
Chapter 9
Geometric Methods on Low-Rank Matrix
and Tensor Manifolds

André Uschmajew and Bart Vandereycken

Contents

9.1 Introduction . 262
9.1.1 Aims and Outline . 263

9.2 The Geometry of Low-Rank Matrices . 264
9.2.1 Singular Value Decomposition and Low-Rank Approximation . 265
9.2.2 Fixed Rank Manifold . 267
9.2.3 Tangent Space . 268
9.2.4 Retraction . 270

9.3 The Geometry of the Low-Rank Tensor Train Decomposition. 271
9.3.1 The Tensor Train Decomposition . 273
9.3.2 TT-SVD and Quasi Optimal Rank Truncation . 276
9.3.3 Manifold Structure . 279
9.3.4 Tangent Space and Retraction . 281
9.3.5 Elementary Operations and TT Matrix Format. 283

9.4 Optimization Problems . 286
9.4.1 Riemannian Optimization . 286
9.4.2 Linear Systems . 289
9.4.3 Computational Cost. 290
9.4.4 Difference to Iterative Thresholding Methods. 291
9.4.5 Convergence . 293
9.4.6 Eigenvalue Problems . 294

9.5 Initial Value Problems . 295
9.5.1 Dynamical Low-Rank Approximation. 296
9.5.2 Approximation Properties . 297
9.5.3 Low-Dimensional Evolution Equations . 298
9.5.4 Projector-Splitting Integrator . 299

9.6 Applications . 302
9.6.1 Matrix Equations. 303
9.6.2 Schrödinger Equation. 304

A. Uschmajew
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
e-mail: uschmajew@mis.mpg.de

B. Vandereycken (�)
Section of Mathematics, University of Geneva, Geneva, Switzerland
e-mail: bart.vandereycken@unige.ch

© The Author(s) 2020
P. Grohs et al. (eds.), Handbook of Variational Methods for Nonlinear
Geometric Data, https://doi.org/10.1007/978-3-030-31351-7_9

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31351-7_9&domain=pdf
mailto:uschmajew@mis.mpg.de
mailto:bart.vandereycken@unige.ch
https://doi.org/10.1007/978-3-030-31351-7_9

262 A. Uschmajew and B. Vandereycken

9.6.3 Matrix and Tensor Completion. 306
9.6.4 Stochastic and Parametric Equations . 306
9.6.5 Transport Equations . 307

9.7 Conclusions . 308
References . 308

Abstract In this chapter we present numerical methods for low-rank matrix and
tensor problems that explicitly make use of the geometry of rank constrained
matrix and tensor spaces. We focus on two types of problems: The first are
optimization problems, like matrix and tensor completion, solving linear systems
and eigenvalue problems. Such problems can be solved by numerical optimization
for manifolds, called Riemannian optimization methods. We will explain the basic
elements of differential geometry in order to apply such methods efficiently to
rank constrained matrix and tensor spaces. The second type of problem is ordinary
differential equations, defined on matrix and tensor spaces. We show how their
solution can be approximated by the dynamical low-rank principle, and discuss
several numerical integrators that rely in an essential way on geometric properties
that are characteristic to sets of low rank matrices and tensors.

9.1 Introduction

The following chapter is an outline of Riemannian optimization and integration
methods on manifolds of low-rank matrices and tensors. This field is relatively new.
While the minimization of functions or the time evolution of dynamical systems
under smooth manifold constraints is of course classical, and can be treated in a
quite general context, there are specific peculiarities to sets of low-rank matrices
and tensors that make Riemannian methods particularly amenable to these sets in
actual algorithms. There are at least two main reasons for this.

The first is that manifolds of low-rank matrices or tensors are images of
multilinear maps. This does not only have the advantage of having at hand an
explicit global parametrization of the manifold itself, but also provides a simple
representation of tangent vectors and tangent space projections by the product rule.
The second reason is the singular value decomposition (SVD), which for matrices
has the remarkable property of providing metric projections onto the non-convex
sets of bounded rank matrices. As we will see, for certain low-rank tensor manifolds
the SVD can be of a similar use.

A classical and powerful set of algorithms for handling low-rank constraints
for matrices or tensors is based on eliminating the constraints by using the afore-
mentioned multilinear parametrizations, and then optimize the block parameters
separately, typically in the form of alternating optimization. In contrast, Riemannian
methods try to take advantage of the actual geometry of the image, which for
instance can overcome problems of ill-conditioning of the typically non-unique
multilinear parametrizations. One of the earlier works where the tangent space

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 263

geometry of non-symmetric fixed rank matrices was quite explicitly exploited in
numerical algorithms is [59]. It introduced the dynamical low-rank approximation
method for calculating low-rank approximations when integrating a matrix that
satisfies a set of ordinary differential equations (ODEs), as we will explain in
Sect. 9.5.1. In the context of finding rank bounded feasible points for linear matrix
inequalities, a similar exploitation of the tangent space for fixed rank symmetric
definite matrices already appeared in [84]. For optimization problems with rank
constraints, several Riemannian optimization methods were first presented in [79,
98, 113] that each use slightly different geometries of the sets fixed rank matrices.
However, all of them show in great detail how the geometry can be exploited in the
algorithms, and [98, 113] also include Riemannian Hessians to obtain superlinear
convergence. These algorithms fit in the general framework of optimization on
manifolds, summarized in the monograph [2], which however does not deal with
manifolds of fixed rank matrices. An influential earlier work using geometrical tools
close to the subject of this chapter is [45] about the best rank approximation problem
for matrices.

The geometric viewpoint on low-rank matrices can be carried over to low-
rank tensors as well. Here, some of the main ideas emanated from mathematical
physics, specifically spin systems and molecular dynamics which involves low-
rank representation of high-dimensional functions [69]. The embedded geometry of
tensor train and hierarchical Tucker manifolds has then been worked out in [46, 108]
with the goal of providing the tool of Riemannian optimization also to problems of
scientific computing and optimization with tensors. Some examples and references
for successful application of such methods will be presented in some details later.

9.1.1 Aims and Outline

Our aim in this chapter is to provide a high-level overview of the main ideas and
tools for optimization and time integration on low-rank manifolds. For this we
decided to avoid formal definitions, assumptions or arguments that we considered
too technical, and tried to develop the concepts in a more descriptive manner. As
a result the chapter contains few rigorous theorems, but the provided references
should enable the reader to look up most of the technical details. We also stick
to a quite concrete ‘matrix language’ as much as possible and avoid abstract tensor
product spaces. In this sense, a tensor will be just an array of numbers, and while this
is often sufficient when dealing with practical problems, coordinate-free multilinear
algebra can of course be essential for understanding the theoretical foundations, but
is out of scope here.

There are several topics that will not be touched at all in this chapter. First of
all, for tensors we have restricted to manifolds of tensors with fixed tensor train
rank, because it can be quite easily presented. The two other tensor formats that
allow for geometric methods in a similar spirit are the Tucker format (related to
the multilinear rank) and its hierarchical version, the hierarchical Tucker format.

264 A. Uschmajew and B. Vandereycken

Another important ignored topic is about the choice of the rank. While we present
methods for optimization and integration on manifolds of fixed rank matrices and
tensors, the choice of the rank is quite problem dependent and needs to balance
the reachable model error with the numerical complexity. This is often achieved
adaptively. Of course, if a problem at hand does not allow for a ‘low-rank’ solution
in the first place, the methods presented in this chapter are of limited use, albeit still
mathematically interesting. Finding conditions that ensure low-rank solutions to a
class of optimization problems or ODEs can be challenging and several questions
in this context are still unanswered, especially for tensors.

Finally, the alternating optimization methods mentioned above, like the alternat-
ing least squares or DMRG algorithm, will not be further discussed in this chapter.
Compared to Riemannian optimization, these classic approaches to low-rank opti-
mization are much better known and have been used in countless applications.
For further reading we would like to refer to the several overview articles taking
different perspectives on low-rank optimization, see [6, 15–17, 37, 61, 100], and the
monographs [39, 51, 53].

The chapter is structured as follows. In Sect. 9.2 we provide an elementary out-
line of the geometry of the set of fixed rank matrices as an embedded submanifold
with focus on the geometric concepts that are needed in efficient algorithms. In
Sect. 9.3 we introduce the tensor train format and show that its geometry shares
many similarities to that of the matrix case. The next two Sects. 9.4 and 9.5,
are devoted to optimization problems and the integration of ODEs over low-rank
matrices and tensor train tensors. In both cases we will show how the geometry
that was just derived plays a crucial role. Finally, in Sect. 9.6 we mention typical
applications that can be treated well with low-rank tensor techniques and in
particular with geometric methods.

9.2 The Geometry of Low-Rank Matrices

As motivated in the introduction, many approximation and identification problems
involving low-rank matrices or tensors can be formulated as nonlinear, rank
constrained optimization problems. To design and understand efficient geometric
methods for their solution, it is therefore necessary to understand the geometry
of sets of matrices and tensors of bounded rank. The most basic ingredients for
such methods are the representation of tangent vectors, the computation of tangent
space projections and the availability of retractions. In this section we present these
concepts for the well known case of low-rank matrices in quite some detail as it
features all the core ideas on an easily understandable level. We will then in the
next section consider manifolds of tensors in low rank tensor train format as an
exemplary case for tensors, since it is a tensor decomposition with many parallels
to the matrix case.

We restrict the considerations to the linear space Rm×n of real m × n matrices,
although most of the following theory can be developed for complex matrices too.

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 265

The Euclidean structure of this space is given by the Frobenius inner product of two
matrices,

(X, Y)F = trace(XT Y) =
m∑

i1=1

n∑

i2=1

X(i1, i2)Y (i1, i2),

which induces the Frobenius norm ‖X‖F = (X,X)
1/2
F .

As is well known, the rank of a matrix X ∈ Rm×n is the smallest number r =
rank(X) such that there exist a decomposition

X = GHT , G ∈ Rm×r , H ∈ Rn×r . (9.1)

Necessarily, it holds r ≤ min(m, n). We call such a rank revealing decomposition
of X the (G,H)-format.

Note that the decomposition (9.1) is not unique, since we may replace G with
GA and H with HA−T , where A is an invertible r × r matrix. This ambiguity can
be removed by requiring additional constraints. A special case is the rank revealing
QR decomposition X = QR, where Q ∈ Rm×r has pairwise orthonormal columns,
and R ∈ Rr×n is an upper triangular matrix with positive diagonal entries. Such a
decomposition can be computed by the column pivoted QR algorithm; see [35].

When m or n are very large, but r is small, it is obviously beneficial in
computations to store the matrix X in the (G,H)-format (9.1): instead of storing
mn entries of the full matrix X, we only need to know the (m + n)r entries of the
matrices G and H . When (m + n)r is much smaller than mn, we may rightfully
say that X is of low rank. The key idea of low-rank approximation is that in many
applications X may not be of exact low rank, but still can be well approximated by
a low-rank matrix.

9.2.1 Singular Value Decomposition and Low-Rank
Approximation

The fundamental tool for low-rank approximation is the singular value decomposi-
tion (SVD). Let rank(X) ≤ r ≤ min(m, n), then the SVD of X is a decomposition

X = U�V T =
r∑

�=1

σ�u�v
T
� , (9.2)

where U = [
u1 · · · ur

] ∈ Rm×r and V = [
v1 · · · vr

] ∈ Rn×r have orthonormal
columns and � ∈ Rr×r is a diagonal matrix. Its diagonal entries σ1, . . . , σr are
called the singular values of X and will always be taken to be nonnegative and

266 A. Uschmajew and B. Vandereycken

ordered: σ1 ≥ · · · ≥ σr ≥ 0. Note that if k = rank(X) < r , then σk > 0, while
σk+1 = · · · = σr = 0.

The discovery of the SVD is usually attributed to Beltrami and Jordan around
1873/1874, with important later contributions by Sylvester, Schmidt, and Weyl; see,
e.g., [104] for a history. Its existence is not difficult to show when appealing to the
spectral theorem for symmetric matrices. It is enough to consider r = rank(X). The
positive semidefinite matrix XXT then has r positive eigenvalues and admits an
eigenvalue decomposition XXT = U�UT with � ∈ Rr×r being a diagonal matrix
with a positive diagonal, and UT U = Ir . The matrix UUT is then the orthogonal
projector on the column space of X, and hence UUT X = X. Now setting � = �1/2

and V = XT U�−1 we obtain U�V T = UUT X = X, that is, an SVD of X.
Note that V indeed has orthonormal columns, as V T V = �−1UT XXT U�−1 =
�−1��−1 = Ir .

The following theorem is the reason for the importance of the SVD in modern
applications involving low rank approximation of matrices and—as we will explain
later—of tensors.

Theorem 9.1 Consider an SVD (9.2) of a matrix X with σ1 ≥ · · · ≥ σr ≥ 0. For
any k < r , the truncated SVD

Xk =
k∑

�=1

σ�u�v
T
�

provides a matrix of rank at most k that is closest in Frobenius norm to X. The
distance is

‖X − Xk‖F = min
rank(Y)≤k

‖X − Y‖F =
(r∑

�=k+1

σ 2
�

)1/2

. (9.3)

If σk > σk+1, then Xk has rank k and is the unique best approximation of rank at
most k.

This famous theorem is due to Schmidt [96] dating 1907 who proved it for
compact integral operators. Later in 1936 it was rediscovered by Eckart and
Young [25]. In 1937, Mirksy [80] proved a much more general version of this
theorem stating that the same truncated SVD provides a best rank-k approximation
in any unitarily invariant norm. A norm ‖ · ‖ on Rm×n is called unitarily invariant
if ‖X‖ = ‖QXP ‖ for all orthogonal Q and P . For such a norm it holds that
‖X‖ = ‖�‖, that is, the norm is entirely defined by the vector of singular values.

The SVD of an m × n matrix can be computed from a symmetric eigenvalue
problem or, better, using the Golub–Kahan algorithm [34]. The amount of work

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 267

in double precision1 when m ≥ n is O(14mn2 + 8n3); see [35, Chapter 8.6].
For a large matrix X, computing the full SVD is prohibitively expensive if one
is only interested in its low-rank approximation Xk and if k � min(m, n). To this
end, there exist many so-called matrix-free methods based on Krylov subspaces or
randomized linear algebra; see, e.g., [43, 67]. In general, these methods are less
predictable than the Golub–Kahan algorithm and are not guaranteed to always give
(good approximations of) Xk . They can, however, exploit sparsity since they only
require matrix vector products with X and XT .

Observe that the existence of a best approximation of any matrix X by another
matrix of rank at most k implies that the set

M≤k = {X ∈ Rm×n : rank(X) ≤ k} (9.4)

is a closed subset of Rm×n. Therefore any continuous function f : Rm×n → R
with bounded sublevel sets attains a minimum on M≤k . The formula (9.3) for the
distance from M≤k implies that a matrix admits a good low-rank approximation in
Frobenius norm if its singular values decay sufficiently fast. Consequently, low-rank
optimization is suitable for such matrix problems, in which the true solution can be
expected to have such a property.

9.2.2 Fixed Rank Manifold

Geometric optimization methods, like the ones we will discuss later, typically
operate explicitly on smooth manifolds. The set M≤k of matrices of rank at most
k is a real algebraic variety, but not smooth in those points X of rank strictly less
than k. The good news is that the set M≤k−1 of these points is of relative Lebesgue
measure zero.

The smooth part of the variety M≤k is the set

Mk = {X ∈ Rm×n : rank(X) = k}

of matrices of fixed rank k. It is a folklore result in differential geometry (see,
e.g., [66, Example 8.14]) that Mk is a C∞ smooth embedded submanifold of Rm×n

of dimension

dim(Mk) = mn − (m − k)(n − k) = (m + n − k)k. (9.5)

The easiest way to show this is by explicitly constructing Mk as the union of level
sets of submersions. The idea is as follows.

1Like for eigenvalues, computing the SVD has to be done iteratively and hence will not terminate
in finite time in exact arithmetic for a general matrix.

268 A. Uschmajew and B. Vandereycken

We partition the matrices in Rm×n as

X =
[
A B

C D

]
, A ∈ Rk×k,

and consider the open set U of all matrices, for which block A is invertible. A matrix
X in U then has rank k if and only if the Schur complement F(X) = D − CA−1B

vanishes, that is, Mk ∩ U = F−1(0). The function F is a submersion from U
to R(m−k)×(n−k) because it is surjective (consider B = C = 0), and its partial
derivative at any point X ∈ U with respect to D is the identity, hence the derivative
F ′(X) at X is surjective. By the submersion theorem, the above preimage Mk∩U is
therefore an embedded submanifold of the specified dimension (9.5), and it remains
to note that the full set Mk is the finite union of such manifolds Mk ∩ U over all
possible positions of a k × k invertible submatrix A.

As an alternative to the above proof, Mk can also be described as a smooth
quotient manifold as in [82]; see also [1] for an overview.

Another important remark concerning optimization is that for k < min(m, n)

both the sets Mk and M≤k are simply connected. This follows from the rank
revealing decomposition (9.1) and the connectivity of non-singular k frames in Rn.

9.2.3 Tangent Space

The explicit knowledge of the tangent spaces and the efficient representation of
tangent vectors is crucial for the practical implementation of geometric optimization
methods on a manifold. For the fixed rank manifold we have several options for
representing tangent vectors.

First of all, it follows from the bilinearity of the map (G,H) �→ GHT that
matrices of the form

ξ = •
GHT + G

•
HT ,

•
G ∈ Rm×k,

•
H ∈ Rn×k, (9.6)

are tangent vectors to Mk at X = GHT . Like the (G,H)-format, this representation
of tangent vectors has the disadvantage of not being unique, and it might be sensitive
to numerical errors when G or H are ill conditioned.

On the other hand, the representation (9.6) reveals that the tangent vector ξ lies
in the sum of two overlapping linear spaces, namely, the subspaces of all matrices
whose column (resp. row) space is contained in the column (resp. row) space of X.
Based on this observation we can find another representation for ξ . Let U ∈ Rm×k

and V ∈ Rn×k contain orthonormal bases for the column and row space of X ∈ Mk .
Then X = USV T for some S ∈ Rk×k (a possible choice here is the SVD (9.2) of

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 269

X, that is, S = �). We choose corresponding orthonormal bases U⊥ ∈ Rm×(m−k)

and V⊥ ∈ Rn×(n−k) for the orthogonal complements. Then the tangent vector ξ is
an element of the linear space

TXMk =
{ [

U U⊥
] [

C11 CT
12

C21 0

] [
V V⊥

]T :

C11 ∈ Rk×k, C21 ∈ R(m−k)×k, C12 ∈ R(n−k)×k

}
. (9.7)

Vice versa, it is not too difficult to show that every element in TXMk can be written
in the form (9.6) and hence is a tangent vector. Since the dimension of TXMk equals
that of Mk , it follows that in fact TXMk is equal to the tangent space to Mk at X.

In (9.7) we have decomposed the tangent space TXMk into three mutually
orthogonal subspaces represented by the three matrices C11, C21 and C12. The
orthogonal projection of any matrix Z ∈ Rm×n onto TXMk is hence obtained by
projecting on these three spaces separately. This gives

PX(Z) = PUZPV + (I − PU)ZPV + PUZ(I − PV), (9.8)

where PU = UUT and PV = V V T are the orthogonal projections onto the column
and row space of X, respectively. Expanding this expression, gives the alternative
formula

PX(Z) = PUZ + ZPV − PUZPV . (9.9)

While the characterization (9.7) of TXMk is very convenient for theoretical
purposes, it is less suitable in calculations when k is small but m or n are very large,
since then also one of the matrices U⊥ or V⊥ will be very large. In that situation, the
factored representation proposed in [98, 113] is preferable:

ξ = U
•
SV T + •

UV T + U
•
V T , (9.10)

where

•
S = C11 ∈ Rk×k,

•
U = U⊥C21 ∈ Rm×k,

•
V = V⊥C12 ∈ Rn×k. (9.11)

This only requires storing the smaller matrices
•
S,

•
U , and

•
V . Observe that the

columns of
•
U and

•
V are orthogonal to the columns of U and V , respectively, which

is also called a gauging condition.

270 A. Uschmajew and B. Vandereycken

To conclude, once U , S and V are chosen to represent X = USV T , all the
factored parametrizations of tangent vectors at X belong to the linear subspace2

H(U,S,V) = {(•
U,

•
S,

•
V) : •

S ∈ Rk×k,
•
U ∈ Rn×k, UT

•
U = 0,

•
V ∈ Rm×k, V T

•
V = 0}.

The representation of TXMk by H(U,S,V) is bijective. One can therefore directly
compute the result of the projection PX(Z) as a factored parametrization:

•
S = UT ZV,

•
U = (I − PU)ZV,

•
V = (I − PV)ZT V . (9.12)

Observe that this requires k matrix vector products with Z and ZT , hence sparsity
or a low rank of Z can be exploited nicely.

9.2.4 Retraction

The other main ingredient for efficient geometric methods are retractions. A
retraction for a manifold M is a smooth map R on the tangent bundle TM, and
maps at every X the tangent space TXM to M. The decisive property of a retraction
is that this mapping is exact to first order, that is,

RX(ξ) = X + ξ + o(‖ξ‖). (9.13)

Obviously, such a map will be useful in optimization methods for turning an
increment X + ξ on the affine tangent plane to a new point RX(ξ) on the manifold.
For Riemannian manifolds it can be shown that retractions always exist. A very
natural way from a differential geometry viewpoint is the so called exponential
map, which maps along geodesics in direction of the tangent vector. In practice,
the exponential map may be very complicated to compute. There are, however,
alternative choices. Retractions in our current context3 seem to be first introduced
in [99]; see also [2] for more details.

For the embedded submanifold Mk (more precisely, for M≤k) we are in the
fortunate situation that, by Theorem 9.1, we can compute the metric projection (best
approximation) in the ambient space equipped with the Frobenius norm as metric
through the truncated SVD. It hence provides an easy-to-use retraction with respect
to this metric. Note that in general for a Cm smooth embedded submanifold M of an
Euclidean space with m ≥ 2 and a point X ∈ M, there exists an open neighborhood
of 0 ∈ TXM on which a metric projection ξ �→ PM(X + ξ) is uniquely defined and
satisfies the retraction property

2This subspace is a horizontal distribution for the smooth quotient manifold that factors out the
freedom in the parametrization X = USV T = (UA)(A−1SB−T)(V B)T ; see [1].
3Not to be confused with a (deformation) retract from topology.

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 271

‖X + ξ − PM(X + ξ)‖ = o(‖ξ‖).

In addition, PM is Cm−1 smooth on that neighborhood; see, e.g., [68, Lemma 2.1].
When using truncated SVD as a retraction for Mk , the crucial question arises

whether it can be computed efficiently. This indeed is the case. If X = USV T

and ξ ∈ TXMk are represented in the factored form (9.10), we first compute QR
decompositions of

•
U and

•
V ,

•
U = Q1R1,

•
V = Q2R2.

It then holds

X + ξ =
[
U

•
U1

] [
SV T + •

SV T + •
V T

V T

]
= [

U Q1
]
K

[
V Q2

]T
(9.14)

with the 2k × 2k block matrix

K =
[
S + •

S RT
2

R1 0

]
.

Since the matrices
[
U Q1

]
and

[
V Q2

]
each have orthonormal columns (as before

we assume that both U and V have orthonormal columns), we can obtain an SVD
of the ‘big’ matrix X + ξ from an SVD of the small matrix K , which can be done
in O(k3) time.

9.3 The Geometry of the Low-Rank Tensor Train
Decomposition

In this section we present the tensor train decomposition as a possible generalization
of low-rank matrix decomposition to tensors. By tensors we simply mean higher-
order analogs of matrices: an n1×· · ·×nd tensor X is an array of this size containing
real valued entries X(i1, . . . , id); see Fig. 9.1. Such data structures appear in many
applications. Another way to see them is as multivariate functions depending on
discrete variables/indices. The tensors of given size form a linear space denoted as
Rn1×···×nd . The number d of directions is called the order of the tensor. Matrices are
hence tensors of order d = 2. As for matrices, it is common to also call the natural
Euclidean inner product for tensors,

〈X, Y 〉F =
n1∑

i1=1

· · ·
nd∑

id=1

X(i1, . . . , id)Y (i1, . . . , id), (9.15)

the Frobenius inner product, and it induces the Frobenius norm.

272 A. Uschmajew and B. Vandereycken

Fig. 9.1 Tensors of order one
(vectors), two (matrices), and
three

An n × · · · × n tensor has nd entries, which can quickly become unmanageable
in practice when d is large. This is sometimes called a curse of dimensionality.
Besides other important reasons, the use of low-rank tensor formats provides a
tool to circumvent this problem and deal with high dimensional data structures in
practice. From a geometric viewpoint a low-rank tensor format defines a nonlinear
subset in the space Rn1×···×nd , like the sets M≤k from (9.4) in the space of matrices,
which can be conveniently represented as the image of a multilinear map. Several
choices are possible here.

Let us recall the (G,H)-format (9.1) for a matrix. One way to look at it is as a
separation of the variables/indices:

X(i1, i2) =
r∑

�=1

G(i1, �)H(i2, �). (9.16)

The rank is the minimal number r needed for such a separation. A straightforward
analog for tensors would be a decomposition

X(i1, . . . , id) =
r∑

�=1

C1(i1, �) · · · Cd(id , �)

with factor matrices Cμ ∈ Rnμ×r , μ = 1, . . . , d. This tensor format is called the
canonical polyadic (CP) format. The minimal r required for such a decomposition
is called the (canonical) tensor rank of X. As for matrices, if r is small then storing
a tensor in the CP format is beneficial compared to storing all n1 · · · nd entries since
one only needs to know the d factor matrices C1, . . . , Cd .

The CP format has numerous useful applications in data science and scientific
computing; see [61] for an overview. One major difference to the matrix case,
however, is that the set of all tensors with canonical rank bounded by k is typically
not closed. Moreover, while the closure of this set is an algebraic variety, its
smooth part is in general not equal to the set of tensors of fixed rank k and
does not admit an easy explicit description. An exception is the case of rank-one
tensors (k = 1): the set of all outer products X = c1 ◦ · · · ◦ cd , defined by

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 273

X(i1, . . . , id) = c1(i1) · · · cd(id), of nonzero vectors cμ ∈ Rnμ , μ = 1, . . . , d, is an
embedded submanifold of dimension (n1 +· · ·+nd)−(d−1). (It is indeed a special
case of manifolds of fixed tensor train rank to be introduced below.) Riemannian
optimization in the CP format is hence possible by considering the d-fold sum of
rank-one tensors as a manifold, as proposed in [13]. We will, however, not consider
this format further in this chapter. Instead, we will present another way to separate
the indices of a tensor, which leads to the tensor train format and yields smooth
manifolds more similar to the matrix case.

9.3.1 The Tensor Train Decomposition

The tensor train (TT) format of a tensor X ∈ Rn1×···×nd can be derived recursively.
First, index i1 is separated from the others, that is,

X(i1, i2, . . . , id) =
r1∑

�1=1

G1(i1, �1)H1(�1, i2, . . . , id). (9.17)

Note that this is a usual matrix decomposition of the form (9.16) when treating the
multi-index (i2, . . . , id) as a single index. Next, in the tensor H1 the indices (�1, i2)

are separated from the rest, again by a matrix decomposition,

H1(�1, i2, . . . , id) =
r2∑

�2=1

G2(�1, i1, �2)H2(�2, i3, . . . , id), (9.18)

yielding

X(i1, i2, . . . , id) =
r1∑

�1=1

r2∑

�2=1

G1(i1, �1)G2(�1, i2, �2)H2(�2, i3, . . . , id). (9.19)

Proceeding in this way, one arrives after d steps at a decomposition of the form

X(i1, . . . , id) =
r1∑

�1=1

· · ·
rd−1∑

�d−1=1

G1(i1, �1)G2(�1, i2, �2) · · · Gd−1(�d−2, id−1, �d−1)Gd(�d−1, id),

(9.20)

with core tensors Gμ ∈ Rrμ−1×nμ×rμ , μ = 1, . . . , d, and r0 = rd = 1. (The third
dummy mode was added to G1 and Gd to unify notation.) The core tensors G1
and Gd are hence just matrices, while G2, . . . ,Gd−1 are tensors of order three. A
decomposition (9.20) is called a tensor train or TT decomposition of X.

274 A. Uschmajew and B. Vandereycken

The nested summation in formula (9.20) is in fact a long matrix product. If
we denote by Gμ(iμ) the rμ−1 × rμ matrix slices of Gμ, one gets the compact
representation

X(i1, . . . , id) = G1(i1)G2(i2) · · · Gd−1(id−1)Gd(id) (9.21)

of the TT format, which explains the alternative name matrix product state (MPS)
of this tensor decomposition common in physics. This formula clearly shows the
multilinearity of the TT decomposition with respect to the core tensors. Also it is
easy to see from (9.21) that a TT decomposition is never unique: we can insert the
identity AμA−1

μ between any two matrix factors to obtain another decomposition. It
will turn out below that this group action is essentially the only ambiguity.

In the numerical analysis community, the TT format was developed by Oseledets
and Tyrtyshnikov in [86, 87] with related formats proposed in [36, 40]. In earlier
work, it appeared in theoretical physics under a variety of different forms and names,
but is now accepted as MPS; see [97] for an overview.

The number of parameters in the TT decomposition (9.20) is bounded by dnr2

where n = max nμ and r = max rμ. When r � nd−2, this constitutes a great
reduction compared to storing the n1 · · · nd entries in X explicitly. Hence the
minimal possible choices for the ‘ranks’ rμ appearing in the above construction
are of interest. The crucial concept in this context is unfoldings of a tensor into
matrices.

We define the μth unfolding of a tensor X as the matrix X〈μ〉 of size (n1 · · · nμ)×
(nμ+1 · · · nd) obtained by taking the partial multi-indices (i1, . . . , iμ) as row
indices, and (iμ+1, . . . , id) as column indices.4 In other words,

X〈μ〉(i1, . . . , iμ; iμ+1, . . . , id) = X(i1, . . . , id)

where the semicolon indicates the separation between the row- and column indices.
One can then show the following theorem.

Theorem 9.2 In a TT decomposition (9.20) it necessarily holds that

rμ ≥ rank(X〈μ〉), μ = 1, . . . , d − 1. (9.22)

It is furthermore possible to obtain a decomposition such that equality holds.

To get an insight into why the above statement is true, first observe that, by
isolating the summation over the index jμ, the TT decomposition (9.20) is in fact
equivalent to the simultaneous matrix decompositions

X〈μ〉 = G≤μGT≥μ+1, μ = 1, . . . , d − 1, (9.23)

4In the following, we silently assume that a consistent ordering of multi-indices is used.

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 275

with ‘partial’ TT unfoldings

[G≤μ(i1, . . . , iμ; �μ)] = [G1(i1) · · · Gμ(iμ)] ∈ Rn1···nμ×rμ

and

[G≥μ+1(iμ+1, . . . , id ; �μ)] = [Gμ+1(iμ+1) · · · Gd(id)]T ∈ Rnμ+1···nd×rμ .

From (9.23) it follows immediately that the rank condition (9.22) is necessary.
Equality can be achieved using the constructive procedure leading to (9.20) with
minimal matrix ranks in every step. Let us explain this for the first two steps. Clearly,
the first step (9.17) is a rank revealing decomposition of X〈1〉, so the rank of that
matrix can be used as r1. The minimal admissible r2 in the second step (9.19) is
the rank of the second unfolding H

〈2〉
1 of tensor H1. Let us show that this rank

is not larger than the rank of X〈1〉, and hence both are equal by (9.22). Indeed,
if z = [z(i3, . . . , id)] is a vector of length n3 · · · nd such that X〈2〉z = 0 and
y = H 〈2〉z, then (9.17) yields 0 = ∑r1

�1=1 G1(i1, �1)y(�1, i2), which implies y = 0,

since G1 has rank r1. This implies rank(H 〈2〉) ≤ rank(X〈2〉). One can proceed with
a similar argument for the subsequent ranks r3, . . . , rd .

Theorem 9.2 justifies the following definition.

Definition 9.3 The vector r = (r1, . . . , rd−1) with rμ = rank(X〈μ〉), μ =
1, . . . , d − 1 is called the TT rank of a tensor X ∈ Rn1×···×nd .

For matrices, the SVD-like decompositions X = USV T with U and V having
orthonormal columns are often particularly useful in algorithms since they provide
orthonormal bases for the row and column space. This was for instance important for
the projection onto the tangent space TXMk at X, see (9.8) and (9.9). It is possible
to impose similar orthogonality conditions in the TT decomposition. Recall, that
the TT decomposition of a tensor X is obtained by subsequent rank-revealing
matrix decompositions for separating the indices i1, . . . , id one from another. This
can actually be done from left-to-right, from right-to-left, or from both directions
simultaneously and stopping at some middle index iμ. By employing QR (resp. LQ)
matrix decompositions in every splitting step, it is not so difficult to show that one
can find core tensors U1, . . . , Ud−1, as well as V2, . . . , Vd such that for every μ

between 1 and d − 1 it holds

X〈μ〉 = U≤μSμV T≥μ+1, (9.24)

for some Sμ ∈ Rrμ×rμ , and

UT≤μU≤μ = V T≥μ+1V≥μ+1 = Irμ . (9.25)

276 A. Uschmajew and B. Vandereycken

Note that these orthogonality conditions inductively imply that the unfoldings U
〈3〉
μ

as well as V
〈1〉
μ of core tensors itself have orthonormal columns. In general, for a

given μ, we call a TT decomposition with cores Gν = Uν for ν < μ, Gμ(iμ) =
Uμ(iμ)Sμ and Gν = Vν for ν ≥ μ + 1, and satisfying (9.25) a μ-orthogonal TT
decomposition of X. It implies (9.24).

One advantage of such a μ-orthogonal TT decomposition is that it provides the
orthogonal projections U≤μUT≤μ and V≥μ+1V

T≥μ+1 for the column and row space of

X〈μ〉 in the form of partial TT unfoldings that are hence easily applicable to tensors
in TT decomposition. From these projections it will be possible to construct the
tangent space projectors to TT manifolds in Sect. 9.3.4.

Note that if a TT decomposition with some cores G1, . . . ,Gd is already given,
a μ-orthogonal decomposition can be obtained efficiently by manipulating cores
in a left-to-right, respectively, right-to-left sweep, where each step consists of
elementary matrix operations and QR decompositions and costs O(dnr4) operations
in total. In particular, switching from a μ-orthogonal to a (μ + 1)- or (μ − 1)-
orthogonal decomposition, only one such step is necessary costing O(nr4). Observe
that the costs are linear in the order d and mode sizes nμ but fourth-order in the ranks
rμ. In practice, this means the limit for rμ is about 102 to 103, depending on the
computing power. We refer to [46, 72, 85] for more details on the implementation
and properties of the orthogonalization of TT decompositions.

We conclude with the general remark that algorithmically the TT tensor decom-
position is characterized by the concept of sweeping, which means that most
operations are performed recursively from left-to-right, then right-to-left, and so
on. Furthermore, the manipulations on the cores of a TT are based on basic
linear algebra. We have already seen that building the decomposition by itself or
orthogonalizing a given decomposition can be achieved by a left-to-right sweep
involving matrix decompositions only. Next we discuss the important operation of
rank truncation that is also achieved in this recursive way.

9.3.2 TT-SVD and Quasi Optimal Rank Truncation

Instead of QR decompositions, one can also use singular value decompositions for
constructing a μ-orthogonal TT representation (9.24). One then obtains

X〈μ〉 = U≤μ�μV T≥μ+1 (9.26)

with �μ ∈ Rrμ×rμ being diagonal. In other words, (9.26) is an SVD of X〈μ〉.
The advantage of using SVDs for constructing the TT decomposition is that they

can be truncated ‘on the fly’, that is, the index splitting decompositions like (9.17)
and (9.19) are replaced by truncated SVDs to enforce a certain rank. Specifically, in
a left-to-right sweep, at the μth step, let us assume a partial decomposition

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 277

X̃〈μ−1〉 = U≤μ−1Hμ−1

with U≤μ−1 having orthonormal columns has been constructed.5 Here we write X̃,
since the tensor may not equal X anymore due to previous rank truncations. The
next core Uμ is then obtained from the left singular vectors of a truncated SVD

of H
〈2〉
μ−1. This procedure is called the TT-SVD algorithm [86, 88]. Note that since

U≤μ−1 is orthogonal, the truncated SVD of H
〈2〉
μ−1 is implicitly also a truncated SVD

of X̃〈μ〉.
So if at every step of the TT-SVD algorithm instead of the exact rank rμ a

smaller rank kμ is used, the result will be a tensor Xk of TT rank (at most)
k = (k1, . . . , kd−1) in d-orthogonal TT format. It now turns out that this result
provides a quasi-optimal approximation of TT rank at most k to the initial tensor
X. Thus the TT-SVD algorithm plays a similar role for TT tensors as the SVD
truncation for matrices.

To state this result, let us define the sets

M≤k = {X ∈ Rn1×···×nd : TT-rank(X) ≤ k}

of tensors of TT rank at most k = (k1, . . . , kd−1), where the inequality for the
rank vector is understood pointwise. By Theorem 9.2, this set is an intersection of
low-rank matrix varieties:

M≤k =
d−1⋂

μ=1

{X ∈ Rn1×···×nd : rank(X〈μ〉) ≤ kμ}. (9.27)

Since each of the sets in this intersection is closed, the set M≤k is also closed in
Rn1×···×nd . As a result, every tensor X admits a best approximation by a tensor in
the set M≤k, which we denote by Xbest

k , that is,

‖X − Xbest
k ‖F = min

TT-rank(Y)≤k
‖X − Y‖F .

The TT-SVD algorithm, on the other hand, can be seen as an alternating projection
method for computing an approximation to X in the intersection (9.27).

The following theorem has been obtained in [88].

Theorem 9.4 Let X ∈ Rn1×···×nd have TT rank r and k ≤ r. Denote by Xk the
result of the TT-SVD algorithm applied to X with target rank k. Let εμ be the error in
Frobenius norm committed in the μth truncation step. Then the following estimates
hold:

5For consistency we set U≤0 = 1 and X〈0〉 = H0 = X.

278 A. Uschmajew and B. Vandereycken

‖X − Xk‖2
F ≤

d−1∑

μ=1

ε2
μ, (9.28)

and

ε2
μ ≤

∑

�>kμ

(σ
μ
�)2 ≤ ‖X − Xbest

k ‖2
F , (9.29)

where σ
μ
� are the singular values of the μth unfolding X〈μ〉.

The theorem has two immediate and equally important corollaries. The first
of them is that the sequential rank truncation performed by the TT-SVD is, as
announced above, a quasi-optimal projection:

‖X − Xk‖F ≤ √
d − 1‖X − Xbest

k ‖F . (9.30)

The second corollary is a complete characterization of low-rank approximability
in the TT format. Since ‖X − Xbest

k ‖F ≤ ‖X − Xk‖F , the above inequalities imply

‖X − Xbest
k ‖2

F ≤
d−1∑

μ=1

∑

�μ>kμ

(σ
μ
�μ

)2.

A tensor X will therefore admit good approximation by TT tensors of small rank
if the singular values of all the unfoldings X〈1〉, . . . , X〈d−1〉 decay sufficiently
fast to zero. By (9.29) such a decay is also a necessary condition. Similar to the
comment on matrix problems, the low-rank TT format is hence suitable in practice
for tensor problems where the solution has such a property. Justifying this a-priori
can be, however, a difficult task, especially for very large problems, and will not be
discussed.

We now sketch a proof of Theorem 9.4. The main argument is the observation
that while the best rank-k truncation of a matrix is a nonlinear operation, it is for
every input indeed performing a linear orthogonal projection that can be realized by
multiplying from the left an orthogonal projector onto the subspace spanned by the
dominant k left singular vectors of the input. Therefore, before the μth truncation
step, the current μth unfolding is the result of some μ − 1 previous orthogonal
projections

X̃〈μ〉 = P̃μ−1 · · · P̃1X
〈μ〉, (9.31)

which, however, have all been achieved by a matrix multiplication from the left
(since only indices i1, . . . , iμ−1 have been separated at this point). By comparing to
the projected best rank-kμ approximation of X〈μ〉, it is then easy to prove that X̃〈μ〉

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 279

has no larger distance (in Frobenius norm) to the set of rank-kμ matrices than X〈k〉
itself. Hence

εμ ≤ min
rank(Y 〈μ〉)≤kμ

‖X〈μ〉 − Y 〈μ〉‖F ≤ min
TT-rank(Y)≤k

‖X − Y‖F = ‖X − Xbest
k ‖F ,

where the second inequality is due to (9.27). Since the squared Frobenius distance
of X〈μ〉 to M≤kμ equals

∑
�>kμ

(σ
μ
�)2, this proves the second statement (9.29) of

the theorem.
Showing the first statement (9.28) is more subtle. One writes Xk as the result of

corresponding d − 1 orthogonal projections in tensor space:

Xk = Pd−1 · · ·P1X.

The error can then be decomposed into

X − Xk = (Pd−2 · · ·P1X − Pd−1 · · ·P1X) + (X − Pd−2 · · ·P1X).

The Frobenius norm of the first term is precisely εd−1. One now has to show that
both terms are orthogonal to proceed by induction. Indeed, an easy way to see that
for every μ = 1, . . . , d − 1 the result Pμ · · ·P1X after the μth truncation is still
in the range of the operator Pμ−1 · · ·P1 is that the rank truncation of X̃〈μ〉 as given
by (9.31) may equally be achieved by multiplying from the right an orthogonal
projector on the dominant kμ right singular values. Then it is clear that multiplying
P̃μ−1 · · · P̃1 from the left again will have no effect.

We conclude with two remarks. The first is that the TT-SVD algorithm can
be implemented very efficiently if X is already given in a μ-orthogonal TT
decomposition as in (9.24), say, with μ = 1, with moderate TT rank. Then in
a left-to-right sweep it is sufficient to compute SVDs of single cores, which is
computationally feasible if ranks are not too large. This is important in practice
when using the TT-SVD algorithm as a retraction as explained below.

The second remark is that the target ranks in the TT-SVD procedure can be
chosen adaptively depending on the desired accuracies εμ. Thanks to Theorem 9.4
this gives full control of the final error. In this scenario the algorithm is sometimes
called TT-rounding [86].

9.3.3 Manifold Structure

It may appear at this point that it is difficult to deal with the TT tensor format (and
thus with its geometry) computationally, but this is not the case. Tensors of low TT
rank can be handled very well by geometric methods in a remarkably analogous way
as to low-rank matrices. To do so, one first needs to reveal the geometric structure.

280 A. Uschmajew and B. Vandereycken

Similar to matrices, the set M≤k of tensors of TT rank bounded by k =
(k1, . . . , kd−1) is a closed algebraic variety but not a smooth manifold. Let us
assume that the set of tensors of fixed TT rank k, that is, the set

Mk = {X ∈ Rn1×···×nd : TT-rank(X) = k},

is not empty (the conditions for this are given in (9.32) below). Based on Theo-
rem 9.2 it is then easy to show that Mk is relatively open and dense in M≤k. One
may rightfully conjecture that Mk is a smooth embedded manifold in Rn1×···×nd .
Note that while Mk is the intersection of smooth manifolds (arising from taking the
conditions rank(X〈μ〉) = kμ in (9.27)), this by itself does not prove that Mk is a
smooth manifold.

Instead, one can look again at the global parametrization (G1, . . . ,Gd) �→ X

of TT tensors given in (9.20) but with ranks kμ. This is a multilinear map τ

from the linear parameter space Wk = Rk0×n1×k1 × · · · × Rkd−1×nd×kd (with
k0 = kd = 1) to Rn1×···×nd and its image is M≤k. One can now show that the
condition TT-rank(X) = k is equivalent to the conditions rank(G

〈1〉
μ) = kμ−1 and

rank(G
〈2〉
μ) = kμ on the unfoldings of core tensors, which defines a subset W∗

k of
parameters. The conditions

kμ−1 ≤ nμkμ, kμ ≤ nμkμ−1, μ = 1, . . . , d, (9.32)

are necessary and sufficient for the existence of such cores, and hence for Mk being
non-empty. Given these conditions the set W∗

k is open and dense in Wk and its
image under τ is Mk. Yet this parametrization is not injective. From the compact
matrix product formula (9.21), we have already observed that the substitution

Gμ(iμ) → A−1
μ−1Gμ(i1)Aμ, (9.33)

where Aμ are invertible rμ × rμ matrices, does not change the resulting tensor X.
One can show that this is the only non-uniqueness in case that X has exact TT rank
k, basically by referring to the equivalence with the simultaneous matrix decompo-
sitions (9.23). After removing this ambiguity by suitable gauging conditions, one
obtains a locally unique parametrization of Mk and a local manifold structure [46].

An alternative approach, that provides a global embedding of Mk, is to define
an equivalence relation of equivalent TT decompositions of a tensor X ∈ Mk. The
equivalence classes match the orbits of the Lie group Gk of tuples (A1, . . . , Ad−1)

of invertible matrices acting on W∗
k through (9.33). One can then apply a common

procedure in differential geometry and first establish that the quotient space W∗
k/Gk

possesses a smooth manifold structure such that the quotient map W∗
k → W∗

k/Gk
is a submersion. As a second step, one shows that the parametrization W∗

k/Gk →
Mk by the quotient manifold is an injective immersion and a homeomorphism in
the topology of the ambient space Rn1×···×nd . It then follows from standard results

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 281

(see, e.g., [66, Prop. 8.3]), that Mk is an embedded submanifold of Rn1×···×nd and
its dimension is

dim(Mk) = dim(W∗
k) − dim(Gk) = 1 +

d∑

μ=1

rμ−1nμrμ − r2
μ. (9.34)

The details of this construction can be found in [108].

9.3.4 Tangent Space and Retraction

In view of the practical geometric methods on the manifold Mk to be described later,
we now consider the efficient representation of tangent vectors and the computation
of retractions. These are quite analogous to the matrix case. First of all, using,
e.g., the compact notation (9.21) for the multilinear and surjective parametrization
(G1, . . . ,Gd) �→ X of the TT manifold W∗

k, it is clear that the tangent space TXMk
at a point X ∈ Mk with TT-cores (G1, . . . ,Gd) ∈ W∗

k (see Sect. 9.3.3) consists of
all tensors ξ of the form

ξ(i1, . . . , id) =
d∑

μ=1

G1(i1) · · · Gμ−1(iμ−1)
•
Gμ(iμ)Gμ+1(iμ+1) · · · Gd(id),

(9.35)
where the cores

•
Gμ at position μ can be chosen freely. In view of (9.34),

this representation has too many degrees of freedom, even when fixing the TT
decomposition G1, . . . ,Gd of X, but this redundancy can be removed by gauging
conditions.

A very reasonable way to do this is the following [56, 103]. We assume that
the cores U1, . . . , Ud−1 and V2, . . . , Vd for the orthogonal decompositions (9.24)–
(9.25) are available. Then, since the

•
Gμ in (9.35) are entirely free, we do not loose

generality by orthogonalizing every term of the sum around
•
Gμ:

ξ(i1, . . . , id) =
d∑

μ=1

U1(i1) · · · Uμ−1(iμ−1)
•
Gμ(iμ)Vμ+1(iμ+1) · · · Vd(id).

(9.36)
We now can add the gauging conditions

(U 〈2〉
μ)T

•
G〈2〉

μ = 0, μ = 1, . . . , d − 1, (9.37)

which remove r2
μ degrees of freedom from each of the cores

•
G1, . . . ,

•
Gd−1. The last

core
•
Gd is not constrained.

282 A. Uschmajew and B. Vandereycken

What this representation of tangent vectors achieves is that all d terms in (9.36)
now reside in mutually orthogonal subspaces T1, . . . , Td . In other words, the tangent
space TXMk is orthogonally decomposed:

TXMk = T1 ⊕ · · · ⊕ Td.

This allows to write the orthogonal projection onto TXMk as a sum of orthogonal
projections onto the spaces T1, . . . , Td . To derive these projections, consider first
the operators that realize the orthogonal projection onto the row and column space
of the unfoldings X〈μ〉. They read

P≤μ(Z) = Tenμ(U≤μUT≤μZ〈μ〉) and P≥μ+1(Z) = Tenμ(Z〈μ〉V≥μ+1V
T≥μ+1),

(9.38)
where Tenμ denotes the inverse operation of the μth unfolding so that P≤μ and
P≥μ+1 are in fact orthogonal projectors in the space Rn1×···×nd . Note that P≤μ and
P≥ν commute when μ < ν. Furthermore, P≤μP≤ν = P≤ν and P≥νP≥μ = P≥μ if
μ < ν.

By inspecting the different terms in (9.36) and taking the gauging (9.37) into
account, it is not so difficult to verify that the projection on T1 is given by

Z �→ (I − P≤1)P≥2Z,

the projection on T2 is given by

Z �→ P≤1(I − P≤2)P≥3Z = (P≤1 − P≤2)P≥3Z

and so forth. Setting P≤0 = P≥d+1 = I (identity) for convenience, the overall
projector PX onto the tangent space TXMk is thus given in one of the two following
forms [72]:

PX =
d−1∑

μ=1

(P≤μ−1 − P≤μ)P≥μ+1 + P≤d−1

= P≥2 +
d∑

μ=2

P≤μ−1(P≥μ+1 − Pμ).

(9.39)

The formulas (9.39) for the projector on the tangent space are conceptually
insightful but still extrinsic. An efficient implementation of this projection for
actually getting the gauged components

•
Gμ that represent the resulting tangent

vector is possible if Z is itself a TT tensor of small ranks or a very sparse tensor.
For example, due to the partial TT structure of projectors (9.38), when computing
P≤μ+1Z, the partial result from P≤μZ can be reused and so on. The full details
are cumbersome to explain so we do not present them here and refer to [73, §7]
and [103, §4].

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 283

It is also interesting to note that the tangent space TXMk itself contains only
tensors of TT rank at most 2k. This is due to the structure (9.35) of tangent vectors
as sums of TT decompositions that vary in a single core each [50]. Since X itself is
in TXMk, we directly write the TT decomposition of X + ξ , since this will be the
tensors that need to be retracted in optimization methods. In terms of the left- and
right-orthogonal cores U1, . . . , Ud−1 and V2, . . . , Vd from (9.25) we have [103]

(X + ξ)(i1, . . . , id) = W1(i1)W2(i2) · · · Wd−1(id−1)Wd(id), (9.40)

with the cores

W1(i1) =
[
U1(i1)

•
G1(i1)

]
, Wμ(iμ) =

[
Uμ(iμ)

•
Gμ(iμ)

0 Vμ(iμ)

]

for μ = 2, . . . , d − 1, and

Wd(id) =
[
SdVd(id) + •

Gd(id)

Vd(id)

]
,

where Sd is the matrix from the d-orthogonal decomposition (9.24) of X. The
formula (9.40) is the TT analog to (9.14).

Finally we mention that since Mk is a smooth manifold, the best approximation
of X + ξ would be in principle a feasible retraction from the tangent space to the
manifold. It is, however, computationally not available. The TT-SVD algorithm
applied to X + ξ with target ranks k is a valid surrogate, which due to the
TT representation (9.40) of tangent vectors is efficiently applicable. As discussed
in Sect. 9.3.2 the TT-SVD procedure is essentially a composition of nonlinear
projections on low-rank matrix manifolds, which are locally smooth around a
given X ∈ Mk. This provides the necessary smoothness properties of the TT-
SVD algorithm when viewed as a projection on Mk. On the other hand, the
quasi-optimality of this projection as established in (9.30) implies the retraction
property (9.13); see [103] for the details.

9.3.5 Elementary Operations and TT Matrix Format

Provided that the ranks are small enough, the TT representation introduced above
allows to store very high-dimensional tensors in practice and to access each entry
individually by computing the matrix product (9.21). Furthermore, it is possible to
efficiently perform certain linear algebra operations. For instance the sum of two TT
tensors X and X̂ with TT cores G1, . . . ,Gd and Ĝ1, . . . , Ĝd has the matrix product
representation

284 A. Uschmajew and B. Vandereycken

(X + X̂)(i1, . . . , id) =
[
G1(i1) Ĝ1(i1)

] [
G2(i2) 0

0 Ĝ2(i2)

]
· · ·

[
Gd−1(id−1) 0

0 Ĝd−1(id−1)

] [
Gd(id)

Ĝd(id)

]
.

Hence the core tensors are simply augmented, and no addition at all is required
when implementing this operation. Note that this shows that the TT rank of X + X̂

is bounded by the (entry-wise) sum of TT ranks of X and X̂.
As another example, the Frobenius inner product of X and X̂ can be implemented

by performing the nested summation in

〈X, X̂〉F =
n1∑

i1=1

· · ·
nd∑

id=1

G1(i1) · · · Gd(id)Ĝd(id)T · · · Ĝ1(i1)
T

sequentially: first, the matrix

Zd =
nd∑

id=1

Gd(id)Ĝd(id)T

is computed, then

Zd−1 =
nd−1∑

id−1=1

Gd−1(id−1)ZĜd−1(id−1)
T

and so on. These computations only involve matrix products and the final result
Z1 will be the desired inner product. The computational complexity for computing
inner products is hence O(dnr3) with n = max nμ and r = max{rμ, r̂μ}, where r
and r̂ are the TT-ranks of X and X̂, respectively. As a special case, the Frobenius
norm of a TT tensor can be computed.

Obviously, these elementary operations are crucial for applying methods from
numerical linear algebra and optimization. However, in many applications the most
important operation is the computation of the ‘matrix-vector-product’, that is, in our
case the action of a given linear operator A on a tensor X. In order to use low-rank
techniques like Riemannian optimization it is mandatory that the given operator A
can be applied efficiently. In some applications, sparsity of A makes this possible.
More naturally, most low-rank formats for tensors come with a corresponding low-
rank format for linear operators acting on such tensors that enable their efficient
application. For the TT format, the corresponding operator format is called the TT
matrix format [86] or matrix product operator (MPO) format [115].

A linear map A : Rn1×···×nd → Rn1×···×nd can be identified with an (n1 · · · nd)×
(n1 · · · nd) matrix with entries [A(i1, . . . , id ; j1, . . . , jd)], where both the rows and
columns are indexed with multi-indices. The operator A is then said to be in the TT
matrix format with TT matrix ranks (R1, . . . , Rd−1) if its entries can be written as

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 285

A(i1, . . . , id ; j1, . . . , jd) = O1(i1, j1)O2(i2, j2) · · · Od(id, jd),

where Oμ(iμ, jμ) are matrices of size Rμ−1 × Rμ (R0 = Rd = 1). Clearly, the TT
matrix format becomes the usual TT format when treating A as an n2

1 × · · · × n2
d

tensor.
Note that if A is an operator on matrices, that is, in the case d = 2, O1(iμ, jμ)

and O2(iμ, jμ) are just vectors of length R1 = R, and the formula can be written as

A(i1, i2; j1, j2) =
R∑

�=1

O1,�(i1, j1)O2,�(i2, j2).

In other words, such an operator A is a sum

A =
R∑

�=1

A� ⊗ B�

of Kronecker products of matrices [A�(i, j)] = [O1,�(i, j)] and [B�(i, j)] =
[O2,�(i, j)].

An operator in the TT matrix format can be efficiently applied to a TT tensor,
yielding a result in the TT format again. Indeed, let Y = A(X), then a TT
decomposition of Y can be found using the properties of the Kronecker product
⊗ of matrices [86]:

Y (i1, . . . , id) =
n1∑

j1=1

· · ·
nd∑

jd=1

A(i1, . . . , id ; j1, . . . , jd)X(j1, . . . , jd)

=
n1∑

j1=1

· · ·
nd∑

jd=1

(
O1(i1, j1) · · · Od(id, jj)

) ⊗ (
G1(j1) · · · Gd(jd)

)

=
n1∑

j1=1

· · ·
nd∑

jd=1

(
O1(i1, j1) ⊗ G1(j1)

) · · · (Od(id, jd) ⊗ Gd(jd)
)

= Ĝ1(i1) · · · Ĝd(id)

with resulting TT cores

Ĝμ(iμ) =
nμ∑

jμ=1

Oμ(iμ, jμ) ⊗ Gμ(jμ), μ = 1, . . . , d.

Forming all these cores has a complexity of O(dnr2R2), where R = max Rμ.
Note that Gμ(iμ) is a matrix of size rμ−1Rμ−1 × rμRμ so the TT ranks of A

and X are multiplied when applying A to X. In algorithms where this operation is

286 A. Uschmajew and B. Vandereycken

performed several times it therefore can become necessary to apply the TT-SVD
procedure to the result as a post-processing step for reducing ranks again. This
is akin to rounding in floating point arithmetic and is therefore also called TT-
rounding.

9.4 Optimization Problems

As we have explained above, the sets of matrices of fixed rank k and tensors of
fixed TT rank k are smooth submanifolds Mk ⊂ Rm×n and Mk ⊂ Rn1×···×nd ,
respectively. In this section we will see how to efficiently exploit these smooth
structures in optimization problems.

Here and in the following V denotes a finite dimensional real vector space, that
depending on the context, can be just RN , a space Rm×n of matrices, or a space
Rn1×···×nd of tensors.

9.4.1 Riemannian Optimization

We start with a relatively general introduction to local optimization methods on
smooth manifolds; see [2] for a broader but still self-contained treatment of this
topic.

Let M be a smooth submanifold in V, like Mk or Mk. Since M ⊂ V, we can
represent a point X on M as an element of V. We can do the same for its tangent
vectors ξ ∈ TXM since TXM ⊂ TXV � V. This allows us to restrict any smoothly
varying inner product on V to TXM and obtain a Riemannian metric (·, ·)X on M.
For simplicity, we choose the Euclidean metric:

(ξ, η)X = ξT η, ξ, η ∈ TXM ⊂ V.

Consider now a smooth objective function f : V → R. If we restrict its domain
to M, we obtain an optimization problem on a Riemannian manifold:

min f (X) s.t. X ∈ M. (9.41)

The aim of a Riemannian optimization method is to generate iterates X1, X2, . . .

that remain on M and converge to a (local) minimum of f constrained to M; see
Fig. 9.2. It uses only local knowledge of f , like first and second-order derivatives.
It thus belongs to the family of feasible methods for constrained optimization,
which is a very useful property in our setting since general tensors or matrices in
V with arbitrary rank might otherwise be too large to store. A distinctive difference
with other methods for constrained optimization is that a Riemannian optimization
method has a detailed geometric picture of the constraint set M at its disposal.

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 287

Fig. 9.2 A Riemannian
optimization method
generates iterates X� starting
from X1 to minimize f on a
manifold M. The thin gray
lines are level sets of f and
X∗ is a (local) minimum of f

on M

X1

X2

X3

X4 X*

Fig. 9.3 One step of a typical Riemannian optimization method with step direction ξ on the
submanifold (left). Example of one step of steepest descent on the pullback (right)

In its most basic form, a Riemannian optimization method is the update formula

X+ = RX(t ξ), (9.42)

that is then repeated after replacing X by X+. The formula (9.42) is defined by the
following ‘ingredients’; see also the left panel of Fig. 9.3.

1. The search direction ξ ∈ TXM that indicates the direction of the update. Similar
as in Euclidean unconstrained optimization, the search direction can be obtained
from first-order (gradient) or second-order (Hessian) information.6 Generally,
f will locally decrease in the direction of ξ , that is, the directional derivative
satisfies f ′(X) ξ < 0.

2. As explained in Sect. 9.2.4, the retraction RX : TXM → M is a smooth map that
replaces the usual update X + t ξ from Euclidean space to the manifold setting.
Running over t , we thus replace a straight ray with a curve that (locally) lies on
M by construction. By the retraction property (9.13), the curve is rigid at t = 0,
which means that RX(0) = X and d

dt
R(tξ)|t=0 = ξ for all ξ ∈ TXM.

3. The step size t > 0 is usually chosen to guarantee sufficient decrease of f in X+,
although non-monotone strategies also exist. Given ξ , the step size is typically

6We stick here to more standard smooth optimization on purpose but also nonsmooth and stochastic
methods are possible for Riemannian manifolds; see [38, 47, 48, 95].

288 A. Uschmajew and B. Vandereycken

found by line search strategies like backtracking, whereas an exact line search
would provide a global minimum along direction ξ , if it exists. As an alternative
one can use the trust-region mechanism to generate t ξ .

To explain the possible search directions ξ at a point X ∈ M, we take a slight
detour and consider the pullback of f at X:

f̂X = f ◦ RX : TXM → M.

Since f̂X is defined on the linear subspace TXM, we can for example minimize it
by the standard steepest descent method; see the right panel of Fig. 9.3. Observe that
rigidity of RX implies f̂X(0) = f (X). Hence, the starting guess is the zero tangent
vector, which will get updated as

ξ+ = 0 − β�β0 ∇f̂X(0)

and Armijo backtracking determines the smallest � = 0, 1, . . . such that

f̂X(ξ+) ≤ f̂X(0) − c β�β0‖∇f̂X(0)‖2
F . (9.43)

Here, β = 1/2, β0 = 1, and c = 0.99 are standard choices. We could keep on
iterating, but the crucial point is that in Riemannian optimization, we perform such
a step only once, and then redefine the pullback function for X+ = RX(ξ+) before
repeating the procedure.

Formally, the iteration just described is clearly of the form as (9.42), but it is
much more fruitful to regard this procedure from a geometric point of view. To this
end, observe that rigidity of RX also implies

f̂ ′
X(0) ξ = f ′(X)R′

X(0) ξ = f ′(X) ξ for all ξ ∈ TXM.

With PX : V → TXM the orthogonal projection, we thus obtain

(∇f̂X(0), ξ)F = (∇f (X),PX(ξ))F = (PX(∇f (X)), ξ)F . (9.44)

These identities allow us to define the Riemannian gradient of f at X to M simply
as the tangent vector PX(∇f (X)). This vector is conveniently also a direction of
steepest ascent among all tangent vectors at X with the same length. We can thus
define the Riemannian steepest descent method as

X+ = RX(−t PX(∇f (X))), with t = β�β0. (9.45)

Here, Armijo backtracking picks again the smallest � (since 0 < β < 1) such that

f (RX(X+)) ≤ f (X) − c β�β0‖PX∇f (X)‖2
F .

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 289

Observe that we have arrived at the same iteration as above but instead of
using a pullback we derived it directly from geometric concepts, where we have
benefited from choosing the Euclidean metric on TXM for obtaining the simple
formula (9.44) for the Riemannian gradient. Using the notion of second-order
retractions, one can in this way derive the Riemannian Newton method either using
the Riemannian Hessian with pullbacks or directly with the Riemannian connection.
We refer to [2] for details, where also trust-region strategies are discussed.

The ‘recipe’ above leaves a lot of freedom, which can be used to our advantage
to choose computational efficient components that work well in practice. Below we
will focus on approaches that are ‘geometric versions’ of classical, non-Riemannian
algorithms, yet can be implemented efficiently on a manifold so that they become
competitive.

9.4.2 Linear Systems

We now explain how Riemannian optimization can be used to solve very large linear
systems. Given a linear operator L : V → V and a ‘right-hand side’ B ∈ V, the aim
is to calculate any Xex that satisfies the equation

L(Xex) = B.

Since our strategy is optimization, observe that Xex can also be found as a global
minimizer of the residual objective function

fLS(X) = (L(X) − B,L(X) − B)F = ‖L(X) − B‖2
F .

If in addition L is symmetric and positive semi-definite on V, the same is true for
the energy norm function

fL(X) = (X,L(X))F − 2(X,B)F

= (X − Xex,L(X − Xex))F − (Xex,L(Xex))F .

The second identity shows that fL(X) is indeed, up to a constant, the square of
the error in the induced L-(semi)norm. In the following, we will assume that L is
positive semi-definite and focus only on f = fL since it leads to better conditioned
problems compared to fLS .

When Xex is a large matrix or tensor, we want to approximate it by a low-rank
matrix or tensor. Since we do not know Xex we cannot use the quasi-best truncation
procedures as explained in Sect. 9.3. Instead, we minimize the restriction of f = fL
onto an approximation manifold M = Mk or M = Mk:

min f (X) s.t. X ∈ M.

290 A. Uschmajew and B. Vandereycken

This is exactly a problem of the form (9.41) and we can, for example, attempt to
solve it with the Riemannian steepest descent algorithm. With X ∈ Mk and the
definition of fL, this iteration reads

X+ = RX(−t PX(L(X) − B)). (9.46)

When dealing with ill-conditioned problems, as they occur frequently with dis-
cretized PDEs, it is advisable to include some preconditioning. In the Riemannian
context, one way of doing this is by modifying (9.46) to

X+ = RX(−t PX(Q(L(X) − B))), (9.47)

where Q : V → V is a suitable preconditioner for L. This iteration is called truncated
Riemannian preconditioned Richardson iteration in [65] since it resembles a
classical Richardson iteration.

9.4.3 Computational Cost

Let us comment which parts of (9.46) are typically the most expensive. Since the
retraction operates on a tangent vector, it is cheap both for matrices and tensors
in TT format as long as their ranks are moderate; see Sect. 9.3. The remaining
potentially expensive steps are therefore the application of the projector PX and
the computation of the step size t .

Let Z = L(X) − B be the residual. Recall that the projected tangent vector
ξ = PX(Z) will be computed using (9.12) for matrices and (9.36)–(9.37) for TT
tensors. As briefly mentioned before, these formulas are essentially many (unfolded)
matrix multiplications that can efficiently be computed if Z is a sparse or low rank
matrix/tensor.

Sparsity occurs for example in the matrix and tensor completion problems
(see Sect. 9.6 later) where L is the orthogonal projector P� onto a sampling set
� ⊂ {1, . . . , n1} × · · · × {1, . . . , nd} of known entries of an otherwise unknown
matrix/tensor Xex ∈ V. The matrix/tensor B in this problem is then the sparse
matrix/tensor containing the known entries of Xex. Then if, for example, X =
USV T ∈ Mk is a matrix in SVD-like format, the residual Z = P�(X) − B is
also a sparse matrix whose entries are computed as

Z(i1, i2) =
{∑r

�=1 U(i1, �)S(�, �)V (i2, �) − B(i1, i2) if (i1, i2) ∈ �,

0 otherwise.

Hence the computation of PX(Z) now requires two sparse matrix multiplications
ZU and ZT V ; see [112]. For tensor completion, a little bit more care is needed but

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 291

an efficient implementation for applying the tangent space projector exists; see [103,
§4.2]. In all cases, the computation becomes cheaper the sparser Z is.

If on the other hand L is a low-rank TT matrix operator as explained in
Sect. 9.3.5, and B is a low-rank TT tensor, then Z = L(X) − B will be also of
low-rank since X ∈ Mk. This makes the tangent space projection PX(Z) efficiently
applicable afterwards as explained before. Operators with TT matrix structure are
the most typical situation when TT tensors are used for parametric PDEs and for the
Schrödinger equation; see again Sect. 9.6 later.

Regarding the computation of the step size t , we can approximate an exact line
search method by minimizing the first-order approximation

g(t) = f (X − t ξ) ≈ f (RX(−t ξ)).

For quadratic functions f , the function g(t) is a quadratic polynomial in t and can
thus be exactly minimized. For instance, with fL it satisfies

g(t) = (ξ,L(ξ))F t2 − 2(ξ,L(X) − B)F t + constant.

Recall that, by (9.40), the matrix or TT rank of a tangent vector ξ is bounded
by two times that of X. Hence, in the same situation as for L above, these inner
products can be computed very efficiently. It has been observed in [112] that with
this initialization of the step size almost no extra backtracking is needed.

9.4.4 Difference to Iterative Thresholding Methods

A popular algorithm for solving optimization problems with low-rank constraints,
like matrix completion [49] and linear tensor systems [8, 54], is iterative hard
thresholding (IHT).7 It is an iteration of the form

X+ = PM(X − t ∇f (X)),

where PM : V → M denotes the (quasi) projection on the set M, like the truncated
SVD for low-rank matrices and TT-SVD for tensors as explained in Sects. 9.2.1
and 9.3.2. Variations of this idea also include alternating projection schemes like
in [101]. Figure 9.4 compares IHT to Riemannian steepest descent. The main
difference between the two methods is the extra tangent space projection PX of the
negative gradient −∇f (X) for the Riemannian version. Thanks to this projection,
the truncated SVD in the Riemannian case has to be applied to a tangent vector
which can be implemented cheaply with direct linear algebra and is thus very
reliable, as explained in Sects. 9.2.4 and 9.3.4. In IHT on the other hand, the

7Also called singular value projection and truncated Richardson iteration.

292 A. Uschmajew and B. Vandereycken

IHT Riemannian SD

Fig. 9.4 Iterative hard thresholding (IHT) and Riemannian steepest descent (SD) for fixed-rank
matrices and tensors

Iterations
0 5 10 15 20 25 30 35

R
el

at
iv

e
re

si
du

al

10-4

10-2

100

102

104

Prec. Rich., k = 5
Prec. Rich., k = 7
Prec. Rich., k = 10
Riem. Prec. Rich., k = 5
Riem. Prec. Rich., k = 7
Riem. Prec. Rich., k = 10
Approx. Newton

Time [s]
0 1000 2000 3000 4000 5000

R
el

at
iv

e
re

si
du

al

10-4

10-2

100

102

104

Prec. Rich., k = 5
Prec. Rich., k = 7
Prec. Rich., k = 10
Riem. Prec. Rich., k = 5
Riem. Prec. Rich., k = 7
Riem. Prec. Rich., k = 10
Approx. Newton

Fig. 9.5 Convergence of the Riemannian and non-Riemannian versions of preconditioned
Richardson iteration. The approximation quality of the preconditioner is proportional to the
k value. (We do not explain the other Riemannian method “approx. Newton”.) Picture taken
from [65]. Copyright 2016 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved

truncated SVD is applied to a generally unstructured search direction and needs
to be implemented with sparse or randomized linear algebra, which are typically
less reliable and more expensive.

This difference becomes even more pronounced with preconditioning for linear
systems L(X) = B as in (9.47). As approximate inverse of L, the operator Q there
has typically high TT matrix rank and so the additional tangent space projector
in (9.47) is very beneficial compared to the seemingly more simpler truncated
preconditioned Richardson method

X+ = PM(X − t Q(L(X) − B)).

The numerical experiments from [65] confirm this behavior. For example, in Fig. 9.5
we see the convergence history when solving a Laplace-type equation with Newton
potential in the low-rank Tucker format, which has not been discussed, but illustrates
the same issue. Since the Newton potential is approximated by a rank 10 Tucker

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 293

Fig. 9.6 Relative testing error in function of number of iterations (left) and time (right). For an
IHT algorithm (denoted “Hard”) and a Riemannian method (denoted by “geomCG”) for different
sampling sizes when solving the tensor completion problem. Picture taken from [64]

matrix, applying QL greatly increases the rank of the argument. Thanks to the
tangent space projections, the time per iteration is reduced significantly and there
is virtually no change in the number of iterations needed.

There is another benefit of Riemannian algorithms over more standard rank
truncated schemes. Thanks to the global smoothness of the fixed-rank manifolds M,
it is relatively straightforward to accelerate manifold algorithms using non-linear
CG or BFGS, and perform efficient line search. For example, Fig. 9.6 compares
the Riemannian non-linear CG algorithm from [64] to a specific IHT algorithm
based on nuclear norm relaxation from [101] for the low-rank tensor completion
problem as explained in Sect. 9.6.3. We can see that the Riemannian algorithm
takes less iterations and less time. While this example is again for fixed-rank Tucker
tensors, the same conclusion is also valid for fixed-rank matrices and TT tensors;
see, e.g., [112, Fig. 5.1].

9.4.5 Convergence

Theoretical results for Riemannian optimization parallel closely the results from
Euclidean unconstrained optimization. In particular, with standard line search
or trust-region techniques, limit points are guaranteed to be critical points, and
additional Hessian information can enforce attraction to local minimal points;
see [2]. For example, when the initial point X1 is sufficiently close to a strict local
minimizer X∗ of f on M, Riemannian gradient descent will converge exponentially
fast. Specifically, if the Riemannian Hessian of f at X∗ has all positive eigenvalues
λp ≥ · · · ≥ λ1 > 0, then the iterates X� with exact line search satisfy the following
asymptotic Q-linear convergence rate [74]:

294 A. Uschmajew and B. Vandereycken

lim
�→∞

‖X�+1 − X∗‖F

‖X� − X∗‖F

= λp − λ1

λp + λ1
≤ 1 − κ, with κ = λ1

λp

.

With more practical line searches, like those that ensure the Armijo condition (9.43),
this rate deteriorates but remains 1 −O(κ); see [2]. As in the Euclidean non-convex
case, non-asymptotic results that are valid for arbitrary X1 can only guarantee
algebraic rates; see [12]. If however X1 is in a region where f is locally convex,
then also fast exponential convergence is guaranteed; see [107]. Results of this kind
but specific to matrix completion are available in [117].

For particular problems, one can show that gradient schemes converge to the
global minimum when started at any X1. The main idea is that, while these problems
are not convex, their optimization landscape is still favorable for gradient schemes
in the sense that all critical points are either strict saddle points or close to a global
minimum. Strict saddles are characterized as having directions of sufficient negative
curvature so that they push away the iterates of a gradient scheme that might be
attracted to such a saddle [76]. This property has been established in detail for matrix
sensing with RIP (restricted isometry property) operators, which are essentially
very well-conditioned when applied to low-rank matrices. Most of the results are
formulated for particular non-Riemannian algorithms (see, e.g., [90]), but landscape
properties can be directly applied to Riemannian algorithms as well; see [18, 110].
As far as we know, such landscape results have not been generalized to TT tensors
but related work on completion exists [93].

9.4.6 Eigenvalue Problems

Another class of optimization problems arises when computing extremal eigen-
values of Hermitian operators. This is arguably the most important application of
low-rank tensors in theoretical physics since it includes the problem of computing
ground-states (eigenvectors of minimal eigenvalues) of the Schrödinger equation.

The main idea is similar to the previous section. Suppose we want to compute
an eigenvector X ∈ V of a minimal eigenvalue of the Hermitian linear operator
H : V → V. Then, instead of minimizing the Rayleigh function on V, we restrict the
optimization space to an approximation manifold:

min ρ(X) = (X,H(X))F

(X,X)F
s.t. X ∈ M.

Since f is homogeneous in X, the normalization (X,X)F = 1 can also be imposed
as a constraint:

min ρ̃(X) = (X,H(X))F s.t. X ∈ M̃ = M ∩ {X : (X,X)F = 1}.

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 295

This intersection is transversal in cases when M is a manifold of low-rank matrices
or tensors, so M̃ is again a Riemannian submanifold of V with a geometry very
similar to that of M; see [91] for details on the matrix case. One can now proceed
and apply Riemannian optimization to either problem formulation.

Standard algorithms for eigenvalue problems typically do not use pure gradient
schemes. Thanks to the specific form of the problem, it is computationally feasible
to find the global minimum of ρ on a small subspace of V. This allows to enrich
the gradient direction with additional directions in order to accelerate convergence.
Several strategies of this type exist of which LOBPCG and Jacob–Davidson
have been extended to low-rank matrices and tensors. In particular, thanks to the
multilinear structure of the TT format, it is feasible to minimize globally over a
subspace in one of the TT cores. Proceeding in a sweeping manner, one can mimic
the Jacob–Davidson method to TT tensors; see [91, 92].

9.5 Initial Value Problems

Instead of approximating only a single (very large) matrix or tensor X by low
rank, we now consider the task of approximating a time-dependent tensor X(t)

directly by a low-rank tensor Y (t). The tensor X(t) is either given explicitly, or
more interesting, as the solution of an initial value problem (IVP)

•
X(t) = F(X(t)), X(t0) = X0 ∈ V, (9.48)

where
•
X means dX/dt . As it is usual, we assume that F is Lipschitz continuous

with constant �,

‖F(X) − F(Z)‖ ≤ � ‖X − Z‖ for all X,Z ∈ V, (9.49)

so that the solution to (9.48) exists at least on some interval [t0, T]. We took
F autonomous, which can always be done by adding t as an extra integration
parameter. For simplicity, we assume that the desired rank for the approximation
Y (t) is known and constant. In most applications, it will be important however that
the numerical method that computes Y (t) is robust to overestimation of the rank
and/or allows for adapting the rank to improve the accuracy.

The aim is to obtain good approximations of X(t) on the whole interval [t0, T].
This is usually done by computing approximations X� ≈ X(t0 + �h) with h the
time step. Classical time stepping methods for this include Runge–Kutta and BDF
methods. Sometimes, one is only interested in the steady-state solution, that is, X(t)

for t → ∞. This is for example the case for gradient flows, where F is the negative
gradient of an objective function f : V → R. The steady state solution of (9.48)
is then a critical point of f , for example, a local minimizer. However, in such
situations, it may be better to directly minimize f using methods from numerical
optimization as explained in Sect. 9.4.

296 A. Uschmajew and B. Vandereycken

Fig. 9.7 Graphical depiction
of the dynamical low-rank
approximation Y (t) at time t

Y (t)Y (t)

X(t)
TY (t)

9.5.1 Dynamical Low-Rank Approximation

We now explain how to obtain a low-rank approximation to (9.48) without needing
to first solve for X(t). Given an approximation submanifold M = Mk or M = Mk

of fixed-rank matrices or tensors, the idea is to replace
•
X in (9.48) by the tangent

vector in M that is closest to F(X); see also Fig. 9.7. It is easy to see that for the
Frobenius norm, this tangent vector is PX(F (X)) where PX : V → TXM is the
orthogonal projection. Applying this substitution at every time t , we obtain a new
IVP

•
Y (t) = PY (t)F (Y (t)), Y (t0) = Y0 ∈ M, (9.50)

where Y0 = PM(X0) is a quasi-best approximation of X0 in M. In [59], the
IVP (9.50) (or its solution) is aptly called the dynamical low-rank approximation
(DLRA) of X(t). Thanks to the tangent space projection, the solution Y (t) will
belong to M as long as PY (t) exists, that is, until the rank of Y (t) drops. In the
following we assume that (9.50) can be integrated on [t0, T].

The DLRA (9.50) can equivalently be defined in weak form as follows: find, for
each t ∈ [t0, T], an element Y (t) ∈ M such that

(
•
Y (t), Z)F = (F (Y (t)), Z)F for all Z ∈ TY(t)M, (9.51)

and Y (0) = Y0 ∈ M. Observe that this can be seen as a time-dependent Galerkin
condition since TY(t)M is a linear subspace that varies with t .

In the concrete case of low-rank matrices, DLRA appeared first in [59]. The same
approximation principle, called dynamically orthogonal (DO), was also proposed
in [94] for time-dependent stochastic PDEs. It was shown in [32, 83] that DO
satisfies (9.50) after discretization of the stochastic and spatial domain. In theoretical
physics, the time-dependent variational principle (TDVP) from [41] seems to be the
first application of DLRA for simulating spin systems with uniform MPS, a variant
of TT tensors. It is very likely similar ideas appeared well before since obtaining

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 297

approximations in a manifold from testing with tangent vectors as in (9.51) goes
back as far as 1930 with the works of Dirac [22] and Frenkel [33]. We refer to [69]
for a mathematical overview of this idea in quantum physics.

9.5.2 Approximation Properties

The local error at t of replacing (9.48) by (9.50) is minimized in Frobenius norm by
the choice

•
Y ; see also Fig. 9.7. In order to quantity the effect of this approximation

on the global error at the final time T , the simplest analysis is to assume as in [57, 58]
that the vector field F is ε close to the tangent bundle of M, that is,

‖F(Y (t)) − PY (t)F (Y (t))‖F ≤ ε for all t ∈ [t0, T].

A simple comparison of IVPs then gives

‖Y (t) − X(t)‖F ≤ eλt δ + (eλt − 1)λ−1ε = O(ε + δ), (9.52)

where ‖X0 − Y0‖F ≤ δ and λ is a one-sided Lipschitz constant of F satisfying8

(X − Z,F(X) − F(Z))F ≤ λ ‖X − Z‖2
F for all X,Z ∈ V.

From (9.52), we observe that Y (t) is guaranteed to be a good approximation of X(t)

but only for (relatively) short time intervals when λ > 0.
Alternatively, one can compare Y (t) with a quasi-best approximation Yqb(t) ∈ M

to X(t). Assuming Yqb(t) is continuously differentiable on [t0, T], this can be done
by assuming that M is not too curved along Yqb(t). In the matrix case, this means
that the kth singular value of Yqb(t) is bounded from below, i.e., there exists ρ > 0
such that σk(Yqb(t)) ≥ ρ for t ∈ [t0, T]. Now a typical result from [59] is as follows:

Let F be the identity operator and assume ‖ •
X(t)‖F ≤ c and ‖X(t) − Yqb(t)‖F ≤

ρ/16 for t ∈ [t0, T]. Then,

‖Y (t) − Yqb(t)‖F ≤ 2βeβt

∫ t

0
‖Yqb(s) − X(s)‖F ds with β = 8cρ−1

for t0 ≤ t ≤ min(T , 0.55β−1). Hence, the approximation Y (t) stays close to Yqb(t)

for short times. We refer to [59] for additional results that also include the case of
F not the identity. Most of the analysis was also extended to manifolds of fixed
TT rank (as well as to Tucker and hierarchical) tensors in [60, 73] and to Hilbert
spaces [83].

8We remark that λ can be negative and is bounded from above by � from (9.49).

298 A. Uschmajew and B. Vandereycken

We remark that these a-priori results only hold for (very) short times. In practice,
they are overly pessimistic and in actual problems the accuracy is typically much
higher than theoretically predicted; see [57, 71, 72, 83, 94], and the numerical
example from Fig. 9.8 further below.

9.5.3 Low-Dimensional Evolution Equations

The dynamical low-rank problem (9.50) is an IVP that evolves on a manifold M of
fixed-rank matrices or tensors. In relevant applications, the rank will be small and
hence we would like to integrate (9.50) by exploiting that M has low dimension.

Let us explain how this is done for m × n matrices of rank k, that is, for the
manifold Mk . Then rank(Y (t)) = k and we can write Y (t) = U(t)S(t)V (t)T where
U(t) ∈ Rm×k and V (t) ∈ Rm×k have orthonormal columns and S(t) ∈ Rk×k . This
is an SVD-like decomposition but we do not require S(t) to be diagonal. The aim is
now to formulate evolution equations for U(t), S(t), and V (t).

To this end, recall from (9.10) that for fixed U, S, V every tangent vector
•
Y has

a unique decomposition
•
Y = •

USV T + U
•
SV T + US

•
V T with UT

•
U = 0, V T

•
V = 0.

Since
•
Y = PY (F (Y)), we can isolate

•
U,

•
S,

•
V by applying (9.12) with Z = F(Y).

The result is a new IVP equivalent to (9.50) but formulated in the factors:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

•
U = (I − UUT)F (Y)V S−1,

•
S = UT F(Y)V,

•
V = (I − V V T)F (Y)T US−T .

(9.53)

stepsize
10 -5 10 -4 10 -3 10 -2 10 -1

er
ro

r

10 -5

10 0
4th order Runge-Kutta method

rank 4

rank 8

rank 16

stepsize
10 -5 10 -4 10 -3 10 -2 10 -1

er
ro

r

10 -10

10 -5

10 0

Lie-Trotter projector splitting integrator

rank 32

rank 16

rank 8
rank 4

Fig. 9.8 Errors of the dynamical low-rank approximation for (9.55) integrated by a standard
explicit Runge–Kutta scheme for (9.53) and the projector-splitting integrator (9.58). Picture taken
from [58]. Copyright 2016 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 299

(Here, U, S, V all depend on t .) Observe that this is a set of coupled non-linear
ODEs, parametrized using (m + n)k + k2 entries.

The ODE (9.53) appeared in [59, Prop. 2.1]. For DO [94], one uses the
parametrization Y (t) = U(t)M(t)T where only U has orthonormal columns and
obtains

⎧
⎨

⎩

•
U = (I − UUT)F (UMT)M(MT M)−1,

•
M = F(UMT)T U.

(9.54)

These two coupled non-linear ODEs are very similar to (9.53) with respect to
theoretical and numerical behavior. In particular, they also involve the normalization
condition UT

•
U = 0 and an explicit inverse (MT M)−1.

The derivation of these ODEs can be generalized to TT tensors with factored and
gauged parametrizations for the tangent vectors. The equations are more tedious to
write down explicitly, but relatively easy to implement. We refer to [73] for details.
See also [4, 60] for application to the (hierarchical) Tucker tensor format.

For matrices and for tensors, the new IVPs have the advantage of being
formulated in low dimensional parameters. However, they both suffer from a major
problem: the time step in explicit methods needs to be in proportion to the smallest
positive singular value of (each unfolding) of Y (t). If these singular values become
small (which is typically the case, since the DLRA approach by itself is reasonable
for those applications where the true solution exhibits fast decaying singular values),
Eq. (9.53) is very stiff. The presence of the terms S−1 in (9.53) and (MT M)−1

in (9.54) already suggests this and numerical experiments make this very clear. In
Fig. 9.8, we report on the approximation errors for DLRA applied to the explicit
time-dependent matrix

A(t) = exp(tW1) exp(t)D exp(tW2), 0 ≤ t ≤ 1, (9.55)

with W1,W2 being skew-symmetric of size 100×100 and D a diagonal matrix with
entries 2−1, · · · , 2−100; see [58] for details. The left panel shows the results of a
Runge–Kutta method applied to the resulting system (9.53). The method succeeds
in computing a good low-rank approximation when the step size h is sufficiently
small, but becomes unstable when h is larger than the smallest singular value of
Y (t). Due to this step-size restriction it hence becomes very expensive when aiming
for accurate low-rank approximations. See also [57, Fig. 3] for similar results.

One solution would be to use expensive implicit methods or an ad-hoc regular-
ization of S−1. In the next subsection, a different approach is presented that is based
on a splitting of the tangent space projector, and is robust to small singular values.

9.5.4 Projector-Splitting Integrator

Instead of immediately aiming for an ODE in the small factors U, S, V , the idea
of the splitting integrator of [71] is to first apply a Lie splitting to the orthogonal
projector PY in

300 A. Uschmajew and B. Vandereycken

•
Y (t) = PY (t)F (Y (t)), Y (t0) = Y0 ∈ M, (9.56)

and then—thanks to some serendipitous observation—obtain low dimensional
ODEs at a later stage. For instance, in the matrix case, as stated in (9.9), the projector
can be written as

PY (Z) = ZV V T − UUT ZV V T + UUT V with Y = USV T . (9.57)

When we integrate each of these three terms consecutively (labeled a, b, c) from t0
to t1 = t0 + h, we obtain the following scheme (all matrices depend on time):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

•
Ya = F(Ya)VaV

T
a , Ya(t0) = Y0 = UaSaV

T
a ,

•
Yb = −UbU

T
b F (Yb)VbV

T
b , Yb(t0) = Ya(t1) = UbSbV

T
b ,

•
Yc = UcU

T
c F (Yc), Yc(t0) = Yb(t1) = UcScV

T
c .

(9.58)

Here, all Ux and Vx are matrices with orthonormal columns. Observe the minus
sign for Yb. The result Yc(t1) is an O(h2) approximation to Y (t1). We then repeat
this scheme starting at Yc(t1) and integrate from t1 to t2 = t1 + h, and so on. By
standard theory for Lie splittings, this scheme is first-order accurate for (9.56), that
is, ‖Yc(T) − Y (T)‖F = O(h) where T = �h.

To integrate (9.58) we will first write it using much smaller matrices. To this end,
observe that with exact integration Ya(t1) ∈ Mk since

•
Ya ∈ TYaMk and Ya(t0) ∈

Mk . Hence, we can substitute the ansatz Ya(t) = Ua(t)Sa(t)Va(t)
T in the first

substep and obtain

•
Ya = d

dt
[Ua(t)Sa(t)]Va(t)

T + Ua(t)Sa(t)
•
Va(t)

T = F(Ya(t))Va(t)Va(t)
T .

Judiciously choosing
•
Va(t) = 0, we can simplify to

Va(t) = Va(t0),
d

dt
[Ua(t)Sa(t)] = F(Ya(t))Va(t0).

Denoting K(t) = Ua(t)Sa(t), the first substep is therefore equivalent to

•
K(t) = F(K(t)Va(t0)

T)Va(t0), K(t0) = Ua(t0)S(t0). (9.59)

Contrary to the earlier formulation, this is an IVP for an n × k matrix K(t). The
orthonormal matrix Ub for the next substep can be computed in O(nk2) work by a
QR decomposition of K(t1).

The second and third substeps can be integrated analogously in terms of evolution
equations only for Sb(t) and Lc(t) = Vc(t)Sc(t). Also note that we can take Vb =
Va and Uc = Ub. We thus get a scheme, called KSL, that integrates in order K , S,

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 301

and L. A second-order accurate scheme is the symmetric Strang splitting: one step
consists of computing the K , S, L substeps for F with h/2 and afterwards the L, S,
K substeps for the adjoint of F with h/2.

In both versions of the splitting scheme, care must be taken in the integration of
the substeps since they are computationally the most expensive part. Fortunately, the
ODEs in the substeps are formally of the same form as the original equation for the
vector field F(Y) since the projected subspace is constant; see, e.g., Va(t0) in (9.59).
This means that one can usually adapt specialized integrators for F(Y). In [28], for
example, the substeps arising from the Vlasov–Poisson equations in plasma physics
(see also Sect. 9.6.5) can be integrated by spectral or semi-Lagrangian methods. In
addition, when F is linear and has low TT matrix rank, the large matrix K(t)Va(t0)

T

in (9.59), for example, does not need to be formed explicitly when evaluating F . As
illustration, for the Lyapunov operator F(Z) = LZ + ZLT , the equation for K

becomes

•
K(t) = F(K(t)Va(t0)

T)Va(t0) = LK(t) + K(t)La, La = Va(t0)
T LVa(t0)

where L ∈ Rn×n is large but usually sparse, and La ∈ Rk×k is small. Hence, an
exponential integrator with a Krylov subspace method is ideally suited to integrate
K(t); see, e.g., [70].

Let us finish by summarizing some interesting properties of the splitting integra-
tor for matrices. Let Y� be the solution after � steps of the scheme explained above
with step size h. For simplicity, we assume that each substep is solved exactly (or
sufficiently accurately). Recall that X(t) is the solution to the original ODE (9.48)
that we approximate with the dynamical low-rank solution Y (t) of (9.50).

(a) Exactness [71, Thm. 4.1]: If the solution X(t) of the original ODE lies on Mk ,
then Y� = X(t�) when F equals the identity.

(b) Robustness to small singular values [58, Thm. 2.1]: There is no step size
restriction due to small singular values. Concretely, under the same assumptions
that lead to (9.52), the approximation error satisfies

‖Y� − X(t0 + �h)‖F ≤ C(δ + ε + h) for all �, h such that t0 + �h ≤ T

where C only depends on F and T . Observe that this only introduced the time
step error h. For the integration error ‖Y� −Y (t0 +�h)‖F , a similar bound exists
in [71, Thm. 4.2] but it requires rather technical assumptions on F .

(c) Norm and energy conservation [70, Lemma 6.3]: If the splitting scheme is
applied to complex tensors for a Hamiltonian problem F(X) = −iH(X) with
complex Hermitian H , the Frobenius norm and energy are preserved:

‖Y�‖F = ‖Y0‖F and 〈Y�,H(Y�)〉F = 〈Y0,H(Y0)〉F for all n.

In the case of real tensors, the norm is preserved if 〈F(Y), Y 〉F = 0.

302 A. Uschmajew and B. Vandereycken

Property (a) does not seem very useful but it is key to showing the much more
relevant property (b). All three properties are not shared when solving (9.53) by a
standard integrator, like explicit Runge–Kutta. Even more, properties (a) and (b) are
also lost for a different ordering of the splitting scheme, like KLS, even though that
would still result in a first-order scheme. We remark that these properties also hold
for the solution Y (t) of the continuous problem by (formally) replacing h by 0.

To extend the idea of projector splitting to TT tensors Y (t) ∈ Mk, the correct
splitting of the tangent space projector PY : V → TYMk has to be determined. The
idea in [72] is to take the sum expression (9.39) and split it as

PY = P+
1 − P−

1 + P+
2 − P−

2 · · · − P−
d−1 + P+

d (9.60)

where

P+
μ(Z) = P≤μ−1(P≥μ+1(Z)) and P−

μ(Z) = P≤μ(P≥μ+1(Z)).

Observe that P±
μ depends on Y and that this splitting reduces to the matrix case

in (9.57) when d = 2. The projector-splitting integrator for TT is now obtained by
integrating each term in (9.60) from left to right:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

•
Y+

1 = P+
1 (F (Y+

1)), Y+
1 (t0) = Y0,

•
Y−

1 = −P−
1 (F (Y−

1)), Y−
1 (t0) = Y+

1 (t1),

•
Y+

2 = P+
2 (F (Y+

2)), Y+
2 (t0) = Y−

1 (t1),

...
...

•
Y+

d = P+
d (F (Y+

d)), Y+
d (t0) = Y−

d−1(t1).

(9.61)

Quite remarkably, this splitting scheme for TT tensors shares many of the important
properties from the matrix case. In particular, it allows for an efficient integration
since only one core varies with time in each substep (see [72, Sec. 4]) and it is robust
to small singular values in each unfolding (see [58, Thm. 3.1]). We refer to [42] for
more details on its efficient implementation and its application to quantum spin
systems in theoretical physics.

9.6 Applications

In this section, we explain different types of problems that have been solved by
low-rank matrix and tensor methods in the literature. We will in particular focus on
problems that can be approached by the geometry-oriented methods considered in
this chapter, either via optimization on low-rank manifolds or via dynamical low-

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 303

rank integration. Our references to the literature are meant to give a broad and recent
view of the usefulness of these methods, but we do not claim they are exhaustive.

9.6.1 Matrix Equations

In control and systems theory (see, e.g., [3]), a number of applications requires
solving the following types of matrix equations:

Lyapunov: AX + XAT = C,

Sylvester: AX + XB = C,

Riccati: AX + XAT + XBX = C.

(9.62)

Here, A,B,C are given matrices and X is the unknown matrix (of possible different
size in each equation). The first two equations are linear, whereas the second is
quadratic. For simplicity, we assume that these equations are uniquely solvable but
there exist detailed results about conditions for this.

In large-scale applications, the matrix X is typically dense and too large to store.
Under certain conditions, one can prove that X has fast decaying singular values
and can thus be well approximated by a low-rank matrix; see [102] for an overview.
For the linear equations, one can then directly attempt the optimization strategy
explained in Sect. 9.4.2 and minimize the residual function or the energy-norm error.
The latter is preferable but only possible when A and B are symmetric and positive
definite; see [111] for a comparison. If the underlying matrices are ill-conditioned,
as is the case with discretized PDEs, a simple Riemannian gradient scheme will
not be effective and one needs to precondition the gradient steps or perform a
quasi-Newton method. For example, in case of the Lyapunov equation, it is shown
in [113] how to efficiently solve the Gauss–Newton equations for the manifold
Mk . If the Riccati equation is solved by Newton’s method, each step requires
solving a Sylvester equation [102]. When aiming for low-rank approximations,
the latter can again be solved by optimization on Mk; see [81]. We remark that
while most methods for calculating low-rank approximations to (9.62) are based on
Krylov subspaces and rational approximations, there exists a relation between both
approaches; see [11].

The matrix equations from above have direct time-dependent versions. For
example, the differential Riccati equation is given by

•
X(t) = AX(t) + X(t)AT + G(t,X(t)), X(t0) = X0, (9.63)

where G(t,X(t)) = C −X(t)BX(t). Uniqueness of the solution X(t) for all t ≥ t0
is guaranteed when X0, C, and B are symmetric and positive semi-definite [21].
In optimal control, the linear quadratic regulator problem with finite time horizon

304 A. Uschmajew and B. Vandereycken

requires solving (9.63). In the large-scale case, it is typical that X0 and C are low
rank and it has been observed [20, 76] that X(t) has then fast decaying singular
values, even on infinite time horizons.

Other examples are the differential Lyapunov equation (G(t,X) = 0) and the
generalized differential Riccati equation (G(t,X(t)) = C + ∑J

j=1 DT
j X(t)Dj −

X(t)BX(t)); see, e.g. [20, 75], for applications. When matrices are large, it is
important to exploit that applying the right hand side in (9.63) does not increase
the rank of X(t) too much, which is guaranteed here, if J is not too large and the
matrix C is of low rank. In [89] a low-rank approximation to X(t) is obtained with
the dynamical low-rank algorithm. Like in the time-independent case, discretized
PDEs might need special treatment to cope with the stiff ODEs. In particular, an
exponential integrator can be combined with the projector-splitting integrator by
means of an additional splitting of the vector field for the stiff part; see [89] for
details and analysis.

9.6.2 Schrödinger Equation

Arguably the most typical example involving tensors of very high order is the time-
dependent Schrödinger equation,

•
ψ = −iH(ψ),

where H is a self-adjoint Hamiltonian operator acting on a (complex-valued) multi-
particle wave function ψ(x1, . . . , xd , t) with xμ ∈ Rp, p ≤ 3. This equation is
fundamental in theoretical physics for the simulation of elementary particles and
molecules. Employing a Galerkin discretization with i = 1, . . . , nμ basis functions

ϕ
(μ)
i in each mode μ = 1, . . . , d, the wave function will be approximated as

ψ(x1, . . . , xd, t) ≈
n1∑

i1

· · ·
nd∑

id

X(i1, . . . , id ; t) ϕ
(1)
i1

(x1) · · · ϕ(d)
id

(xd).

By regarding the unknown complex coefficient X(i1, . . . , id ; t) as the (i1, . . . , id)th
element of the time-dependent tensor X(t) of size n1 ×· · ·×nd , we obtain the linear
differential equation

•
X(t) = −iH(X(t)) (9.64)

where H is the Galerkin discretization of the Hamiltonian H. More complicated
versions of this equation allow the Hamiltonian to be time-dependent.

The size of the tensor X(t) will be unmanageable for large d but, fortunately,
certain systems allow it to be approximated by a low-rank tensor. For example,

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 305

Fig. 9.9 Spectrum computed
by the second-order splitting
integrator and by the
MCTDH package. Picture
taken from [72]. Copyright
2015 Society for Industrial
and Applied Mathematics.
Reprinted with permission.
All rights reserved

10 20 30 40 50
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
TT-KSL, rank=18

MCTDH

in the multilayer multiconfiguration time-dependent Hartree model (ML-MCDTH)
in [78, 116] for simulating quantum dynamics in small molecules, the wave func-
tions are approximated by hierarchical Tucker tensors. Spin systems in theoretical
physics, on the other hand, employ the TT format and can simulate systems of very
large dimension (since nμ are small); see [97] for an overview. For both application
domains, the solution of (9.64) can be obtained by applying dynamical low-rank;
see, e.g., [77] for MCDTH and [41] for spin systems.

Numerical experiments for (9.64) with the Henon–Heiles potential were per-
formed in [72]. There the second-order splitting integrator with a fixed time step
h = 0.01 and a fixed TT rank of 18 was compared to an adaptive integration of
the gauged ODEs, similar to (9.53). In particular, the ML-MCDTH method [10]
was used in the form of the state-of-the art code mcdth v8.4. Except for the
slightly different tensor formats (TT versus hierarchical Tucker) all other modeling
parameters are the same. For similar accuracy, a 10 dimensional problem is
integrated by mcdth in 54 354 s, whereas the TT splitting integrator required only
4425 s. The reason for this time difference was mainly due to the ill conditioned
ODEs in the gauged representation. In addition, there was no visible difference in
the Fourier transform of the auto-correlation functions; see Fig. 9.9.

There is an interesting link between the computation of the ground state
(eigenvector of the minimal eigenvalue) of H via the minimization of the Rayleigh
quotient

ρ(X) = (X,H(X))F

(X,X)F

and so-called imaginary time evolution [41] for a scaled version of (9.64) that
conserves unit norm. The latter is a formal way to obtain a gradient flow for ρ(X)

using imaginary time τ = −it by integrating

306 A. Uschmajew and B. Vandereycken

•
X = −H(X) + (X,H(X))F X.

For both approaches, we can approximate their solutions with low-rank tensors,
as we explained before, either via optimization or dynamical low rank on Mk.
However, methods based on optimization of the multilinear TT representation of X

remain the more popular approach since they easily allow to reuse certain techniques
from standard eigenvalue problems, like subspace corrections, as is done in the
DMRG [118] or AMEn [23, 63] algorithm.

For an overview on tensor methods in quantum physics and chemistry we refer
to [51, 97, 105].

9.6.3 Matrix and Tensor Completion

Let � ⊂ {1, . . . , m} × {1, . . . , n} be a sampling set. The problem of matrix
completion consists of recovering an unknown m × n matrix M of rank k based
only on the values M(i, j) for all (i, j) ∈ �. Remarkably, this problem has a
unique solution if |�| ≈ O(dimMk) = O(k(m+n)) and under certain randomness
conditions on � and M; see [14]. If the rank k is known, this suggests immediately
the strategy of recovering M by minimizing the least-squares fit

f (X) =
m∑

i=1

n∑

j=1

(X(i, j) − M(i, j))2 = ‖P�(X − M)‖2
F

on the manifold Mk , where P� is the orthogonal projection onto matrices that
vanish outside of �. Since P� is well-conditioned on Mk when the iterates satisfy
an incoherence property, the simple Riemannian gradient schemes that we explained
above perform very well in recovering M; see, e.g., [82, 112].

The problem of matrix completion can be generalized to tensors, and Riemannian
methods for tensor completion have been developed for the Tucker format in [64],
and for the TT format in [103].

In addition, instead of element-wise sampling, the observations can also be
constructed from a general linear operator S : V → Rq . This problem remains well-
posed under certain randomness conditions on S and also Riemannian optimization
performs well if applied to the least-square version of the problem for which
L = ST S; see [117].

9.6.4 Stochastic and Parametric Equations

Other interesting applications for low-rank tensors arise from stochastic or paramet-
ric PDEs [7, 9, 24, 26, 31, 54, 55]. For simplicity, suppose that the system matrix of

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 307

a finite-dimensional linear system Ax = b of equations depends on p parameters
ω(1), . . . , ω(p), that is,

A(ω(1), . . . , ω(p)) x(ω(1), . . . , ω(p)) = b. (9.65)

One might be interested in the solution x ∈ Rn for some or all choices of parameters,
or, in case the parameters are random variables, in expectation values of certain
quantities of interest.

By discretizing each parameter ω(μ) with mμ values, we can gather all the
m1 · · · mp solution vectors x into one tensor

[X(j, i1, . . . , ip)] = [xj (ω
(1)
i1

, . . . , ω
(p)
ip

)]

of order p + 1 and size n × m1 × · · · × mp. When A depends analytically on
ω = (ω(1), . . . , ω(p)), the tensor X can be shown [62] to be well approximated
by low TT rank and it satisfies a very large linear system L(X) = B. If L is a
TT matrix of low rank, we can then approximate X on Mk by the optimization
techniques we discussed in Sect. 9.4. This is done, for example, in [65] with an
additional preconditioning of the gradient.

A similar situation arises for elliptic PDEs with stochastic coefficients. After
truncated Karhunen–Loève expansion, one can obtain a deterministic PDE of the
same form as (9.65); see [106]. The following time-dependent example with random
variable ω,

∂tψ + v(t, x;ω) · ∇ψ = 0, ψ(0, x) = x,

was solved by dynamical low-rank in [32].

9.6.5 Transport Equations

Transport equations describe (densities of) particles at position x ∈ Rp and velocity
v ∈ Rp. They are typically more challenging to integrate than purely diffusive
problems. For example, the Vlasov equation

∂tu(t, x, v) + v · ∇xu(t, x, v) − F(u) · ∇vu(t, x, v) = 0 (9.66)

is a kinetic model for the density u of electrons in plasma. The function F is a
nonlinear term representing the force. These equations can furthermore be coupled
with Maxwell’s equations resulting in systems that require specialized integrators to
preserve conservation laws in the numerical solution. After spatial discretization on
a tensor product grid, Eq. (9.66) becomes a differential equation for a large tensor of
order d = 6. In the case of the Vlasov–Poisson and Vlasov–Maxwell equations, [28,

308 A. Uschmajew and B. Vandereycken

30] show the splitting integrator gives very good approximations with modest TT
rank, even over relatively large time intervals. In addition, the numerical integration
of the substeps can be modified to ensure better preservation of some conservation
laws; see [29, 30].

Similar approaches appear for weakly compressible fluid flow with the Boltz-
mann equation in [27] and stochastic transport PDEs in [32]. The latter also shows
that numerical filters can be used in combination with dynamical low-rank to
successfully reduce artificial oscillations.

9.7 Conclusions

In this chapter we have shown how the geometry of low-rank matrices and TT
tensors can be exploited in algorithms. We focused on two types of problems:
Riemannian optimization for solving large linear systems and eigenvalue problems,
and dynamical low-rank approximation for initial value problems. Our aim was
to be sufficiently explanatory without sacrificing readability and we encourage the
interested reader to refer to the provided references for a more in depth treatment of
these subjects.

Several things have not been discussed in this introductory chapter. The most
important issue is arguably the rank adaptation during the course of the algorithms
to match the desired tolerance at convergence. For this, truncation of singular values
with a target error instead of a target rank can be used both for matrices and
TT tensors, but from a conceptual perspective such an approach is at odds with
algorithms that are defined on manifolds of fixed rank matrices or tensors. However,
it is possible to combine geometric methods with rank adaptivity as in [109] for
greedy rank-one optimization and in [42] for a two-site version of the splitting
scheme for time integration, yet many theoretical and implementation questions
remain. Other important topics not covered are the problem classes admitting a-
priori low-rank approximability [19, 44], the application of low-rank formats to
seemingly non-high dimensional problems like quantized TT (QTT) [52, 53], the
efficient numerical implementation of truly large-scale and stiff problems, schemes
with guaranteed and optimal convergence as in [5], and more general tensor
networks like PEPS [114].

References

1. Absil, P.A., Oseledets, I.V.: Low-rank retractions: a survey and new results. Comput. Optim.
Appl. 62(1), 5–29 (2015)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton (2008)

3. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia (2005)

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 309

4. Arnold, A., Jahnke, T.: On the approximation of high-dimensional differential equations in
the hierarchical Tucker format. BIT 54(2), 305–341 (2014)

5. Bachmayr, M., Dahmen, W.: Adaptive near-optimal rank tensor approximation for high-
dimensional operator equations. Found. Comput. Math. 15(4), 839–898 (2015)

6. Bachmayr, M., Schneider, R., Uschmajew, A.: Tensor networks and hierarchical tensors for
the solution of high-dimensional partial differential equations. Found. Comput. Math. 16(6),
1423–1472 (2016)

7. Bachmayr, M., Cohen, A., Dahmen, W.: Parametric PDEs: sparse or low-rank approxima-
tions? IMA J. Numer. Anal. 38(4), 1661–1708 (2018)

8. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format.
Numer. Linear Algebra Appl. 20(1), 27–43 (2013)

9. Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of
parameter-dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3(1), 852–872 (2015)

10. Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.D.: The multiconfiguration time-dependent
Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys.
Rep. 324(1), 1–105 (2000)

11. Benner, P., Breiten, T.: On optimality of approximate low rank solutions of large-scale matrix
equations. Syst. Control Lett. 67, 55–64 (2014)

12. Boumal, N., Absil, P.A., Cartis, C.: Global rates of convergence for nonconvex optimization
on manifolds. IMA J. Numer. Anal. 39(1), 1–33 (2019)

13. Breiding, P., Vannieuwenhoven, N.: A Riemannian trust region method for the canonical
tensor rank approximation problem. SIAM J. Optim. 28(3), 2435–2465 (2018)

14. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE
Trans. Inform. Theory 56(5), 2053–2080 (2010)

15. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan,
H.A.: Tensor decompositions for signal processing applications: from two-way to multiway
component analysis. IEEE Signal Proc. Mag. 32(2), 145–163 (2015)

16. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensor networks
for dimensionality reduction and large-scale optimization. Part 1: low-rank tensor decompo-
sitions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016)

17. Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Mandic, D.P.: Ten-
sor networks for dimensionality reduction and large-scale optimization. Part 2: applications
and future perspectives. Found. Trends Mach. Learn. 9(6), 431–673 (2017)

18. Criscitiello, C., Boumal, N.: Efficiently escaping saddle points on manifolds (2019).
arXiv:1906.04321

19. Dahmen, W., DeVore, R., Grasedyck, L., Süli, E.: Tensor-sparsity of solutions to high-
dimensional elliptic partial differential equations. Found. Comput. Math. 16(4), 813–874
(2016)

20. Damm, T., Mena, H., Stillfjord, T.: Numerical solution of the finite horizon stochastic linear
quadratic control problem. Numer. Linear Algebra Appl. 24(4), e2091, 11 (2017)

21. Dieci, L., Eirola, T.: Positive definiteness in the numerical solution of Riccati differential
equations. Numer. Math. 67(3), 303–313 (1994)

22. Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc.
26, 376–385 (1930)

23. Dolgov, S.V., Savostyanov, D.V.: Alternating minimal energy methods for linear systems in
higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)

24. Dolgov, S., Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Polynomial chaos expansion
of random coefficients and the solution of stochastic partial differential equations in the tensor
train format. SIAM/ASA J. Uncertain. Quantif. 3(1), 1109–1135 (2015)

25. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychome-
trika 1(3), 211–218 (1936)

26. Eigel, M., Pfeffer, M., Schneider, R.: Adaptive stochastic Galerkin FEM with hierarchical
tensor representations. Numer. Math. 136(3), 765–803 (2017)

310 A. Uschmajew and B. Vandereycken

27. Einkemmer, L.: A low-rank algorithm for weakly compressible flow. SIAM J. Sci. Comput.
41(5), A2795–A2814 (2019)

28. Einkemmer, L., Lubich, C.: A low-rank projector-splitting integrator for the Vlasov-Poisson
equation. SIAM J. Sci. Comput. 40(5), B1330–B1360 (2018)

29. Einkemmer, L., Lubich, C.: A quasi-conservative dynamical low-rank algorithm for the
Vlasov equation. SIAM J. Sci. Comput. 41(5), B1061–B1081(2019)

30. Einkemmer, L., Ostermann, A., Piazzola, C.: A low-rank projector-splitting integrator for the
Vlasov–Maxwell equations with divergence correction (2019). arXiv:1902.00424

31. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Wähnert, P.: Efficient low-rank
approximation of the stochastic Galerkin matrix in tensor formats. Comput. Math. Appl.
67(4), 818–829 (2014)

32. Feppon, F., Lermusiaux, P.F.J.: A geometric approach to dynamical model order reduction.
SIAM J. Matrix Anal. Appl. 39(1), 510–538 (2018)

33. Frenkel, J.: Wave Mechanics: Advanced General Theory. Clarendon Press, Oxford (1934)
34. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM

J. Numer. Anal. 2(2), 205–224 (1965)
35. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press,

Baltimore (2013)
36. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.

Appl. 31(4), 2029–2054 (2010)
37. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation

techniques. GAMM-Mitt. 36(1), 53–78 (2013)
38. Grohs, P., Hosseini, S.: Nonsmooth trust region algorithms for locally Lipschitz functions on

Riemannian manifolds. IMA J. Numer. Anal. 36(3), 1167–1192 (2016)
39. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heidelberg (2012)
40. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl.

15(5), 706–722 (2009)
41. Haegeman, J., Cirac, I., Osborne, T., Piźorn, I., Verschelde, H., Verstraete, F.: Time-dependent

variational principle for quantum lattices. Phys. Rev. Lett. 107(7), 070601 (2011)
42. Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B., Verstraete, F.: Unifying time

evolution and optimization with matrix product states. Phys. Rev. B 94(16), 165116 (2016)
43. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288
(2011)

44. Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory
Exp. 2007, P08024 (2007)

45. Helmke, U., Shayman, M.A.: Critical points of matrix least squares distance functions. Linear
Algebra Appl. 215, 1–19 (1995)

46. Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed TT-rank. Numer.
Math. 120(4), 701–731 (2012)

47. Hosseini, S., Uschmajew, A.: A Riemannian gradient sampling algorithm for nonsmooth
optimization on manifolds. SIAM J. Optim. 27(1), 173–189 (2017)

48. Hosseini, S., Huang, W., Yousefpour, R.: Line search algorithms for locally Lipschitz
functions on Riemannian manifolds. SIAM J. Optim. 28(1), 596–619 (2018)

49. Jain, P., Meka, R., Dhillon, I.S.: Guaranteed rank minimization via singular value projection.
In: Advances in Neural Information Processing Systems, vol. 23, pp. 937–945 (2010)

50. Kazeev, V.A., Khoromskij, B.N.: Low-rank explicit QTT representation of the Laplace
operator and its inverse. SIAM J. Matrix Anal. Appl. 33(3), 742–758 (2012)

51. Khoromskaya, V., Khoromskij, B.N.: Tensor Numerical Methods in Quantum Chemistry. De
Gruyter, Berlin (2018)

52. Khoromskij, B.N.: O(d log N)-quantics approximation of N -d tensors in high-dimensional
numerical modeling. Constr. Approx. 34(2), 257–280 (2011)

53. Khoromskij, B.N.: Tensor Numerical Methods in Scientific Computing. De Gruyter, Berlin
(2018)

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 311

54. Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-
dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10(4), 376–394 (2010)

55. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and
stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

56. Khoromskij, B.N., Oseledets, I.V., Schneider, R.: Efficient time-stepping scheme for dynam-
ics on TT-manifolds (2012). MPI MiS Preprint 24/2012

57. Kieri, E., Vandereycken, B.: Projection methods for dynamical low-rank approximation of
high-dimensional problems. Comput. Methods Appl. Math. 19(1), 73–92 (2019)

58. Kieri, E., Lubich, C., Walach, H.: Discretized dynamical low-rank approximation in the
presence of small singular values. SIAM J. Numer. Anal. 54(2), 1020–1038 (2016)

59. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2),
434–454 (2007)

60. Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31(5),
2360–2375 (2010)

61. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–
500 (2009)

62. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear
systems. SIAM J. Matrix Anal. Appl. 32(4) (2011)

63. Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace
correction for symmetric eigenvalue problems. SIAM J. Sci. Comput. 36(5), A2346–A2368
(2014)

64. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Rieman-
nian optimization. BIT 54(2), 447–468 (2014)

65. Kressner, D., Steinlechner, M., Vandereycken, B.: Preconditioned low-rank Riemannian
optimization for linear systems with tensor product structure. SIAM J. Sci. Comput. 38(4),
A2018–A2044 (2016)

66. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)
67. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’ guide: solution of large-scale

eigenvalue problems with implicitly restarted Arnoldi methods. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (1998)

68. Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–
234 (2008)

69. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numeri-
cal Analysis. European Mathematical Society (EMS), Zürich (2008)

70. Lubich, C.: Time integration in the multiconfiguration time-dependent Hartree method of
molecular quantum dynamics. Appl. Math. Res. Express. AMRX 2015(2), 311–328 (2015)

71. Lubich, C., Oseledets, I.: A projector-splitting integrator for dynamical low-rank approxima-
tion. BIT 54(1), 171–188 (2014)

72. Lubich, C., Oseledets, I., Vandereycken, B.: Time integration of tensor trains. SIAM J. Numer.
Anal. 53(2), 917–941 (2015)

73. Lubich, C., Rohwedder, T., Schneider, R., Vandereycken, B.: Dynamical approximation of
hierarchical Tucker and tensor-train tensors. SIAM J. Matrix Anal. Appl. 34(2), 470–494
(2013)

74. Luenberger, D.G.: The gradient projection method along geodesics. Manage. Sci. 18, 620–
631 (1972)

75. Mena, H., Pfurtscheller, L.: An efficient SPDE approach for El Niño. Appl. Math. Comput.
352, 146–156 (2019)

76. Mena, H., Ostermann, A., Pfurtscheller, L.M., Piazzola, C.: Numerical low-rank approxima-
tion of matrix differential equations. J. Comput. Appl. Math. 340, 602–614 (2018)

77. Meyer, H.D.: Studying molecular quantum dynamics with the multiconfiguration time-
dependent Hartree method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2), 351–374 (2012)

78. Meyer, H., Manthea, U., Cederbauma, L.S.: The multi-configurational time-dependent
Hartree approach. Chem. Phys. Lett. 165(1), 73–78 (1990)

312 A. Uschmajew and B. Vandereycken

79. Meyer, G., Journée, M., Bonnabel, S., Sepulchre, R.: From subspace learning to distance
learning: a geometrical optimization approach. In: Proceedings of the IEEE/SP 15th Work-
shop on Statistical Signal Processing, pp. 385–388 (2009)

80. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxf.
Ser. (2) 11, 50–59 (1960)

81. Mishra, B., Vandereycken, B.: A Riemannian approach to low-rank Algebraic Riccati
equations. In: 21st International Symposium on Mathematical Theory of Networks and
Systems, pp. 965–968 (2014)

82. Mishra, B., Meyer, G., Bonnabel, S., Sepulchre, R.: Fixed-rank matrix factorizations and
Riemannian low-rank optimization. Comput. Stat. 29(3–4), 591–621 (2014)

83. Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approxi-
mation of time dependent random PDEs. SIAM J. Sci. Comput. 37(3), A776–A810 (2015)

84. Orsi, R., Helmke, U., Moore, J.B.: A Newton–like method for solving rank constrained linear
matrix inequalities. In: Proceedings of the 43rd IEEE Conference on Decision and Control,
pp. 3138–3144 (2004)

85. Oseledets, I.V.: Approximation of 2d × 2d matrices using tensor decomposition. SIAM J.
Matrix Anal. Appl. 31(4), 2130–2145 (2010)

86. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
87. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD

in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)
88. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear

Algebra Appl. 432(1), 70–88 (2010)
89. Ostermann, A., Piazzola, C., Walach, H.: Convergence of a low-rank Lie-Trotter splitting for

stiff matrix differential equations. SIAM J. Numer. Anal. 57(4), 1947–1966 (2019)
90. Park, D., Kyrillidis, A., Carmanis, C., Sanghavi, S.: Non-square matrix sensing without

spurious local minima via the Burer-Monteiro approach. In: Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, pp. 65–74 (2017)

91. Rakhuba, M.V., Oseledets, I.V.: Jacobi-Davidson method on low-rank matrix manifolds.
SIAM J. Sci. Comput. 40(2), A1149–A1170 (2018)

92. Rakhuba, M., Novikov, A., Oseledets, I.: Low-rank Riemannian eigensolver for high-
dimensional Hamiltonians. J. Comput. Phys. 396, 718–737 (2019)

93. Rauhut, H., Schneider, R., Stojanac, Ž.: Low rank tensor recovery via iterative hard
thresholding. Linear Algebra Appl. 523, 220–262 (2017)

94. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous
stochastic dynamical systems. Phys. D 238(23–24), 2347–2360 (2009)

95. Sato, H., Kasai, H., Mishra, B.: Riemannian stochastic variance reduced gradient algorithm
with retraction and vector transport. SIAM J. Optim. 29(2), 1444–1472 (2019)

96. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann.
63(4), 433–476 (1907)

97. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states.
Ann. Phys. 326(1), 96–192 (2011)

98. Shalit, U., Weinshall, D., Chechik, G.: Online learning in the manifold of low-rank matrices.
In: Advances in Neural Information Processing Systems, vol. 23, pp. 2128–2136 (2010)

99. Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Dynamical
systems and partial differential equations (Caracas, 1984), pp. 69–91. University Simon
Bolivar, Caracas (1986)

100. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos,
C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal
Process. 65(13), 3551–3582 (2017)

101. Signoretto, M., Tran Dinh, Q., De Lathauwer, L., Suykens, J.A.K.: Learning with tensors:
a framework based on convex optimization and spectral regularization. Mach. Learn. 94(3),
303–351 (2014)

102. Simoncini, V.: Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–
441 (2016)

9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds 313

103. Steinlechner, M.: Riemannian optimization for high-dimensional tensor completion. SIAM J.
Sci. Comput. 38(5), S461–S484 (2016)

104. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4),
551–566 (1993)

105. Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., Legeza, O.: Tensor
product methods and entanglement optimization for ab initio quantum chemistry. Int. J.
Quantum Chem. 115(19), 1342–1391 (2015)

106. Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic
problems with stochastic coefficients. IMA J. Numer. Anal. 27(2), 232–261 (2007)

107. Udrişte, C.: Convex functions and optimization methods on Riemannian manifolds. Kluwer
Academic Publishers Group, Dordrecht (1994)

108. Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors.
Linear Algebra Appl. 439(1), 133–166 (2013)

109. Uschmajew, A., Vandereycken, B.: Greedy rank updates combined with Riemannian descent
methods for low-rank optimization. In: 2015 International Conference on Sampling Theory
and Applications (SampTA), pp. 420–424 (2015)

110. Uschmajew, A., Vandereycken, B.: On critical points of quadratic low-rank matrix optimiza-
tion problems (2018). MPI MiS Preprint 58/2018

111. Vandereycken, B.: Riemannian and multilevel optimization for rank-constrained matrix
problems. Ph.D. thesis, Department of Computer Science, KU Leuven (2010)

112. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim.
23(2), 1214–1236 (2013)

113. Vandereycken, B., Vandewalle, S.: A Riemannian optimization approach for computing low-
rank solutions of Lyapunov equations. SIAM J. Matrix Anal. Appl. 31(5), 2553–2579 (2010)

114. Verstraete, F., Cirac, J.I.: Renormalization algorithms for quantum-many body systems in two
and higher dimensions (2004). arXiv:cond-mat/0407066

115. Verstraete, F., García-Ripoll, J.J., Cirac, J.I.: Matrix product density operators: simulation of
finite-temperature and dissipative systems. Phys. Rev. Lett. 93(20), 207204 (2004)

116. Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent
Hartree theory. J. Chem. Phys. 119(3), 1289–1299 (2003)

117. Wei, K., Cai, J.F., Chan, T.F., Leung, S.: Guarantees of Riemannian optimization for low rank
matrix recovery. SIAM J. Matrix Anal. Appl. 37(3), 1198–1222 (2016)

118. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B
48(14), 10345 (1993)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 Geometric Methods on Low-Rank Matrix and Tensor Manifolds
	Contents
	9.1 Introduction
	9.1.1 Aims and Outline

	9.2 The Geometry of Low-Rank Matrices
	9.2.1 Singular Value Decomposition and Low-Rank Approximation
	9.2.2 Fixed Rank Manifold
	9.2.3 Tangent Space
	9.2.4 Retraction

	9.3 The Geometry of the Low-Rank Tensor Train Decomposition
	9.3.1 The Tensor Train Decomposition
	9.3.2 TT-SVD and Quasi Optimal Rank Truncation
	9.3.3 Manifold Structure
	9.3.4 Tangent Space and Retraction
	9.3.5 Elementary Operations and TT Matrix Format

	9.4 Optimization Problems
	9.4.1 Riemannian Optimization
	9.4.2 Linear Systems
	9.4.3 Computational Cost
	9.4.4 Difference to Iterative Thresholding Methods
	9.4.5 Convergence
	9.4.6 Eigenvalue Problems

	9.5 Initial Value Problems
	9.5.1 Dynamical Low-Rank Approximation
	9.5.2 Approximation Properties
	9.5.3 Low-Dimensional Evolution Equations
	9.5.4 Projector-Splitting Integrator

	9.6 Applications
	9.6.1 Matrix Equations
	9.6.2 Schrödinger Equation
	9.6.3 Matrix and Tensor Completion
	9.6.4 Stochastic and Parametric Equations
	9.6.5 Transport Equations

	9.7 Conclusions
	References

