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Abstract
A modification of standard linear iterative methods for the solution of linear equations is
investigated aiming at improved data-sparsity with respect to a rank function. The conver-
gence speed of the modified method is compared to the rank growth of its iterates for certain
model cases. The considered general setup is common in the data-sparse treatment of high
dimensional problems such as sparse approximation and low rank tensor calculus.

Keywords Linear iterative methods · High-dimensional equations ·
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1 Introduction

In this work we investigate modifications of linear fixed-point iterations for computing
approximate solutions of a linear equation

Au = f (1.1)

in a Banach space V. A standard linear iterative method for solving (1.1) takes the form

um+1 = Mum + Nf (1.2)

and corresponds to a linear fixed-point equation

u = Mu + Nf . (1.3)

The matrix M is called the iteration matrix of the method. When (1.3) is related to (1.1)
via M = I − NA, then N or its inverse is called the preconditioner of A. If the choice
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of N is a concrete function of A, then this function defines a class of iterative solvers for
all (invertible) A. For instance, for the Jacobi method N is the inverse of the diagonal part
of A. In other cases it may be a polynomial of A, and so on. However, in this work we
will make direct assumptions on the properties of M and Nf , which may or may not be
realizable for a given A. Hence we take the fixed-point problem (1.3) as the starting point
of our considerations.

In a practical implementation, if the dimension of V is very large or (in principle) infinite,
the use of data-sparse representations of its elements is required for storing the iterates
and performing the matrix-vector products. An example that motivates our work is low-
rank matrix and tensor formats which can be used for the numerical treatment of high-
dimensional problems, and have found many applications in scientific computing [5, 13, 16,
17, 19]. In these formats the numerical complexity for storing vectors and performing basic
linear algebra operations is typically captured by one or several rank functions, rank : V →
N ∪ {+∞}. These rank functions are usually sub-additive

rank(u + v) ≤ rank(u) + rank(v),

and satisfy rank(0) = 0. More generally, such a sub-additive rank function may arise from
a generating set D ⊆ V, typically called a dictionary, by defining rank(u) for u �= 0 as
the minimal number of elements from D needed to write u as a linear combination, or
+∞ if u is not in the finite span. The goal is then to find possibly sparse, that is low-
rank representations of a sought solution in the dictionary. This very general concept of
expansion in dictionaries occurs frequently in nonlinear approximation, and covers classical
sparsity (then the dictionary consists of unit vectors) or more general best M-term approxi-
mation problems. For low-rank matrices or tensors the dictionary consists of all elementary
tensors. Of course, when using data-sparse representations with respect to a dictionary,
it is implicitly assumed that the true solution of the problem admits accurate ‘low-rank’
approximations, but verifying this analytically in advance can be difficult depending on the
application. Also note that in many applications the choice of the dictionary is not only
motivated by reducing the numerical complexity, but has some well defined and problem
dependent purpose for revealing the structure, patterns, principal subspaces etc. of some
measured data.

In this paper we investigate the rank accumulation in iterative methods like the linear
fixed-point iteration (1.2) in relation to its convergence speed. When looking at (1.2) we see
that a rank increase occurs due to two operations: the application of the operator M and the
addition of Nf . To deal with the first we assume a multiplicative model, in which the rank
of Mum (and typically also the cost of forming Mum) is proportional to the rank of um, that
is, rank(Mum) ≤ μ1rank(um). Then

rank(um+1) ≤ μ1 rank(um) + rank(Nf ). (1.4)

For several steps one can either turn this into an exponentially growing bound, or draw upon
refined estimates on how powers M� or polynomials p(M) increase the rank.

Here we can mention two examples. In sparse approximation in V = R
n, when the rank

of a vector is defined as the number of its nonzero elements, a banded matrix M can be
efficiently applied to a sparse vector, but will increase the number of nonzero entries by a
multiple of the bandwidth. The bandwidth of M�, however, does not grow exponentially
but only linearly in �. In fact, for the same reason the bandwith of any polynomial p�(M)

of degree at most � grows only linearly. Note that if in the initial linear equation (1.1) the
matrix A has a banded structure and N = D is a diagonal preconditioner (e.g. in the Jacobi
method), then M = I − DA has the same band structure.
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As a second example assume that (1.3) is a fixed point matrix equation in V = R
n×n

and M is a Kronecker product operator, M = M̃1 ⊗ M̃2. It is well known that a matrix
Sylvester equation, that is, (1.1) with A = Ã1 ⊗ I + I ⊗ Ã2, can be transformed into such
a problem with M having spectral radius less than one, if both Ã1 and Ã2 have eigenvalues
with negative real part [25]. The Kronecker product operator M can then be efficiently
applied to a low-rank matrix (in the usual sense) and does not increase the rank at all.
Therefore, applying a polynomial p�(M) of degree � to a matrix increases the rank at most
by a factor of � + 1; see Section 3.1 for a more general example.

Our main attention in this work is on the second step in the iteration (1.2) which is the
addition of Nf . In standard applications, Nf is a fully populated vector and the inequal-
ity (1.4) indicates that even one such step is infeasible if rank(Nf ) is very large or infinite.
The standard approach would be replacing Nf by an approximation Nf̃ of acceptable
rank, and will be discussed in Section 3.2. As an alternative, we propose using a sequence
gm → Nf of approximations with (usually) growing rank. This leads to the modified
fixed-point iteration

ûm+1 = Mûm + gm+1, (1.5)
considered in this paper. It turns out that the ûm converge to a solution u of (1.3) at a similar
speed as the standard iteration if the convergence gm → Nf is fast enough.

The proposed modification (1.5) of the fixed-point iteration is an interesting and easily
realizable variation of the standard iteration. While several questions could be considered,
we focus on its impact on the rank accumulation in certain model cases for M and Nf to
show that it can be beneficial compared to the standard iteration. Specifically, to limit the
scope we investigate only the cases that the approximation gm → Nf converges exponen-
tially fast, and that the rank amplification by the repeated application of the iteration matrix
is either exponential or linear in the number of steps. The latter scenario is motivated by the
examples mentioned above.

Besides its implications on the computational cost in iterative methods, our rank
estimates also serve a theoretic purpose of characterizing low-rank approximability of struc-
tured linear equations since they yield upper bounds on the corresponding approximation
numbers

τr (u) = inf
rank(v)≤r

‖u − v‖
‖u‖ (1.6)

for the solution u in terms of the rank parameter r . However, the asymptotic rates obtained in
this way by using linear fixed-point iterations (or modifications of them) are not necessarily
optimal and can be slow, and hence mainly relevant if V is of very large or infinite dimen-
sion. For the two mentioned examples of sparse approximation of systems with banded
matrices, and matrix or tensor equations with Sylvester-type operators, better rates than
those implied by our analysis (covered by Examples 3.3 and 3.7) are available for Hilbert
spaces based on different and more problem related approximation schemes; see, e.g., [4,
12] and [10, 14, 15, 20, 22, 26], respectively.

Furthermore, by taking the fixed-point formulation (1.3) as the point of departure we
avoid any discussion under which conditions it is actually possible to design for a given
linear equation (1.1) an iterative solver (1.2) for which M is highly contractive and mildly
rank increasing at the same time (which could be conflicting targets), while Nf admits fast
converging and available low-rank approximations. The existence of such a linear iteration
would directly imply that the solution can be well approximated in the dictionary. Clearly,
if it is not available, it can be more efficient to use few steps of a method with a general
spectrally equivalent preconditioner N and then apply truncation. This difficult question is
at the very core of understanding low-rank approximability and preconditioning of linear
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systems for a given rank function, and should not be treated in a general setup like in this
paper. There is, however, an interesting converse logic to this. If the solution u of a given
linear equation (1.1) does not satisfy the approximability estimates that would be implied
by certain assumptions on M and N , then it means that there cannot exist a linear iterative
solver with the desired properties. While this may sound trivial, it can actually be seen as a
remarkable non-existence result, say for matrix decompositions A = N−1(I − M).

Our results extend the studies in [21], where mainly the Richardson iteration and the
steepest descent method have been considered, to the broad class of linear iterations (1.2).
Of course, a great amount of other iterative methods for low-rank solutions of linear systems
has been developed in the literature, among them those based on variational formulations,
nonlinear optimization, or greedy methods. One common feature of such methods, that
should also be applied in a practical implementation of the modified iterations considered
in this paper, is the rank truncation of intermediate iterates. A truncation usually occurs
either as an adaptive projection (hard thresholding) or as a prox-operator (soft thresholding),
and its combination with fixed-point iterations can be studied in a quite general context;
see, e.g. [3, 7, 8, 11] for sparse vectors and [1, 2, 6, 18, 23, 24] for low-rank tensors. In partic-
ular, if a certain low-rank approximability of the solution is already known or assumed, then
suitable adaptive truncation schemes can lead to refined and near-optimal error estimates.
This is, however, outside the scope of the present paper.

The paper is outlined as follows. In Section 2 the convergence rate of the modified itera-
tion (1.5) is estimated for the model case that the gm approximate Nf exponentially fast. In
Sections 3.1–3.4 rank estimates for approximate solutions obtained from the standard and
modified iteration are derived from assumptions on the rank increasing properties of the
iteration matrix M . Section 3.5 presents numerical comparisons of the obtained bounds.

2 Convergence of theModified Iteration

Let u be a solution to the linear fixed-point equation (1.3). Given 0 < ε ≤ 1 we seek an
approximation uε to u of relative accuracy ε, that is,

‖u − uε‖
‖u‖ ≤ ε. (2.1)

Such a uε will be called an ε-solution of the fixed-point equation (1.3). Here the choice of
the norm (and hence of the Banach space V) is usually problem dependent and can already
account, e.g., for a large condition number or unboundedness of the operator A in the initial
linear equation (1.1). In particular, we assume that M satisfies

‖M‖ ≤ ζ < 1, (2.2)

in the corresponding operator norm. It guarantees that u is the unique solution of (1.3) and
that the standard iteration (1.2) converges to u for every starting point u0 at a linear rate:

‖um+1 − u‖ ≤ ζ‖um − u‖.

Note that ζ is a property of the chosen iteration (1.2) and of the chosen norm.1

1For a bounded operator M the iteration converges for every starting point u0 if and only if the spectral
radius ρ(M) is strictly less than one. Then for any fixed ζ ∈ (ρ(M), 1) there exists an equivalent norm on
V satisfying (2.2); see, e.g., [27, Appx. (58)]. While ρ(M) < 1 describes the asymptotic behaviour (R-linear
rate) of the error in any equivalent norm, the condition (2.2) allows for error estimates in the given norm.
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It will be convenient to use the starting value

u0 = 0

throughout the paper. It leads to the relative error

‖u − um‖
‖u‖ ≤ ζm (2.3)

after m steps of the iteration, and hence the number of steps needed for an ε-solution is
upper bounded by

m(1.2)(ε) =
⌈

ln ε

ln ζ

⌉
. (2.4)

Recall that it is always assumed that 0 < ε ≤ 1.
We now consider the modified iteration (1.5) in which in the (m + 1)-th step Nf is

replaced by some (simpler) approximation gm+1. A first general statement on this approach
is the following.

Proposition 2.1 Let u be a solution to (1.3) and assume (2.2). If gm → Nf , then for the
iterates (1.5), ûm → u.

Proof Let ε > 0. For some mε we have ‖Nf − gm+1‖ ≤ ε for all m ≥ mε . Taking the
difference of (1.3) with (1.5) gives

u − ûm+1 = M(u − ûm) + Nf − gm+1. (2.5)

Hence, the error η̂m := ‖u − ûm‖ satisfies

η̂m+1 ≤ ζ η̂m + ε for all m ≥ mε . (2.6)

Define the recursive sequence η̂′
m+1 = ζ η̂′

m+ε by fixing η̂′
mε

= η̂mε . Then η̂′
m → ε/(1−ζ )

and hence

lim sup
m→∞

η̂m ≤ lim sup
m→∞

η̂′
m = ε

1 − ζ

by (2.6). Since ε was arbitrary, this proves the assertion.

In the following, we assume that the gm approximate Nf exponentially fast and satisfy

‖Nf − gm‖ ≤ C‖Nf ‖ξm, where ξ ≤ ζ (2.7)

and C > 0 is a constant (that may depend on Nf ). Then the error after m steps of the
modified iteration (1.5) can be estimated. As for the standard iteration it will be convenient
to consider here and in the following only the starting point

û0 = 0

for our estimates.

Proposition 2.2 Let u be a solution to (1.3). Assume (2.2) and (2.7). Then it holds for the
modified iteration (1.5) with starting point û0 = 0 that

‖u − ûm‖ ≤ ζm‖u‖ + C‖Nf ‖
m−1∑
�=0

ζ �ξm−� = ζm‖u‖ + ζmC‖Nf ‖
{

1−(ξ/ζ )m

(ζ/ξ)−1 if ξ < ζ,

m if ξ = ζ .
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The proof is an immediate induction from (2.5) and (2.7). Now note that due to u−Mu =
Nf it holds that

(1 − ζ )‖u‖ ≤ ‖Nf ‖ ≤ (1 + ζ )‖u‖.

From Proposition 2.2 we thus obtain the following estimate on the relative error for the
modified iteration with starting point û0 = 0:

‖u − ûm‖
‖u‖ ≤ ζm + ζmC(1 + ζ )

{
1−(ξ/ζ )m

(ζ/ξ)−1 if ξ < ζ,

m if ξ = ζ .
(2.8)

This should be compared with (2.3).

Example 2.3 If we choose the gm+1 such that C = 1 and ξ = ζ/2 in (2.7), then (2.8)
implies

‖ûm − u‖
‖u‖ ≤ ζm(2 + ζ ).

To obtain a relative error ε, the modified iteration (1.5) hence requires at most

m(1.5)(ε) =
⌈

ln ε − ln(2 + ζ )

ln ζ

⌉
(2.9)

steps. The standard iteration (1.2) needs only m(1.2)(ε) = 
 ln ε
ln ζ

� steps. Note, however, that
ln(2 + ζ ) < ln(3) < 1.1. Therefore in the case of a fast standard iteration, when ln ζ is
not close to zero, the number of additional steps in the modified iteration is very small.
For instance with ζ = 1

2 the additional term ln(2+ζ )
| ln ζ | equals 1.322, so the modified iteration

needs at most two steps more than the standard iteration.

Generalizing this example we can derive a bound for the required number of steps for
reaching a certain accuracy by estimating the inverse function of the right-hand side in (2.8).
In the worst case ξ = ζ this requires some effort. We have the following result.

Proposition 2.4 Let u be a solution to (1.3). Assume (2.2) and (2.7). For 0 < ε ≤ 1,
let m(1.5)(ε) be the number of steps needed for the modified iteration (1.5) to reach an
ε-solution satisfying (2.1). In case ξ < ζ it holds that

m(1.5)(ε) ≤
⌈

ln ε

ln ζ
+ K1(ζ, ξ, C)

⌉
, K1(ζ, ξ, C) =

ln
(

1 + C(1+ζ )
(ζ/ξ)−1

)
| ln ζ | , (2.10)

whereas in case ξ = ζ it holds that

m(1.5)(ε) ≤
⌈

ln ε

ln ζ
+ K2(ζ, C) +

√
2

ln ζ−1

√
ln ε

ln ζ
+ K2(ζ, C) + 1

ln ζ
+ 1

C(1 + ζ )

⌉
,

(2.11)
with

K2(ζ, C) = ln ln(ζ−1/(C(1+ζ )))

ln ζ
= | ln ln ζ−1| + ln(C(1 + ζ ))

| ln ζ | .

The proof for ξ < ζ simply follows from (2.8) by omitting the term (ξ/ζ )m and rear-
ranging for m. The case ξ = ζ is treated as Lemma A.1 in the Appendix, where also the
accuracy of the bound (2.11) is illustrated in Fig. 4. It shows that the estimate is reasonably
good, but too pessimistic for ζ close to one. Both constants K1(ζ, ξ, C) and K2(ζ, C) are
unbounded for ζ → 1.
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Recall that m(1.2)(ε) = 
 ln ε
ln ζ

� is the iteration bound for an ε-solution with the standard
iteration. If ζ/ξ is sufficiently large, then (2.10) shows that the number of additional steps
required by the modified iteration for reaching the same accuracy is effectively constant,
and indeed small if ζ itself is very small, see Example 2.3. In the case ξ = ζ we can roughly
state that

m(1.5)(ε) ≤ m(1.2)(ε) + K2(ζ, C) + O
(√

m(1.2)(ε) + K2(ζ, C)
)

,

but with a constant that behaves like 1/ ln ζ−1 when ζ → 1. In practice, for a fixed ζ , say up
to ζ ≤ 0.9, and reasonable ε, the actual number of additional steps asserted by this bound
is still effectively constant, as can be seen in Fig. 4 in the Appendix. For example, for a fast
iteration with ζ = 1

2 and C = 1, (2.11) provides the bound

m(1.5)(ε) ≤
⌈ | ln ε| + 0.772 + √

2| ln ε| + 0.469

ln 2

⌉

for the case ξ = ζ . For small ε this is considerably worse than (2.9), where ξ = ζ/2, but in
turn this bound is actually valid for all possible ξ ≤ ζ = 1

2 .
We conclude this section by mentioning a further possible modification of the standard

linear iteration, in which instead of a fixed iteration matrix M a sequence Mm → M is used.
This leads to iterations of the form

ūm+1 = Mm+1ūm + gm+1.

The matrix Mm could be implicitly given by a fixed linear iterative solver applied to a family
of approximations Am → A of the linear system itself, or by a sequence Nm → N of
preconditioners. Assuming (2.2), it is not difficult to prove that if gm → Nf and Mm → M ,
then ūm → u, the fixed point of (1.3), the argument is similar to the proof of Proposition 2.1.
Based on suitable assumptions on the convergence speed Mm → M one can then study
error estimates. In this work, however, we restrict our attention to the simpler variation (1.5)
with M being fixed.

3 Rank Growth in the Standard andModified Iteration

The modified iteration (1.5) will usually need some more steps than the standard itera-
tion (1.2) to reach a target accuracy ε for the relative error, which is indicated by the error
estimates stated in the previous section. In turn the rank of the iterates may grow a little
bit less per step, since we are adding gm+1 instead of Nf . In this section we compare the
achievable accuracy with the accumulated representation ranks of the approximate solu-
tions generated by the standard iteration and its modification in simplified model cases.
While the results are perhaps too generic (and thereby too pessimistic) to use when study-
ing a particular linear equation, our aim is to show that the modified iteration can provide
some improvement. We mention again that rank truncation during the iteration is not con-
sidered in our analysis, but recommended in computations. The required ranks for a certain
accuracy in practice hence can be much smaller than the rank bounds obtained below.
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3.1 Rank Growth in the Standard Iteration

Due to the representation

um =
(

m−1∑
�=0

M�

)
Nf, (3.1)

the ranks for the iterates of the standard iteration (with u0 = 0) can be estimated in terms
of the following, in general unknown, constants:

νm = νm(M) = sup
v �=0

rank
(∑m−1

�=0 M�v
)

rank(v)
.

Using these constants we have the following obvious estimate from (3.1).

Proposition 3.1 Consider the standard linear fixed-point iteration (1.2) with starting point
u0 = 0. Then

rank(um) ≤ νm rank(Nf ). (3.2)

In general all the νm could be infinite or equal to the dimension of V. A basic assumption
in our paper is that at least for small m the νm are small compared to the dimension of V and
do not grow too fast. But even then, since in the definition of νm we have taken a supremum,
the estimate (3.2) is quite generic and our results will not account for any additional structure
that could be exploited when applying powers of M to Nf in a particular instance. Another
issue is that the estimate (3.2) is only reasonable if rank(Nf ) is finite. Let us assume this,
then together with the convergence speed (2.4) one obtains rank bounds for an ε-solution of
the fixed-point equation (1.3), depending on the behaviour of the constants νm.

When the constants νm are not known, it is possible to estimate them by the constants

μ� = μ�(M) = sup
v �=0

rank(M�v)

rank(v)
,

which can be easier to determine. In most cases we may rightfully assume

μ1 > 1.

Then clearly,

μ� ≤ μ�
1,

and therefore

νm ≤
m−1∑
�=0

μ� ≤
m−1∑
�=0

μ�
1. (3.3)

We call the upper bound in this estimate the worst-case behaviour, since in the typical case
μ1 > 1 it indicates exponential rank growth in the standard iteration. It leads to rather
pessimistic results.

Example 3.2 Consider the worst-case behaviour (3.3) with μ1 > 1. Then (3.2) yields

rank(um) ≤
(

μm
1 − 1

μ1 − 1

)
rank(Nf ).
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With (2.4) it implies that for ε > 0, there exists an ε-solution uε for the linear equation (1.1)
satisfying (2.1) and with a rank bounded by

rank(uε) ≤
⎛
⎝μ


 ln ε
ln ζ

�
1 − 1

μ1 − 1

⎞
⎠ rank(Nf ) = O

(
ε

ln μ1
ln ζ

)
rank(Nf )

for ε → 0. If Nf has finite rank we can deduce an algebraic decay rate for the best low-rank
approximation error of u with respect to the rank, namely

τr (u) = O

(
r

ln ζ
ln μ1

)

for r → ∞, where τr are the approximation numbers defined in (1.6).

There exist interesting examples for which the νm do not increase exponentially. As men-
tioned in the introduction, for sparse approximation in R

n (rank being number of nonzero
elements) a banded matrix M with bandwidth 1+b will increase the number of nonzero ele-
ments of a vector by at most a factor μ1 ≤ 1 + b. However, it holds μ� ≤ 1 + �b, since M�

has bandwidth 1 + �b. Indeed, the band support for different powers of M is nested so that

νm ≤ 1 + (m − 1)b.

As another example, assume M is of the form

M = M1 + M2,

where both M1 and M2 do not increase the rank when applied to any u, that is, μ1(M1) ≤ 1
and μ1(M2) ≤ 1. Assume furthermore that M1 and M2 commute. Then

M� =
�∑

k=0

(
�

k

)
Mk

1 M�−k
2

shows that in such a case we have
μ� ≤ � + 1.

This implies

νm ≤ m(m + 1)

2
.

However, in special cases one can go further. Assume additionally that p(M2) is rank-
preserving for any polynomial p. Then

m−1∑
�=0

M� =
m−1∑
�=0

�∑
k=0

(
�

k

)
Mk

1 M�−k
2 =

m−1∑
k=0

Mk
1

(
m−1∑
�=k

(
�

k

)
M�−k

2

)

implies
νm ≤ m. (3.4)

For matrix equations an operator of the form,

M = M̃1 ⊗ M̃2 + I ⊗ M̃3,

has the considered properties, provided M̃2 and M̃3 commute. This includes the Kronecker
product operators (M̃3 = 0) and Sylvester-type operators (M̃2 = I ). Both examples can be
generalized to operators of such form on tensor spaces, but in the case of the Sylvester-like
structure, νm becomes a polynomial of higher order.
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Example 3.3 If the linear rank growth (3.4) is assumed, then (3.2) becomes

rank(um) ≤ m rank(Nf ).

Hence, if rank(Nf ) is finite, an ε-solution exists satisfying

rank(uε) ≤
⌈

ln ε

ln ζ

⌉
rank(Nf ).

It implies a super-algebraic decay rate

τr (u) = O(ζ r)

for the best rank-r approximation error of the solution u to a fixed-point equation (1.3).
More generally, for a polynomial growth νm ≤ p(m), where p is a polynomial of degree

q, one obtains rank(uε) = O((ln ε/ ln ζ )q) and τr (u) = O(ζ (r1/q )).

3.2 Standard Iteration with Fixed Approximation of Nf

Now we discuss the case that Nf has very large or infinite rank. In practice, when an
approximation

‖Nf − Nf̃ ‖
‖Nf ‖ ≤ δ (3.5)

is available, where Nf̃ has finite rank, we can simply use Nf̃ in the standard iteration. This
is equivalent to solving a perturbed fixed-point equation

v = Mv + Nf̃ , (3.6)

which in case that N is invertible corresponds to a linear equation

Av = f̃

instead of (1.1). The corresponding standard iteration reads

vm+1 = Mvm + Nf̃ , v0 = 0, (3.7)

and converges to v = (I − M)−1Nf̃ . The relative error to the original fixed point u =
(I − M)−1Nf can be estimated as follows:

‖vm − u‖
‖u‖ ≤ ‖u − v‖

‖u‖ + ‖v − vm‖
‖ũ‖ · ‖v‖

‖u‖ ≤
(

1 + ζ

1 − ζ

)
δ + ‖v − vm‖

‖v‖
[

1 +
(

1 + ζ

1 − ζ

)
δ

]
.

(3.8)
For simplicity, let us choose target accuracies of the form

δ ≤
(

1 − ζ

1 + ζ

)
ε

2 + ε
,

‖v − vm‖
‖ũ‖ ≤ ε

2
(3.9)

for (3.5) and (3.7). Then (3.8) becomes

‖vm − u‖
‖u‖ ≤ ε, (3.10)

where vm satisfies
rank(vm) ≤ νm rank(Nf̃ ) (3.11)

by Proposition 3.1. The second inequality in (3.9) is satisfied after at most

m =
⌈

ln ε − ln 2

ln ζ

⌉

iterations. One can now proceed as above by assuming different cases for νm and rank(Nf̃ ).
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Example 3.4 For later comparison with the modified iteration, we assume (2.7) holds with
C = 1 and rank(gm) ≤ m0 · m. Then we choose Nf̃ = gm̃ such that (3.5) is satisfied for

δ =
(

1−ζ
1+ζ

)
ε

2+ε
as required in (3.9). For this, we need to truncate (2.7) after m̃ = 
 ln δ

ln ξ
�

terms so that

rank(Nf̃ ) ≤ m0 ·
⌈

ln δ

ln ξ

⌉
= m0 ·

⌈
ln ε + κ(ζ, ε)

ln ξ

⌉
, κ(ζ, ε) := ln

(
1 − ζ

(2 + ε)(1 + ζ )

)
.

Assuming the worst case (3.3) of exponential rank growth, we conclude from (3.10) and
(3.11) that there exists an ε-solution uε for the initial fixed-point equation (1.3) that satisfies

rank(uε) ≤
⎛
⎜⎝μ

⌈
ln ε−ln 2

ln ζ

⌉
1 − 1

μ1 − 1

⎞
⎟⎠ rank(Nf̃ ) = O

(
μ

ln 2
ln ζ−1

1 ε
ln μ1
ln ζ

(
ln ε + κ(ζ, ε)

ln ξ

))
,

(3.12)
where the constant only depends on μ1.

Correspondingly, in case of linear rank growth μm ≤ m, we obtain

rank(uε) ≤
⌈

ln ε − ln 2

ln ζ

⌉
rank(Nf̃ ) = O

((
ln ε

ln ζ

) (
ln ε + κ(ζ, ε)

ln ξ

))
. (3.13)

The bounds (3.12) and (3.13) are depicted in Figs. 1 and 2 further below for some values of
ζ and ξ .

3.3 Rank Growth in theModified Iteration

In the modified iteration (1.5) we can deal with the case that Nf has large rank by replacing
it with a sequence gm with growing ranks. In non-recursive form, the modified iteration
with û0 = 0 reads

ûm = Mm−1g1 + Mm−2g2 + · · · + M0gm.
This can also be written as

ûm =
(

m−1∑
�=0

M�

)
g1 +

(
m−2∑
�=0

M�

)
(g2 − g1) + · · · + M0(gm − gm−1).

Instead of Proposition 3.1 we hence have the following rank estimates.

Proposition 3.5 Consider the modified iteration (1.5) with starting point û0 = 0. Then

rank(ûm) ≤
m−1∑
�=0

μ� rank(gm−�) (3.14)

and

rank(ûm) ≤
m∑

�=1

ν� rank(gm−�+1 − gm−�), (3.15)

where g0 = 0.

For the standard iteration, knowing the behaviour of the constants νm or μ� is sufficient
for deriving approximation results in terms of ζ . In the case of the modified iteration we
also need to know how fast the ranks of gm grow in relation to how fast the error ‖Nf −gm‖
tends to zero. We keep the assumption (2.7), but restrict to C = 1, that is,

‖Nf − gm‖ ≤ ‖Nf ‖ξm (3.16)
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for some ξ ≤ ζ , and consider the simplest case that the rank of the gm grow linearly, that is,

rank(gm) ≤ m0 · m, (3.17)

where m0 is a fixed constant. In combination with (2.7) this assumption is equivalent to Nf

belonging to a certain approximation class defined by

τr (Nf ) � ξ r ,

where τr again are the approximation numbers (1.6). Note however that in a practical
method the gm must be available. When the rank function is defined by a dictionary D, a
most reasonable model for (3.17) is that Nf admits an initial expansion

Nf =
R∑

i=1

hi, hi ∈ D, (3.18)

and then approximating it by batches of m0 terms taking

gm =
m∑

j=1

(
h(j−1)m0+1 + · · · + hjm0

)
. (3.19)

In this case

rank(gm − gm−1) ≤ m0 (3.20)

for all m. A related approach that arises in practice is that a dictionary expansion of f =∑
i fi is given. Then assuming that the operator N does not increase rank by more than a

factor μN , one could take gm = N(f1 +· · ·+fm) so that rank(gm −gm−1) ≤ μN for all m.
Clearly in (3.19) we can trade a larger batch size m0 for a faster approximation rate. In

general, if (3.16) and (3.17) hold for some sequence gm one can define for an integer t > 1
the sequence

g′
m = gt ·m, (3.21)

which will satisfy (3.16) and (3.17), too, but with different constants ξ ′ = ξ t and m′
0 = tm0.

In particular, in the case that ξ = ζ we can always pass to ξ ′ = ζ 2 < ζ which enables
the more accurate estimate (2.10) for the required number of steps in Proposition 2.4. The
difference will be illustrated in some numerical comparisons further below.

With (3.17) the rank estimate (3.14) simplifies to

rank(ûm) ≤ m0

m−1∑
�=0

μ�(m − �). (3.22)

If also (3.20) holds, (3.15) simplifies to

rank(ûm) ≤ m0

m∑
�=1

ν�. (3.23)

We next consider the same two examples for the behaviour of νm as in Section 3.1.

Example 3.6 As in Example 3.2 assume the worst-case scenario (3.3) of exponential
growth. In this case both simplified bounds (3.22) and (3.23) yield

rank(ûm) ≤ m0

(
μ1

μ1 − 1

) (
μm

1 − 1 − m + m
μ1

μ1 − 1

)
. (3.24)
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For rigorous bounds on the rank of an ε-solution we can insert the estimates for m(1.5)(ε)

provided in (2.10) and (2.11) in the right-hand side of (3.24). We omit the resulting formu-

las. The asymptotic behaviour is rank(uε) � μ
ln ε
ln ζ

1 ∼ ε
ln μ1
ln ζ when ξ < ζ , but with a constant

deteriorating for ξ → ζ and ζ → 1. It implies again τr (u) = O

(
r

ln ζ
ln μ1

)
with correspond-

ing constants. If ξ = ζ the estimate (2.11) technically yields rank(uε) � μ

ln ε
ln ζ

+
√

ln ε
ln ζ

1 ∼

ε

ln μ1
ln ζ

(
1+

√
ln ζ
ln ε

)
(with a constant deteriorating for ζ → 1), but as explained above, in the

considered model (3.16) and (3.17) we can always assume ξ = ζ 2 < ζ . Figure 1 further
below contains the precise bounds for some combinations of ζ and ξ .

Example 3.7 If we proceed with the bound (3.23) and assume a linear rank growth, ν� ≤ �,
as in Example 3.3, then we get the rank estimate

rank(ûm) ≤ m0

(
m(m + 1)

2

)
. (3.25)

From (2.10) and (2.11) we then obtain the asymptotic bound

rank(uε) �
(

ln ε

ln ζ

)2

for an ε-solution of (1.3), with different constants for the cases ξ < ζ and ξ = ζ . The
constants deteriorate with ξ → ζ and ζ → 1, respectively. Some concrete values are plotted
in Fig. 2 below. We omit more detailed formulas and just note the implied approximation
rate τr (u) = O(ζ

√
r ) for r → ∞, with constants depending on ζ , ξ and m0.

3.4 Modified Iteration with Target Accuracy for Nf

Since one seeks only for an ε-solution to the fixed-point equation (1.3) it may not be neces-
sary to approximate Nf with higher and higher rank. Similar to the discussion for the stan-
dard iteration in Section 3.2, one can terminate at some gm̃ = Nf̃ satisfying ‖Nf − gm̃‖ ≤
δ‖Nf ‖ as in (3.5) and then proceed with gm = gm̃ for all subsequent iterations.

We can analyse such an approach as a modified iteration

v̂m+1 = Mv̂m + g̃m+1 (3.26)

for the perturbed fixed-point equation v = Mv + Nf̃ as in (3.6), where we use g̃m+1 =
gm+1 for m = 1, . . . , m̃ − 1 as approximations of Nf̃ , and g̃m+1 = gm̃ = Nf̃ for m ≥ m̃.
Hence the first m̃ iterates are identical to the modified iteration with gm. The competitor
for this strategy is the standard iteration (3.7) that uses Nf̃ from the start. Since the error
analysis (3.8) remains valid (with v̂m instead of vm), we can aim at the same target accu-
racies (3.9) (with v̂m instead of vm) as the standard iteration for guaranteeing an ε-solution
for the initial fixed-point equation. If (3.16) holds, this means we have to take m̃ = 
 ln δ

ln ξ
�

as in Example 3.4. We can expect a similar estimate as (3.16) for Nf̃ = gm̃, that is,

‖Nf̃ − g̃m‖ ≤ C̃‖Nf̃ ‖ξm, (3.27)

where C̃ is some not too large constant. For example, we may assume the hi in a dictio-
nary expansion (3.18) of Nf to be pairwise orthogonal, as would be the case in sparse
approximation in R

n or in a singular value decomposition of a matrix. Then we can take
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C̃ = (1 − ξ2m̃)−1/2, since ‖Nf̃ − gm‖ ≤ ‖Nf − gm‖ ≤ ‖Nf ‖ξm and

‖Ñf ‖2

‖Nf ‖2
≥ 1 − ‖Nf − gm̃‖2

‖Nf ‖2
≥ 1 − ξ2m̃,

which yields (3.27) for m ≤ m̃ (for larger m the left side of (3.27) is zero anyway).
Let m̂ be the number of steps required for (3.26) to reach an (ε/2)-solution for v, which

by (3.8) will be an ε-solution for the original u. Assuming m̂ = m̃+k ≥ m̃,2 then according
to (3.15) the final rank estimate will be

rank(v̂m̂) ≤
m̂∑

�=k+1

ν� rank(gm̂−�+1 − gm̂−�).

Example 3.8 For exponential rank growth (3.3), and assuming the model (3.20), this means

rank(v̂m̂) = m0

(
μ1

μ1 − 1

)(
μm̂

1 − μk
1 − m̃ + m̃

μ1

μ1 − 1

)
. (3.28)

In the case of linear rank growth νm ≤ m one gets

rank(v̂m̂) ≤ m0

(
m̂(m̂ + 1) − k(k + 1)

2

)
. (3.29)

We omit the formulas for rank estimates in terms of target accuracy ε. Numerical values
are provided in Figs. 1 and 2. They indicate that using the modified iteration until some
gm̃ = Nf̃ as derived above can outperform the standard iteration with fixed Nf̃ .

3.5 Numerical Illustration of Error Bounds

In the numerical illustrations in Figs. 1 and 2 we compare the derived rank estimates for
achieving an ε-solution with the modified iteration in the two scenarios of an exponential
growth νm ≤ 2m − 1, i.e. μ1 = 2 in (3.3), and for a linear rank growth νm ≤ m.

Both scenarios are evaluated for the values ζ = 0.5 and ζ = 0.9 (spectral norm of M).
We consider the approximation rate (2.7) for Nf with C = 1 in the two cases ξ = ζ/2
and ξ = ζ in (3.16), where we assume m0 = 1 in (3.20), that is, gm is obtained from
gm−1 by a rank-one update. To check the potential merit of a larger batch size in the case
ξ = ζ , we also consider m0 = 2 (rank-two updates) with squared rate ξ = ζ 2 (i.e. t = 2
in (3.21)). According to the plots, the larger batch size can be slightly beneficial for the
case of exponential rank growth, but does not help in the case of linear rank growth. The
following functions are shown in Figs. 1 and 2:

– The rank bounds (3.24) (in Fig. 1) and (3.25) (in Fig. 2) for the modified iteration as
solid lines, when using as m the minimal number of steps m(1.5)(ε) such that the right-
hand side of (2.8) is less than ε. The values for m(1.5)(ε) are determined numerically
and are depicted in Fig. 4 in the Appendix (as solid lines). One could use instead the
derived upper bounds (2.10)–(2.11) for m(1.5)(ε) (these can be seen in in Fig. 4 as dotted
lines). One then obtains slightly worse rank bounds, especially in the case ξ = ζ .

– The rank bounds for a modified iteration (3.26) as dotted lines, using some truncation
Nf̃ = gm̃ as a final approximation, according to (3.28) (Fig. 1) and (3.29) (Fig. 2). We
used C̃ = (1 − ξ2m̃)−1/2 in (3.27), as motivated above.

2In principle, m̂ could be less than m̃, then the original rank estimates apply.
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Fig. 1 Rank bounds for ε-solutions with the modified iteration (1.5) and exponential growth μ� ≤ 2�,
assuming (3.16) and (3.17). Left: ζ = 0.5, right: ζ = 0.9. Solid lines: rank bound (3.24) using the minimal
m(1.5)(ε) (solid lines in Fig. 4). Dotted lines: rank bound for a modified iteration (3.26) with target accuracy
Nf̃ = gm̃ according to (3.28). Cross and plus markers: standard iteration using the same Nf̃ according
to (3.12) for ξ = ζ/2 (cross) and ξ = ζ (plus)

– The rank bound for the standard iteration when using the same truncation Nf̃ = gm̃,
according to (3.12) (Fig. 1) and (3.13) (Fig. 2), respectively. These are only given for
batch size m0 = 1 and are depicted as cross markers for ξ = ζ/2 and plus markers for
ξ = ζ .

As can be seen from both figures, modified iterations can perform equally well or better
than the standard iteration with truncated right-hand side. Especially for the case of linear
rank growth, the modified iterations with a target accuracy for Nf (dotted lines) seem to
provide a reasonable improvement for ξ = ζ , in particular keeping in mind that they are
more data-sparse. It appears that with exponential rank growth the modified iteration should
not be terminated at a fixed gm̃ = Nf̃ , and that it helps to take a larger batch size to ensure
fewer steps. However, the rank bounds, especially for ζ = 0.9, (Fig. 1, right) are ridiculously
large and only of theoretical interest. This illustrates that if for a given linear equation (1.1)

Fig. 2 Rank bounds for ε-solutions with the modified iteration and linear growth μ� ≤ � + 1. Left: ζ = 0.5,
right: ζ = 0.9. Solid lines: rank bound (3.25) using the minimal m(1.5)(ε) (solid lines in Fig. 4). Dotted lines:
rank bound for a modified iteration (3.26) with target accuracy Nf̃ = gm̃ according to (3.29). Cross and plus
markers: standard iteration using the same Nf̃ according to (3.13) for ξ = ζ/2 (cross) and ξ = ζ (plus)
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there does not exist an iteration that is either fast or not exponentially rank increasing, its
solution might not admit a good low-rank approximation.

4 Numerical Experiment

Finally, we include a small numerical experiment to compare the actual convergence of
the methods for a particular problem. We generate a 1000 × 1000 tridiagonal matrix
A = L + D + R, with diagonal entries in D uniformly distributed in the interval [2, 3],
whereas the lower and upper off diagonal entries in L and R are uniformly distributed in
[−2, −1] and [−1, 0], respectively. The goal is to solve the linear equation Au = f , where
f has exponentially decaying entries fi = (4/5)i . Since the exact solution can be well
approximated by sparse vectors, we aim at iterations that build approximations with possi-
bly few nonzero entries. Hence the rank function here is the number of nonzero entries in a
vector.

We employ two iterative solvers (1.2), the Jacobi method, where N = D−1, and an
approximate Gauss–Seidel method, with

N = D−1
(
I − LD−1 + (LD−1)2

)
,

which is an approximation of (L + D)−1 = D−1(I + LD−1)−1. Correspondingly,

M = I − NA

is a tridiagonal banded matrix for the Jacobi method (with zero diagonal), and a five-banded
matrix (with only one upper diagonal) for the approximate Gauss–Seidel method. We use
the standard iterations (1.2) and modified iterations (1.5). As approximations gm → Nf

we take gm = Nfm, where fm contains the largest m entries of f in modulus. Compared
to taking the m largest entries of Nf this has the advantage that the gm can be recursively
computed from the sparse columns of N without forming Nf . (Almost no difference was
observed for the two approaches.) All four resulting methods are also tested in a truncated
version, where after every step entries smaller than a fixed threshold are deleted from the
iterate.

Fig. 3 Numerical results for the solution of a tridiagonal linear system by the Jacobi method or an approx-
imate Gauss-Seidel method (‘GS’). Dashed lines: standard iterations (with and without truncation). Solid
lines: modified iterations (with and without truncation). The dotted black line on the right shows the best
possible relative error for a given number of nonzero entries
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The results for various instances of A varied slightly but were overall quite similar. In
Fig. 3 we show one of the better outcomes. The left plot shows the decrease of the relative
error (in Euclidean norm) to the exact solution u, with the dashed lines corresponding to
the standard iteration and solid lines to the modified iteration. The numerically computed
spectral radii and spectral norms in this instance were ρ(M) ≈ 0.934 and ζ = ‖M‖ ≈ 1.145
for the Jacobi method, and ρ(M) ≈ 0.885 and ζ = ‖M‖ ≈ 0.981 for the approximate
Gauss–Seidel method. The threshold in the truncated versions was 10−9 to reach a relative
accuracy below 10−8.

In the right panel of Fig. 3 we investigate the convergence speed with respect to the
number of used nonzero entries. For the standard iterations only the truncated versions are
shown (the vertical dashed lines), since without truncation the iterates immediately fill up.
While all truncated methods eventually need about the same number of nonzero entries for
a relative error in the magnitude of the threshold, the modified iterations need less nonzeros
during the overall process. One should also recall that the standard methods operate with a
full vector Nf throughout. Note that the Jacobi method without truncation (blue line), while
being slower, is capable of constructing relatively sparse solutions, whereas the approximate
Gauss–Seidel method (red line) clearly requires the truncation. For comparison, the right
panel also displays the best possible (relative) sparse approximation errors (i.e. the decay of
τr (u)) as a black dotted line, which are obtained from using the largest entries (in modulus)
of the true solution u. The truncated approximate Gauss–Seidel method gets closest to this
minimal error before reaching the number of non-zeros required for the accuracy specified
by the threshold. Note that for both the truncated Jacobi and approximate Gauss–Seidel
method the final error is essentially optimal with respect to the sparsity.

Appendix

We provide a proof for (2.11). By (2.8), the statement we need to show is the following.

Lemma A.1 For 0 < ε < 1 the minimal integer m(ε) ≥ 1 that satisfies

ζm(1 + mC(1 + ζ )) ≤ ε

can be bounded by

m(ε) ≤
⌈

ln ε

ln ζ
+ K2(ζ, C) +

√
2

ln ζ−1

√
ln ε

ln ζ
+ K2(ζ, C) + 1

ln ζ
+ 1

C(1 + ζ )

⌉
, (A.1)

where

K2(ζ, C) = ln ln
(
ζ−1/(C(1+ζ ))

)
ln ζ

= | ln ln ζ−1| + ln(C(1 + ζ ))

| ln ζ | .

In Fig. 4 the bound (A.1) is compared numerically to the true value of m(ε).

Proof of Lemma A.1 Instead of the integer m(ε) we consider the minimal real number
x = x(ε) ≥ 1 that satisfies ζ x + xζ xC(1 + ζ ) ≤ ε. Denoting a = ζ 1/C(1+ζ ) this is
equivalent with

a1+xC(1+ζ )(1 + xC(1 + ζ )) ≤ εa,

or, with x′ = 1 + xC(1 + ζ ),
ax′

x′ ≤ εa.
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Fig. 4 Illustration of Lemma A.1. Left: The function m �→ ζm(1 + mC(1 + ζ )) for C = 1 and two different
values of ζ as solid lines. Dotted lines: upper bounds (A.1) as a function of ε. Dashed lines: standard rates
ln ε
ln ζ

. Right: Estimated number of additional steps in the modified iteration for ξ = ζ (C = 1) and different
choices of ε compared to the standard iteration, i.e. m(ε) − ln ε/ ln ζ . Solid lines: using the smallest m(ε)

such that ζm(1 + mC(1 + ζ )) ≤ ε, dotted lines: using the proven bound (A.1) for m(ε). The black dashed
line shows the number of additional steps to reach ε = 10−8 when ξ = ζ/2 (according to the bound (2.10)).
(Ceil operations omitted.)

We rewrite this as

x′ ln a · ex′ ln a ≥ εa ln a. (A.2)

Note for the right-hand side that 0 > εa ln a ≥ −εe−1. We denote the inverse relation of
zez = y for −e−1 ≤ y ≤ 0 and z ≤ −1 by z = W−1(y). It is called the W−1 branch of the
Lambert W function. Since W−1 is monotonically decreasing, (A.2) will be satisfied if

x′ ln a ≤ W−1(εa ln a) ⇐⇒ x′ ≥ 1

ln a
W−1(εa ln a). (A.3)

Writing

εa ln a = −e−1−b ⇐⇒ b = − ln
(
eεa ln a−1

)
= − ln ε − ln a − ln ln a−1 − 1

the following bound is known [9]:

W−1(−e−b−1) ≥ −1 − √
2b − b

(with strict inequality when b > 0). The condition

x′ ≥ 1

ln a−1

(
b + √

2b + 1
)

is therefore stronger than (A.3) and hence also sufficient for (A.2). Using the definition of
x′ and a we rewrite this as

x ≥ 1

C(1 + ζ ) ln a−1

(
b + √

2b + 1
)

− 1

C(1 + ζ )
= b + √

2b

ln ζ−1
− 1

ln ζ
− 1

C(1 + ζ )
.

Now noting that

b

ln ζ−1
= ln ε

ln ζ
+ 1

C(1 + ζ )
+ ln ln a−1

ln ζ
+ 1

ln ζ

and setting K2(ζ, C) = ln ln a−1

ln ζ
proves the assertion.
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15. Grubišić, L., Kressner, D.: On the eigenvalue decay of solutions to operator Lyapunov equations. Syst.
Control Lett. 73, 42–47 (2014)

16. Hackbusch, W.: Solution of linear systems in high spatial dimensions. Comput. Vis. Sci. 17, 111–118
(2015)

17. Hackbusch, W. Tensor Spaces and Numerical Tensor Calculus, 2nd edn. Springer, Cham (2019)
18. Hackbusch, W., Khoromskij, B.N., Tyrtyshnikov, E.E.: Approximate iterations for structured matrices.

Numer. Math. 109, 365–383 (2008)
19. Khoromskij, B.N.: Tensor Numerical Methods in Scientific Computing. De Gruyter, Berlin (2018)
20. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure.

SIAM J. Matrix Anal. Appl. 31, 1688–1714 (2010)
21. Kressner, D., Uschmajew, A.: On low-rank approximability of solutions to high-dimensional operator

equations and eigenvalue problems. Linear Algebra Appl. 493, 556–572 (2016)

511Modified Iterations for Data-Sparse...

http://creativecommons.org/licenses/by/4.0/


22. Penzl, T.: Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst.
Control Lett. 40, 139–144 (2000)
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24. Rauhut, H., Schneider, R., Stojanac, Ž.: Low rank tensor recovery via iterative hard thresholding. Linear
Algebra Appl. 523, 220–262 (2017)

25. Smith, R.A.: Matrix equation XA + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)
26. Townsend, A., Wilber, H.: On the singular values of matrices with high displacement rank. Linear

Algebra Appl. 548, 19–41 (2018)
27. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. I. Springer-Verlag, NewYork (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

512 W. Hackbusch, A. Uschmajew


	Modified Iterations for Data-Sparse...
	Abstract
	Introduction
	Convergence of the Modified Iteration
	Rank Growth in the Standard and Modified Iteration
	Rank Growth in the Standard Iteration
	Standard Iteration with Fixed Approximation of Nf
	Rank Growth in the Modified Iteration
	Modified Iteration with Target Accuracy for Nf
	Numerical Illustration of Error Bounds

	Numerical Experiment
	Appendix A 
	References


