness is only a formal
one since one is ultimately interested in the sequence of generated matrices X𝓁 = U𝓁V⊤

𝓁 . Assuming rank(X𝓁) = k for all
𝓁, this sequence is not affected by any reparameterization (U𝓁 ,V𝓁) → (U𝓁A𝓁 ,V𝓁A−T

𝓁 ) with invertible matrices A𝓁 during
the iteration. This is due to the invariance properties

̂S1(VA−T) = ̂S1(V)A,
̂S2(UA) = ̂S2(U)A−T (7)

of the maps ̂S1 and ̂S2, which hold whenever U and V have full column rank. To see this, let U+ = ̂S1(V) and
Û+ = ̂S1(VA−T). Then by construction U+V⊤ and Û+A−1V⊤ are the unique minimizers of f on the linear subspaces
{UV⊤ ∶ U ∈ Rm×k} and {UA−1V⊤ ∶ U ∈ Rm×k}, respectively. Obviously both spaces are equal, hence U+V⊤ =
Û+A−1V⊤. Since V has full column rank, we obtain U+ = Û+A−1, the first identity in (7). The argument for ̂S2 is
analogous.

The above invariance of the AO method allows us to interpret it as a method

X𝓁+1 = S(X𝓁)

in the full matrix space Rm×n, or more precisely on the subset of matrices of rank at most k. This viewpoint has been taken
in Reference 3 and will be helpful in this work, too. From an algorithmic perspective, the AO viewpoint (6) is more useful
since it operates on the smaller matrices U and V instead of the full matrix X . Furthermore, the invariance with respect to
the described change of parameterization allows for a robust implementation of the AO method by orthogonalizing the
columns of U𝓁 and V𝓁 after every partial update, without affecting the generated sequence X𝓁 of matrices. This method
is a special case of Algorithm 1 with 𝜔 = 1.
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2.2 Overrelaxation

Instead of (5), we now consider the more general update rule with a shift,

U𝓁+1 = (1 − 𝜔)U𝓁 + 𝜔̂S1(V𝓁),

V𝓁+1 = (1 − 𝜔)V𝓁 + 𝜔̂S2(U𝓁+1), (8)

which corresponds to (4). For 𝜔 = 1, this iteration equals the standard AO method (5). By defining the map

S
𝜔

(
U
V

)
= (1 − 𝜔)

(
U
V

)
+ 𝜔

(
̂S1(V)

̂S2((1 − 𝜔)U + 𝜔̂S1(V))

)
, (9)

we can write (8) as a nonlinear fixed point iteration

(
U𝓁+1

V𝓁+1

)
= S

𝜔

(
U𝓁

V𝓁

)
. (10)

The map S
𝜔

is well-defined and smooth on any open subset of


𝜔
= {(U,V) ∈ R

m×k ×R
n×k ∶ V and (1 − 𝜔)U + 𝜔̂S1(V) have full column rank}.

Note that (U∗,V∗) ∈ 𝜔 is a fixed point of S
𝜔

if and only if (U∗,V∗) ∈  and (U∗,V∗) is a fixed point of S. In particular,
any critical point (U∗,V∗) of F in (2) such that U∗ and V∗ have full column rank belongs to 

𝜔
and is a fixed point of S

𝜔
.

Moreover, any such critical point possesses an open neighborhood in
𝜔

such that S
𝜔

is well-defined and smooth on this
neighborhood. Again, the converse is also true, that is, a fixed point (U∗,V∗) ∈ 𝜔 of S

𝜔
is a critical point of F.

The iteration (10) exhibits the same invariance under changes of representation as the standard AO method. Let
(U,V) ∈ 

𝜔
and (U+,V+) = S

𝜔
(U,V), then from (9) and (7) one verifies

S
𝜔

(
UA

VA−T

)
=

(
U+A

V+A−T

)
. (11)

Therefore, the generated sequence X𝓁 = U𝓁V⊤

𝓁 is essentially (if rank(X𝓁) = k for all 𝓁) invariant under changes of repre-
sentation during the iteration. In particular, QR decomposition can be used in numerical implementation for keeping the
argmin problems well-conditioned. The resulting method is denoted in Algorithm 1.

Algorithm 1. Low-rank AO with overrelaxation and QR

Data: V0 ∈ Rn×k, relaxation parameter 𝜔
for 𝓁 = 0, 1, 2,… do

U ← argmin
̂U∈Rm×k F( ̂U,V𝓁) U ← (1 − 𝜔)U𝓁 + 𝜔U, U = Q1R1 V ← argmin

̂V∈Rn×k F(Q1, ̂V) V ← (1 − 𝜔)V𝓁R⊤1 + 𝜔V ,
V = Q2R2 U𝓁+1 ∶= Q1R⊤2 , V𝓁+1 ∶= Q2

end

Since the goal of this work is a local convergence analysis of the fixed point iteration (10), it is important to observe
that the invariance under the group action also carries over to the asymptotic linear convergence rate of the method,
which depends on the eigenvalues of the derivative S′

𝜔

(U∗,V∗) at a fixed point (U∗,V∗) ∈ 𝜔. To see this invariance, it is
convenient to introduce the corresponding group action 𝜃A of GL(k) acting on Rm×k ×Rn×k via

A → 𝜃A ⋅

(
U
V

)
=

(
UA

VA−T

)
. (12)
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In this notation (11) reads

S
𝜔

(
𝜃A ⋅

(
U
V

))
= 𝜃A ⋅ S

𝜔

(
U
V

)
. (13)

For fixed A, (12) defines an invertible linear map 𝜃A on Rm×k ×Rn×k with 𝜃−1
A = 𝜃A−1 . Differentiating both sides of (13) it

then follows that

S′
𝜔

(
U∗A

V∗A−T

)
= 𝜃A ⋅ S′

𝜔

(
U∗

V∗

)
⋅ 𝜃−1

A . (14)

This shows that S′
𝜔

(U∗A,V∗A−T) has the same eigenvalues as S′
𝜔

(U∗,V∗) and allows us to study the local convergence rate
of the iteration (10) at any particular fixed point (U∗,V∗).

As for the standard AO method, the invariance property allows for an interpretation of the method (10) as an iteration

X𝓁+1 = S
𝜔
(X𝓁) (15)

on the manifold

k = {X ∈ R
m×n ∶ rank(X) = k},

where S
𝜔
∶  ⊆k → Rm×n is defined through

S
𝜔
(X) = 𝜏(S

𝜔
(U,V)), X = UV⊤

, (16)

with the map

𝜏(U,V) = UV⊤

.

Here the domain of definition of S
𝜔

should be contained in the image of ∩
𝜔

under 𝜏. In particular, let (U∗,V∗) ∈ 
be a fixed point of the map S (the standard AO method), that is, a critical point of F. Then S

𝜔
is well-defined and smooth

in some open neighborhood  ⊆k of X∗ = U∗V⊤

∗ and X∗ is a fixed point of S
𝜔

. This manifold viewpoint will be useful
in the local convergence analysis conducted in the next section.

2.3 Local convergence

Let X∗ = U∗V⊤

∗ ∈k be a fixed point of S
𝜔

. Then S
𝜔

locally maps tok and thus the derivative S′(X∗)maps the tangent
space TX∗k to itself. This provides the following local convergence criterion.

Proposition 1. Let f be strongly convex and (U∗,V∗) be a critical point of F in (2) with U∗,V∗ having full column rank k.
Then (U∗,V∗) is a fixed point of S

𝜔
and X∗ = U∗V⊤

∗ ∈k is a fixed point of S
𝜔

. Let S′
𝜔
(X∗) ∶ TX∗k → Rm×n denote the

derivative of S
𝜔

at X∗, and PX∗ ∶ Rm×n → TX∗k the tangent space projection. If for the spectral radius

𝜌
𝜔
= 𝜌(PX∗S

′
𝜔
(X∗)) < 1, (17)

then for X0 = U0V⊤

0 close enough to X∗ the iterates X𝓁 = U𝓁V⊤

𝓁 generated by Algorithm 1 converge to X∗ at an asymptotic
linear rate 𝜌

𝜔
.

To study the convergence criterion in more detail we investigate S′
𝜔
(X∗). For this we repeat some well-known com-

putations. We first consider the map S
𝜔

in parameter space. From (9), its derivative at (U∗,V∗) takes the form of a block
matrix

S′
𝜔

(
U∗

V∗

)
= (1 − 𝜔)

(
I 0
0 I

)
+ 𝜔

(
0 ̂S′1(V∗)

(1 − 𝜔) ̂S′2(U∗) 𝜔
̂S′2(U∗) ̂S′1(V∗)

)
,
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where we have used that (1 − 𝜔)U∗ + 𝜔̂S1(V∗) = U∗. Setting

L =

(
0 0

̂S′2(U∗) 0

)
, R =

(
0 ̂S′1(V∗)
0 0

)

one then verifies the identity

S′
𝜔

(
U∗

V∗

)
= (I − 𝜔L)−1[(1 − 𝜔)I + 𝜔R]. (18)

This linear operator can be interpreted as a block SOR error iteration matrix for the Hessian

H =

(
∇UU F(U∗,V∗) ∇UV F(U∗,V∗)
∇VU F(U∗,V∗) ∇VV F(U∗,V∗)

)

of F at (U∗,V∗), written in 2 × 2 block form. To see this, consider the usual decomposition

H = D + E + E⊤

with

D =

(
∇UU F(U∗,V∗) 0

0 ∇VV F(U∗,V∗)

)
, E =

(
0 0

∇VU F(U∗,V∗) 0

)
.

Assuming that the block diagonal part D is invertible and differentiating the equations

∇U F( ̂S1(V),V) = 0, ∇V F(U, ̂S2(U)) = 0 (19)

(which implicitly define ̂S1 and ̂S2), one finds that

̂S′1(V∗) = −[∇UU F(U∗,V∗)]−1∇UV F(U∗,V∗)

and

̂S′2(U∗) = −[∇VV F(U∗,V∗)]−1∇VU F(U∗,V∗).

In other words, L = −D−1E, R = −D−1E⊤, and

L + R = I − D−1H.

Using the expressions for L and R in (18), one obtains the alternative formula

S′
𝜔

(
U∗

V∗

)
= T

𝜔
∶= I − N−1

𝜔
H, N

𝜔
= 1
𝜔

D + E. (20)

We see from (20) that S′
𝜔

(U∗,V∗) equals the error iteration matrix T
𝜔

for the two-block SOR method for H. It is
well-known that T

𝜔
has spectral radius less than one if 0 < 𝜔 < 2 and H is positive definite. However, the latter is never

the case here. Since ∇F is constantly zero on the orbit 𝜃A ⋅ (U∗,V∗) (this follows from the chain rule by differentiating
F = F◦𝜃A for fixed A), the Hessian at critical points (U∗,V∗) ∈  has at least a k2-dimensional kernel ker H containing
the tangent space to the orbit. On ker H the matrix T

𝜔
acts as identity. However, if 0 < 𝜔 < 2, D is positive definite and

H is at least positive semidefinite, then by classic results it still holds that T
𝜔

is a contraction on any invariant subspace
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complementary to ker H; see, for example, Reference 11, Section 3 or Reference 12, Corollary 2.1. Specifically, as follows
from Reference 11, the space


𝜔
= N−1

𝜔
(ker H)⊥ (21)

is an invariant subspace of T
𝜔

, which splits the parameter space into a direct sum*

R
m×k ×R

n×k = ker H ⊕
𝜔
, (22)

and T
𝜔

is a contraction on
𝜔

.
At this point, we can exploit that we are actually interested in the convergence of the products X𝓁 = U𝓁V⊤

𝓁 . Under
the assumption that ker H equals the tangent space to the orbit 𝜃A ⋅ (U∗,V∗), any complementary subspace, such as

𝜔
,

satisfies the properties of a so-called horizontal space for the quotient manifold structure ofk. For us, this means the
following.

Proposition 2. Assume X∗ = U∗V⊤

∗ has rank k, H is positive semidefinite, dim(ker H) = k2 and a decomposition (22) holds.
Then the map 𝜏(U,V) = UV⊤ is a local diffeomorphism between a (relative) neighborhood of (U∗,V∗) in (U∗,V∗) +𝜔

and
a neighborhood of X∗ in the embedded submanifoldk ⊆ Rm×n.

Proof. The proof can be given without particular reference to quotient manifolds, but assuming knowledge that k
is a smooth embedded submanifold of dimension mk + nk − k2,13(Example8.14) and 𝜏 is a local submersion on k in a
neighborhood of (U∗,V∗) (it is not difficult to verify that 𝜏′(U∗,V∗) has rank mk + nk − k2). Then since 𝜏 is constant on
the 𝜃A-orbit of (U∗,V∗), its derivative vanishes on the tangent space to that orbit at (U∗,V∗), which is of dimension k2.
We already noted that ker H contains that tangent space, so if dim(ker H) = k2, then 𝜏′(U∗,V∗) vanishes on ker H. Hence,
due to (22), 𝜏′(U∗,V∗)must be a bijection between

𝜔
and the tangent space TX∗k. The assertion follows by the inverse

function theorem. ▪

We are now in the position to formulate a local convergence result for the iteration (15).

Theorem 1. Let f be strongly convex and (U∗,V∗) be a critical point of F in (2) with U∗,V∗ having full column rank k.
Assume that the Hessian H = ∇2F(U∗,V∗) is positive semidefinite and dim(ker H) = k2. Fix 0 < 𝜔 < 2. Then for X0 = U0V⊤

0
close enough (this may depend on 𝜔) to X∗ = U∗V⊤

∗ Algorithm 1 is well-defined and the iterates X𝓁 = U𝓁V⊤

𝓁 converge to X∗
at an asymptotic linear rate

𝜌
𝜔
= lim sup

𝓁→∞
||X𝓁 − X∗||1∕𝓁 < 1,

where 𝜌
𝜔

is the spectral radius of T
𝜔

on
𝜔

.

The convergence rate 𝜌
𝜔

is determined in the next section. We stated the above result separately because its proof can
be easily generalized to alternating optimization methods for low-rank tensor formats that admit a similar invariance
under a group action. This will be outlined for the TT format in Section 3.

Proof. Since V∗ has full column rank, the linear map U → UV⊤

∗ is injective and hence the restricted map U → F(U,V∗) =
f (UV T

∗ ) is strongly convex. Therefore, ∇UU F(U∗,V∗) is positive definite. Likewise, ∇VV F(U∗,V∗) is positive definite, so
that the block diagonal part D of H is positive definite. As a result, the decomposition (22) of the parameter space applies
and T

𝜔
is a contraction on its invariant subspace

𝜔
. In a neighborhood of X∗ ink the map S

𝜔
in (16) can be written as

S
𝜔
= 𝜏◦S

𝜔
◦𝜏−1

,

where we have restricted 𝜏 to the affine subspace (U∗,V∗) +𝜔
. Therefore, by chain rule,

S′
𝜔
(X∗) = [𝜏′(U∗,V∗)]◦T

𝜔
◦[𝜏′(U∗,V∗)]−1

. (23)

By Proposition 2, the derivative 𝜏′(U∗,V∗) is an isomorphism between
𝜔

and TX∗k. Due to (23), this implies that the
convergence criterion (17) in Proposition 1 is satisfied. ▪
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8 of 15 OSELEDETS et al.

Remark 1. The assumptions that H is positive semidefinite and dim(ker H) = k2 already imply by themselves that D is
positive definite. Indeed, as noted in the proof of Proposition 2, dim(ker H) = k2 means that ker H equals the tangent
space to the 𝜃A-orbit of (U∗,V∗), which however does not contain elements of the form (U, 0) or (0,V) (this can be seen
from (12)). This allows to define a nonlinear SOR process in a neighborhood of such a critical point based on the implicit
definitions (19) of ̂S1 and ̂S2 even when f is not strongly convex; compare Reference 6, Theorem 10.3.5.

To get a better intuition for the assumptions in the theorem, it is useful to write the Hessian as a bilinear form

∇2F(U∗,V∗)[h, h] = ⟨𝜏′(U∗,V∗)[h],∇2f (X∗) ⋅ 𝜏′(U∗,V∗)[h]⟩ + ⟨∇f (X∗), 𝜏′′(U∗,V∗)[h, h]⟩,
where h = (𝛿U, 𝛿V). If f is strictly convex, then the first term is nonnegative and equal to zero if and only
if 𝜏′(U∗,V∗)[h] = 0, that is, if h is in the tangent space to the 𝜃A-orbit at (U∗,V∗). Thus, an important situation in which
the assumptions of the theorem are satisfied is when ∇f (X∗) = 0, that is, when X∗ = U∗V⊤

∗ is a global minimum of f .
In Section 4.1, we conduct some numerical experiments for a matrix completion problem (32) admitting such a global
minimum X∗ = U∗V⊤

∗ with∇f (X∗) = 0. In this application, however, f is only convex, but not strictly convex. Then in order
to satisfy the assumptions of the theorem at X∗ one would need that the tangent space TX∗k (the image of 𝜏′(U∗,V∗))
does not intersect the null space of ∇2f (X∗) = PΩ, but we will not investigate this condition in detail.

2.4 Asymptotically optimal relaxation

It is well-known that under certain assumptions the relaxation parameter 𝜔 in the linear SOR method can be optimized
using a theorem of Young; see, for example, Reference 14, Section 6.2 or Reference 15, Section 4.6.2. This theory is usually
presented for positive definite systems. However, for 2 × 2 block systems it is possible to adjust the arguments to the
positive semidefinite case.

Lemma 1. Let H = D + E + E⊤ ∈ Rp×p be a positive semidefinite 2 × 2 block matrix with positive definite block diagonal D
and such that 1

𝜔

D + E is invertible for any 0 < 𝜔 < 2. Assume q = dim(ker H) < p∕2. Let 𝜎(I − D−1H) denote the spectrum
of I − D−1H, then

𝛽 ∶= max{|𝜇| ∶ 𝜇 ∈ 𝜎(I − D−1H) ⧵ {±1}} < 1.

The matrix T
𝜔
= I − N−1

𝜔

H, where N
𝜔
= 1

𝜔

D + E, induces a decomposition (22) into two invariant subspaces and the spectral
radius 𝜌

𝜔
of T

𝜔
on

𝜔
equals

𝜌
𝜔
=
⎧⎪⎨⎪⎩

1 − 𝜔 + 1
2
𝜔

2
𝛽

2 + 𝜔𝛽
√

1 − 𝜔 + 1
4
𝜔

2
𝛽

2
, if 0 < 𝜔 ≤ 𝜔opt,

𝜔 − 1, if 𝜔opt ≤ 𝜔 < 2,

where

𝜔opt =
2

1 +
√

1 − 𝛽2
> 1. (24)

The value of 𝜌
𝜔

is minimal for 𝜔 = 𝜔opt. It holds that 𝛽2 = 𝜌1 is the spectral radius for the standard AO method with 𝜔 = 1
(on its invariant subspace1).

Proof. The decomposition (22) into invariant subspaces has already been verified (see Endnote *). We follow the argu-
ments in the proof of Theorem 4.27 in Reference 15. There it is shown that the eigenvalues 𝜇 of I − D−1H and 𝜆 of T

𝜔
are

related via

𝜆 = 1 − 𝜔 + 1
2
𝜔

2
𝜇

2 ± 𝜔𝜇
√

1 − 𝜔 + 1
4
𝜔

2
𝜇

2
. (25)

Indeed, note that under the given assumptions I − D−1H = −D−1(E + E⊤) is a two-cyclic matrix and has only real
eigenvalues, of which the nonzero ones come in pairs ±𝜇. By (25), both 𝜇 and −𝜇 create a same pair of eigenvalues 𝜆.
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OSELEDETS et al. 9 of 15

Eigenvalues 𝜇 = 1 of I − D−1H must belong to eigenvectors in ker H. Therefore, 𝜇 = 1 and 𝜇 = −1 both have multiplic-
ity q. They yield eigenvalues 𝜆 = 1 and 𝜆 = (1 − 𝜔)2 of T

𝜔
. Since eigenvectors of T

𝜔
with 𝜆 = 1 must belong to ker H,

we conclude that the restriction of T
𝜔

to the invariant subspace 
𝜔

has an eigenvalue (1 − 𝜔)2 and its other eigenval-
ues are generated from formula (25) with |𝜇| ≠ 1. Since 2q < p such 𝜇 must exist. Rewriting the eigenvalue equation
(I − D−1H)x = 𝜇x in the two ways

Hx = (1 − 𝜇)Dx, (2D −H)x = (1 + 𝜇)Dx,

and using a special property of 2 × 2 block matrices that H and 2D −H have the same eigenvalues, we obtain |𝜇| ≤ 1 since
both H and 2D −H are positive semidefinite and D is positive definite. This shows 𝛽 < 1.

Consider eigenvalues 𝜇 of I − D−1H with |𝜇| < 1. If 𝜔 ≥ 𝜔opt, then for such 𝜇 the expression under the square root in
formula (25) is always negative. Hence they generate pairs of conjugate complex eigenvalues 𝜆, but one verifies that they
all have the same modulus |𝜆| = |1 − 𝜔|, independent from |𝜇|. Clearly |1 − 𝜔| > (1 − 𝜔)2 so that the asserted formula
for 𝜌

𝜔
is proven for 𝜔 ≥ 𝜔opt. When 0 < 𝜔 < 𝜔opt the expression under the square root in (25) may be negative or not. If

it is negative, we have already seen that |𝜆| = |1 − 𝜔| is generated. If it is nonnegative, which in particular is the case for
𝜇 = ±𝛽, the corresponding 𝜆 with the larger absolute value is

𝜆 = 1 − 𝜔 + 1
2
𝜔

2
𝜇

2 + 𝜔 |𝜇|
√

1 − 𝜔 + 1
4
𝜔

2
𝜇

2

(since the sum before ± in (25) then is nonnegative, too). This expression is maximized for 𝜇 = ±𝛽 and also is then larger
than |1 − 𝜔| on the interval 0 < 𝜔 < 𝜔opt. The statements of the lemma follow. ▪

Remark 2. In the setting of the lemma one always has q = dim(ker H) ≤ p∕2, but (if p is even) equality q = 2p could
in principle hold. It is then interesting to note that in this case 𝜌

𝜔
= (1 − 𝜔)2, which is minimized for 𝜔 = 1, yielding a

superlinear convergence rate. However, this case is not relevant in the context of our work, where p = km + kn with a
rank k < min(m,n). In the following theorem, we assume q = k2 so that q < p∕2 is satisfied.

Applying Lemma 1 in the context of Theorem 1 immediately provides our main result on the asymptotically optimal
choice of the shift 𝜔 for Algorithm 1.

Theorem 2. Let f be strongly convex and (U∗,V∗) be a critical point of F in (2) with U∗,V∗ having full column rank
k < min(m,n). Assume that the Hessian H = ∇2F(U∗,V∗) is positive semidefinite and dim(ker H) = k2. Let 𝜌1 < 1 be the
asymptotic linear convergence rate of the standard AO method with 𝜔 = 1. Fix 0 < 𝜔 < 2. Then for X0 = U0V⊤

0 close enough
(this may depend on𝜔) to X∗ = U∗V⊤

∗ Algorithm 1 is well-defined and the iterates X𝓁 = U𝓁V⊤

𝓁 converge to X∗ at an asymptotic
linear rate 𝜌

𝜔
< 1 given in Lemma 1 with 𝛽2 = 𝜌1. The optimal asymptotic rate is achieved for

𝜔opt =
2

1 +
√

1 − 𝛽2
.

In practice, the simplest approach for approximating𝜔opt adaptively is by running the standard method with𝜔 = 1 and
estimating 𝛽2 ≈ 𝜌1 based on its numerically observed convergence rate. The efficiency of this approach will be illustrated
in Section 4.

3 LOW-RANK TENSOR PROBLEMS

Clearly, the nonlinear SOR method can be applied to functions with more than two block variables. In low-rank tensor
optimization one frequently considers problems of the form

min F(U1
, … ,UD) = f (𝜏(U1

, … ,UD)), (26)

where now f is a smooth function on a tensor space Rn1×···×nd , and 𝜏 ∶ 1 × · · · × D → Rn1×···×nd is a multilinear map
parameterizing a low-rank tensor format. Such a problem is amenable to alternating optimization since the update for a
single block variable U𝜇 is just an optimization problem for the function f , but on a linear subspace of Rn1×···×nd .
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10 of 15 OSELEDETS et al.

As an important example, we mention optimization in the TT format.16 Here D = d and

𝜏 ∶  ∶= R
n1×k1 ×R

k1×n2×k2 × · · · ×R
kd−2×nd−1×kd−1 ×R

kd−1×nd → R
n1×···×nd

is defined via

X = 𝜏(U1
, … ,Ud) ⇔ X(i1, … , id) = U1(i1, ∶)U2(∶, i2, ∶) · · ·Ud(∶, id), (27)

which are matrix products of corresponding slices in the so called TT cores U𝜇 ∈ R
k
𝜇−1×n

𝜇

×k
𝜇 (one fixes k0 = k1 = 1). The

minimal possible values (k1, … , kd−1), which determine the sizes of the TT cores, such that such a decomposition is possi-
ble are called the TT-ranks of tensor X . Alternating optimization methods form the basis for the majority of computational
methods in the TT format.17

An AO method with relaxation for (26) takes the form

U1
𝓁+1 = (1 − 𝜔)U

1
𝓁 + 𝜔̂S1(U2

𝓁 , … ,Ud
𝓁),

⋮

U𝜇

𝓁+1 = (1 − 𝜔)U
𝜇

𝓁 + 𝜔̂S𝜇(U
1
𝓁+1, … ,U𝜇−1

𝓁+1 ,U
𝜇+1
𝓁 , … ,Ud

𝓁),

⋮

Ud
𝓁+1 = (1 − 𝜔)U

d
𝓁 + 𝜔̂Sd(U1

𝓁+1, … ,Ud−1
𝓁+1), (28)

where the ̂S
𝜇

return minimizers (or critical points) of the restricted functions U𝜇 → F(… ,U𝜇

, …) with the other block
variables being fixed. In this form, the method has been proposed for the TT format in Reference 10. Under suitable
assumptions such an iteration defines a smooth map S

𝜔
from an open subset of 1 × · · · × D to Rn1×···×nd for which a

similar fixed point analysis as in the matrix case can be conducted. In the following, we sketch this for the TT format, but
the ideas can be applied to general tree tensor network formats such as the Tucker or hierarchical Tucker format. We will
make use of several well-known properties of the TT format, in particular the quotient manifold structure of tensors of
fixed TT-rank and the orbital invariance of AO methods. Most of the related details can be found in References 2 and 18.

For the TT format (27), we assume that k = (k1, … , kd−1) is chosen such that tensors of TT-rank k exist. Then in fact
on a dense and open subset ′ of the map 𝜏 maps to tensors of fixed TT-rank k. For convenience we will use the notation
U = (U1

, … ,Ud) for the elements in  . As in the matrix case, 𝜏 in (27) is invariant under a group action, namely,

 = GL(k1) × · · · × GL(kd−1) ∋ A = (A1, … ,Ad−1) → 𝜃A ⋅U,

which inserts the product A
𝜇

A−1
𝜇

between the matrices U𝜇(∶, i
𝜇
, ∶) and U𝜇+1(∶, i

𝜇+1, ∶) in (27), that is, the slices of the TT
cores are transformed according to

U𝜇(∶, i
𝜇
, ∶)→ A−1

𝜇−1U𝜇(∶, i
𝜇
, ∶)A

𝜇
(29)

(here A0 = Ad = 1). The corresponding restriction of 𝜏 to the quotient manifold ′∕ is a diffeomorphism onto the setk
of tensors of fixed TT-rank k, which is an embedded submanifold of Rn1×···×nd of dimension dim(k) = dim() − dim().
Notably, let U ∈  ′, then 𝜏′(U) = 0 on the tangent space of the orbit 𝜃A ⋅U at U. On any complementary subspace to
that tangent space, 𝜏′(U) is a bijection from to the tangent space ofk at 𝜏(U).

Assume again that f is smooth and strongly convex. Then any critical point U∗ of the function F = f◦𝜏 that lies in  ′
is a fixed point of the iteration (28) since the restricted linear maps U𝜇 → 𝜏(U1

∗ , … ,U𝜇

, … ,Ud
∗ ) are injective so that the

corresponding restriction U𝜇 → F(U1
∗ , … ,U𝜇

, … ,Ud
∗ ) is strongly convex. Moreover, the whole process is well-defined

in some neighborhood of (the orbit of) U∗ where it can be written as

U𝓁+1 = S
𝜔
(U𝓁)

with a smooth map S
𝜔

. A key observation to make is that the maps ̂S1, … ,
̂Sd in (28) that realize the updates of single TT

cores exhibit an analogous compatibility with the group action as in (7) for the matrix case, namely

̂S
𝜇
(𝜃A ⋅U) = A−1

𝜇−1
̂S
𝜇
(U)A

𝜇
,
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OSELEDETS et al. 11 of 15

where the matrix product is understood slice-wise as in (29) (and we slightly abused notation since ̂S
𝜇

does not depend
on U𝜇). It entails a corresponding invariance

S
𝜔
(𝜃A ⋅U) = 𝜃A ⋅ S

𝜔
(U) (30)

of a full update loop, in analogy to (13). This allows us to regard (28) as a well-defined iteration

X𝓁+1 = S
𝜔
(X𝓁)

on the manifoldk, at least locally in a neighborhood of 𝜏(U∗). From a practical viewpoint, the invariance (30) admits
to change the TT representation in every substep of (28) in order to make the restricted linear maps U𝜇 → 𝜏(… ,U𝜇

, …)
orthogonal and improve numerical stability. We refer to References 2 and 17 for details on orthogonalization of substeps.

Based on these similarities to the matrix case, one can proceed in almost the same way as in Section 2. Let U∗ ∈  ′
be a critical point of F, that is, ∇F(U∗) = 0. Due to the orbital invariance of F, the Hessian H = ∇2F(U∗) has a kernel of
dimension at least dim() since it contains the tangent space to the orbit at U∗. However, in the block decomposition

H = D + E + E⊤ (31)

into a block diagonal part D (corresponding to the block variables U1
, … ,Ud) and lower block triangular part E, the

block matrix D is positive definite since f is strongly convex.† The derivative of S
𝜔

then again takes the form of an SOR
error iteration matrix

T
𝜔
= I − N−1

𝜔
H, N

𝜔
= 1
𝜔

D + E,

similar to (20); see, for example, Reference 6, Theorems 10.3.4 and 10.3.5 for the derivation. For 0 < 𝜔 < 2, a decomposi-
tion  = ker H ⊕

𝜔
as in (22) applies and T

𝜔
is a contraction on the invariant subspace

𝜔
if H is positive semidefinite.

Using the same proof as for Theorem 1, we obtain the analogous local convergence result for TT optimization. Recall that
we assume that k is properly chosen so that 𝜏 maps the open and dense subset  ′ to the manifoldk.

Theorem 3. Let U∗ ∈  ′ be a critical point of function F in (26) where f is strongly convex. Assume that the Hessian
H = ∇2F(U∗) is positive semidefinite and dim(ker H) = dim() = k2

1 + · · · + k2
d−1. Fix 0 < 𝜔 < 2. Then for X0 = 𝜏(U0) close

enough (this may depend on 𝜔) to X∗ = 𝜏(U∗) the iteration (28) is well-defined and the iterates X𝓁 = 𝜏(U𝓁) converge to X∗
at an asymptotic linear rate

𝜌
𝜔
= lim sup

𝓁→∞
||X𝓁 − X∗||1∕𝓁 < 1,

where 𝜌
𝜔

is the spectral radius of T
𝜔

on
𝜔

.

While so far everything looks conceptually almost identical to the matrix case, a major difference arises when pro-
ceeding to determine the optimal shift parameter 𝜔. It is not clear whether Lemma 1 can be generalized. This is in fact
already an issue with the linear SOR method with more than two blocks for positive definite systems, since certain condi-
tions on the decomposition (31) of H are required in order to derive a formula like (25) for the eigenvalues of T

𝜔
; compare

Reference 15, Section 4.6. In the matrix case, the fact that E + E⊤ is two-cyclic makes this possible but for more than two
block variables assuming such conditions on E does not appear very reasonable, especially when taking into account that
the critical point (U∗,V∗) and hence its Hessian are not given a priori. Moreover, even if the formula (25) would apply,
one would need that the eigenvalues of the Jacobi error iteration matrix I − D−1H have absolute value at most one, but
for a block decomposition (31) with more than two blocks this does not follow from the positive definiteness of D alone.
Thus, for the TT format the estimation of an optimal parameter 𝜔opt from formula (24) remains a heuristic.

4 NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to illustrate the benefit of overrelaxation in low-rank
optimization.
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12 of 15 OSELEDETS et al.

4.1 Matrix completion problem

First, we apply the proposed AO overrelaxation scheme in Algorithm 1 to the following nonconvex formulation of a
low-rank matrix completion problem:

min
U∈Rm×k

,V∈Rn×k
F(U,V) = 1

2
‖‖‖PΩ(A − UV⊤)‖‖‖2

F
. (32)

Here Ω is a given set of index pairs, and the linear operator PΩ ∶ Rm×n → Rm×n is defined as

(PΩ(X))ij =

{
xij, (i, j) ∈ Ω,
0, otherwise.

In our experiments, the set Ω consists of randomly generated index pairs. We set m = n and choose A to be a random
rank-k matrix, that is, A = U∗V⊤

∗ , where U∗,V∗ ∈ Rn×r are random matrices with each element sampled from a standard
Gaussian distribution. The number of sampled entries |Ω| is defined by an oversampling parameter OS ≥ 1,

|Ω| = OS ⋅ (2nk − k2),

since we want |Ω| to be larger than 2nk − k2 = dim(k), which is the number of essential degrees of freedom for an n × n
matrix of rank k. In the experiments OS = 3.

In Figure 1, we present the convergence plots for an experiment with n = 2000 for several choices of 𝜔 and different
ranks k. We report the relative residuals

err𝓁 =
‖‖‖PΩ(A − U𝓁V⊤

𝓁 )
‖‖‖F‖PΩ(A)‖F
, (33)

where the sequence (U𝓁 ,V𝓁) is generated by Algorithm 1 with a shift parameter 𝜔. The only difference with Algorithm 1
is that we always start with 𝜔 = 1 (standard ALS) and only turn on the shift after the convergence has stabilized, in this
experiment usually after 12 iterations. The optimal shift 𝜔opt from (24) depends on the convergence rate 𝛽2 = 𝜌1 of the
standard AO method, which is estimated while running the iteration with 𝜔 = 1 using

𝛽

2 ≈
√

err𝓁+2

err𝓁
. (34)

As expected, using overrelaxation accelerates the convergence of the ALS method if𝜔 is chosen properly. We note that
the additional computations arising from the overrelaxation scheme come in asymptotically negligible cost as compared

F I G U R E 1 Relative residuals (33) of Algorithm 1 for the completion problem (32) with respect to the number of outer iterations using
various shift parameters 𝜔 for rank k = 30 (left) and for rank values k = 15, 30 (right). The parameter 𝜔 = 1 corresponds to the standard ALS
method, while parameters 𝜔 ∈ (1, 2) represent the version of the iteration with overrelaxation. The 𝜔 ≈ 𝜔opt case corresponds to the
choice (24) with 𝛽2 estimated using (34).
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with the basic ALS. In turn, the proposed approach leads to a significant reduction of the total number of iterations for
achieving a high accuracy.

4.2 Low-rank solution of the Lyapunov equation

Consider the Lyapunov equation

AX + XA⊤ = B, A,B ∈ R
n×n
, (35)

where X ∈ Rn×n is a matrix to be found. In case of a symmetric positive definite matrix A, Equation (35) represents the
optimality condition for the strongly convex optimization problem

min
X∈Rn×n

f (X) = 1
2
⟨AX + XA⊤

,X⟩F − ⟨B,X⟩F .

A rank-k approximation to the solution is, therefore, obtained by solving the problem

min
U,V∈Rn×k

F(U,V) = f
(

UV⊤

)
instead, which is of the form (2). For this we employ the proposed overrelaxation algorithm.

In the experiment, we choose A = (n + 1)2 tridiag(−1, 2,−1), set n = 256 and generate the right-hand side B = AX∗ +
X∗A⊤ from a specified solution X∗. Specifically, we choose k = 2 and generate the second and the third singular values
of X∗ such that their ratio equals to 0.99, which is similar to experiments conducted in Reference 3. There it has been
numerically observed that such a large ratio at the target singular value can lead to slow convergence of the standard ALS
method.

Due to the fact that X∗ cannot be approximated with high accuracy using k = 2, the function values f (X) will not
converge to zero and hence cannot be taken as an appropriate error measure. Instead, we compute the values

proj_err𝓁 =
||PX𝓁∇f (X𝓁)||F||PX𝓁 (B)||F =

||PX𝓁
(

AX𝓁 + X𝓁A⊤ − B
) ||F||PX𝓁 (B)||F , X𝓁 = U𝓁V⊤

𝓁 , (36)

where PX𝓁 denotes the orthogonal projection operator to the tangent space of the manifoldk of fixed rank-k matrices
at X𝓁; see, for example, Reference 19. This reflects the fact that the method can be regarded as a minimization method
on that manifold. Similar to (34), we can then use these values for approximating the optimal shift parameter 𝜔opt using
(24) with 𝛽2 estimated from

𝛽

2 ≈

√
proj_err𝓁+2

proj_err𝓁
. (37)

In Figure 2, we plot the values of proj_err𝓁 against the number of outer iterations 𝓁 for several values of shifts 𝜔,
including the basic ALS and the approximated optimal shift. In all cases, the shift is activated after 50 iterations. All
considered shifts lead to convergence improvement with the shift that approximates the optimal one being the best.

4.3 Linear systems in the quantized TT format

Finally, we test our approach for solving linear systems in the TT format. In particular, we apply the so-called quan-
tized TT (QTT) format20,21 to solve Equation (35) by fixing n = 2d, d = 12, and by representing X ∈ R2d×2d as order-2d
tensors in R2×···×2 using reshape in the lexicographical order. These tensors are then further restricted to the TT format
with the TT-rank equal to (4, 4, … , 4) (this choice of ranks led to a much slower convergence of the ALS method as com-
pared to other rank values). The right-hand side B was selected to be a matrix of all ones, which trivially admits a QTT
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14 of 15 OSELEDETS et al.

F I G U R E 2 Relative residuals (36) of Algorithm 1 for the low-rank solution of a Lyapunov equation (35) with respect to the number of
outer iterations using various shift parameters 𝜔. Here k = 2. The parameter 𝜔 = 1 corresponds to the standard ALS method, while
parameters 𝜔 ∈ (1, 2) represent the version of the iteration with overrelaxation. The 𝜔 ≈ 𝜔opt case corresponds to the choice (24) with 𝛽2

estimated using (37).

F I G U R E 3 Maximal (within one ALS sweep) relative local residual with respect to the number of outer iterations of the QTT ALS
method for solving a Lyapunov equation (35) using various shifts 𝜔. The QTT ranks are (4, … , 4). The parameter 𝜔 = 1 corresponds to the
standard QTT ALS method, while parameters 𝜔 ∈ (1, 2) represent the iteration with overrelaxation. The 𝜔 ≈ 𝜔opt case corresponds to (24)
with 𝛽2 estimated from the standard ALS method, even though for tensor problems there is no theoretical guarantee that this choice is
actually close to optimal. Shifts are activated after 15 iterations.

representation with all TT-ranks equal to one. Note that all computations were performed directly in the TT format, that
is, no full tensors were formed.

As an error measure err𝓁 we take the maximum relative norm of all local residuals within one sweep of the stan-
dard ALS.22 Based on this error we estimate 𝛽2 and use the same formula (34) for 𝜔opt, but as noted in Section 3 there
is no theoretical guarantee that this formula provides the optimal shift parameter in the tensor case. Nevertheless, the
results from Figure 3 suggest that this choice leads to nearly the fastest convergence among the considered choices
of shifts.
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ENDNOTES
∗Obviously,

𝜔
is an invariant subspace of T

𝜔
and has the correct dimension. To see that it is complementary to ker H, note that any x ∈

𝜔

satisfies N
𝜔

x ∈ (ker H)⊥. If x ∈ ker H, one verifies 0 = ⟨x,N
𝜔

x⟩ = (
1
𝜔

− 1
2

) ⟨x,Dx⟩, which under the given assumptions implies x = 0.
†As in Remark 1, this also follows from the assumptions that H is positive semidefinite and dim(ker H) = dim(), since the tangent space to
the orbit at U∗ ∈  ′ does not contain elements of the form (0, … , 0,U𝜇

, 0, … , 0).
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