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Abstract A higher-order tensor allows several possible matricizations (reshapes into
matrices). The simultaneous decay of singular values of suchmatricizations has crucial
implications on the low-rank approximability of the tensor via higher-order singular
value decomposition. It is therefore an interesting question which simultaneous prop-
erties the singular values of different tensor matricizations actually can have, but it
has not received the deserved attention so far. In this paper, preliminary investigations
in this direction are conducted. While it is clear that the singular values in different
matricizations cannot be prescribed completely independent from each other, numer-
ical experiments suggest that sufficiently small, but otherwise arbitrary perturbations
preserve feasibility. An alternating projection heuristic is proposed for constructing
tensors with prescribed singular values (assuming their feasibility). Regarding the
related problem of characterising sets of tensors having the same singular values
in specified matricizations, it is noted that orthogonal equivalence under multilinear
matrix multiplication is a sufficient condition for two tensors to have the same singular
values in all principal, Tucker-type matricizations, but, in contrast to the matrix case,
not necessary. An explicit example of this phenomenon is given.
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876 W. Hackbusch, A. Uschmajew

1 Introduction and problem statement

A space R
n1 ⊗ · · · ⊗ R

nd of higher-order tensors is isomorphic to many different
matrix spaces of the form (

⊗
j∈t R

n j ) ⊗ (
⊗

i /∈t R
ni ) where t � {1, . . . , d}, |t | ≥ 1.

Concretely, when identifying tensors with d-dimensional arrays of coordinates with
respect to an orthonormal tensor product basis, such an isomorphism is realized by
reshaping the array into a matrix. The directions in t indicate the multi-indices for the
rows of the resulting matrix, while the other directions are used for the columns. All
these differentmatricizations (also calledunfoldings or reshapes in the literature) of the
tensor carry some spectral information in form of their singular value decompositions.

For subsets of t that are part of a dimension partition tree, the column spaces of
the corresponding matricizations satisfy certain nestedness properties that form the
basis for important subspace based low-rank tensor decompositions like the Tucker
format [22], the hierarchical Tucker (HT) format [7,9], or the tensor train (TT) for-
mat [18,19]. As a by-product, the ranks rt of the corresponding matricizations, that
is, the number of nonzero singular values, are estimated as rt ≤ rt1 · · · rts , where
t = t1 ∪ · · · ∪ ts is a disjoint partition. In contrast, the interconnections between the
singular values themselves have not been studied so far.

At first sight, the singular values of different matricizations could be considered
as unnatural or artificial characteristics for tensors, as they ignore their multilinear
nature. However, as it turns out, they provide crucial measures for the approximability
of tensors in the aforementioned low-rank subspace formats. In the pioneeringwork [3]
the higher-order singular value decomposition has been defined, and it has been shown
how it can be practically used to obtain quasi-optimal low-rank approximations in the
Tucker format with full error control. The approximation is obtained by an orthogonal
projection on the tensor product of subspaces spanned by the dominating singular
vectors of the corresponding matricizations in R

n j ⊗ (
⊗

i �= j R
ni ) (i.e. corresponding

to the choices t = { j} for j = 1, . . . , d). An upper bound of the squared error is
then given by the sum of squares of all deleted singular values in all directions. Later,
variants of such truncation procedures have been obtained for the TT format [16,17]
and the HT format [7] with similar error bounds, but involving singular values of some
other matricizations of the tensor.

Building on these available, quasi-optimal bounds for low-rank approximations via
higher-order versions of SVD truncation, it is understandable that quite some theorems
have been stated making simultaneous assumptions on the singular values of certain
matricizations of a tensor. This concerns stability of low-rankODE integrators [12,14],
local convergence of optimization algorithms [20], or approximability by low-rank
tensor formats [1], to name a few. Assumed properties of interest are decay rate of and
gaps between the singular values, for instance. A principal task would then be to give
alternative descriptions of classes of tensors satisfying such assumptions to prevent
tautological results or, in worst case, void statements. But this task has turned out to be
notoriously difficult. For tensors arising from function discretization, some qualitative
statements about the decay of singular values can be obtained from their regularity
using explicit analytic approximation techniques by tensor products of (trigonometric)
polynomials or wavelets, exponential sum, or cross approximation; see [8,21] and
references therein. But these qualitative implications on the decay of singular values
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On the interconnection between the higher-order… 877

obtained from explicit separable approximations can rarely be made quantitatively
precise, for instance, if they contain unknown constants, and also provide little insight
on the actual interconnection between different matricizations.

In its purest form the question we are interested in is very simple to state. Given
prescribed singular values for some matricizations (having, e.g., some favourable
properties), does there exist at all a tensor having these singular values?For amatrix this
is of course very easy to answer by simply constructing a diagonal matrix. For tensors
it turns out to be quite difficult, and seems to depend on how many matricizations are
simultaneously considered.

In the present paper we study this and related questions for the singular values
related to the classical higher-order SVD, that is, the singular values of the principal,
Tucker-type matricizations that separate single indices t = { j}. We call the collection
of the d corresponding singular value vectors the higher-order singular values, see
Definition 1.1 below. Compared to other systems of matricizations, this framework
is the historically most important. It also appears to be the simplest, partly because
it is, at least to some extent, very conveniently possible to manipulate the principal
matricizations simultaneously via multilinear matrix multiplications. Yet, even in this
case, the obtained results remain fragmentary and far from complete. Nevertheless,
we consider them as valuable first steps toward future investigations of this important
and fascinating subject. Our contributions are as follows.

– We show that not all configurations of higher-order singular values can be feasible.
The proof is nonconstructive (Sect. 3.1).

– However, conducted numerical experiments suggest that the singular values for
different matricizations are, except for degenerate situations, locally independent
from each other. That is, in the neighbourhood of a tensor it is possible to slightly
perturb, say, only the singular values of the first matricization, while maintaining
the singular values of the other ones. This is fundamentally different from the
matrix case, since the singular values of a matrix are always the same as the ones
of its transpose. However, currently this remains an unproved conjecture Sect. 3.2).

– We propose the method of alternating projections as a heuristic to construct
(approximately) tensors with prescribed singular values in certain matricizations
(Sect. 3.3).

– The higher-order SVD (HOSVD) is a generalization of the SVD from matrices to
tensors. The role of the diagonal matrix of singular values is replaced by the core
tensor in theHOSVD, representing the normal form under orthogonal equivalence,
and characterized by slice-wise orthogonality properties. We showmanifold prop-
erties of the set of these core tensors (called HOSVD tensors) in the case of strictly
decreasing and positive higher-order singular values (Sect. 2.2).

– We provide an example of two 2×2×2 tensors having the same singular values in
all three principalmatricizationswithout being orthogonally equivalent (Sect. 2.4).

In this paper we consider real tensors for convenience. Although most concepts
seem to generalize to the complex case, some care would be required, e.g., when
switching from smooth manifolds to analytic ones.
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878 W. Hackbusch, A. Uschmajew

The rest of this section is devoted to the precise statements of the considered prob-
lems. They require some amount of definitions and notation, which will be introduced
first.

1.1 Preliminaries, definitions, notation

Let d ≥ 3 and n1, . . . , nd ∈ N.We consider the d-fold tensor product spaceR
n1⊗· · ·⊗

R
nd as isomorphic to the spaceR

n1×···×nd of real n1×· · ·×nd arrays (sometime called
hyper-matrices). The entries Xi1,...,id of X ∈ R

n1×···×nd will be indexed by multi-
indices (i1, . . . , id), with every i j taking values between 1 and n j . For convenience,
it will be assumed

n1 ≥ n2 ≥ · · · ≥ nd

throughout the paper. Furthermore, we set

ncj =
∏

i �= j

ni .

A tensor X ∈ R
n1×···×nd admits d principal matricizations [10,11]

M ( j)
X ∈ R

n j×ncj

in which the i j -th row contains all entries Xi1,...,id with fixed i j , arranged in some fixed
ordering with respect to the remaining multi-indices. The choice of that ordering is
not important for our purposes. The matricizations realize the isomorphism between
the tensor space R

n1 ⊗ · · · ⊗ R
nd and the matrix spaces R

n j×ncj . Note that for tensors
X of order d = 2 (that is, matrices), the matricizations are given by M (1)

X = X and

M (2)
X = XT (up to permutation).

It will further be convenient to have a notation for the Gram matrix of M ( j)
X , which

will be

G( j)
X = M ( j)

X

(
M ( j)

X

)T
.

ByO(n)we denote the group of real orthogonal n×nmatrices, by In the n×n identity
matrix. Each of the matrices M ( j)

X admits a singular value decomposition

M ( j)
X = U ( j)

X �
( j)
X

(
V ( j)

X

)T
, (1.1)

whereU ( j)
X ∈ O(n j ), (V

( j)
X )TV ( j)

X = In j , and�
( j)
X is a diagonal matrix containing the

mode- j singular values σ
( j)
1 ≥ σ

( j)
2 ≥ . . . σ

( j)
n j ≥ 0 as diagonal elements. We denote

�
( j)
X = (�

( j)
X )2. The diagonal entries of �

( j)
X are the ordered eigenvalues of G( j)

X .
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On the interconnection between the higher-order… 879

Definition 1.1 Let X ∈ R
n1×···×nd .

1. For j = 1, . . . , d, the vector

σ
( j)
X = diag

(
�

( j)
X

)
=

(
σ

( j)
1 , . . . , σ

( j)
n j

)
∈ R

n j
+

is called the vector of mode- j singular values. The tuple

�X =
(
σ

(1)
X , . . . , σ

(d)
X

)
∈ R

n1+ × · · · × R
nd+

is called the set of higher-order singular values of the tensor X.
2. Correspondingly, for j = 1, . . . , d, the vector

λ
( j)
X = diag

(
�

( j)
X

)
=

((
σ

( j)
1

)2
, . . . ,

(
σ

( j)
n j

)2
)

∈ R
n j
+

is called the vector of mode- j Gramian eigenvalues. The tuple

�X =
(
λ

(1)
X , . . . ,λ

(d)
X

)

is called the set of higher-order Gramian eigenvalues of the tensor X.
3. The multilinear rank of the tensor X is the tuple rX = (r (1), . . . , r (d)) with r ( j) =

rank(M ( j)
X ) = rank(G( j)

X ) being equal to the number of nonzero entries of σ
( j)
X .

4. The tensor X is called non-singular, if rX = (n1, . . . , nd).

We note that for matrices the definition of ‘non-singular’ coincides with the usual
definition (in particular, it enforces n1 = n2). In general, the following is true.

Proposition 1.2 There exists a non-singular tensor in R
n1×···×nd if and only if the

following compatibility conditions hold:

n j ≤ ncj , j = 1, 2, . . . , d. (1.2)

In this case the set of non-singular tensors is open and dense in R
n1×···×nd .

Proof Consider j fixed. By isomorphy and known results on matrices, it is clear that
the set of all X with M ( j)

X being of rank n j is not empty, open, and dense if and
only if n j ≤ ncj . The set of non-singular tensors is the intersection of these sets for
j = 1, . . . , d. As such, it is also open and dense. �	
Let ‖·‖F denote the Frobenius norm of matrices and tensors, and ‖·‖2 the standard

Euclideannorm for vectors. Sincematricizationof a tensor is an isometric isomorphism
in Frobenius norm, and since it holds ‖M ( j)

X ‖F = ‖σ ( j)
X ‖2, an obvious observation for

higher-order singular values is

‖σ (1)
X ‖2 = · · · = ‖σ (d)

X ‖2 = ‖X‖F .
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880 W. Hackbusch, A. Uschmajew

Therefore, we can focus in the following on tensors X on the unit sphere

S = {
X ∈ R

n1×···×nd : ‖X‖F = 1
}
,

and hence higher-order singular values � in the set

S≥ = S≥(n1, . . . , nd) = S(1)
≥ × · · · × S(d)

≥ ,

where S( j)
≥ denotes the set of all nonnegative, decreasingly ordered vectors on the

Euclidean unit sphere in R
n j . For most results, however, it will be necessary to fur-

ther restrict to the set S ∗ of non-singular tensors having strictly decreasing mode- j
singular values in every direction j . Therefore, we also introduce the notation

S> = S>(n1, . . . , nd) = S(1)
> × · · · × S(d)

> ⊂ S≥,

where each S( j)
> contains the unit norm vectors in R

n j with strictly decreasing and
strictly positive entries. Then

S ∗ = {X ∈ S : �X ∈ S>}.

Note that we do not introduce a notation for the slightly larger set of all non-singular
tensors in S . The main technical advantage of tensors in S ∗ is that all principal
unfoldings admit essentially unique singular value decompositions.

The following two facts are useful to know, and follow immediately from thematrix
case.

Proposition 1.3 The function X → �X is continuous on S . Assuming (1.2), the set
S ∗ is relatively open and dense in S .

Proof The continuity of �X as a function of X follows by isomorphy to R
n j×ncj from

the continuity of each σ
( j)
X as a function of M ( j)

X . The proof thatS ∗ is relatively open
and dense inS is analogous to the proof of Proposition 1.2. �	

1.2 Problem statement

Regarding the higher-order singular values of tensors a principle question of interest
is the following one.

Problem 1.4 (Feasible higher-order singular values) Given� ∈ S≥, does there exist
a tensor X ∈ S such that �X = �?

Such � will be called a feasible. We define

F = F(n1, . . . , nd) = {� ∈ S≥ : � is feasible}.
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On the interconnection between the higher-order… 881

In this generality, Problem 1.4 appears to be quite hard, and will not be satisfactorily
solved in this article. At least, as a first result, we are able to show that not all � ∈ S≥
are feasible: F �= S≥. The argument, however, is non-constructive, see Sect. 3.1.

A relaxed question of a more qualitative nature is the following one.

Problem 1.5 (Properties of F) What are the topological properties of the set F as a
subset of S≥? Does it, for instance, have positive (relative) Lebesgue measure?

Numerical experiments with random tensors seem to indicate that the answer to the
second question could be positive when d ≥ 3, but we are not able to prove it. So it
remains a conjecture. In fact, we conjecture that for every X in S ∗ it holds that �X
is an interior point of F, see Sect. 3.2. A striking implication of this conjecture is that
given X ∈ S ∗, its high-order singular values in different directions can be perturbed
independently from each otherwithout loosing feasibility (local independence of high-
order singular values). In Sect. 3.3 we will present a heuristic approach to do this
using an alternating projection method, which seems to work quite reliably for small
perturbations, although we are currently neither able to prove its convergence nor that
limit points must have the desired property.

To approach Problems 1.4 and 1.5, it seems useful to also study the following
problem, which is of some interest in itself.

Problem 1.6 (Tensors with same higher-order singular values) Given X ∈ S , char-
acterize sets of tensors having the same singular values �X as X.

The corresponding equivalence classes for tensors in S and S ∗ are denoted by

SX = {Y ∈ S : �Y = �X}, S ∗
X = {Y ∈ S ∗ : �Y = �X}.

The next Sect. 2 provides some results related to Problem 1.6. It is observed that orbits
of orthogonally equivalent tensors provide trivial examples of subsets of tensors having
the same higher-order singular values. However, other than in the matrix case, their
dimension is too small to provide a complete description. Via the tool of HOSVD
tensors, which serve as normal forms in the orbits of orthogonally equivalent tensors,
we are able to construct an example of two tensors with the same higher-order singular
values that are not orthogonally equivalent.

2 Tensors with the same higher-order singular values

In this section we focus on equivalence classes of tensors having the same higher-order
singular values.

2.1 Orthogonally equivalent tensors

We recall a fact from matrices: Two rectangular matrices X,Y ∈ R
n×n′

, n ≤ n′, have
the same singular values, if and only if they are orthogonally equivalent, that is, if
there exists U ∈ O(n) and V ∈ O(n′) such that
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882 W. Hackbusch, A. Uschmajew

UXV T = Y.

This definition of orthogonal equivalence can be generalized to tensors using the
multilinear matrix multiplication, see, e.g., [5,13]. We consider the product unitary
group

O(n1 × · · · × nd) = O(n1) × O(n2) × · · · × O(nd).

The left action (U (1), . . . ,U (d)) · X of this group on R
n1×···×nd is defined as the

canonical action of the tensor product operatorU (1) ⊗ · · · ⊗U (d) on R
n1 ⊗ · · · ⊗ R

nd

in the sense that

(U (1), . . . ,U (d)) ·
(

r∑

k=1

x (1)
k ⊗ · · · ⊗ x (d)

k

)

=
r∑

k=1

U (1)x (1)
k ⊗ · · · ⊗U (d)x (d)

k .

In terms of matricizations, in a slight abuse of notation, we note that

M ( j)
(U (1),...,U (d))·X = U ( j)M ( j)

X

(
U (1) ⊗ · · · ⊗U ( j−1) ⊗U ( j+1) ⊗ · · · ⊗U (d)

)T
,

(2.1)
cf. [8, Lemma 5.6]. In particular, sinceU (1) ⊗ · · · ⊗U ( j−1) ⊗U ( j+1) ⊗ · · · ⊗U (d) ∈
O(ncj ), it holds

G( j)
(U (1),...,U (d))·X = U ( j)G( j)

X (U ( j))T (2.2)

for j = 1, . . . , d. For matrices (d = 2), these formulas define orthogonal equivalence,
which motivates the following generalization.

Definition 2.1 (see [5]) Two tensorsX, Y ∈ R
n1×···×nd are called orthogonally equiv-

alent, if there exists (U (1), . . . ,U (d)) ∈ O(n1×· · ·×nd) suchY=(U (1), . . . ,U (d)) ·X.

From (2.2), we draw a trivial but important conclusion.

Proposition 2.2 If two tensors are orthogonally equivalent, then they have the same
higher-order singular values.

In particular, the orbit of each X under the group action contains only tensors with
identical higher-order singular values.

Proposition 2.3 LetX ∈ S ∗. Then the orbit O(n1×· · ·×nd) ·X is a locally smoothly
embedded submanifold ofS ∗ of dimension

dim(O(n1 × · · · × nd) · X) = dim(O(n1 × · · · × nd)) =
d∑

j=1

1

2
n j (n j − 1).
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On the interconnection between the higher-order… 883

Proof Wewrite O instead of O(n1 ×· · ·×nd). Consider the canonical map θX : O →
S ∗, (U (1), . . . ,U (d)) → (U (1), . . . ,U (d)) · X, whose image is O · X. Since θX is
of constant rank [6, §16.10.2] and easily shown to be locally injective (uniqueness of
left singular vectors up to sign flipping for X ∈ S ∗), it is already an immersion [6,
§16.8.8.(iv)]. The result is now standard, see, e.g., [6, §16.8.8.(ii)]. �	

For X ∈ S \ S ∗ the dimension of O(n1 × · · · × nd) · X can be smaller than
dimO(n1 ×· · ·×nd). Note that we did not attempt to prove or disprove that the orbits
are globally embedded submanifolds.

2.2 HOSVD tensors

The compact Lie group O(n1×· · ·×nd) acts freely onS ∗. It also acts properly (since
it is compact and acts continuously). By a general theorem (e.g. [6, § 16.10.3]), the
quotientmanifoldS ∗/O(n1×· · ·×nd) of equivalence classes exists, and the canonical
mapping S ∗ → S ∗/O(n1 × · · · × nd) is a submersion. A concrete realization of
this abstract quotient manifold is the setH ∗ of regular HOSVD tensors which is now
introduced.

Given Y, let U ( j)
Y denote a matrix of left singular vectors of M ( j)

Y as in (1.1).

By (2.1), X = ((U (1)
Y )T, . . . , (U (d)

Y )T) · Y has the matricizations

M ( j)
X = �

( j)
Y

(
V ( j)

Y

)T (
U (1)

Y ⊗ · · · ⊗U ( j−1)
Y ⊗U ( j+1)

Y ⊗ · · · ⊗U (d)
Y

)
.

In particular, the rows of (V ( j)
Y )T(U (1)

Y ⊗· · ·⊗U ( j−1)
Y ⊗U ( j+1)

Y ⊗· · ·⊗U (d)
Y ) are right

singular vectors of M ( j)
X , the left singular vectors are unit vectors, and the singular

values are the same as of Y, that is, �( j)
X = �

( j)
Y . Hence X has the specific property

that

G( j)
X = M ( j)

X

(
M ( j)

X

)T =
(
�

( j)
X

)2 = �
( j)
X , j = 1, . . . , d, (2.3)

is a diagonal matrix of decreasing eigenvalues. The reverse relation

Y =
(
U (1)

Y , . . . ,U (d)
Y

)
· X

between X and Y is called the higher-order singular value decomposition (HOSVD)
of Y and has been introduced by De Lathauwer et al. [3].

Definition 2.4 Tensors satisfying (2.3) are called HOSVD tensors. The subset of
HOSVD tensors inS is denoted byH , and the subset of HOSVD tensors inS ∗ by
H ∗ = H ∩ S ∗.

HOSVD tensors can be regarded as representatives of orbits O(n1 × · · · × nd) · X
of orthogonally equivalent tensors. For X ∈ S ∗, the representatives are essentially
unique as stated next. Here it is instructive to note that for square matrices, the setH ∗
consists of regular diagonal matrices with strictly decreasing diagonal entries.

123



884 W. Hackbusch, A. Uschmajew

Proposition 2.5 Let X, Y ∈ H ∗ be two HOSVD tensors. If X and Y are orthogo-
nally equivalent, that is, Y = (U (1), . . . ,U (d)) · X, then the U ( j) must be diagonal
orthogonal matrices (i.e. with values ±1 on the diagonal).

The proof is immediate from (2.2), (2.3), and the uniqueness of orthogonal diago-
nalization up to sign flipping in the case of mutually distinct eigenvalues. Comparing
with the explicit form (2.1), we see that the action of (U (1), . . . ,U (d)) · X with diag-
onal U ( j) with ±1 entries results in some sign flipping pattern for the entries of X.
This provides the following, sometimes useful necessary condition.

Proposition 2.6 If two HOSVD tensors X, Y ∈ H ∗ are orthogonally equivalent,
then |Xi1,...,id | = |Yi1,...,id |. In particular, X and Y have the same zero pattern.

We now turn to the manifold properties of H ∗.

Theorem 2.7 The setH ∗ is a smooth embedded submanifold of S ∗ of dimension

dim(H ∗) = n1 · · · nd −
d∑

j=1

1

2
n j (n j − 1) = dim(S ∗) − dim(O(n1 × · · · × nd)).

Proof The formal setting is as follows. We denote by R
n j×n j
sym the space of symmetric

n j ×n j matrices, byR
n j×n j
sym,0 the subspace with zeros on the diagonal, by π j (Z) = Z−

diag(Z) the orthogonal projection from R
n j×n j
sym onto R

n j×n j
sym,0 , and p = π1 × · · ·×πd .

Consider

g : S ∗ → R
n1×n1
sym × · · · × R

nd×nd
sym , X → (G(1)

X , . . . ,G(d)
X ). (2.4)

Then f = p ◦ g is a smooth map from S ∗ to R
n1×n1
sym,0 × · · · × R

nd×nd
sym,0 , and, by

Definition 2.4, we have

H ∗ = f −1(0).

Since dim(R
n1×n1
sym,0 × · · ·× R

nd×nd
sym,0 ) = dim(O(n1 × · · ·× nd)) = ∑d

j=1
1
2n j (n j − 1),

the assertion will follow from the regular value theorem, if we show that f ′(X) is
surjective for every X ∈ H ∗. To prove the latter, we show that the range of f ′(X)

contains the spacesW j = {0}×· · ·×{0}×R
n j×n j
sym,0 ×{0}×· · ·×{0} for j = 1, . . . , d.

We demonstrate this for j = 1. Consider the map

ϕ : O(n1) → S ∗, U → (U, In2 , . . . , Ind ) · X.

For brevity, we set I = In1 . Since ϕ(I ) = X, it follows from the chain rule that the
range of f ′(X) contains the range of ( f ◦ ϕ)′(I ). We show that the latter equals W1.
Since X ∈ H ∗, we have ( f ◦ ϕ)(U ) = p(U�

(1)
X UT,�

(2)
X , . . . , �

(d)
X ). Further noting
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On the interconnection between the higher-order… 885

that the tangent space to O(n1) at I is the space R
n1×n1
skew of skew-symmetric n1 × n1

matrices, we see that

( f ◦ ϕ)′(I ) : R
n1×n1
skew → W1, H → p(H�

(1)
X + �

(1)
X HT, 0, . . . , 0).

As dim(W1) = 1
2n1(n1 − 1) = dim(R

n1×n1
skew ), it is enough to show that ( f ◦ ϕ)′(I ) is

injective in order to finish the proof. This now follows from the fact that, by definition
ofH ∗, the diagonal entries of �

(1)
X are strictly decreasing, as it implies that H�

(1)
X +

�
(1)
X HT = H�

(1)
X − �

(1)
X H cannot be diagonal for skew-symmetric H �= 0. This,

however, is equivalent to injectivity of ( f ◦ ϕ)′(I ) as given above. �	

Remark 2.8 In our definition (2.3) of HOSVD tensors we required the diagonal ele-
ments of G( j)

X to be decreasing. This has advantages and drawbacks. One advantage
are the narrower uniqueness properties leading to the practical condition in Propo-
sition 2.6. A disadvantage is that it is more difficult to design HOSVD tensors “by
hand” as in Sect. 2.4. Alternatively, one may define a set H̃ by just requiring the G( j)

X
to be diagonal. Then for every X ∈ H̃ we have (P(1), . . . , P(d)) · X ∈ H , where
P( j) are permutation matrices that sort the diagonal entries of G( j)

X accordingly. For
mutually distinct eigenvalues the choice of P( j) is unique. The corresponding set H̃ ∗
is therefore the finite disjoint union of sets (P(1), . . . , P(d)) · H ∗ over all P( j), and
as such also an embedded submanifold of S ∗.

2.3 Degrees of freedom

A principal challenge in understanding the interconnection between higher-order sin-
gular values of tensors arises from the fact that, in contrast to the matrix case, the
converse statement of Proposition 2.2 is in general not true when d ≥ 3. Tensors may
have the same higher-order singular values without being orthogonally equivalent.
This can be seen from the following heuristic.

The set S ∗ is open and dense in S by Proposition 1.3, and therefore is a smooth
manifold of dimension

dim(S ∗) = (n1 . . . nd) − 1.

The setS> is an open subset of Cartesian products of spheres and hence of dimension

dim(S>) = (n1 + · · · + nd) − d.

Therefore, given X ∈ S ∗, we expect the set S ∗
X of tensors having the same higher-

order singular values as X to be at least of “dimension”

dim(S ∗) − dim(S>) = (n1 · · · nd) − (n1 + · · · + n2) + (d − 1).
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When d ≥ 3, by Proposition 2.3, this set cannot only consist of tensors that are ortho-
gonally equivalent to X.1 In fact, for large d, the orthogonally equivalent tensors will
only be a very “low-dimensional” subset ofS ∗

X .

2.4 A non-equivalent example

The previous considerations suggest that there must exist tensors having the same
higher-order singular values without being orthogonally equivalent. We construct here
an example of size 2 × 2 × 2 using Proposition 2.6. Let us shortly count the degrees
of freedom in this situation. The Euclidean unit sphere S is of dimension seven,
the set S≥ of potential tuples of higher-order singular values is of dimension three,
while orbits O(2 × 2 × 2) · X of orthogonally equivalent tensors are of dimension at
most three, too. This indicates for every X ∈ S an at least one-dimensional set of
non-equivalent tensor with same higher-order singular values.

Using a common slice-wise notation of tensors, we consider (currently not normal-
ized)

X =
[−2 1
1 1

∣
∣
∣
∣

−1 −1
−1 0

]

.

The three matricizations are M (1)
X =

[−2 1 −1 −1
1 1 −1 0

]
, M (2)

X =
[−2 1 −1 −1
1 1 −1 0

]
,

and M (3)
X =

[−2 1 1 1
−1 −1 −1 0

]
. In all three matricizations the rows are orthogonal,

and the norm of the first row is larger than the norm of the second one. This shows
that X is a HOSVD tensor. Its squared higher-order singular values are

�X =
[
λ

(1)
X ,λ

(2)
X ,λ

(3)
X

]
=

[(
7

3

)

,

(
7

3

)

,

(
7

3

)]

.

In particular, X/‖X‖F ∈ S ∗. As a second tensor consider

Y =
[
3/

√
2 −1

−1 −1/
√
2

∣
∣
∣
∣
1 1/

√
2

1/
√
2 1

]

.

One checks again that all three matricizations M (1)
Y =

[
3/

√
2 −1 1 1/

√
2

−1 −1/
√
2 1/

√
2 1

]

,

M (2)
Y =

[
3/

√
2 −1 1 1/

√
2

−1 −1/
√
2 1/

√
2 1

]

, and M (3)
Y =

[
3/

√
2 −1 −1 −1/

√
2

1 1/
√
2 1/

√
2 1

]

1 For d = 2, i.e., matrices, it is the case: as (1.2) is assumed, we have n1 = n2 = n, and two square
matrices have the same singular values if and only if they are orthogonally equivalent. The formula gives
n2 − 2n + 1 which, however, only equals n2 − n − (n − 1) = dim(O(n × n)) − (n − 1). The reason is
that in the matrix case we know that the singular values of X and XT are the same. Hence the feasible set is
only of dimension n − 1, and not of dimension 2(n − 1) (the argument will be repeated in Sect. 3.1). For
tensors, however, we conjecture that the dimension of F is indeed (n1 + · · · + nd ) − d, see Sect. 3.2.
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have orthogonal rows with squared row norms

�Y =
[
λ

(1)
Y ,λ

(2)
Y ,λ

(3)
Y

]
=

[(
7

3

)

,

(
7

3

)

,

(
7

3

)]

.

This shows that X/‖X‖F and Y/‖Y‖F are two HOSVD tensors inS ∗ with the same
set of higher-order singular values. By Proposition 2.6, they are not orthogonally
equivalent.

3 The set of feasible configurations

The set F = F(n1, . . . , nd) ⊆ S≥ of feasible configurations has been defined in (1.2).
In this section we investigate this set. A simple observation worth to mention is that
F is closed. This follows from Proposition 1.3 and the compactness of S .

3.1 Not all configurations are feasible

When d = 2, we know that the singular values of a matrix and its transpose are the
same, so trivially not all configurations for σ

(1)
X and σ

(2)
X are possible. The formal

statement, using the introduced notation, reads, with n1 ≥ n2,

F(n1, n2) =
{
� = (σ (1), σ (2)) ∈ S≥(n1, n2) : σ (1) = (σ (2), 0, . . . , 0)

}
�= S≥.

In fact, F is an n2-dimensional subset in the (n1 + n2)-dimensional set S≥(n1, n2).
This known phenomenon in the matrix case can be used to give a qualitative proof

that also for higher-order tensors not all configurations are feasible. To start, we recall
a fact on the HOSVD from the literature. Let X have the left singular vector matrices
U ( j)

X (column-wise ordered by decreasing singular values), and multilinear rank r =
(r1, . . . , rd). Then we can write the “economic” HOSVD as

X =
(
Û (1)

X , . . . , Û (d)
X

)
· C,

where Û ( j)
X contains only the first r j columns ofU ( j)

X , and the core tensor C is of size
r1 × · · · × rd . The multilinear matrix product here corresponds to the action of the
tensor product operator Û (1)

X ⊗ · · · ⊗ Û (d)
X on R

r1 ⊗ · · · ⊗ R
rd , the explicit formulas

are similar to (2.1). Note that if X is non-singular, C is just an HOSVD tensor in
the orthogonally equivalent orbit of X as defined above. The key observation in the
general case is that C is non-singular inR

r1×···×rd , and its higher-order singular values
in every direction are given by the nonzero higher-order singular values of X [3].

Based on this fact, we can first give trivial examples of singular tensors for which
the nonzero singular values in different directions are not independent of each other.

Lemma 3.1 Let X have multilinear rank r = (r1, . . . , rd). Assume r j = 1 for j ≥ 3.

Then r1 = r2 and {σ (1)
1 , . . . , σ

(1)
r1 } = {σ (2)

1 , . . . , σ
(2)
r2 }.
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Proof Let C ∈ R
r1×···×rd be the economic HOSVD core tensor of X. The matriciza-

tions M ( j)
C for j ≥ 3 are just row vectors and have only one singular value which

equals the Frobenius norm of X. On the other hand, we have M (1)
C = (M (2)

C )T (up to
possible permutations), which implies the result. �	

Since tensors with r j = 1 for j ≥ 3 considered in the previous lemma are naturally
identified as elements of R

n1 ⊗ R
n2 , that is, as matrices, the previous statement may

appear rather odd at first. However, using a perturbation argument, it leads to a non-
constructive proof that non-feasible configurations for higher-order singular values do
exist even in the non-singular case. In fact, these configurations are of positive volume
within S≥.

Theorem 3.2 For n1 ≥ n2, consider σ (1) ∈ S(1)
≥ and σ (2) ∈ S(2)

≥ such that

σ (1) �= (σ (2), 0, . . . , 0), (3.1)

where the number of appended zeros on the right side equals n1−n2. Let furtherO
( j)
ε ,

j = 3, . . . , d, denote neighbourhoods of e( j)
1 = (1, 0, . . . , 0) in S( j)

≥ of diameter at

most ε > 0 (w.r.t. some norm). For j ∈ {1, 2}, let O( j)
ε be similar neighbourhoods,

but of σ (1) and σ (2), respectively. Then there exists ε > 0 such that

F ∩
(
O(1)

ε × · · · × O(d)
ε

)
= ∅,

that is, no � ∈ O(1)
ε × · · · × O(d)

ε is feasible.

Proof Assume to the contrary that for every n there exists a tensor Xn ∈ S such
that �Xn ∈ O(1)

1/n × · · · × O(d)
1/n . The sequence of Xn has a convergent subsequence

with a limit X ∈ S . By Lemma 1.3, X has higher-order singular values �X =
(σ (1), σ (2), e(3)

1 , . . . , e(d)
1 ). Now Lemma 3.1 applies, but is in contradiction to (3.1). �	

Remark 3.3 The condition (3.1) can hold in two cases: (i) the number of nonzero
singular values in direction one and two are the same (r1 = r2), but the singular values
themselves are not, or (ii) r1 �= r2. The second case has some interesting implications
for rectangular tensors. Assume for instance n1 �= n2. Then by Theorem 3.2 there
cannot exist normalized non-singular tensors in R

n1×···×nd for which the singular
value vectors σ ( j) in directions j = 3, . . . , d are arbitrarily close to the corresponding
unit vector e( j). This surprising connection between mode sizes of the tensor and
location of the singular value vectors is not obvious, especially given the fact that
almost every tensor is non-singular (assuming (1.2)).

3.2 A conjecture on interior points

For d = 2 we have seen that F(n1, n2) is a set of measure zero within S≥(n1, n2),
even when n1 = n2. One question is whether this is also true for higher-order tensors.
Remarkably, the following experiment suggests that this does not need to be the case.
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Fig. 1 Visualizinghigher-order singular values in the 2×2×2 case. Plotted are the vectors (σ (1)
1 , σ

(2)
1 , σ

(3)
1 )

containing the largest singular values of the three directions for 10,000 random tensors X ∈ S . They seem

to form a three-dimensional connected set. Hence, the corresponding set of�X = (σ
(1)
X , σ

(1)
X , σ

(1)
X ) should

be of positive volume in the three-dimensional setS≥

We generate random 2 × 2 × 2 tensors X of Frobenius norm one.2 With proba-
bility one, the higher-order singular values �X = (σ

(1)
X , σ

(2)
X , σ

(3)
X ) are elements of

S>(2, 2, 2), which is a set of three dimensions and therefore can be visualized. We
simply make the identification,

�X →
(
σ

(1)
1 , σ

(2)
1 , σ

(3)
1

)
∈

[
1√
2
, 1

]3
,

that is, we project on the first coordinate of each singular value vector. In Fig. 1 we see
these projected points for 10,000 random examples, and their convex hull computed
with a Matlab integrated Delauney triangulation.

As the resulting point cloud appears three-dimensional, we suppose that the set of
feasible configurations is also three-dimensional. But one can also verify in the plot
that not all configurations are feasible.Abovewemade use of the fact thatσ ( j) = (1, 0)
(Tucker rank in the direction j equals one) implies σ (i) = σ (k) for i, k �= j . This can
be seen in the picture as the convex polytope intersects the hyperplanes x = 1, y = 1
and z = 1 in single one-dimensional facets of 45 degree.

We are led to the following conjecture.

Conjecture 3.4 When d ≥ 3, and given the compatibility condition (1.2), the set
F(n1, . . . , nd) has positive (relative) volume in S≥(n1, . . . , nd).

In fact, the following seems likely (under the same assumptions).

Conjecture 3.5 For genericX ∈ S ,�X is a (relative) interior point ofF(n1, . . . , nd)
within S≥(n1, . . . , nd).

2 For our experiments we made use of the Tensor Toolbox [2] in Matlab.
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Remark 3.6 During revision of the paper, a possible strategy to prove this conjecture
has been revealed. It is based on the observation that �X is a relative interior point of
F(n1, . . . , nd) if and only if the map g(X) = (G(1)

X , . . . ,G(d)
X ) (that has already been

considered in (2.4)) is locally surjective when regarded as a map from the unit sphere
S to the Cartesian product of hyperplanes {A( j) ∈ R

n j×n j
sym : tr(A( j)) = 1}. In other

words, one has to show that the rank of the derivative g′(X), when restricted to the

tangent space TXS , equals themaximumpossible value α =
(∑d

j=1
1
2n j (n j + 1)

)
−

d. A sufficient condition for this is that g′(X) is of rank α +1 on R
n1×···×nd . However,

as g′(X) depends polynomially on the entries of X, the function X → rank(g′(X))

achieves itsmaximumvalue for almost allX. Since it is bounded byα+1, it is therefore
enough to find a single tensor X for which rank α + 1 is achieved. In this way, one
can validate Conjecture 3.5 for different configurations of n1, . . . , nd by constructing
random X and evaluating the rank of g′(X) numerically. A rigorous proof would have
to confirm this numerical rank for “simple” candidates X, which we were able to do
for 2 × 2 × 2 tensors so far. This approach shall be subject of a future work.

3.3 Alternating projection method

Even in the case that one would be given the information that a configuration
� = (σ (1), . . . , σ (d)) ∈ S≥ is feasible, the question remains how to construct a
corresponding tensor. Note that the suggested strategy to prove Conjecture 3.5 by
showing full rank of (2.4) may not provide an explicit way for perturbing singular
values in single directions.

A (currently) heuristic approach can be taken via the method of alternating projec-
tions. It is based on an alternative viewpoint on Problem 1.4: Given σ ( j) ∈ S( j)

≥ for
j = 1, . . . , d, the configuration � = (σ (1), . . . , σ (d)) is feasible, if and only if there
exists a tensor X such that

X ∈
d⋂

j=1

M
( j)
σ ( j) , (3.2)

where M ( j)
σ denotes the set of all tensors with mode- j singular values σ . More con-

cretely,

M
( j)
σ =

{
X : M ( j)

X = U diag(σ )V T, U ∈ O(n j ), V TV = In j

}
.

The method of alternating projections tries to find X satisfying (3.2) by successively
projecting on the sets M ( j)

σ ( j) . It hence takes the form

Xk+1 =
(



(d)

σ (d) ◦ · · · ◦ 

(1)
σ (1)

)
(Xk), (3.3)

where 

( j)
σ : R

n1×···×nd → M
( j)
σ is a metric projection on the set M ( j)

σ , that is,



( j)
σ (Y) returns a best approximation of Y in the set M ( j)

σ . A best approximation in
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Frobenius norm can be obtained by simply replacing the singular values of M ( j)
Y with

σ :
M ( j)



( j)
σ (Y)

= U ( j)
Y diag (σ ) (V ( j)

Y )T. (3.4)

Moreover, if σ
( j)
Y ∈ S( j)

> , this best approximation is unique. To prove these asser-
tions, note that the best approximation problem in Frobenius norm is equivalent to
maximizing the trace of U diag(σ )V T(M ( j)

Y )T over all U ∈ O(n j ) and V ∈ R
ncj ,

V TV = In j . The von Neumann trace inequality [15,23] states that the upper bound

for this quantity is σTσ
( j)
Y . Moreover, equality is achieved at U, V if and only if

M ( j)
Y = U diag(σ ( j)

Y )V T, see [4, Remark 1.2]. Hence U = U ( j)
Y and V = V ( j)

Y are

unique in the case that σ ( j)
Y ∈ S( j)

> .
Although the interpretation as an alternating projection method is nice, we remark

that the multiplication by U ( j)
Y in (3.4) could be omitted in practice. It is an easy

induction to show that in this case an orthogonally equivalent sequence of tensors
would be produced.

Even assuming that intersection points exist, we are currently not able to provide
local or global convergence results for the alternating projectionmethod (3.3). Instead,
we confine ourselves with three numerical illustrations.

Recovering a feasible configuration
To obtain a feasible configuration �, we create a norm-one tensor X and take its

higher-order singular values, � = �X. Then we run the iteration (3.3) starting from
a random initialization, and measure the errors ‖σ ( j)

Xk+1
− σ

( j)
X ‖2 (Euclidean norm)

after every full cycle of projections. Since 

(3)
σ (3) is applied last, the singular values in

direction three are always correct at the time the error is measured. The question is
whether also the singular values in the other directions converge to the desired target
values. The left plot in Fig. 2 shows one typical example of error curves observed in
this kind of experiment in R

30×30×30. We see that the sequence �Xk converges to �,
hence every cluster point of the sequenceXk will have the desired higher-order singular
values. So far, we have no theoretical explanation for the shifted peaks occurring in
the curves.

Since our initial guess is random, we do not expect that the generating X or an
orthogonally equivalent tensor will be recovered. To verify this, we make use of
Proposition 2.6 and measure the error maxi1,...,id ||X̂i1,...,id | − |(X̂k+1)i1,...,id || after
every loop, where X̂k+1 and X̂ are HOSVD representatives in the corresponding
orbits of orthogonal equivalence. The right plot in Fig. 2 shows this error curve, and
we can see it does not tend to zero. By Proposition 2.6, the limiting tensor is hence
not orthogonally equivalent to X. Since this behaviour was observed being typical,
the alternating projection method can be suggested as a practical procedure to con-
struct tensors having the same higher-order singular values without being orthogonally
equivalent.

Experiments with tensors of order d = 4 and larger lead to similar results, but
they quickly become computationally expensive as SVDs of large matrices have to be
calculated.
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Fig. 2 Recovering a feasible configuration inR30×30×30 via alternating projection. Left errors of singular
value vectors. Right maximum difference between absolute values of entries of HOSVD core tensors of
iterates and the generating tensor that provided the feasible configuration. As it does not go to zero, the
limiting tensor is not orthogonally equivalent to the generating tensor
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Fig. 3 Experiments in R10×10×10×10. Left perturbation of a given feasible configuration � by O(ε) with
ε = 10−3. Right infeasible configuration σ ( j) = (1, 0, . . . , 0) + O(ε j ) obtained using ε3 = ε4 = 10−6,

but ε1 = ε2 = 10−3

Perturbation of a feasible configuration
To support Conjecture 3.5, we now consider random perturbations

�ε =
(
σ (1)

ε , . . . , σ (d)
ε

)
= � + O(ε) ∈ S≥

123



On the interconnection between the higher-order… 893

of a known feasible configuration � ∈ F∩S> (obtained again from a random tensor
X ∈ S ∗).3 According to the conjecture,we expect that for small ε the configuration�ε

is also feasible, so a corresponding tensor may be found by the alternating projection
method (3.3). This can be verified in numerical experiments. The left plot in Fig. 3
shows the errors ‖σ ( j)

Xk+1
−σ

( j)
ε ‖F for one experiment inR

10×10×10×10 using ε = 10−3.

Infeasible configuration
When conducting our experiments with the alternating projectionmethod, wemade

the experience that with high probability even a randomly generated configuration
will be feasible. Indeed, Fig. 1 supports this in the 2 × 2 × 2 case, as the feasible
configurations seem to make up a rather large fraction in S≥(2, 2, 2).

To construct an infeasible configuration we therefore mimic the proof of Theo-
rem 3.2: we generate σ ( j) as (1, 0, . . . , 0) + O(ε j ) (as described in Footnote 3),
where we use very small ε j for j ≥ 3, e.g., ε j = 10−6. By the arguments presented
above this should also enforce σ (1) to be close to σ (2) to ensure feasibility. To impede
this, we use larger ε1 and ε2 instead, e.g., ε1 = ε2 = 10−3 (an alternative would be to
generate σ (1) and σ (2) completely random). Our results suggest that this indeed results
in an infeasible configuration. Accordingly, the alternating projection method fails.
The right plot in Fig. 3 shows the outcome of one experiment, again in R

10×10×10×10.
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