
                 
                                      

                                                        

                                          

                                         

                                               

                                                        

The multi-vehicle truck-and-robot routing problem for last-mile 

delivery 

Manuel Ostermeier a , ∗, Andreas Heimfarth 

b , Alexander Hübner b 

a University of Augsburg, Resilient Operations, Universitätsstraße 12, Augsburg 86159, Germany 
b Technical University of Munich, Supply and Value Chain Management, Am Essigberg 3, Straubing 94315, Germany 

                      

                 
                        
                       
                     

          
          
                
                    
                       
                                    

                

                                                                                                     
                                                                                                              
                                                                                                           
                                                                                                            
                                                                                                           
                                                                                              

                                                                                                      
                                                                                                        
                                                                                                         
                                                                                                        
                                                                                                       
                                                                                                  
                                                                                                      
                                                                                                   
                                                                                                    
                                                                                                          
                                                               

                                         

1

g

o

t

s

t

c

2

o

s

l

t

e

f

2

p

c

a

v

t

t

2

s

r

t

f

e

l

T

t

t

 
 

. Introduction 

The global autonomous last-mile delivery market is forecast to 

row seven-fold by 2027, with ground vehicles accounting for 85% 

f it ( Grand View Research, 2020 ). Some retailers expect 80% of 

heir deliveries to be autonomous by 2025 ( Bennett, 2020 ). Con- 

umers are increasingly ordering products online to benefit from 

he comfort of home deliveries. Statista (2022) , for example, fore- 

asts annual growth of online food sales in the U.S. by 24% until 

027. However, classic trucks for last-mile delivery are increasingly 

bstructing traffic flow in urban areas and driving up local emis- 

ions. Enhanced services such as same-day delivery and tighter de- 

ivery time windows pose even more challenges for logistics sys- 

ems, while cost pressure increases ( Arslan et al., 2019; Buldeo Rai 

t al., 2019; van Heeswijk et al., 2019; Hübner et al., 2016; Ish- 

aq et al., 2016 ) and labor shortage grows ( McKinsey & Company, 

021 ). Last-mile deliveries are therefore becoming increasingly im- 
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ortant ( Boysen et al., 2021; Otto et al., 2018 ). Innovative delivery 

oncepts are needed to reduce traffic congestion, CO 2 emissions, 

nd noise, and to enable cost-efficient and customer-friendly ser- 

ices ( Hübner et al., 2019; Orenstein et al., 2019 ). 

A promising approach to address these matters is applying au- 

onomous robots carried by trucks in urban areas, known as the 

ruck-and-robot concept with robot depots (see e.g., Boysen et al., 

018b ). The central idea of the concept is to overcome the is- 

ue of the slow delivery speed of autonomously driving delivery 

obots. Delivery trucks act as motherships and transport parcels 

ogether with multiple robots that are picked up during the tour 

rom robot depots. The motherships enable fast and timely deliv- 

ries as they cover larger transportation distances. The trucks re- 

ease one or multiple robots at drop-off points or robot depots. 

he robots then take care of the “last-mile” delivery and travel to 

he customer’s home at pedestrian speed, deliver the order and re- 

urn to the next robot depot. The customers can choose a delivery 

ime window during which they are at home and retrieve their or- 

er from the robot. Daimler (2019) , for instance, has developed and 

uccessfully tested customized trucks paired with delivery robots. 
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Fig. 1. Specialized truck for robot deliveries. 
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elivery robots have further been successfully implemented in dif- 

erent settings by several companies (see e.g., Kiwibot, 2020; Mar- 

le, 2019; Starship, 2019 ), who usually offer them as a rental ser- 

ice to logistics service providers. 

The objective of truck-and-robot routing with robot depots is 

o plan a truck route and schedule robot deliveries to satisfy the 

omplete demand, respect truck capacities and robot availability, 

nd minimize the total costs arising from the travel costs of trucks 

nd robots and potential service-related costs (e.g., for delays). The 

merging but still small body of literature on truck-and-robot con- 

epts with depots focuses on identifying central problem aspects 

nd related benefits, such as the reduction of emissions and costs 

 Ostermeier et al., 2022 ) or service quality ( Alfandari et al., 2022;

oysen et al., 2018b ). Current literature addresses the basic prob- 

em, where only one truck is available to transport robots and 

oods. For large and densely populated delivery areas, a single 

ruck cannot fulfill the complete demand within a defined deliv- 

ry period when strict time windows have to be met. This calls 

or generalizing the concept to multiple trucks, i.e., a fleet of de- 

ivery trucks. The single truck problem includes the (i) routing of 

ne truck and (ii) robot scheduling, but neither the (iii) assignment 

f customers to trucks nor (iv) the simultaneous routing of multi- 

le trucks is considered. However, the assignment of customers to 

ours and the routing of multiple tours have a significant impact on 

he robot scheduling (i.e., where and when to release the robots) 

nd vice versa. 

Our work contributes by generalizing the truck-and-robot con- 

ept with a single truck and formulates the first Multi-Vehicle 

ruck-and-Robot Routing Problem (MVTR-RP) with robot depots. It 

s, therefore, a fundamental extension of the basic problem with 

nly one truck and studies an entirely new area of problems. Pre- 

ailing solution approaches for the single-truck problem are not 

esigned to solve this extended problem. Furthermore, existing ap- 

roaches for the vehicle routing problem (VRP) do not provide an 

ff-the-shelf solution for the MVTR-RP due to its specific problem 

etting. The MVTR-RP requires the scheduling of the robots from 

ruck stops on top of the truck routing to possible robot depots 

nd drop-off locations that are flexibly chosen as part of the deci- 

ion problem. Tailored solution approaches are required to address 

he specific challenges when combining truck routing and robot 

cheduling within the MVTR-RP. We, therefore, develop a heuris- 

ic for the N P -hard problem to simultaneously solve the routing 

f multiple vehicles while scheduling robot deliveries and defin- 

ng the required truck stops at depots and drop-off locations. Our 

pproach is based on advanced VRP approaches and proposes a 

ovel neighborhood search algorithm – denoted as Set Improve- 

ent Neighborhood Search (SINS) – that improves a set of tours 

y optimally choosing a new set out of the neighborhoods of all 

ncumbent tours. It creates and tests large pools of potential truck 

ours, from which the optimal set is chosen. 

The remainder of this paper is organized as follows. We outline 

he delivery concept and develop the formal problem description 

n Section 2 . Section 3 reviews related literature and Section 4 de- 

ails the heuristic proposed. Section 5 analyses the numerical effi- 

iency and develops managerial insights. We summarize our find- 

ngs and outline potential future research areas in Section 6 . 

. Problem description and formal model 

This section details the underlying truck-and-robot concept. We 

rst outline the logistical setup of both the single- and multi- 

ehicle concept in Section 2.1 , and discuss the relation of the 

VTR-RP to standard VRPs ( Section 2.2 ). This builds the basis 

or introducing the formal model ( Section 2.3 ). In our context, 

he term “vehicle” refers to goods and robots transporting truck, 
2 
hereas the term “robots” refers to autonomously driving ground 

obots. 

.1. Technological and logistical setup of the truck-and-robot concept 

ith robot depots 

The basic truck-and-robot concept with a single truck . The truck- 

nd-robot concept combines the use of autonomous delivery 

obots with specialized delivery trucks to launch robots in cus- 

omer proximity for attended home delivery. The delivery trucks 

re specialized vans (see Fig. 1 ) that act as a mothership for the 

ransportation of parcels and robots ( Boysen et al., 2018b; Jennings 

 Figliozzi, 2019 ). The trucks used are pivotal for the entire ful- 

llment as they enhance delivery speed and flexibility. The faster 

rucks can cover larger distances between delivery requests in a 

hort time, and the system can adapt to changing customer distri- 

utions and corresponding demand by integrating dedicated drop- 

ff points as truck stops. This adds to the flexibility of the system 

nd also reduces the number of robots and robot depots required. 

obots can enter the truck via a ramp from the back, be loaded by 

he driver in the front part of the truck, and leave it via another 

amp to the side. The truck’s capacity is limited concerning robots 

nd storage boxes. An example setup allows up to eight robots and 

4 storage boxes (see, e.g., Vans, 2016 ). As these vehicles transport 

obots and parcels, they usually have a lower capacity than stan- 

ard delivery vans. Various robot models are used (see e.g., Baum 

t al., 2019; Jaller et al., 2020 ), mainly differing in size and travel

peed. 

A key component of the truck-and-robot system is robot depots, 

mall charging stations in the customer area operated by a robot 

rovider, who offers delivery robots as a service ( Grand View Re- 

earch, 2020 ). The provider rents robots to multiple logistics ser- 

ice companies. Robots wait at these charging stations until they 

re needed by a logistics provider, who picks them up by truck 

nd pays a time-dependent rental fee. Robots are homogeneous 

nd can recharge in each depot. 

Figure 2 illustrates the example of a tour with a single truck. 

he truck tour of the logistics provider starts at a goods warehouse 

here all parcels for delivery and the initial number of robots are 

oaded. The truck then visits dedicated locations to pick up and 

elease robots within the delivery area. Additional potential truck 

tops where robots can be released are defined as drop-off points. 

n contrast to depots, robots can only be released at drop-off

oints, but no new robots can be loaded. The truck never waits for 

ropped-off robots but picks up new robots waiting at the robot 

epots. Once released, robots move autonomously on sidewalks at 

edestrian speed and deliver parcels to customer doors. Customers 

re notified on arrival and receive their delivery by unlocking the 



                                                                                                  

                 
                                      

Fig. 2. Truck-and-robot tour with one truck (example). 
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Fig. 3. Two separate truck-and-robot tours. 
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ompartment after receiving a code. Since the customers must be 

resent, they can choose a delivery time window. After a customer 

as retrieved the parcel, the robots return to the closest robot de- 

ot, from where the robot provider can rent it to another logis- 

ics company (not shown in Fig. 2 for better readability). Decision- 

elevant costs are the truck costs (i.e., travel times and distances 

rom warehouse to robot depots, drop-off locations, and return to 

he warehouse) and robot travel times from the drop-off location 

o customers. The robot travelling from the customer back to the 

ext robot depot is not decision relevant as the robots always ap- 

roach the closest robot depot. The truck costs include time-based 

osts for the driver and distance-based travel costs. As robots are 

sually rented as a service from a robot provider and charged by 

sage time, a time-based fee applies for the actual travel time, i.e., 

he time from the drop-off until the return to the closest depot. 

he application of time windows imposes further cost considera- 

ions. If a robot arrives before the time window, it must wait for 

he customer. If it arrives after the time window, delay costs (as 

pportunity costs for reduced satisfaction or rebates on delivery 

ees) are incurred. 

The routing of the truck is a central aspect of the truck-and- 

obot concept. Specifically, it needs to be decided which of the 

iven robot depots and drop-off points are visited by the truck or 

ot and in which sequence. This further includes possible multi- 

le visits per location due to the given time window constraints 

nd a corresponding release of robots at the same location at dif- 

erent times. In contrast to the travelling salesman problem (TSP), 

he number of truck stops and the stop locations (namely robot de- 

ots and drop-off points) are part of the decision problem. At the 

ame time, the assignment of customers to truck stops needs to be 

onsidered, i.e., the drop-off location or robot depot as the starting 

oint of each customer’s delivery. This is also called robot schedul- 

ng and determines each robot’s arrival and usage time. This is fur- 

her constrained by robot availability at robot depots. We denote 

he problem of routing one truck with robots as Single-Vehicle 

ruck-and-Robot Routing Problem (SVTR-RP). 

Multi-vehicle truck-and-robot routing . A single truck is only able 

o supply a given maximum number of customers, as its fulfillment 

apacity is limited. An increasing demand volume and the need to 

arry out deliveries simultaneously (given the time windows) re- 

uire additional trucks to avoid late or failed deliveries. Figure 3 

llustrates an example with two truck tours. Compared to Fig. 2 , 

wo trucks can serve more customers and avoid delays. The exten- 

ion to the multi-vehicle problem, denoted as MVTR-RP, enables 

he simultaneous delivery to different customers by multiple tours. 

his increases the flexibility and the fulfillment capacity, but it also 

ncreases the problem complexity. In the MVTR-RP, multiple tours 

eed to be determined, i.e., their start times, respective stops, and 
3 
equence. Multiple tours access the same resources (robot depots), 

nd robot availability must be monitored. In addition, customers 

eed to not only be assigned to truck stops (as in the basic SVTR- 

P) but clustered (i.e., allocated) to delivery tours in the first place. 

his means a simultaneous decision is required on the (i) assign- 

ent of customers to truck tours , the (ii) routing of multiple trucks 

i.e., selection of robot depots and drop-off locations as well as se- 

uencing of the stops), and the (iii) robot scheduling (i.e., assign- 

ent of customers to stop locations of the tour, from where the 

espective robot starts). All three decisions are interdependent. For 

xample, the reallocation of one customer to another tour impacts 

outing and robot scheduling. It is further not sufficient to allocate 

ustomers to the same tour based on similar locations and time 

indows since two customers far from each other with different 

eadlines could fit well on one tour. 

To summarize, the underlying routing problem is specified by 

 set of customers with known demands and time windows that 

eed to be supplied by robots launched by trucks. The trucks travel 

rom a goods warehouse to robot depots and drop-off points. Each 

obot is released from a drop-off point, or robot depot, serves one 

ustomer, and returns then to the next robot depot. The objec- 

ive is to minimize travel costs of trucks and robots and potential 

ervice-related costs (e.g., for delays) by assigning customers to ve- 

icles, routing multiple truck tours and defining robot schedules 

hat satisfy the entire demand while maintaining truck capacities 

nd robot availability. 

.2. Classification of the MVTR-RP as VRP 

The extension of the SVTR-RP with one truck (and hence a TSP) 

o an MVTR-RP turns our problem into a VRP, as customers need to 

e assigned to truck tours. There is rich literature on VRPs and cor- 

esponding exact, and (meta-)heuristic approaches to address the 

lustering and routing (i.e., cluster-first-route-second, route-first- 

luster-second, integrated). For an overview of solution approaches 

or VRPs, we kindly refer to established reviews (e.g., Golden et al., 

008; Toth & Vigo, 2014 ). The effectiveness and efficiency of the 

olution approaches depend on the problem setting and decision 

cope. In general, the MVTR-RP belongs to the class of VRPs with 

ime windows, including service times and truck and robot travel 

imes. Apart from these general similarities, the MVTR-RP shows 

articularities that constitute its uniqueness as VRP variant. To be- 

in with, there are obligatory (robot) deliveries to customers, but 

ptional visits to robot depot and drop-off locations. This means 

hat the number, sequence, and above all, locations of truck stops 

eed to be determined. For example, a single tour may only visit 

ne depot to supply ten customers, but it may as well visit five de- 

ots or drop-off points. These optional visits to robot depots and 

rop-off locations significantly complicate the assignment of cus- 



                                                                                                  

                 
                                      

Table 1 

Notation of the MVTR-RP. 

Index sets 

C Set of customers, k ∈ C
D ( ̂ D ) Set of distinct drop-off points (including duplicates) 

R ( ̂ R ) Set of distinct robot depots (including duplicates) 
ˆ L Set of all (duplicate) locations from which robots can be started: ˆ L := 

ˆ D ∪ ̂  R

� ( ̄�) Set of warehouse duplicates as start (end) position of each tour 

I a Set of duplicate indices i, i ∈ ˆ R , of one distinct robot depot a, a ∈ R 
I m a Set of elements i ∈ I a with i ≤ m 

Problem parameters 

d k Deadline for customer k, k ∈ C
Q ( G ) Maximum robot (parcel volume) capacity of a truck 

βa Initial amount of available robots in location a, a ∈ R 
δ Initial number of robots aboard a truck at start 

ε Length of time windows 

ηk Volume of parcels per customer k 

ϑ v 
i j 

Truck travel time from location i to location j with i, j ∈ ̂  L ∪ � ∪ �̄
ϑ r 

ik 
Robot travel time from location i, i ∈ ̂  L , to customer k, k ∈ C

λi j Distance between locations i and j with i, j ∈ ̂  L ∪ � ∪ �̄
Cost parameters 

c late Cost of delays per time unit 

c dist Cost of truck travel per distance unit 

c veh ( c rob ) Cost of truck (robot) per time unit 

Decision variables 

s i j Binary: 1, if a truck travels from location i to location j; 0 otherwise 

t i Arrival time of a truck at location i 

x ik Binary: 1, if customer k is supplied from location i ; 0 otherwise 

Auxiliary variables 

e i Number of robots taken out of depot location i, i ∈ ˆ R

g i Volume of parcels aboard a truck when arriving at location i 

q i Number of robots aboard a truck at departure from location i 

l k Lateness (delay) time of delivery to customer k 

w k Waiting time of robot at customer k 
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omers to tours (and, as such, the robot deliveries), as every change 

n the truck tour also impacts the robot assignment. This then di- 

ectly connects to the second difference. The same customer can 

e supplied from different drop-off locations and/or robot depots. 

s such, the assignment of a customer to a tour implies that a 

obot has to be scheduled to visit that customer (possibly from 

n already planned stop) but does not define a unique stop of the 

ruck. Third, the MVTR-RP requires robot scheduling in addition to 

he truck routing decisions. This means that after each truck rout- 

ng solution, the companion robot scheduling has to be solved and 

onsequently requires an additional step in the solution finding. Fi- 

ally, there is an unrestricted assignment of customers to trucks 

nd robots, but capacity and robot availability needs to be ensured. 

e need to consider both the capacity of trucks as well as the 

vailability of robots at depots. This again impacts the assignment 

ecisions. 

These differences constitute the genuine character of the MVTR- 

P and require the development of tailored approaches to address 

he problem specifics presented. Same as for the SVTR-RP, where 

t is not possible to simply apply TSP solution approaches (see e.g., 

oysen et al., 2018b ), existing VRP approaches cannot be directly 

pplied to the MVTR-RP. 

.3. Mathematical model of the multi-vehicle truck-and-robot routing 

roblem 

The distribution system introduced constitutes an entirely new 

roblem. As such, we contribute by formalizing the decision prob- 

em at hand and formulating the mathematical model of the 

VTR-RP. Table 1 summarizes the notation used. 

Index sets . The MVTR-RP is based on the location sets of cus- 

omers ( C), robot depots ( R ) and drop-off points ( D ). In our applica-
4 
ion, robots may visit customers in the same neighborhood at dif- 

erent times (e.g., with an one-hour gap) due to the delivery time 

indows defined. Consequently, a truck tour potentially visits the 

ame drop-off or depot locations multiple times to release robots 

or the respective deliveries. To enable multiple visits at each robot 

epot and drop-off point, we duplicate the elements in R and D , re- 

ulting in 

ˆ R and 

ˆ D as the corresponding sets of duplicates. All du- 

licate locations (i.e., duplicate robot depots and drop-off points) 

re summarized by the set ˆ L := 

ˆ D ∪ 

ˆ R . This also means that one or 

everal trucks can retrieve robots from the same robot depot on 

ultiple occasions. All trucks start at the same goods warehouse. 

s we need to track the number of trucks and their usage time, 

e also duplicate the warehouse location for each available truck. 

his results in a set of start and end locations (i.e., the warehouse 

uplicates) and is denoted by � and �̄, each containing one du- 

licate of the warehouse location ω ∈ �, ω̄ ∈ �̄ for every available 

ruck. Duplicates are needed as we use a two-index formulation, 

nd in this way, all trucks can use the same location network ˆ L , 

hile individual tracking applies. Finally, to keep track of available 

obots in the unique robot depots, we define the set I a of all du- 

licate locations i to the depot a (with i ∈ ̂

 L , a ∈ R ), and the set I ma 
f indices in i ∈ I a with i ≤ m for a given number m . The set I m 

a is

equired to keep track of the order in which duplicates are visited 

nd to enforce the constraint on available robots after every visit. 

Parameters and costs . Between two locations i and j we define 

he distance as λi j and travel times ϑ 

v 
i j 

and ϑ 

r 
i j 

for the trucks and 

obots, respectively. The travel times include any processing times 

hat occur at each stop. Each customer k, k ∈ C, has a time window

efined by the delivery deadline d k and the time window length 

, which is the same for all customers. Every robot depot a, a ∈ R,

as an initial number βa of robots available. We consider a ho- 

ogeneous truck fleet where each truck has a maximum robot 
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apacity Q and starts with δ robots aboard. G denotes a truck’s 

arcel capacity and ηk the parcel volume of customer k . We fur- 

her assume that each customer order fits into a single robot. Fi- 

ally, time-dependent cost rates c veh and c rob for the trucks and 

he robots apply. For the truck, this mostly represents the driver’s 

alary, as we assume drivers can perform other value-adding tasks 

r reduce overtime when tours become shorter. The costs for the 

obots consist of the time-based rental fee charged by the robot 

rovider. Each truck incurs costs c dist per distance. Delayed deliv- 

ries are priced at a time-based lateness rate c late . 

Decision variables . The binary variable s i j defines whether a 

ruck travels from location i to location j. The variable t i repre- 

ents a truck’s arrival time at each location. The binary variable x ik 
efines whether customer k is served from location i , i.e., whether 

 robot travels between the two. Further, auxiliary decision vari- 

bles are applied. The variable q i defines the number of robots on 

he truck. The number of robots loaded onto the truck at depot lo- 

ation i is denoted by e i . This also represents the number of robots

emoved from the robot inventory at the robot depot. The vari- 

ble g i represents the parcel volume aboard the truck when arriv- 

ng at location i . Variable l k tracks the delay time if the delivery at

ustomer k occurs after the deadline, and w k represents a robot’s 

aiting time if it arrives early, i.e., before d k − ε. The model is then

efined as follows. 

in RC = c veh 

(∑
ω̄ ∈ ̄�

t ω̄ −
∑
ω∈ �

t ω 

)
+ 

∑
i ∈ ̂ L ∪ �

∑
j∈ ̂ L ∪ ̄�

c dist λi j s i j 

+ 

∑
i ∈ ̂ L

∑
k ∈ C

c rob ϑ 

r 
ik x ik + 

∑ 

k ∈ C 
(c late l k + c rob w k ) (1) 

ubject to ∑
i ∈ ̂ L

x ik = 1 ∀ k ∈ C (2) 

 jk ≤
∑

i ∈ ̂ L ∪ �
s i j ∀ j ∈ 

ˆ L , k ∈ C (3) 

∑
j∈ ̂ L ∪ ̄�

s ω j = 1 ∀ ω ∈ � (4) 

∑
j∈ ̂ L ∪ �

s j ̄ω = 1 ∀ ̄ω ∈ �̄ (5) 

∑
i ∈ ̂ L ∪ �

s i j = 

∑
i ∈ ̂ L ∪ ̄�

s ji ∀ j ∈ 

ˆ L (6) 

 j ≥ t i + ϑ 

v 
i j − M · (1 − s i j ) ∀ j ∈ 

ˆ L ∪ �̄; i ∈ 

ˆ L ∪ � (7) 

 k ≥ t i + ϑ 

r 
ik − d k − M · (1 − x ik ) ∀ k ∈ C; i ∈ 

ˆ L (8) 

 k ≥ d k − t i − ϑ 

r 
ik − ε − M · (1 − x ik ) ∀ k ∈ C; i ∈ 

ˆ L (9) 

 ω = δ ∀ ω ∈ � (10) 

 j ≤ q i + e j −
∑
k ∈ C

x jk + M · (1 − s i j ) ∀ i ∈ 

ˆ L ∪ �; j ∈ 

ˆ R (11) 

 j ≤ q i −
∑
k ∈ C

x jk + M · (1 − s i j ) ∀ i ∈ 

ˆ L ∪ �; j ∈ 

ˆ D (12) 
5

 ω̄ = 0 ∀ ̄ω ∈ �̄ (13) 

 j ≥ g i + 

∑
k ∈ C

ηk x jk − M · (1 − s ji ) ∀ i ∈ 

ˆ L ∪ �̄; j ∈ 

ˆ L (14) 

 i ≤ t j ∀ a ∈ R ; i, j ∈ I a : i ≤ j (15) 

∑
h ∈ ̂ L ∪ �

s hi ≥
∑

h ∈ ̂ L ∪ �
s h j ∀ a ∈ R ; i, j ∈ I a : i ≤ j (16) 

a −
∑
i ∈ I ma 

e i ≥ 0 ∀ a ∈ R ; m ∈ I a (17) 

 i j ∈ { 0 , 1 } ∀ i ∈ 

ˆ L ∪ �, j ∈ 

ˆ L ∪ �̄ : i � = j (18) 

 ii = 0 ∀ i ∈ 

ˆ L (19) 

 ik ∈ { 0 , 1 } ∀ i ∈ 

ˆ L ; k ∈ C (20) 

 i ∈ Z ∀ i ∈ 

ˆ R (21) 

 i ≥ 0 ∀ i ∈ 

ˆ L ∪ � ∪ �̄ (22) 

 i ∈ [0 , Q] ∀ i ∈ 

ˆ L (23) 

 i ∈ [0 , G ] ∀ i ∈ 

ˆ L (24) 

 k , w k ≥ 0 ∀ k ∈ C (25) 

The objective function (1) minimizes total routing costs (RC). 

he first term indicates the time-dependent usage costs across all 

rucks, i.e., the total time for each truck from departure to ar- 

ival at the warehouse. The second term sums up the total dis- 

ance costs of all legs travelled by trucks. The third term consid- 

rs the costs of robot travel from truck stops to customers. The 

ast term adds the costs of robot waiting and delay times. Note 

hat the robots’ return time from a customer to the closest de- 

ot does not depend on the routing decisions and is, therefore, 

ot decision-relevant. Constraints (2) ensure that every customer 

s served exactly once, while Constraints (3) ensure a robot starts 

nly from stops visited by a truck. Constraints (4) and (5) ensure 

hat only one truck starts from each start location and also returns 

o it. Trucks that are not required will stay at their start location, 

.e., s ω ̄ω = 1 and t ω = t ω̄ . Constraints (6) represent the flow con-

traint, stating that the truck leaves every location j, j ∈ ̂

 L as often 

s it arrives there. Constraints (7) calculate the truck arrival times 

ased on associated travel times. Note that these constraints en- 

ure that every duplicate stop is visited only once and only by 

ne truck. This means that a sufficient number of duplicates is 

eeded for every stop (in the worst case this could be | C| ). Con-

traints (8) and (9) calculate the delay and robot waiting time for 

ach delivery. Equations (10) define the number of available robots 

board the truck at departure. Constraints (11) and (12) keep track 

f the robots aboard a truck after each stop, depending on whether 

he stop is a robot depot or a drop-off point. Constraints (13) and 

14) ensure adherence to truck capacities by keeping track of the 
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otal quantity of parcels aboard the truck arriving at location j. 

his is done in a recursive manner by defining that the tour ends 

ith an empty truck. Constraints (15) and (16) enforce (without 

oss of generality) that duplicates of the same location are visited 

n ascending order of their index. This fact is then used to deter- 

ine the robots in each depot after every visit (left side of Con- 

traints (17) ). This limits robot availability at depots even if they 

re visited by different trucks. Finally, constraints (18) –(25) define 

he variable domains. 

. Related literature 

Having derived the distribution system and the formal decision 

roblem, this section reviews related literature. We refer to Boysen 

t al. (2021) ; Olsson et al. (2019) ; Savelsbergh & van Woensel 

2016) for a detailed overview on current last-mile delivery con- 

epts. The literature related to our problem can be classified into 

wo streams. The first stream is clearly related to our setting and 

efined by ‘truck-and-robot with depots’ as a system in which the 

obots are transported aboard the truck, make a delivery and re- 

urn to a robot depot. We first review the truck-and-robot liter- 

ture (and related concepts) in Section 3.1 . As this is an emerg- 

ng area with only a small body of literature and none of the 

tate-of-the-art publications consider multiple trucks, we extend 

ur review to multi-vehicle problems in Section 3.2 . This consti- 

utes a second related stream and includes various other means of 

ransportation, such as drones and cargo bikes that are combined 

ith multiple trucks. Finally, we blend discussions, analyze them 

n the context of the MVTR-RP, and identify the research gap in 

ection 3.3 . 

.1. Truck-and-robot concepts with depots and a single truck 

Current publications for truck-and-robot systems with depots 

re based on the SVTR-RP, i.e., limited to one truck and with- 

ut an assignment of customers to multiple tours. All approaches 

onsider time windows or delivery deadlines. In a seminal paper, 

oysen et al. (2018b) discuss such a basic truck-and-robot con- 

ept. The authors minimize the number of late deliveries and as- 

ume unlimited robot availability. Their solution approach is based 

n a local search procedure, and their analysis shows the poten- 

ial benefits of the concept compared to standard truck delivery. 

lfandari et al. (2022) build on this work by proposing alternative 

elay measures and a Branch-and-Benders-cut scheme for rout- 

ng. Ostermeier et al. (2022) further extend the decision model 

y minimizing total delivery costs and incorporating limitations 

n robot availability. Their solution relies on a local search and 

olves instances with up to 125 customers. In numerical exper- 

ments, the system of one truck with robots reduces costs and 

missions by more than 50% compared to normal truck delivery. 

eimfarth et al. (2022) generalize the concept by including manual 

elivery by the truck driver. They apply a General Variable Neigh- 

orhood Search (GVNS) to minimize costs. This work considers the 

ost general case of the SVTR-RP to date, and the proposed GVNS 

ramework proved very efficient compared to other existing lo- 

al search approaches. Exact solutions for truck-and-robot routing 

ith one truck have only been obtained for very small instances or 

nder simplifying assumptions ( Alfandari et al., 2022 ), highlighting 

he problem’s computational complexity. 

Another concept based on robots relies on hubs (also called 

atellite locations) where goods arriving by truck can be stored. It 

equires more infrastructure and workforce since goods must be 

tored and robots loaded at the hubs when the truck is already 

one. Bakach et al. (2021) , for instance, propose a two-tier deliv- 

ry system where a truck supplies local hubs in which goods are 

tored and loaded into robots. The robots then make pendulum 
6

ours for the customers. Poeting et al. (2019a,b) ; Sonneberg et al. 

2019) and Bakach et al. (2022) are further examples of hub-and- 

obot settings. The key difference to our setting is that the robots 

re not transported on the truck but stay around one fixed hub. 

hese variations reduce the complexity but induce practical disad- 

antages, such as long driving for robots and long waiting times 

or vehicles. 

.2. Related concepts with multiple trucks 

To date, there is no approach to truck-and-robots with depots 

nd multiple vehicles. We expand our literature analysis to related 

oncepts that employ multiple vehicles and combine trucks with 

nnovative transportation technologies. We analyze these works 

oncerning our setting, focusing on multi-tour problems and the 

orresponding assignment of customers to tours. All these concepts 

hare with our use case that trucks are combined with smaller 

ehicles that have a limited range, namely robots , drones or cargo 

ikes . 

Robot-based concepts with multiple vehicles . A hub-and-robot ap- 

roach is taken by Liu et al. (2020a) , who consider delivery robots 

tarting at and returning to fixed hubs. They assume larger robots 

hat can carry more than one order. The customers are assigned 

o hubs based on k-means clustering. The remaining problem is a 

RP for trucks supplying goods to the satellites and a VRP for the 

obots of each hub. Liu et al. (2020b) propose a similar concept, 

ith the additional possibility of customers picking up their or- 

ers at a hub. Time windows are not considered in either of the 

ublications. 

The concept of multiple trucks with robot sidekicks is proposed 

y Chen et al. (2021b) . It relies on robots transported by trucks 

nd considers time windows but does not use robot depots. In 

his concept, the truck makes deliveries to customers, and robots 

ake pendulum tours to other customers nearby in the meantime 

r while the truck waits for the return of the robots. The problem 

s solved with a cluster-first-route-second approach. Chen et al. 

2021a) analyze the same problem and propose an ALNS for simul- 

aneous clustering and routing. However, the savings potential is 

maller compared to using robot depots. Chen et al. (2021b) report 

avings of 4 to 17% compared to normal truck deliveries, whereas 

stermeier et al. (2022) for example identified more than 50% sav- 

ngs compared to truck deliveries. Yu et al. (2022) consider the 

ick-up-and-delivery problem with several trucks and one robot 

board each truck. The robot can be launched by a truck, make 

everal deliveries and then meet the same truck at a later stop, or 

he truck can wait at the stop where the robot was launched. An 

LNS framework is used to minimize the weighted sum of travel 

istances but not total logistics costs (e.g., not including labor costs 

or waiting times). Based on this metric, in some scenarios, the 

ystem performs better than two benchmark approaches (hub-and- 

obot and a scenario with parallel tours by robots and trucks on 

heir own). However, the reduction of emissions and costs would 

e much lower than in the MVTR case due to a very small number 

f robots and truck waiting time. 

Truck-and-drone with multiple vehicles . A large body of truck- 

nd-drone literature was published in recent years (see e.g., re- 

iew of Otto et al., 2018 ). In these applications, a truck usually car- 

ies between one and four aerial drones (see Agatz et al., 2018; 

oshref-Javadi et al., 2020; Murray & Chu, 2015; Murray & Raj, 

020 as examples for single-truck problems), which depart from 

he truck at a customer location to serve another customer and 

oin the truck again at the start point or at another customer. There 

re no drone depots as in the truck-and-robot concept. The solu- 

ion approaches for this particular application first solve a TSP (in 

he single truck case) or VRP (e.g., see Kitjacharoenchai et al., 2019 ) 
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or the trucks and then select some customers for drone delivery. 

o far, only Li et al. (2020) consider multiple trucks and drones 

nd deliveries with time windows. Their concept is based on a 

eet of trucks delivering to customers directly and drones start- 

ng from the truck at the visit of customer locations or from the 

oods warehouse. Each drone can serve several customers per tour 

nd then returns to its starting point, i.e., the truck waits for the 

rones to return. Dayarian et al. (2020) propose a fleet of trucks 

nd drones, in which the latter supply further parcels to the trucks 

long their route as new orders are placed. This leads to a problem 

imilar to a VRP, with the other decision on the meeting points for 

rone resupply. More recently, Luo et al. (2022) study a multi-truck 

outing problem with drones considering pickup and delivery op- 

rations. Each truck carries a single drone in their application, but 

ach drone may visit multiple customers to fulfill pickup and de- 

ivery requests. 

The truck-and-drone concepts differ significantly from robot 

oncepts. Drone concepts consider a small and fixed number of 

rones that only serve some, not all of the customers (at most 50%, 

ptimally around 25% Murray & Chu, 2015 ) and have to return to 

he truck. Robots move at pedestrian speed and return to depots 

nstead of the trucks as otherwise tremendous waiting times ap- 

ly. The main difference between the concepts is that in the robot 

oncept presented, the number, sequence, and locations of stops 

i.e., visited depots and drop-off locations) are not predefined but 

re part of the decision problem. This increases the complexity, es- 

ecially when multiple vehicles are considered, as in the MVTR-RP. 

herefore, existing routing approaches for truck-and-drone cannot 

e applied to the MVTR-RP, as they rely on the fact that the truck 

isits most customers on a truck-and-drone route. Drone depots 

re not considered. For a more detailed overview of drone delivery, 

e refer to Dayarian et al. (2020) ; Otto et al. (2018) and Macrina

t al. (2020) , and to Ostermeier et al. (2022) for an analysis of dif-

erences between truck-and-drone vs. truck-and-robot routing. 

Cargo bikes and multiple vehicles . A further related problem set- 

ing is the application of cargo bikes. Cargo bikes can be combined 

ith trucks to reduce emissions and traffic in inner cities. In most 

oncepts, the goods are handed over from trucks to bikes at pre- 

efined satellite locations. This means there has to be synchro- 

ization between the two vehicle types, resulting in a two-echelon 

roblem. In contrast to truck-and-robot, the bikes cannot be trans- 

orted on the truck, and they can visit many customers in a row, 

hich also requires a definition of the bike tour. Anderluh et al. 

2017) consider a delivery area with two zones in which customers 

equire delivery by truck or by bike, respectively. Mühlbauer & 

ontaine (2021) analyze a system where all deliveries are made by 

ike. Both publications simultaneously solve the clustering of cus- 

omers and routing of trucks and bikes. While cargo bike deliveries 

ave similarities with the truck-and-robot concept, there are sev- 

ral fundamental differences. First, time windows have not been 

aken into account so far. Further, each potential truck stop has 

 fixed number of bikes available, with only a few stops. Finally, 

rucks cannot pick up and transport bikes, reducing the solution 

pace dramatically. This is also the key difference between truck- 

nd-robot and other two-echelon problems. 

.3. Research gap 

The MVTR-RP constitutes an open research area as there is no 

pproach in related truck-and-robot literature. Current literature 

n truck-and-robot routing only covers the single-vehicle problem. 

he distinctive features of the truck-and-robot problem complicate 

he direct transfer of available approaches, for example, from the 

lassic VRP or truck-and-drone literature. The MVTR-RP has several 

pecifics that differ from other delivery concepts, including VRPs. 
7 
irst, there are many potential locations for robot pickup and drop- 

ff to be considered for truck routing. Second, these locations can- 

ot store goods, which leads to synchronization between trucks 

nd robots. Third, the truck and depots have limited capacity for 

wo types of objects, goods and robots, and thus the decisions 

n stop locations are further restricted. Finally, deliveries must oc- 

ur within time windows, as goods are retrieved from the robots 

anually in attended home deliveries. To summarize, none of the 

ublications on related problems considers the routing of multi- 

le trucks and the combination of coupled truck and robot move- 

ents, robot pickup along the tour and time windows. There is, 

onsequently, a research gap when it comes to multi-vehicle set- 

ings. 

. Solution approach 

The MVTR-RP generalizes the N P -hard SVTR-RP. For the SVTR- 

P, practically relevant problem sizes cannot be solved optimally 

n reasonable time with exact approaches ( Heimfarth et al., 2022 ). 

n advanced heuristic for multi-vehicle truck routing and robot 

cheduling is needed to solve the problem efficiently. As we intro- 

uce a new decision problem, no reference approach is available 

hat jointly includes the customer assignment to tours, the routing 

f trucks, and robot scheduling. Nevertheless, we base our solu- 

ion approach on components of existing approaches for VRPs. In 

etail, we require an (initial) clustering of customers and an im- 

rovement phase. Clustering approaches for VRPs have been stud- 

ed for decades, with the first approach provided by Gillett & Miller 

1974) . In our work, we derive a first clustering by constructing 

ossible truck tours as candidates to which customers can be as- 

igned to. This concept of template routes is an established ap- 

roach to build a set of tour candidates in vehicle routing (see e.g., 

ovacs et al., 2014; Li et al., 2005; Sungur et al., 2010; Tarantilis 

t al., 2012 ). Based on the template routes defined, an improve- 

ent is aspired. Due to the nature of the MVTR-RP, where small 

hanges to the routes have a major impact on the overall solution, 

mall neighborhoods for the search are a reasonable approach (e.g., 

ssignment of a single customer to a different tour may have a 

ignificant impact on both truck stops required and robot schedul- 

ng). In this context, VNS approaches have been used successfully 

or many VRP variants (see e.g., Hansen & Mladenovi ́c, 2018; Hem- 

elmayr et al., 2009; Henke et al., 2015; Salhi et al., 2014 ) as it

llows the exploitation of different neighborhoods. Following these 

nsights from established VRP approaches and the analysis of dif- 

erences to the MVTR-RP, we introduce a novel heuristic, the Truck- 

nd-Robot Clustering and Routing (TRCR). Figure 4 outlines the 

omplete heuristic. 

The initialization generates a route for each available truck (i.e., 

he template tours ). It allocates each customer to one of these ini- 

ial truck routes (denoted as clustering ), dependent on customers’ 

ocations and time windows ( Section 4.1.1 ). The use of template 

ours has proved to be very effective as a basis for tour building 

nd the subsequent improvement steps. The route of each cus- 

omer cluster is then determined using a variable neighborhood 

escent (VND) framework ( Section 4.1.2 ) that is based on Hansen 

 Mladenovi ́c (2018) . The improvement phase (denoted as SINS), 

eeks improved routing and scheduling by changing the customer 

ssignment to tours and truck routes. It also means that the clus- 

ering of customers to tours is improved by SINS. The principle of 

INS is to improve a set of objects (tours in our case) by gen- 

rating neighborhoods of all its elements and then searching for 

n improved set of elements from these neighborhoods. We con- 

ider small variations of existing tours (i.e., moving single cus- 

omers between tours or add/remove single stops) to exploit pos- 

ible neighborhoods and find improvements. SINS was designed to 

earch these variations (neighborhoods) and find an optimal com- 



                                                                                                  

                 
                                      

Fig. 4. Overview of the TRCR heuristic. 
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Fig. 5. Template tour generation. 

o

q

T

f

t  

a

a

t

t

t

l

t

t

t

p

J

s

t

i

s

c

t

d

i

a

ination. Since the customer clustering to tours, truck routing, and 

obot scheduling are interdependent, SINS considers all of them in 

electing a new set. We iteratively generate neighborhoods con- 

aining variations of each incumbent truck tour ( Section 4.2.1 ) and 

olve an MIP to test whether a better set of truck-and-robot routes 

an be obtained by combining these variations ( Section 4.2.2 ). As 

ong as a better set can be found, this process is repeated. Oth- 

rwise, SINS terminates. SINS makes use of the fact that improve- 

ents can often be achieved by simultaneously changing two tours 

nd reallocating customers between them. In the fourth step of 

ig. 4 , the clustering and truck routing (by choosing tours from 

 large pool) are decided simultaneously. As SINS uses an MIP in 

 metaheuristic fashion, it belongs to the growing field of math- 

euristics. 

.1. Initialization phase 

The initialization provides a start solution consisting of multi- 

le tours serving all customers. It first clusters customers to tours 

nd then solves the routing and robot scheduling problem. Please 

ote that the customer assignment to clusters is optimized again 

y SINS. 

.1.1. Initial customer clustering 

The initial clustering is based on template tours, a concept that 

llows consideration of customer locations and time windows and 

as been successfully applied to VRPs (see e.g., Kovacs et al., 2014 ). 

he idea is to (i) generate template tours based on given problem 

pecifics, and (ii) cluster customers such that they are allocated to 

emplate tours based on approximated tour costs. 

(i) Template tour generation . The building of template tours is 

ased on insights from typical truck-and-robot delivery tours found 

n our experiments: the first stop regularly lies outside a given 

ange away from the start, the tour proceeds in an arc-shape, and 

nally returns to the start. Template tours only consider robot de- 

ots as these are essential for the supply of robots and the tour 

uilding. The tour generation is defined as follows. Candidate de- 

ots are selected that are between an inner and outer circle around 

he start position. The inner circle defines an area including a share 

f σ1 robot depots, and the outer one an area including a share of 

2 depots (see Fig. 5 ). All depots between these circles (see grey 

rea) act as candidates for the template routes. Next, we select the 

onvex hull of these candidate depots, i.e., only depots that form 

he convex hull are part of the template tours (see solid blue line 

n Fig. 5 ). Finally, we generate all possible tours that move along 

he convex hull and visit all of its depots exactly once. All depots 
8 
n the convex hull are included in the tour and visited in their se- 

uence as given by the convex hull, i.e., no shortcuts are allowed. 

his results in one template tour for every possible first depot and 

or each possible direction (clockwise/counterclockwise). This leads 

o 6 × 2 = 12 template tours for the example in Fig. 5 . The gener-

tion of template tours can be applied for different shares of σ1 

nd σ2 to create a larger pool of templates. All tours created are 

hen used as input for the customer clustering. Please note that 

he template tours are only used to cluster customers, not for ac- 

ual routing. 

(ii) Customer clustering . Customers have two characteristics re- 

ated to routing: location and time windows. This means two cus- 

omers with different locations and time windows may be assigned 

o the same tour if they fit into the tour sequence and arrival 

imes. We have n clusters, each corresponding to one of the tem- 

late tours. Inspired by the VRP clustering heuristic by Fisher & 

aikumar (1981) , we solve an MIP to cluster customers for the sub- 

equent routing based on a cost approximation for each customer- 

emplate tour combination. At this stage, we ignore robot availabil- 

ty and truck capacity. The notation for the clustering MIP is pre- 

ented in Table 2 . 

The clustering of customers is based on an approximation of 

osts for serving the customer from a template route. We estimate 

hat all depots and m 

e equidistant points between two consecutive 

epots on tour are potential stops. This accounts for the possibil- 

ty of visiting drop-off points between two depots. The coordinates 

nd arrival times of the points between depots are obtained via 



                                                                                                  

                 
                                      

Table 2 

Notation for the initial customer clustering based on cost approximations. 

Sets and parameters 

C Set of customers, k ∈ C
T Set of template tours, τ ∈ T 
n Number of available trucks 

c kτ Cost of supplying customer k from tour τ

Decision variables 

x kτ Binary: 1, if customer k, k ∈ C, is supplied from tour 

τ, τ ∈ T ; 0 otherwise 

z τ Binary: 1, if template tour τ, τ ∈ T is used; 0 otherwise 
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inear interpolation. The approximated cost of serving a customer 

rom a given point of a tour τ is defined as the sum of the robot 

osts for travel time to the customer and potential waiting time, 

he cost of a potential delay, and a share of the truck costs in-

urred up to that point, i.e., the truck costs divided by the average 

umber of customers per available truck, | C| /n . In the preprocess- 

ng phase, we calculate the costs for all theoretical points on the 

emplate tour and select the minimal cost for each customer and 

emplate tour, denoted by c kτ . The decision model for the customer 

lustering can then be formulated as follows. 

in F (X ) = 

∑
k ∈ C

∑
τ∈ T 

c kτ x kτ (26) 

ubject to ∑
τ∈ T 

x kτ = 1 ∀ k ∈ C (27) 

 kτ ≤ z τ ∀ k ∈ C, τ ∈ T (28) 

∑
τ∈ T 

z τ = n (29) 

 kτ ∈ { 0 , 1 } ∀ k ∈ C, τ ∈ T (30) 

 τ ∈ { 0 , 1 } ∀ τ ∈ T (31) 

The objective function (26) minimizes the total clustering costs 

f customer-tour combinations. Constraints (27) ensure that each 

ustomer is served once, (28) mandate that customers are served 

nly via tours that are actually used, and (29) defines the number 

f template tours used as a basis for the improvement phase. Fi- 

ally, (30) and (31) define the variable domains. The solutions of 

his step result in allocating each customer to one cluster. The cus- 

omer clusters found are then used in the next step to determine 

ctual routes for the customers in question. 

.1.2. Separate routing and robot scheduling for each cluster 

Subsequent to the clustering, actual truck tours are determined 

y solving the routing problem for each customer cluster. As such, 

t resembles an SVTR-RP, and we build upon a known and efficient 

pproach. We apply an adapted version of the heuristic proposed 

y Heimfarth et al. (2022) for the solution of an SVTR-RP. We use 

he priority rule “go to the location from which most robot de- 

iveries can be started such that they reach customers in time” to 

enerate an initial truck tour and a VND for improvement. After 

 truck tour is defined, the optimal robot schedule is determined. 

ere we apply a robot scheduling MIP, which is a special case of 

ur “tour selection and customer clustering” MIP that will be in- 

roduced later in Section 4.2.2 when only one truck with unlimited 

arcel capacity is used. For the sake of streamlining the algorith- 

ic description, we pick up on the robot scheduling approach later 

elow when detailing the improvement phase. 
9 
After sequentially appending stops based on the priority rule 

entioned, the resulting tour is used as a start solution for the 

ND framework, which sequentially tests the complete neighbor- 

oods of the incumbent tour. If a better tour is found, it is ac- 

epted as the new incumbent tour, and the VND restarts from the 

rst neighborhood. If no better tour is found, the VND accepts a 

andom solution from the neighborhood with an initial probability 

f p, which is decreased by �p in every iteration. This random ac- 

eptance of worse tours widens the search space in the early stage 

f the VND. If no new solution is accepted, the VND proceeds with 

he next neighborhood on the list. It terminates when all neighbor- 

oods have been evaluated in a row without accepting a new solu- 

ion. For a more detailed description of VND we refer to Hansen & 

ladenovi ́c (2018) . The neighborhoods evaluated within the VND 

re defined by the following operators (adapted from Heimfarth 

t al. (2022) ) and evaluated in the order presented. Each neigh- 

orhood is limited to the m 

VND cheapest tours (in terms of truck 

osts) to limit computational efforts. 

1. Remove drop-off point. Removes a drop-off point from the 

current tour. Since truck distance is a main cost driver, this of- 

ten leads to improvements. 

2. Remove depot. Removes a depot. Depot removal may lead 

to non-feasible tours with respect to robot availability. In the 

event of non-feasibility, the closest depot is appended to the 

end of the tour. 

3. Add depot. Adds a new depot to the existing tour. Additional 

depots can increase robot availability on parts of the tour and 

thus lead to better robot schedules at reduced costs. 

4. Add drop-off point. Adds a new drop-off point to the tour. This 

may reduce robot usage or delays by bringing robots closer to 

the customers. 

5. Swap two stops. Swaps two stops, i.e., both robot depots and 

drop-off locations. By swapping two stops, truck distance can 

be reduced or delays of deliveries starting at the later stop can 

be avoided. 

6. Relocate stop. Shifts a single stop within a tour. Depending on 

whether the stop is shifted to an earlier or later point on the 

tour, the delays occurring at this stop or following stops can be 

reduced. 

The VND results in n individual truck-and-robot routes serving 

ach customer exactly once. As we generate each tour separately, 

he routes can still rely on the same robots in the same depots 

uch that, in combination, this may lead to non-feasible solutions 

onsidering all tours. Nevertheless, the tours found to provide an 

fficient starting solution for the improvement phase. Feasibility is 

nsured in the next step (see Section 4.2.1 ). 

.2. Improvement phase (SINS) 

Using the initial routing for the customer clusters found, the 

mprovement phase searches for improved customer clustering, 

outes and robot schedules. It, therefore, varies given tours and the 

orresponding clustering of customers to these tours. 

.2.1. Tour variation 

In this step, we generate tour candidates as a potential basis for 

mprovements. To build this set, a pool of variations is generated 

or each incumbent tour. Each pool is built by applying the follow- 

ng operators, which were most effective in our pretests. The oper- 

tors are applied to modify the stops at a tour by changing depots 

nd drop-off points. Since robot depots are crucial for robot avail- 

bility, particular emphasis is given to inserting new robot depots 

nto a tour. 

• Remove up to two stops. Every possible tour resulting from 

removing one or two stops is added to the pool. 
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• Insert a depot. The m 

VAR cheapest truck tours (based on costs 

for truck time and distance) obtained by inserting a depot are 

added to the pool. 
• Insert a drop-off point. The m 

VAR cheapest truck tours ob- 

tained by inserting a drop-off point are added to the pool. 
• Replace a stop by a depot. The m 

VAR cheapest truck tours ob- 

tained by replacing an existing stop with a depot are added to 

the pool. 
• Insert two new depots. The m 

VAR cheapest truck tours ob- 

tained by inserting two depots that are not yet on the tour are 

added to the pool. 
• Adapt departure time. Shift the departure of the truck to an 

earlier or later start time. 

The start time of a tour significantly impacts times and costs 

nd often leads to improvements due to new options for customer 

upply. Hence, the last operator speeds up the search if a signifi- 

ant change in the departure time is beneficial (which could other- 

ise only be achieved in several iterations when adding or remov- 

ng a maximum of two stops). Tour variation results in one pool 

or each incumbent tour. 

Before these pools can be passed to the next step of the algo- 

ithm to select the best combination of tours, we need to identify 

on-feasible tour combinations and exclude them. This is neces- 

ary as robot availability has been relaxed so far and may be vio- 

ated. In the MVTR-RP, multiple tours access the same robot depots 

nd respective robot availability, i.e., robot availability is shared be- 

ween tours (see Eq. (17) ). For a computationally efficient imple- 

entation of this constraint, we assume that robot depots can be 

efilled automatically (i.e., by transferring robots between depots) 

ithin a given refill time. No two tours may access the same robot 

epot during this time. We introduce the parameter ϑ 

f to indicate 

he refill time, thus defining a waiting time until the next tour may 

ccess a given robot depot. Consequently, we forbid selecting two 

ours for the routing solution if these tours visit the same depot 

ith less than ϑ 

f time in between. Note that a very large ϑ 

f en-

ures that depots are not shared between trucks at all and no refill 

s assumed. We exclude the combination of any two tours from 

he same pool (i.e., derived from the same incumbent tour) in the 

ame way, as this proved inefficient. The rationale is that incum- 

ent tours can be simultaneously adapted to make improvements, 

ut choosing several similar tours proved unattractive. 

However, excluding tour combinations may lead to overall non- 

easibility when selecting tours in the next step, as it can happen 

hat no two tours can be combined due to the use of the same

obot depots. This may lead to insufficient robot depot visits to en- 

ure sufficient robot availability. Therefore, we create another vari- 

nt of each incumbent tour by sequentially replacing every depot 

ncluded in another incumbent tour with the closest depot not in- 

luded in any incumbent tour. This results in one additional varia- 

ion for each of the n incumbent tours. This procedure is repeated 

ntil enough tours without robot depots used by multiple vehicles 

re available and, therefore, feasibility is ensured. 

The result of this step is a set T of potential tours and a matrix

 τ,χ defining whether any two tours τ and χ can be used at the 

ame time. 

.2.2. Optimal tour selection, customer clustering and robot 

cheduling 

This step selects the optimal set of tours and provides a fea- 

ible solution for the MVTR-RP based on the tours created within 

he tour variation step. This means it simultaneously defines the 

ruck tours used, the customer clustering (i.e., from which truck 

ach customer’s robot starts) and the corresponding robot schedule 

i.e., from which stop each customer’s robot starts). Table 3 sum- 
10 
arizes the notation of truck tour parameters and decision vari- 

bles. 

Since a set of potential truck tours τ is given, drop-off ( D ) 

nd robot depot locations ( R ) do not need to be duplicated, and

 := D ∪ R is the set of all locations potentially reachable by truck.

 truck tour τ is defined by a tuple Y τ , where y τ (u ) is the location

f the u th stop, y τ (u ) ∈ L . From the set of all potential tours, we

ant to select a maximum of n tours and allocate all customers to 

he stops of these tours in a cost-minimal manner. For each tour 

∈ T , we pre-calculate the arrival times ψ τu at its stops u based

n the truck travel times. With known robot travel times and cus- 

omer deadlines, we can then calculate the robot travel and the 

aiting and delay costs c T 
kτu 

of serving a customer k from stop u 

n tour τ as shown in Eq. (32) . Its first term represents the robot 

osts for travelling from the truck stop to the customer and wait- 

ng at the customer if needed. The second term adds the cost of a 

otential delay in the delivery. Again, as the robot always returns 

o the closest depot, the return costs are not decision-relevant. 

 

T 
kτu := c rob (ϑ 

r 
y τ (u ) k + (d k − ε − ψ τu − ϑ 

r 
y τ (u ) k ) 

+ ) 

+ c late (ψ τu + ϑ 

r 
y (u ) k − d k ) 

+ ∀ u ∈ U, k ∈ C 

(32) 

Furthermore, every tour is associated with fixed total tour costs 

 

f 
τ incurred for the truck’s travel time and distance. The decision 

ariables x kτu define whether customer k is served from stop u of 

our τ . Variable z τ states whether tour τ is used at all. The aux- 

liary variables q τu and βaτu keep track of available robots on a 

ruck during its tour and in the depots visited by a tour. The ob- 

ective function and constraints are formulated as follows: 

in F (X ) = 

∑
k ∈ C

∑
τ∈ T 

∑
u ∈ U τ

c kτu · x kτu + 

∑
τ∈ T 

c f τ z τ (33) 

ubject to ∑
τ∈ T 

∑
u ∈ U τ

x kτu = 1 ∀ k ∈ C (34) 

∑
k ∈ C

∑
u ∈ U τ

ηk x kτu ≤ G · z τ ∀ τ ∈ T (35) 

 τ + z χ ≤ 1 ∀ τ, χ ∈ T : b τχ = 1 (36) 

∑
τ∈ T 

z τ ≤ n (37) 

aτu ≤ βaτu −1 + q τu −1 − q τu −
∑
k ∈ C

x kτu ∀ a ∈ L, τ ∈ T , u ∈ U τ : a = y t (u )

(38) 

aτu = βaτu −1 ∀ a ∈ R, τ ∈ T , u ∈ U τ : a � = y t (u ) (39) 

 τ0 = δ ∀ τ ∈ T (40) 

aτ0 = βa ∀ a ∈ R, τ ∈ T (41) 

aτu = 0 ∀ a ∈ D, τ ∈ T , u ∈ U τ (42) 

 kτu ∈ { 0 , 1 } ∀ k ∈ C, τ ∈ T , u ∈ U τ (43) 

 τ ∈ { 0 , 1 } ∀ τ ∈ T (44) 



                                                                                                  

                 
                                      

Table 3 

Notation for the optimal customer clustering to given tours. 

Problem parameters 

T Set of potential tours, τ ∈ T 
U τ Index set of stops on the truck tour τ ; τ ∈ T ; u ∈ { 1 , 2 , . . . }
Y τ Tuple of truck stops on tour τ, τ ∈ T , where element y τ (u ) is the u th stop of τ ; y τ (u ) ∈ L 
n Number of available trucks, n ≤ | T | 
c T 

kτu 
Costs (for robot travel/waiting time and potential delay) of supplying customer k from tour τ , at stop u, u ∈ U τ

c f τ Total truck costs (incl. time and distance) of using tour τ

b τχ 1, if only tour τ or χ can be used; 0 if both can be used, τ, χ ∈ T 
Decision variables 

x kτu Binary: 1, if customer k, k ∈ C, is supplied from tour τ, τ ∈ T , at stop u, u ∈ U τ ; 0 otherwise 

z τ Binary: 1, if tour τ, τ ∈ T, is used; 0 otherwise 

q τu Number of robots aboard the truck on tour τ, τ ∈ T, at departure from stop u, u ∈ U τ
βaτu Number of available robots in location a, a ∈ L , for tour τ after the u th stop, u ∈ U τ
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aτu ≥ 0 ∀ a ∈ R, τ ∈ T , u ∈ U τ (45) 

 ≤ q τu ≤ Q ∀ τ ∈ T , u ∈ U τ (46) 

The objective function (33) minimizes the sum of the costs of 

obot travel, waiting and potential delay and the costs of all truck 

ours selected. Constraints (34) ensure that every customer is sup- 

lied by exactly one robot and Constraints (35) that robots are 

nly started from tours used, not exceeding the goods capacity 

f each truck. Constraints (36) allow the definition of tour com- 

inations excluded, and (37) limit the total number of tours. Con- 

traints (38) and (39) keep track of the robots available for a tour 

n each location and on the truck, depending on whether the lo- 

ation is visited (i.e., a = y τ (u ) ) or not. Due to Constraints (36) , no

oupling of robot availability between tours is required. The vari- 

ble βaτu is only needed since the same tour could visit a robot de- 

ot several times. Equations (40) state the initial number of robots 

board the trucks, and (41) define the same for each robot depot. 

onstraints (42) ensure robots cannot be stored at drop-off points. 

inally, Constraints (43) –(46) define the variable domains. 

Iterations . The MIP returns a feasible solution for the MVTR-RP. 

e set a runtime limit of m 

MIP for the MIP to ensure time-efficient 

terations. This is done as the solver otherwise spends considerable 

ime to prove an optimum, while this does not lead to better solu- 

ions. If one tour of the previous solution was eliminated (i.e., none 

f this tour’s variations was chosen) and thus less than n tours are 

elected, this tour will be added to the potential tours τ in fu- 

ure iterations. This ensures that both an increase and decrease in 

ours is possible in subsequent iterations. When no improvement 

s found for the first time, the time limit for the MIP solver is in-

reased, and the next improvement iteration starts. When no im- 

rovement is found for the second time, the heuristic terminates, 

nd the current set of tours (together with the customer assign- 

ent to the stops of these tours identified by the MIP) is returned 

s the best solution. 

. Numerical studies 

This section completes numerical studies to obtain insights into 

he computational performance of the TRCR and managerial impli- 

ations related to the MVTR-RP. We describe the parameter set- 

ing applied in our experiments in Section 5.1 . Section 5.2 in- 

estigates the performance of TRCR compared to benchmark ap- 

roaches. We further provide managerial insights using sensitivity 

nalyses on depot refill times, time window distributions, and fleet 

izes ( Section 5.3 ). 
11 
.1. Instances, parameter setting and test bed 

We apply a representative data set for urban deliveries within 

 4 × 4 kilometer delivery area. Munich (Germany) was selected as 

 representative example of a larger European city, and the deliv- 

ry area resembles the northern half of the Munich city center. In 

he default data set, we assume a customer set | C| = 50, and ran-

omly select 50 building locations in the delivery area obtained 

rom OpenStreetMap Foundation (2019) . Up to n = 3 trucks are 

vailable for this delivery area. | R | = 25 depots are first distributed 

n an equidistant manner and then slightly shifted by a random 

istance between 0 and 500 meters in south–north and east–west 

irections. | D | = 48 drop-off points are distributed by a random 

niform distribution. The warehouse is randomly selected from the 

et of depots and drop-off locations. In our problem context, we 

onsider a planning horizon of up to three hours, depending on 

he subsequent setting of delivery deadlines. For the determination 

f customer deadlines we assume a random-uniform distribution. 

he interval for the deadlines is defined as [ t M · ρmin , t 
M · ρmax ] ,

here t M is the time needed to travel from the starting point to 

he furthest customer by truck. The parameters are set to ρmin = 3 

nd ρmax = 6 in the default case. The initial number of robots is 

et to βa = 0 . 08 · | C| in every depot a, a ∈ R and the depot refill

ime to ϑ 

f = 15 minutes. Similarly, the truck’s capacity and the ini- 

ial number of loaded robots is set ( Q = δ = 0 . 08 · | C| ). The parcel

olume per customer is η = 1 , and the truck’s parcel capacity is 

 = 100 . The truck capacity reflects that both robots and parcels 

re transported together, and less space is available compared to 

tandard trucks carrying up to 200 parcels. The average speed is 

0 kilometers per hour for the truck and 5 kilometers per hour 

or the robots. A handling time per stop of 40 seconds is added 

o the resulting travel times. Following the costs empirically de- 

ived by Ostermeier et al. (2022) , we assume the cost rates of 

 

dist = 0 . 20 €/km and c veh = 30 €/h for the truck, c late = 5 € for de-

ays and c rob = 1 . 0 €/h for robot use. Please note that we also apply

he robot costs to the return time from the customer to the clos- 

st depot to enable a fair comparison of total costs. As explained 

bove, these costs are not decision relevant (as known a priori) but 

ontribute to the total costs. 

Within the TRCR, the applied values of σ1 and σ2 (share of de- 

ots defining circle areas) in the initial truck tour generation are 

hosen as [0 . 0 , 0 . 3] and [0 . 3 , 0 . 8] . We set the number of points

onsidered as potential stops between two depots in the start 

euristic to m 

e = 5 . The VND is parameterized with the probabil- 

ty of accepting a worse solution p = 0 . 5 , its decrease per cycle

p = 0 . 001 and the maximum neighborhood size m 

VND = 20 . The

aximum number of tours for each operator used in the tour vari- 

tion step is set to m 

VAR = 20 , and the time limit m 

MIP for solving

he optimal tour selection, customer assignment and robot schedul- 

ng to 1 minute at the start and 10 minutes after the increase. The 



                                                                                                  

                 
                                      

Fig. 6. Comparison of TRCR vs. GVNS benchmark for SVTR-RP, average of 20 instances. 
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efault setting of the base scenario is highlighted in the following 

harts with a bold x-label. We generate 20 instances for each set 

f parameters, each with different locations and deadlines. Hence- 

orth, each data point shown represents the average across 20 in- 

tances. 

Our approach was implemented in Python (version 3.6.5) with 

urobi (version 8.0.1) as MIP solver and executed on a 64-bit PC 

ith an Intel Core i7-8650U CPU ( 4 × 1 . 9 gigahertz), 16 gigabyte

AM, and Windows 10 Enterprise. 

.2. Computational efficiency of the TRCR-heuristics compared to 

lternative approaches 

The MVTR-RP constitutes an N P -hard problem. Even for the 

impler SVTR-RP no exact solutions could be developed so far (see 

eimfarth et al., 2022 ), and no comparison with exact solutions is 

vailable for relevant problem sizes. For example, the optimization 

f an MVTR-RP instance with six customers, six drop-off locations, 

nd four robot depots (even without generating duplicate locations 

o further reduce the computation effort) was terminated with an 

ptimality gap of 70% after 10 hours of computation. Reducing fur- 

her the number of locations may enable optimal solutions but 

esults in problem settings without any informative value for the 

olution quality. The lack of exact solutions and existing heuris- 

ics (due to the novelty of the problem) requires to refer to special 

ases of our problem. We, therefore, apply the GVNS framework for 

he SVTR-RP by Heimfarth et al. (2022) as a benchmark for single 

ruck problems in the first comparison. This benchmark approach 

denoted as GVNS ) is most suitable as it addresses total logistics 

osts and outperforms other truck-and-robot routing approaches. 

Moreover, we develop an alternative solution approach as a 

enchmark for the MVTR-RP with the GVNS at the center. We ex- 

end the GVNS of Heimfarth et al. (2022) with a customer clus- 

ering to tours to enable a comparison for the MVTR-RP. For the 

ustomer clustering, we solve a VRP MIP (see Appendix A ), as this 

epresents a good approximation of actual customer clusters due 

o the optimization concerning delivery times and distances cov- 

red. We relax the time window constraint to deadlines within the 

IP to reduce computation times. We further limit the search to 

0 minutes. The resulting clusters (i.e., customers served by the 

ame vehicle in the VRP solution) are then input to the GVNS 

or subsequent truck-and-robot routing of each cluster. We denote 

his benchmark approach with MIP&GVNS . Compared to the inte- 

rated approach of TRCR with the simultaneous routing of multi- 

le trucks and robot scheduling, the MIP&GVNS can be described 

s a cluster-first-route-second approach. We also tested the VRP 

lustering heuristic by Fisher & Jaikumar (1981) as an alternative, 

ollowed again by the GVNS. The resulting solution quality is, how- 

ver, worse than for the MIP&GVNS. Please note that MIP&GVNS 
12 
oes not prevent the different trucks from using the same robots 

t depots and as such, provides a simplified search in favor of the 

enchmark approach. 

Special case of a single truck . We set the number of available 

rucks to n = 1 to compare TRCR directly to the benchmark ap- 

roach of Heimfarth et al. (2022) . Figure 6 shows the compari- 

on for different instance sizes. In this special case, TRCR comes 

lose to the solution quality of the GVNS of Heimfarth et al. (2022) ,

hich has been developed specifically for such settings. Our ap- 

roach leads to costs that are only 1% higher on average. This is an 

cceptable gap as TRCR is designed to solve the MVTR-RP with a 

arger pool of tours for several available vehicles. The GVNS bench- 

ark, on the other hand, is tailored to a single truck and conse- 

uently uses tailored operators to improve the SVTR-RP. The com- 

utation time is two to three times (up to 8 minutes) higher, as 

RCR also solves the tour selection, customer clustering and robot 

cheduling MIP. However, this is not needed in the case of a single 

ruck. In summary, this validates TRCR’s ability to find good solu- 

ions compared to state-of-the-art approaches for the SVTR-RP 

Performance comparison for multiple trucks . The routing of mul- 

iple trucks is at the core of the MVTR-RP. Figure 7 shows the 

omputation times and logistical performance obtained from our 

RCR (simultaneous approach) and the benchmark denoted as 

IP&GVNS (cluster-first-route-second approach) for different num- 

ers of customers. The TRCR is 23–60% faster, especially since the 

lustering MIP always reaches its time limit and then requires ad- 

itional time for the routing. TRCR computation times are generally 

t a level acceptable for practical use, as the tours can be planned 

uring picking time in the warehouse. In additional experiments, 

e show that TRCR is able to solve instances with up to 200 cus- 

omers in around 60 minutes. Moreover, TRCR is able to reduce 

otal costs by 18–24%. The cluster-first-route-second benchmark re- 

ults in the use of too many trucks and a suboptimal clustering of 

ustomers resulting in longer delays and truck distances. Since the 

enchmark does not prevent trucks from accessing the same de- 

ots, an average of 3 depots are visited by more than one truck. In 

omparison, TRCR ensures the minimum refill time between two 

isits of the same depot and thus results in only 0.5 depots visited 

y more than one truck on average. Consequently, TRCR leads to 

 Pareto improvement compared to the cluster-first-route-second 

enchmark. Furthermore, the average objective value reduction in 

he improvement phase of TRCR is 18%. This highlights the effec- 

iveness of both our start heuristic and improvement phase. TRCR’s 

untime is dominated by the MIP solved for tour selection, cus- 

omer clustering and robot scheduling in the improvement phase, 

hich accounts for more than 99% of the runtime. A detailed com- 

arison of the two approaches for individual instances is provided 

n Appendix B . 



                                                                                                  

                 
                                      

Fig. 7. Comparison of TRCR vs. benchmark for MVTR-RP, average of 20 instances. 

Table 4 

TRCR vs. benchmark for different spatial customer distributions, average of 20 instances. 

Customer distribution Improvement of TRCR vs. MIP&GVNS-benchmark, in % of MIP&GVNS 

Total costs Computation time Number of trucks used Truck distance 

Uniform 23 37 53 27 

Clusters 20 58 42 20 

Concentrated 12 42 41 25 
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Benchmark analysis with varying spatial customer distribution . To 

ssess the robustness of the results of the TRCR, we apply dif- 

erent customer distributions and compare TRCR again with the 

luster-first-route-second benchmark. We denote the default case 

s uniform and create two further spatial distributions. First, we 

elect only building locations from the lower left and upper right 

uadrant of the selected 4 × 4 kilometer square area, resulting in a 

lustered distribution. By selecting only building locations from the 

entral 2 × 2 kilometer square, we obtain a concentrated distribu- 

ion. Table 4 shows that TRCR performs very well for all customer 

istribution settings, reducing total costs by 12% (concentrated) to 

3% (uniform). 

Benchmark analysis with varying truck capacity . Limited truck 

apacity can lead to solutions with more trucks or less efficient 

outes. In the previous section, it was only the deadlines that moti- 

ated the use of additional trucks. We, therefore, reduce the trucks’ 

arcel capacity G for the case with 100 customers of G = 100 to

 = 80 and G = 60 . With one parcel volume unit per customer

 η = 1 ), G customers can be served per truck. The results are sum-

arized in Fig. 8 . TRCR results are very stable across different truck 

apacities. We obtain the following insights when comparing the 

RCR solutions with varying truck sizes. Reducing capacity from 

00 to 60 increases the average cost by 0.3% and the computation 

ime by 23%. As expected, the number of tours (+8%) and the truck 

ileage (+4%) increased. The delays increase only slightly, at a low 

bsolute level. Overall, this shows that truck capacity does not have 

 crucial impact on logistical performance as long as there is suffi- 

ient total capacity across the trucks to serve customers. The TRCR 

fficiently handles instances with tighter truck capacities as well. 

inally, the TRCR again outperforms the cluster-first-route-second 

enchmark (MIP&GVNS). The latter stays the same across capac- 

ty sizes, as none of the truck tours obtained serves more than 60 

ustomers. 
13 
.3. Managerial insights to system performance 

Having shown the algorithm’s efficiency, we now analyze the 

mpact of hierarchical and strategic managerial decisions entered 

nto the MVTR-RP as input parameters and compare the MVTR-RP 

o conventional truck deliveries without robots. First, the assump- 

ion of refilling depots is analyzed, as this is a crucial assumption 

n the truck-and-robot concept and our solution approach. Next, 

he time window distribution is varied since time windows are 

xpected to have a strong influence on customer clustering. Fi- 

ally, we detail the benefits of additional trucks (and thus one 

urther advantage of TRCR) in the case of tight time windows. To 

ighlight the overall attractiveness of truck-and-robot systems, we 

enceforth compare the performance to traditional truck deliver- 

es (i.e., all customers are supplied by trucks). We apply the MIP 

see Appendix A ) for this purpose, and we report the best-known 

olution (labeled VRP ) and the lower bound of the costs (labeled 

s VRP LB ) after 60 minutes of computation. 

Robot depot refill assumptions and comparison with truck delivery . 

obot availability at robot depots is limited. The time required to 

efill a depot with new robots after a truck visit could have a sig- 

ificant impact on solution quality if visiting a single depot several 

imes is beneficial. We analyze the impact of this time on a truck- 

nd-robot system with 25 (default case as described above) and 

2 depots, respectively. Note that reducing the number of depots 

lso leads to fewer available robots. The two scenarios are denoted 

RCR-12 and TRCR-25. Figure 9 shows that there is hardly any im- 

act on costs and other performance metrics with varying refill 

imes for solutions obtained with TRCR. In particular, even if the 

ime is set to 0 (i.e., two trucks arriving at the depot at the same

ime can access the depot’s full robot availability), this does not 

ead to significant improvements. This means that the assumption 

n our solution approach (which prevents two trucks visiting the 



                                                                                                  

                 
                                      

Fig. 8. TRCR vs. benchmark for varying truck capacity and 100 customers, average of 20 instances. 

Fig. 9. System performance for different depot refill times, average of 20 instances. 
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ame depot within the depot refill time) does not worsen the re- 

ults. It further shows no benefit in ensuring an immediate refill of 

isited depots in practice. Reducing the number of depots from 25 

o 12 leads to longer truck distances travelled and a cost increase 

f 17% on average. Comparison with the conventional truck-only 

elivery reveals cost savings of 62% and a truck mileage reduction 

f 71% due to the truck-and-robot concept. This corresponds to a 

1% reduction in local emissions if diesel trucks are used. The MIP 

s terminated after 60 minutes, resulting in a 45% average MIP gap. 

owever, even compared to the lower bound, TRCR has a cost sav- 

ngs potential of 30%. 

Time window structure . The key feature of TRCR is the cluster- 

ng of customers. The clustering is based on customer locations 

nd time windows as they define the differences between any two 

ustomers. Besides the influence of locations (see Section 5.2 ), we 

herefore further assess the impact of time windows that are ex- 

ected to have a strong impact on costs and logistical performance 
14 
see e.g., Heimfarth et al. (2022) ). First, the effect of earlier and 

ater time windows is assessed. Next, customers in the same re- 

ion are offered similar time windows. 

(i) Early vs. late time windows . When designing a last-mile de- 

livery system, one crucial question is how fast deliveries can 

reach the customer. We, therefore, test the system’s perfor- 

mance with earlier or later time windows, i.e., different val- 

ues of the deadline factor interval [ ρmin , ρmax ] . Figure 10 

summarizes results for a ρmin of 1 (earlier), 3 (default) and 

5 (later). With ρmax = ρmin + 2 the span of all deadlines re- 

mains constant. Comparing the results of TRCR for ρmin = 3 

vs. 5, we see that additional trucks can ensure that earlier 

deadlines are met at scant additional costs. On the other 

hand, if time windows are too early ( ρmin = 1 instead of 

3), even increasing the number of trucks used by 61% can- 

not prevent a 19-fold increase in delays and further leads 

to a 35% longer distance travelled by trucks. Together, these 



                                                                                                  

                 
                                      

Fig. 10. System performance for different deadline factor intervals. 

 

Table 5 

Performance change of TRCR for different available truck fleets, average of 20 in- 

stances. 

Number of available trucks 

1 2 3 4 

Total costs [EUR] 44 34 34 34 

Number of trucks used 1.0 2.0 2.3 2.5 

Total delays [minutes] 191 49 44 41 

Truck distance [kilometer] 12.4 14.2 14.6 14.6 

r

e

t

i

[  

t

s

d

t

effects increase total costs by 22% (between 6 and 35% per 

instance). There is slight variance in the number of trucks 

used: for ρmin = 1; this number is 2 or 3 in all solutions; 

for ρmin = 3 or 5, only 1 or 2 trucks are used. This shows

that a truck-and-robot system must be designed specifically 

to meet the lead times promised. In times of high demand, 

offering later time windows to customers can relieve the 

system. The scenario with truck deliveries (again denoted as 

VRP ) benefits from later deadlines as well, as it can reduce 

its high level of delays. However, it does so by further in- 

creasing truck distance. The cost savings of using the truck- 

and-robot system remain high, at 54% with the later dead- 

lines. 

(ii) Location-based time windows . Assigning similar time win- 

dows to adjacent customers could potentially enable shorter 

truck tours and reduce robot waiting time and delays. We, 

therefore, test two policies for making such an assignment. 

Each policy splits the customers into two equal groups and 

assigns each group to one-half of the deadline factor inter- 

val. The first half of all deadlines are in one region and the 

second half in another. The first policy (denoted distance ) 

splits the customers based on their distance from the ware- 

house and assigns the closer customers to the earlier dead- 

lines. The second policy (denoted angle ) finds a straight line 

through the warehouse that separates the customers into 

two equal groups and randomly assigns one to the earlier 

and one to the later half of the deadlines. We compare the 

TRCR results for these scenarios with the default case of en- 

tirely random deadlines. Both zone types lead to a decrease 

in delays (angle −68% and distance −85%). Interestingly, as- 

signing zones based on distance does so while at the same 

time reducing the number of trucks used ( −4%) and their to- 

tal distance travelled ( −4%). This shows that the same truck 

t

15 
can first serve the closer customers with early deadlines 

and then take care of the customers who are further away 

with later deadlines. In the angle case, more trucks (7%) are 

needed, and they cover a larger distance (5%). Consequently, 

this time window distribution does not seem to facilitate ef- 

ficient truck tours. The total costs in this scenario remain 

unchanged. Only the distance scenario enables a 2% cost re- 

duction in total, thus leading to a Pareto improvement (all 

metrics considered are improved). It is, therefore, a favorable 

policy to offer customers a time window based on their dis- 

tance from the warehouse. 

Fleet size . One key question when implementing a truck-and- 

obot system is how many trucks will be needed. This is also nec- 

ssary to plan the shifts. We, therefore, investigate the effect of 

he number of available trucks on the system’s performance. The 

nstances used were generated with a deadline factor interval of 

 ρmin , ρmax ] = [1 , 3] . This leads to the best solutions using two or

hree trucks in the default case of three available trucks. Table 5 

hows the results with a varying number of available trucks. Our 

erived cost function for trucks includes a distance-based fee for 

rucks. This means that the fixed costs for a truck are transferred 

o mileage costs. With a total lifetime mileage, the total costs of a 
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ruck (incl. variable and fixed costs) can be calculated per distance 

nit (see Hübner & Ostermeier, 2019 for a similar approach). TRCR 

ends to use more trucks whenever they become available even if 

his does not reduce total costs: these are reduced by 24% when a 

econd truck is added (between 11 and 42% per instance), primar- 

ly due to a 74% reduction in delays. The second truck is used in all

nstances. After that, additionally available trucks do not affect to- 

al costs, as the reduction in delays is outweighed by the increase 

n truck distance. When a third truck becomes available, it is only 

sed in 30% of the instances, and a fourth truck only in 20%. Even 

n those cases, the benefits of using more trucks are marginal. This 

hows the necessity to employ more than one truck in the truck- 

nd-robot concept and that TRCR can help to size the truck fleet 

or a given demand scenario optimally. In the VRP case (not shown 

n Table 5 ), all available trucks are used to reduce the high delays.

onsequently, fewer available trucks result in a high-cost increase 

riven by delays. 

. Conclusion 

Truck-and-robot systems will contribute to reducing costs, 

missions and traffic congestion caused by last-mile delivery. Mul- 

iple trucks combined with robots are needed to enable large-scale 

pplications and short lead times. Since state-of-the-art literature 

s limited to single-truck problems (e.g., Alfandari et al., 2022; Boy- 

en et al., 2018a; Ostermeier et al., 2022 ), we present an extension 

o truck-and-robot routing by allowing the use of multiple trucks. 

he resulting multi-vehicle truck-and-robot routing problem (MVTR- 

P) requires the simultaneous vehicle routing of multiple tours and 

he scheduling of robot movements. To simultaneously solve the 

outing and robot scheduling problem, we propose a novel heuris- 

ic, the Truck-and-Robot Clustering and Routing (TRCR) heuristic. 

he approach further relies on tailored start heuristics, problem- 

pecific neighborhood operators and estimates leading to solvable 

IPs. Our numerical experiments show that this simultaneous so- 

ution is 23 to 60% faster and yields 18 to 24% better solutions 

han a benchmark based on a cluster-first-route-second approach. 

he solution approach yields robust results overall, demonstrating 

he advantages of the truck-and-robot concept compared to vari- 

us benchmarks and alternative delivery concepts. Further numer- 

cal studies show that using multiple trucks instead of one for the 

ame delivery area and time windows reduces delays by about 75% 

n average, only slightly increases total truck distance by about 

5%, and hence results in total cost improvements of about 20–25%. 

his highlights the benefits of multiple trucks. We were able to 

urther identify cost reductions by 62% and truck emissions by 71% 

ompared to conventional truck delivery. This improvement poten- 

ial further increases with more challenging time windows. Sizing 

he truck fleet, defining the time windows customers can choose, 

nd the total number of available robot depots are identified as 

ey decisions for the hierarchical planning of truck-and-robot op- 

rations. 

As we deal with an innovative delivery concept, there are still 

any promising opportunities for future research. One could build 

n our approach to develop exact solution approaches. Further- 

ore, the SINS approach of optimally choosing a set of tours from 

he neighborhoods of all incumbent tours has proven effective and 

ould be transferred to other problems for which the solution is a 

et of objects (e.g., defining heterogeneous vehicle fleets, purchas- 

ng machinery, prioritizing maintenance tasks, defining insurance 

olicies). Further modifications to the truck-and-robot concept and 

he instances applied can also be investigated, such as alternative 

elivery modes (by a driver, by drone etc.) and different spatial 

ituations. Our results show the attractiveness of truck-and-robot 

n a city, but the system‘s high flexibility could make it adapt- 

ble to more rural settings, too. This could require the introduc- 
16 
ion of additional delivery modes. The concept can be further ex- 

ended to pickup and delivery operations, as customer returns are 

ecoming increasingly important for logistics operations. A hetero- 

eneous fleet of trucks with varying capacities and range limita- 

ions should be assessed. This would be particularly relevant if an 

xisting truck fleet is successively replaced with electric vehicles. It 

ould require additional decisions and constraints in the tour se- 

ection step. So far, we leverage existing VRP approaches for devel- 

ping the TRCR, namely a VND and template tours. Different solu- 

ion approaches could be adapted to solve the MVTR-RP to enable 

 comparison of different approaches. Machine learning methods 

eem a promising way forward because of the complex interde- 

endencies of the various problem aspects involved. 
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ppendix A. An MIP model for customer clustering of the 

enchmark approach 

The MIP minimizes the cost of traditional truck delivery assum- 

ng the same cost factors as in the truck-and-robot case. We con- 

ider only deadlines instead of time windows to reduce computa- 

ional complexity. Our experiments showed that this leads to the 

est results in the MIP&GVNS experiments while also working in 

avor of the benchmark. Given early deliveries are possible, we can 

urther fix the start time of each vehicle to the earliest possible 

ime, t ω = 0, without worsening the objective value. 

We introduce the set of available vehicles F . The binary deci- 

ion variable s f i j is 1 if vehicle f travels from location i to location 

j, and 0 otherwise. The auxiliary decision variable t k denotes the 

rrival time at customer k and t T 
f 

the total tour time of vehicle f .

his leads to the objective function (A.1) , which sums up the cost 

f truck distance, truck time and delays. Constraints (A.2) ensure 

hat every customer is visited exactly once. Constraints (A.3) keep 

rack of the earliest possible arrival times at customers. Constraints 

A.4) derive the delay from the arrival time. (A.5) defines the total 

perating time of each truck. (A.6) and (A.7) establish flow con- 

traints for the trucks at every stop. Constraints (A.8) limit the 

ruck capacity, and Constraints (A .9) to (A .12) define the solution 

pace. 

in 

∑
f∈ F 

∑
i ∈ C∪{ ω} 

∑
j∈ C∪{ ω} 

c dist λi j s f i j + 

∑ 

f∈ F 
c veh t T f + 

∑ 

k ∈ C 
c late l k (A.1) 

ubject to ∑
i ∈ C∪{ ω} 

∑
f∈ F 

s f ik = 1 ∀ k ∈ C (A.2) 

 j ≥ t i + ϑ 

t 
i j − M · (1 − s f i j ) ∀ i ∈ C ∪ { ω} , j ∈ C, f ∈ F (A.3) 

 k ≥ t k − d k ∀ k ∈ C (A.4) 

 

T 
f ≥ t k + ϑ 

t 
kω − M · (1 − s f kω ) ∀ k ∈ C, f ∈ F (A.5) 

∑
i ∈ C∪{ ω} 

s f ik = 

∑
i ∈ C∪{ ω} 

s f ki ∀ k ∈ C, f ∈ F (A.6) 

∑
k ∈ C

s fωk ≤ 1 ∀ f ∈ F (A.7) 



                                                                                                  

                 
                                      

Table B.6 

TRCR vs. MIP&GVNS performance for the 20 instances with 50 customers (negative 

number indicates reduction due to TRCR). 

Instance Cost difference [%] Runtime difference [%] 

0 −17 −63 

1 −16 13 

2 −26 −80 

3 −24 −48 

4 −21 −31 

5 −26 3 

6 −19 −10 

7 −31 −69 

8 −15 −58 

9 −26 −70 

10 −27 14 

11 −23 −79 

12 −23 −43 

13 −27 52 

14 −19 −87 

15 −27 −4 

16 −24 2 

17 −21 −41 

18 −24 −61 

19 −25 −77 

Average −23 −37 
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∑
i ∈ C∪{ ω} 

∑
k ∈ C

ηk s f ik ≤ G ∀ f ∈ F (A.8) 

 f i j ∈ { 0 , 1 } ∀ i, j ∈ C ∪ { ω} , f ∈ F (A.9) 

 ω = 0 (A.10) 

 k ≥ 0 ; l k ≥ 0 ∀ k ∈ C (A.11) 

 

T 
f ≥ 0 ∀ f ∈ F (A.12) 

ppendix B. Detailed computation results per instance 

Table B.6 compares TRCR to MIP&GVNS for every single instance 

f our default data set with 50 customers. Note that the cost ad- 

antage of TRCR is quite stable, while computation times show a 

tronger variance. 
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