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Abstract
Purpose Geospatial details about land use are necessary to
assess its potential impacts on biodiversity. Geographic
information systems (GIS) are adept at modeling land use
in a spatially explicit manner, while life cycle assessment
(LCA) does not conventionally utilize geospatial informa-
tion. This study presents a proof-of-concept approach for
coupling GIS and LCA for biodiversity assessments of land
use and applies it to a case study of ethanol production
from agricultural crops in California.
Materials and methods GIS modeling was used to generate
crop production scenarios for corn and sugar beets that met
a range of ethanol production targets. The selected study
area was a four-county region in the southern San Joaquin
Valley of California, USA. The resulting land use maps
were translated into maps of habitat types. From these
maps, vectors were created that contained the total areas for
each habitat type in the study region. These habitat

compositions are treated as elementary input flows and
used to calculate different biodiversity impact indicators in
a second paper (Geyer et al., submitted).
Results and discussion Ten ethanol production scenarios
were developed with GIS modeling. Current land use is
added as baseline scenario. The parcels selected for corn
and sugar beet production were generally in different
locations. Moreover, corn and sugar beets are classified as
different habitat types. Consequently, the scenarios differed
in both the habitat types converted and in the habitat types
expanded. Importantly, land use increased nonlinearly with
increasing ethanol production targets. The GIS modeling
for this study used spatial data that are commonly available
in most developed countries and only required functions
that are provided in virtually any commercial or open-
source GIS software package.
Conclusions This study has demonstrated that GIS-based
inventory modeling of land use allows important refine-
ments in LCA theory and practice. Using GIS, land use can
be modeled as a geospatial and nonlinear function of
output. For each spatially explicit process, land use can be
expressed within the conventional structure of LCA
methodology as a set of elementary input flows of habitat
types.

Keywords Biodiversity . Bioethanol . Geographic
information systems (GIS) . Habitats . Land use . Spatially
explicit inventory modeling

1 Introduction and background

LCA methodology is intended to yield a comprehensive
environmental profile of product systems (ISO 2006).
Standard LCA practice, however, does not assess land use
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impacts such as impacts on biodiversity, which remains an
active research topic. Assessing land use impacts basically
requires two main additions to the conventional methodol-
ogy. First, it must introduce new elementary flows that
appropriately reflect and quantify land use, and second, it
requires appropriate characterization models in order to
calculate indicator results from the new elementary flows.
Needless to say, the two tasks cannot be strictly separated
from one another.

Many production processes, such as resource extraction
or agricultural production, transform and/or occupy sub-
stantial amounts of land. This poses specific problems for
LCA that are not encountered with other processes. One
challenge is that the potential output from the use of land,
the land productivity, varies geographically with biophys-
ical characteristics such as soil and climate. LCA is
structured around the use of average values such as fixed
production yields. An increase in output to meet increased
demand will typically require a nonlinear increase in land
area as use expands to less productive lands. Consequently,
the first adaptation necessary for LCA to accommodate
spatial dependence is to permit nonlinear relationships in
the inventory models. Whereas these spatially explicit
aspects of varying land use productivity are problematic
for standard LCA, they are quite straightforward with
geographic information system (GIS) technology. GIS can
store observed data for specific locations (e.g., soil types,
climate factors), and it can model new information from
these data (e.g., potential crop yield) through empirical
statistical analysis, mechanistic process models, or rule-
based logic methods. GIS can also calculate regional
summaries, such as total potential yield and total area of
each land type.

During the last 10 years, efforts have been made to
model land occupation and transformation as environmental
interventions in LCA studies, to develop practical ways to
model the impacts of land use on ecosystem health and
biodiversity, and to calculate indicators that are understand-
able, responsive to land use changes, and ecologically
relevant (Koellner 2000; Schenck 2001; Brentrup et al.
2002; Koellner and Scholz 2007). There are three serious
challenges to assessing impacts on biodiversity.

First, biodiversity is an extremely complex concept that
is difficult to summarize in a single indicator as other
environmental concerns are. The dilemma of how to
quantify biodiversity is not just specific to LCA but to
conservation assessment, monitoring, and planning in
general (e.g., Noss 1990; Sanderson et al. 2002; Scholes
and Biggs 2005). Biodiversity is by definition a general
concept encapsulating the full range of life, including
diversity within species, between species, and of ecosys-
tems (Convention on Biological Diversity 1992, Rio de
Janeiro). Enormous variation in species assemblages and

ecosystems makes it difficult to compare biodiversity
impacts between similar ecosystems at different locations
(e.g., tidal wetlands in Chesapeake Bay vs. the Gulf of
Mexico) or between different ecosystem types (e.g., wetland
vs. grassland). Scientists have attempted to develop universal
impact indicators to make such comparisons feasible. One
class of indicators uses data on species richness to measure the
loss of species or populations compared to a reference
condition (Lindeijer 2000; Koellner 2000; Scholes and Biggs
2005). Researchers have also attempted to develop indicators
of land use based on ecosystem characteristics such as
naturalness or wildness (Brentrup et al. 2002; Sanderson et
al. 2002), exergy (Wagendorp et al. 2006), or emergy (Hau
and Bakshi 2004). Climate change impacts are summarized
by applying physical laws to convert a relatively small
number of greenhouse gases (GHG) into a standardized
measure of their effect on radiative forcing, called global
warming potential and expressed as kilograms CO2 equiv-
alents. Impacts on biodiversity, on the other hand, are much
more complex. Comparable approaches to standardize the
relative importance of a myriad of species are controversial
and value-based. In addition, species respond uniquely to
land use, so it is challenging to infer overall impacts on
biodiversity directly from measures of land use change.

The second challenge is to reflect the spatial aspects of
biodiversity. Even with similar climatic conditions, the
evolutionary history of North American grasslands leads to
different assemblages of species and different species
richness than in grasslands on other continents. Further-
more, species assemblages are dynamic in time. At a local
scale, past land use changes determine which species are
present and could be impacted by further land use trans-
formations. Whereas GHG emissions ultimately mix in the
atmosphere so that their point of origin is immaterial to
quantifying their impacts on climate, impacts on biodiver-
sity require that we consider the location where the land use
occurs. The impacts will also depend on the initial quality
of habitat and its location within the landscape. All this
requires the assessment tool to be spatially explicit.

The third challenge is the nonlinear relationship between
land use and species viability. Depending on the absolute level
of production, additional increases in fuel crop cultivation
may cause either minor or dramatic impacts on biodiversity.

In summary, we require indicators that are meaningful
for the biodiversity in any location, but accurately reflect
the complex, spatially dependent and nonlinear manner in
which land use impacts biodiversity. The challenge facing
LCA is to balance a practical implementation within the
conventional tools with a methodology that produces a
meaningful measure of impacts on a multidimensional and
multiscale environmental concern.

Responding to this challenge, we have developed a
framework for loosely coupling conventional LCA with
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GIS to provide the necessary geographic analysis for a
spatially explicit form of LCA. In the inventory phase
described in this paper, spatially explicit scenarios of land
use are generated to meet agricultural production targets set
in the scoping phase. These land use scenarios are
summarized as elementary flows of habitat types within
LCI. The next step, as summarized in the second paper
(Geyer et al., submitted), associates wildlife species with
habitats to calculate regional impact indicators for biodi-
versity. The framework links the ecological concept of
“habitat” that can be mapped with remote sensing with
knowledge of species–habitat preferences, which has been
compiled for many taxonomic groups. Thus, the framework
analyzes biodiversity at the level of the species composition
and abundance in an ecoregion and yet operates at a level
of abstraction that avoids collection of comprehensive field
observations of all species or modeling their individual
responses to changing conditions. This approach has been
widely applied in conservation risk assessments such as the
US Gap Analysis program (Scott et al. 1993; Jennings
2000).

We demonstrate the coupling of GIS and LCA for the
assessment of biodiversity impacts from land use in the
context of growing ethanol feedstock crops in California’s
San Joaquin Valley (Fig. 1). Many LCA studies of biofuel
production and use have appeared in the last decade (e.g.,
Hanegraaf et al. 1998; van den Broek et al. 2001; Sheehan
et al. 2003; Dornburg et al. 2003; Kim and Dale 2005b). A
recent review found that these studies primarily focused on
net energy balance and global warming potential of various
feedstocks but that land use impacts had generally not been
assessed (von Blottnitz and Curran 2007). Milà i Canals et
al. (2006)) cited biofuels as an especially important product
system for which land use impacts should be incorporated
in LCA, given the potential significance of biofuels in
energy policy. Before policy makers and business leaders
commit heavily to large-scale production of biofuels, the
discussion needs to be informed about the potential impacts
on biodiversity (Hanegraaf et al. 1998; Chan et al. 2004;
Semere and Slater 2007).

2 Materials and methods

2.1 The scope of the inventory model

For this study, we developed cradle-to-gate inventory
models of ethanol production from corn (Zea mays) and
sugar beet (Beta vulgaris) feedstocks. Corn-based ethanol
can be produced from grain alone or grain and stover,
which is the cellulosic residue of the stalks and leaves. To
demonstrate the use of GIS for spatial, nonlinear crop
production modeling, we described all process inventories

in terms of total rather than average or marginal ethanol
output and used multiple reference flows of increasing
sizes. The reference flows are 10%, 25%, 50%, 75%, and
100% of 2.76 MMT of ethanol, which is the ethanol
contained in 3.5 × 109 l of reformulated gasoline containing
5.7% ethanol by volume, the estimated demand for gasoline
in 2010 in California (California Biomass Collaborative
2006; Williams et al. 2007). We convert these ethanol
production targets into metric tons of required annual crop
harvest for each crop (Table 1). We refer to each target
output–feedstock combination as a scenario since our crop
production models are purely hypothetical and not meant to
be predictions. All process models were obtained from the
GaBi 4 database, except for the GIS-based crop production
model (described in Section 2.3) and a dummy process in
GaBi 4 which receives the GIS model results. The growing
of biofuel crops is the only process in our product system
for which we model and assess land use impacts. If one
models the locations of new ethanol conversion plants
(Voivontas et al. 2001), it would be possible to include
those land use impacts as well, but they would generally be
much smaller. There are likely to be processes upstream
and downstream of biofuel crop production that have land
use impacts. While these are outside the scope of this study,
the ultimate aim would be to use GIS-based inventory
modeling for all relevant processes of the product life cycle.

Our study area consists of the four southernmost
counties of the San Joaquin Valley of California (Fig. 1).
The San Joaquin Valley of California used to be semi-arid
grassland before vast parts of it were converted to irrigated
cropland in the nineteenth and twentieth centuries. These
counties (Fresno, Tulare, Kings, and Kern) are among the
most productive agricultural lands in the nation (US
Department of Agriculture 2002). Today, roughly half of
the land area is in farms with primary agricultural revenue
generated from wine, dairy, fruit, tomatoes, and nuts
(Umbach 2002). Irrigation water evaporates in the relatively
dry climate, leaving salts on the surface. Some parts of the
San Joaquin Valley are already unusable for crop produc-
tion due to the raised salinity of the topsoil. However, small
patches of native grassland, shrubland, and wetland remain.
Native wildlife species use both pristine and cultivated land
as habitat. The San Joaquin Valley is the region with the
largest number of threatened or endangered species in the
mainland United States (US Fish and Wildlife Service
1998). Native species are threatened mostly by habitat loss
from conversion to cropland and urban development.

2.2 LCA-GIS coupling

GIS and LCA are fundamentally different and complemen-
tary. The former is specifically designed to organize and
analyze spatial data, while the latter inventories and
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analyzes data on product systems and typically does not
operate on geospatial information. Although LCA’s lack of
spatial differentiation is frequently criticized, there is no
consensus on how it should be integrated. A decade ago, it
was suggested that GIS should be integrated with LCA
(Bengtsson et al. 1998), but implementation has been slow.
Azapagic et al. (2007) described a framework for linking
LCA, GIS, and environmental models, although GIS would
merely be used to provide locational information on
pollution sources as input for other models and to display
the spatial distribution of predicted impacts. Burke et al.
(2008) used GIS to map biotopes before and after a single
mining operation and to generate characterization factors.

Results were appended to the LCIA findings, but GIS data
were not apparently passed to the LCA model for
assessment. To assess desertification potential, Núñez et
al. (2010) used GIS to calculate a score as an elementary
flow along with ecoregion-specific characterization factors.
Combining these values with the area of the process and the
area of the ecoregion determined the impact.

The procedures developed for and applied in this work
are shown in the flowchart in Fig. 2. In the LCA system, all
conventional cradle-to-gate processes and flows of an
agriculture-based end-product are shown (Kim and Dale
2005a). To incorporate land use, a crop production model is
inserted (center of the LCA box in Fig. 2), which receives

Fig. 1 Location map of study area showing lands suitable and available for growing corn or sugar beets. Areas labeled not available (e.g.,
publicly owned land, urban development) were excluded from the crop scenarios
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its intermediate inputs from an upstream cradle-to-gate LCI
model and feeds its crop outputs to a downstream gate-to-
gate LCI model of ethanol conversion. In the goal and
scope phase, scenarios are defined with target demand for
ethanol production, which are transformed into crop
demand based on conversion factors (Table 1). A GIS land
use model calculates the amount and location of crop land
needed to meet the target (Section 2.3). A land use map is
thus generated for each scenario, which is then converted
into a map of habitats (Section 2.4). In principle, GIS could
be used to model the land use of all processes with
significant land requirements, such as resource extraction,
transportation infrastructure, and industrial sites. GIS-based
inventory models can be regarded as a spatially explicit
component within a traditional life cycle inventory model.
Such LCA–GIS coupling facilitates spatially explicit,
nonlinear input–output modeling of intermediate and
elementary flows. In the present study, the coupling is

limited to calculating elementary flows of habitat-type areas
as functions of fuel crop type and production level. The
habitat-type areas and all other inventory data are used to
generate a crop production process in the LCA model
(Fig. 2). Inputs such as irrigation water, fertilizer, pesti-
cides, and fossil fuel and outputs such as greenhouse gases
and nitrates are based on averages in our study. They likely
will vary with locations and could also be modeled
explicitly in GIS, given that the relevant data are available.
In the impact assessment phase, the habitat-type areas are
used to calculate indicator results for potential biodiversity
impacts (Geyer et al., submitted).

2.3 GIS-based crop production scenario model

Crop scenario models can be extremely sophisticated to
capture all relevant influences such as land productivity,
climate, farmer behavior, market forces, land use policies,

Table 1 Fuel crop production targets (in kilograms of crop/year)

Percent of ethanol
demand in CA in 2010

Ethanol source
(kg ethanol/year)

Corn grain (CR,
kg grain/year)

Corn grain and stover (CS) Sugar beet (SB,
kg sugar beet/year)

(kg grain/year) (kg stover/year)

10 276,244,500 941,993,745 724,610,573 235,870,304 3,375,707,790

25 690,611,250 2,354,984,362 1,811,526,433 589,675,760 8,439,269,475

50 1,381,222,500 (4,709,968,725) 3,623,052,865 1,179,351,519 16,878,538,950

75 2,071,833,750 (7,064,953,087) (5,434,579,298) (1,769,027,279) 25,317,808,425

100 2,762,445,000 (9,419,937,450) (7,246,105,731) (2,358,703,038) 33,757,077,900

Annual ethanol demand for California in 2010 derived from Williams et al. (2007). Crop to ethanol conversion factors (in kilograms feedstock/
kilogram ethanol): corn grains, 3.41; corn stover, 3.7; sugar beet, 12.22. We assumed that 30% of stover could be harvested to produce ethanol
such that 23% of the grain target could be offset by stover. Targets in parentheses are not feasible within study area (2,538,482 ha)

Fig. 2 Flowchart of LCA and
GIS coupling. The LCA model
converts ethanol demand into
crop demand and reports it to
the GIS model, which in turn
derives a land use / habitat
scenario from the crop demand.
The data from the land use /
habitat scenario are used to
generate crop production inven-
tory data (a) and characteriza-
tion factors for biodiversity
impact assessment (b). Bold
arrows indicate linkages
between LCA and GIS
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infrastructure, and economic incentives. As our purpose in
this study was to demonstrate the coupling of LCA and GIS
in order to assess impacts on biodiversity, we opted to
develop a relatively modest scenario model. This model
also neglects land use associated with upstream and
downstream activities such as resource extraction and siting
of biorefineries. There is nothing in this framework,
however, that would preclude use of a more sophisticated
scenario model or the inclusion of ancillary land use
changes if appropriate data were available.

Our crop production model maps each annual fuel crop
production target onto a set of land parcels while
accounting for land productivity, basic production econom-
ics, and different land use policies. For each crop type and
production target in Table 1, the GIS model returns a list of
land parcels that, if used for fuel crop production, would
collectively achieve the required annual output. To achieve
this, we roughly follow the GIS-based modeling approach
suggested by Bryan et al. (2008) that integrates soil
productivity for each biofuel crop type with the potential
revenues and costs of production. The resulting spatially
explicit land use scenarios are intended to be feasible and
plausible, but not meant as predictions of actual land use
changes due to given fuel crop demand.

For this demonstration, corn and sugar beets were
selected as exemplary fuel crops because the San Joaquin
Valley is suitable for growing them, the technologies for
converting feedstocks to ethanol are known, and the
necessary spatial data were available. The crops differ in
the conversion technology as corn grain generates starch-
based ethanol, corn stover produces cellulosic ethanol, and
sugar beets can be converted to a sugar-based ethanol. The
GIS modeling, implemented in ArcGIS 9.2 (ESRI 2009),
consisted of the following four steps.

The first step was mapping the production potential for
each feedstock (Noon and Daly 1996; Voivontas et al.
2001; Price et al. 2004; Hughes and Mackes 2006; Bryan et
al. 2008; Hellmann and Verburg 2010). The production
potential for corn and sugar beets was based on estimates
by soil types and expressed as spatially varying crop yields
(Soil Conservation Service 1994). On suitable soils, the
corn grain yield ranges from 4,400 to 9,400 kg ha−1year−1.
In the first set of corn-based ethanol scenarios, we assumed
that the corn stover would be left in the field as residue to
conserve topsoil under best management practices. In
additional scenarios, we assumed that 30% of the corn
stover would also be used for cellulosic ethanol, with the
remaining 70% left in the field. Sugar beet yields range
from 45,000 to 78,000 kg ha−1year−1 on soils that are
suitable, which differ from those suitable for corn (Fig. 1).
Commercial biofuel crops cannot be grown in certain areas
because of land management or prior commitments of land
use. Therefore, potential yields on lands owned by public

agencies or conservation groups and on existing urban
development were set to zero based on GIS layers of land
ownership and land use (Lovett et al. 2009). These
unavailable lands are depicted in black in Fig. 1. Using
all the spatial data from above, 1-ha grid cell maps of
production yields in kilograms per hectare per year were
derived for corn (with and without stover) and sugar beets.

The second step utilized economic data for these crops
specific to the San Joaquin Valley or similar regions to
derive a map of potential economic net returns (University
of California Davis 2004). Establishment, production, and
some harvest costs are fixed per unit area, while other
harvest costs and gross revenue are related to volume of
harvest. Maps of potential net return (gross revenues from
the crop yield minus fixed and variable production costs) in
dollars per hectare per year were produced for each crop
type by subtracting fixed and variable costs from potential
revenue for each 1-ha cell. Potential net return (dollars per
year) and crop yield (MT per year) for each land parcel in
the study area were calculated by summing over all 1-ha
cells in each parcel. Parcel size, ranging from 5 to
15,000 ha, was also computed by the GIS software.

The third step employed a simple ranking and selection
algorithm to generate parcel sets that efficiently produce the
annual target level of the crop for each scenario (Table 1). It
is necessary to make assumptions about agricultural
markets and about individual landowner decisions when
developing crop production scenarios (Sheehan et al. 2003;
Santelmann et al. 2004). Our approach was to generate a
list of all parcels ranked by their potential net return per
hectare under current conditions, i.e., with the parcel having
the highest return on top and the one with the lowest return
on the bottom. The parcel with the highest net return was
selected, its potential output was added to the cumulative
total output, and its area added to the cumulative area.
Parcels were then selected in descending order of returns
until the cumulative output met the target level. The result
of this procedure is an economically plausible set of parcels
which collectively meet the annual target level.

The final step was to calculate the types and amounts of
(intermediate) inputs, such as irrigation water, fertilizers,
pesticides, and use of agricultural machinery required for
each land use scenario (set of selected parcels). There was
no spatially differentiated data on input requirements
available for our case study. Average values are used
instead, which are independent of parcel location and
therefore only functions of parcel area.

2.4 Habitat composition as elementary input flows

“Habitat” is the area or places inhabited by a species where
its life history requirements for food, cover, and reproduc-
tion are met. Biologists often categorize sets of places into a
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finite set of mutually exclusive habitat types based on their
shared attributes of vegetative cover and structure as they
relate to those life history requirements of wildlife species
(Mayer and Laudenslayer 1988). Each of these habitat
types can be characterized by its degree of suitability for
each species in a wildlife–habitat relationships database. A
habitat type is typically suitable for many different species,
and many species will have more than one suitable habitat
type. Each species thus has its own potential geographical
distribution depending on which habitat types it finds
suitable for its needs. Combining geographic information
on habitat distribution with knowledge of species–habitat
relationships provides a means of mapping potential species
distributions, with approaches ranging from relatively
simple relational models to more complex models that
account for species dispersal and population dynamics
(Guisan et al. 2006). At a minimum, we suggest basing
characterization models for biodiversity indicators on
inventory results that contain pertinent habitat information.
More specifically, we suggest that inventory models should
contain elementary input flows that represent habitat types
associated with land cover and use. In California, experts
have defined a set of mutually exclusive and collectively
exhaustive standard habitat types, including eight for
agricultural landscapes, as the basis for modeling species’
geographical distributions (Mayer and Laudenslayer 1988).
Nearly half of the terrestrial vertebrate species in California
utilize the state’s agricultural lands, particularly those that
are more mobile such as birds and bats (Brosi et al. 2006).
For most of these species, agricultural land is more valuable
for feeding and cover than for reproduction. The continuing
importance of the San Joaquin Valley as a major flyway for
migratory birds illustrates this point. Even some threatened
or endangered species can persist with modest set-asides in
the working landscape. For instance, the San Joaquin kit
fox can survive in farmland if its prey base is maintained
and there are sufficient patches of untilled land for denning
sites (US Fish and Wildlife Service 1998). Corn is a
member of the habitat-type irrigated grain (IGR) crops,
whereas sugar beets are irrigated row and field (IRF) crops.
Thus, these feedstocks not only differ in their location and
conversion processing but also in the habitat they provide
for wildlife.

We compiled a baseline habitat map from multiple
sources. The Multisource Land Cover layer (California
Department of Forestry and Fire Protection 2002) was the
best available geospatial data for native or naturalized
habitats but had lumped all farmland into a single map
class. Therefore, we merged this information with maps of
specific crop types of the study area (California Department
of Water Resources 2010) and reclassified the crops to their
corresponding habitat type. The resulting baseline layer
comprised 29 habitat types, including eight agricultural

habitats. For each scenario, baseline habitat types in the
selected parcels were replaced with the habitat type
associated with the fuel crop of the scenario in the GIS
habitat model (Fig. 2) to generate a new wildlife habitat-
type layer. The area of each of the 29 habitat types was then
derived for the entire study area. For each scenario, the sum
of the 29 habitat areas equals the total study area, which
reconfirms that the 29 habitat types are mutually exclusive
and collectively exhaustive.

In addition to all other input and output flows, the GIS-
based crop production model thus also generates 29
elementary input flows, the habitat composition, containing
habitat-type areas in hectares. The inventory model charac-
terizes each considered amount of annual fuel crop output
with a habitat composition, which can be used for
attributional analysis. For consequential analysis, the
inventory model relates land use changes (in this case to
meet increasing fuel crop production targets) to the
resulting changes in habitat composition. It should be noted
that inventory modeling based on total inputs and outputs is
a digression from standard LCA, which uses average
process inputs and outputs for attributional analysis and
marginal changes in inputs and outputs for consequential
analysis. Average and marginal data can be readily derived
from total input and output data, but not vice versa. Part 2
of this paper series (Geyer et al., submitted) demonstrates
how the elementary input flows of the habitat composition
can be used to calculate potential biodiversity impacts.

3 Results

Our GIS-based inventory model uses land and other inputs
to grow the amount of fuel crop required to meet the
increasing annual ethanol production targets. Total area is
the simplest and most basic indicator of land use. For
agricultural processes, such as biofuel feedstock produc-
tion, crop yield varies spatially as a function of soil
properties and other factors. Therefore, the area requirement
for meeting a given ethanol target depends on the locations
where the crops would be grown. Large differences were
found in the land area to be transformed to meet the
increasing annual ethanol targets of the scenarios (Fig. 3).
Corn required several times as much land as sugar beets.
There is only sufficient suitable land in the study area to
meet the 10% and 25% targets using corn grain without
stover. If 30% of the corn stover were to be used for
cellulosic ethanol, the area requirements would decrease
proportionally and the 50% target could be reached. Sugar
beets are far more productive than corn such that the full
100% target could be met, but this would transform almost
one million hectares (or 36% of the study area). For a given
ethanol target, sugar beets require less than half the land
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area needed by the corn with stover scenarios and roughly a
third of the corn only scenarios. Above the 50% target
level, the land area required for sugar beets becomes a very
nonlinear function of the ethanol target as less productive
land would be transformed.

Of the ten feasible scenarios, average crop production
yields for sugar beets are a full order of magnitude larger
than those for corn. That the difference in land area
required to meet the ethanol targets is not as dramatic is
due to the fact that corn has a significantly higher crop-to-
ethanol conversion rate than sugar beet (see Table 1). The
other insight from the scenario results is that yields are
decreasing as total output increases. The decrease is modest
for the first three ethanol production targets and more
dramatic for the higher ones, which only sugar beet can
achieve. This means that even the area–ethanol data that
appear linear in Fig. 3 are, in fact, slightly convex. Typical,
non-spatial process inventory models, assuming linear
relationships between all inputs and outputs, would have
to choose a fixed average or marginal yield and would thus
not be able to reflect this important aspect of agricultural
production processes.

Considerably more informative than total area require-
ments alone are the habitat compositions for each scenario
shown in Tables 2 and 3. The fuel crop either displaces
other crops within the same habitat type or crop production
or other land uses with different habitat types. Only the
latter leads to changes in habitat composition relative to the
baseline. Analysis of Tables 2 and 3 shows that for
scenarios CR-10, CR-25, CS-10, CS-25, SB-10, SB-25,
and SB-50, 93% or more of the habitat composition
changes relative to the baseline come from shifts between
five agricultural habitat types: deciduous orchard (DOR),
irrigated grain crops (IGR), irrigated row and field crops
(IRF), irrigated hayfield (IRH), and vineyard (VIN). In the
corn scenarios, IGR displaces DOR, IRF, IRH, and VIN in
fairly equal proportions, while sugar beet has a proportion-

ally higher impact on VIN and lower impact on IRH. The
scenarios CS-50, SB-75, and SB-100 increasingly rely on
transforming annual grassland (AGS). For the 100% target
with sugar beets, annual grassland, along with oak
woodland and various shrub communities, would lose
50% or more of their current area. Figures 4, 5, and 6
show the absolute area changes for the seven most affected
habitats, which are DOR, IGR, IRF, IRH, VIN, AGS, and
EOR (evergreen orchard). In scenarios CR-10, CR-25, CS-
10, CS-25, SB-10, SB-25, and SB-50, they account for
around 99% of the habitat composition changes. For CS-50,
SB-75, and SB-100, it is 97%, 96%, and 89%, respectively.

4 Discussion

Location is extremely important for addressing land use in
LCA for several reasons. For agricultural land use or
resource extraction, potential production output per unit
area varies spatially with the biophysical characteristics of
geographic locations or sites (Voivontas et al. 2001; Tuck et
al. 2006). By modeling fuel crop production over a range of
plausible target output levels, we have demonstrated that
the average yield per hectare can vary significantly.
Assuming linear input–output relationships for agricultural
production processes is thus problematic. Varying yields
combined with socioeconomic factors affect costs and net
revenues of a production site (Bryan et al. 2008).
Profitability of production, which impacts the likelihood
of land use changes, is thus also a function of location.
Moreover, the current habitat composition of a region is a
historical legacy of both the biophysical environment and
past land transformations. By coupling GIS to LCA, even
loosely as we have done in this paper, it is possible to
quantify habitat composition through a set of elementary
input flows in the inventory phase of LCA. As we will
show in Part 2 (Geyer et al., submitted), these flows are the
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inventory results that serve as inputs to the characterization
models of our four discussed biodiversity impact indicators.
Our approach to integrating land use into LCA is to
generate land use maps of production scenarios and then
translate these land uses into habitat types.

Lack of appropriate spatially differentiated data is
consistently mentioned as the single largest obstacle to the
advancement of land use and biodiversity indicators in
LCA (Guinée 2002). For agricultural processes, such as
fuel crop production, land productivity, typically expressed
as yield, is the most important property. Regulations, land
ownership, and environmental constraints may also limit
the locations that can be dedicated to fuel crops regardless
of their intrinsic productive capacity. Following a general

GIS modeling approach suggested by Bryan et al. (2008),
we found readily available spatial information for the San
Joaquin Valley for potential yields, costs, and returns of
feedstocks, current land use/land cover, and habitat types.
At least for the USA, and probably most developed
countries, such digital information is commonly available.
For instance, land cover of Europe has been mapped by the
CORINE program (European Environmental Agency
2000), while Tuck et al. (2006) have modeled the variation
in bioenergy crop yields. Yield data for food crops that
could be used as first-generation feedstocks are the most
available. However, we were not able within the scope of
this study to obtain adequate spatial data on yields of a
second generation feedstock, e.g., Bermuda grass which has

All values are in hectares Scenario name

Habitat Type Baseline CR-10 CR-25 CS-10 CS-25 CS-50

Agricultural and urban habitats

DOR 216,069 189,660 160,747 194,720 172,099 132,692

EOR 87,829 85,430 82,906 85,947 83,573 72,502

IGR 340,644 434,372 575,948 413,480 521,652 725,106

IRF 583,664 559,847 526,702 565,172 538,534 486,588

IRH 165,555 150,409 126,912 153,999 135,525 104,032

PAS 1,806 1,562 1,380 1,580 1,503 1,127

RIC 2,652 2,637 2,603 2,637 2,631 316

URB 128,971 128,574 128,206 128,630 128,330 126,754

VIN 184,364 162,186 113,847 167,804 133,579 92,938

Native habitats

AGS 664,581 662,089 658,712 662,643 660,148 639,414

ASC 36,946 36,942 36,906 36,945 36,918 35,625

BAR 620 620 571 620 617 459

BOP 38,531 38,531 38,529 38,531 38,530 38,521

BOW 29,485 29,336 28,923 29,396 29,004 28,171

COW 137 134 134 134 134 134

CRC 7,668 7,668 7,668 7,668 7,668 7,668

CSC 13,709 13,709 13,709 13,709 13,709 13,709

DSC 16 16 16 16 16 16

EUC 507 499 477 499 491 459

FEW 8,102 7,918 7,718 7,961 7,787 7,239

JUN 933 933 933 933 933 933

LAC 269 226 208 226 208 158

MCH 20,523 20,500 20,468 20,513 20,494 20,350

MHW 1,741 1,651 1,422 1,679 1,472 945

PGS 584 584 584 584 584 584

RIV 626 626 626 626 626 621

SGB 331 331 331 331 331 331

VOW 259 259 254 259 254 252

VRI 1,360 1,235 1,045 1,242 1,135 841

Table 2 Habitat compositions
for corn production scenarios
with area of habitat types in
hectares CR corn grains only,
CS grains and stover

DOR deciduous orchard, EOR
evergreen orchard, IGR irrigated
grain crops, IRF irrigated row
and field crops, IRH irrigated
hayfield, PAS pasture, RIC rice,
URB urban, VIN vineyard, AGS
annual grassland, ASC alkali
desert scrub, BAR barren, BOP
blue oak-foothill pine, BOW
blue oak woodland, COW
coastal oak woodland, CRC
chamise-redshank chaparral,
CSC coastal scrub, DSC desert
scrub, EUC eucalyptus, FEW
freshwater emergent wetland,
JUN juniper, LAC lacustrine,
MCH mixed chaparral, MHW
montane hardwood, PGS peren-
nial grassland, RIV riverine,
SGB sagebrush, VOW valley oak
woodland, VRI valley-foothill
riparian
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All values are in hectares Scenario name

Habitat type Baseline SB-10 SB-25 SB-50 SB-75 SB-100

Agricultural and urban habitats

DOR 216,069 207,927 198,142 183,620 167,094 154,443

EOR 87,829 86,489 85,232 82,770 80,652 68,131

IGR 340,644 334,234 325,735 307,770 294,889 275,737

IRF 583,664 615,303 662,070 741,632 894,812 1,250,194

IRH 165,555 162,165 156,195 149,881 145,561 140,697

PAS 1,806 1,703 1,685 1,609 1,532 1,402

RIC 2,652 2,652 2,652 2,652 2,647 2,631

URB 128,971 128,882 128,579 128,239 126,757 114,329

VIN 184,364 172,577 152,100 115,975 100,870 88,392

Native habitats

AGS 664,581 662,089 658,712 664,293 663,907 662,376

ASC 36,946 36,942 36,906 36,945 36,935 36,905

BAR 620 620 571 620 620 588

BOP 38,531 38,531 38,529 38,531 38,531 38,530

BOW 29,485 29,336 28,923 29,473 29,457 29,431

COW 137 134 134 134 134 134

CRC 7,668 7,668 7,668 7,668 7,668 7,668

CSC 13,709 13,709 13,709 13,709 13,709 13,709

DSC 16 16 16 16 16 16

EUC 507 499 477 499 499 477

FEW 8,102 7,918 7,718 8,092 8,091 8,082

JUN 933 933 933 933 933 933

LAC 269 226 208 227 227 214

MCH 20,523 20,500 20,468 20,513 20,503 20,451

MHW 1,741 1,651 1,422 1,737 1,702 1,660

PGS 584 584 584 584 584 584

RIV 626 626 626 626 626 626

SGB 331 331 331 331 331 331

VOW 259 259 254 259 259 259

VRI 1,360 1,235 1,045 1,360 1,360 1,360

Table 3 Habitat compositions
for sugar beet (SB) production
scenarios with area of habitat
types in hectares

DOR deciduous orchard, EOR
evergreen orchard, IGR irrigated
grain crops, IRF irrigated row
and field crops, IRH irrigated
hayfield, PAS pasture, RIC rice,
URB urban, VIN vineyard, AGS
annual grassland, ASC alkali
desert scrub, BAR barren, BOP
blue oak-foothill pine, BOW
blue oak woodland, COW
coastal oak woodland, CRC
chamise-redshank chaparral,
CSC coastal scrub, DSC desert
scrub, EUC eucalyptus, FEW
freshwater emergent wetland,
JUN juniper, LAC lacustrine,
MCH mixed chaparral, MHW
montane hardwood, PGS peren-
nial grassland, RIV riverine,
SGB sagebrush, VOW valley oak
woodland, VRI valley-foothill
riparian
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been proposed as a cellulosic feedstock on salt-degraded
soils in the San Joaquin Valley (California Biomass
Collaborative 2006).

An additional challenge is introduced if the aim is to
assess not only current but also potential future land use.
This study generated scenarios using an alternative futures
approach (Santelmann et al. 2004) in which parcels were
allocated to feedstock production by a rule-based algorithm
to achieve production targets. Other more sophisticated
scenario modeling could have been applied as well, such as
an agricultural sector model (Walsh et al. 2003) that
considers economic trade-offs among competing crops.
We are not aware, however, of this class of model being
used at a scale that can track site-specific habitat changes.
Except for Chan et al. (2004), no one has looked
systematically at impacts across a range of production
levels, i.e., for different reference flow sizes.

Note that our study focuses on size and quality of land
use changes and does not address their frequently discussed
temporal dimension (Koellner and Scholz 2007; Milà
i Canals et al. 2007). Each production scenario is
characterized by a single transformation from one habitat
composition to another. This approach would be less

satisfactory for land use changes such as timber harvest
that initially transform a habitat type to a younger stage of
the same type that gradually recovers over time, more or
less, to its initial condition. We also do not model crop
rotations that lead to periodical habitat-type switches, such
as corn–soybean rotations. Continuous planting of a crop
increases the likelihood of disease and declining yields over
time. Recent experience in the USA suggests though that
farmers producing corn ethanol feedstocks may be aban-
doning the rotation system because of the higher returns for
biofuel feedstock than for food for humans or livestock. All
these temporal aspects add another level of complexity to
spatially explicit LCA by requiring temporal modeling of
habitat recovery processes, habitat successions, and habi-
tat–species relationships.

In principle, our approach could discriminate between
alternative agricultural practices (Kim and Dale 2005b) or
between farming for food vs. for energy (van den Broek et
al. 2001), given that inventory data and habitat type
information are available that distinguish between them.
An example would be different levels of intensification
such as increased fertilization or irrigation or improved
cultivars with higher yields. The inventory models would
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reflect that for a given amount of crop output, more inputs
but less land is required. However, intensification may also
impact the habitat value of the land, which might be
difficult to quantify.

Total habitat area alone may not always be a good
measure of biodiversity. The landscape configuration of
habitat patches may also influence the suitability of
habitats. Small isolated patches of habitat may not be
sufficient to sustain a viable population or mating pair of a
species. White et al. (1997) only ascribed habitat area to
species in Pennsylvania if the patch exceeded a minimum
size based on the requirement of each species. Thus, they
included landscape context and fragmentation aspects. To
do so in GIS-based inventory modeling would mean
tracking flows of viable habitat for each species–habitat
combination, which would be an unwieldy sized vector. We
believe that our approach strikes a reasonable balance
between scientific credibility and operational feasibility.

An open question is how our approach can be generalized
to product systems that include land use in several ecoregions.
For simplicity, we limited this study to a single ecoregion. In
inventory modeling of product systems where inputs cause
land use changes in different ecoregions, it would be
beneficial to track habitat type and ecoregion, perhaps by
appending the region name to the habitat name. This would be
similar to the way in which the receiving environmental
compartment is frequently added to emission flows. However,
it will still be challenging to compare biodiversity impacts
between competing products from different regions of the
world. How do you compare the biodiversity impact of one
hectare of Amazonian rainforest transformed to sugarcane to
1 ha of grassland in the San Joaquin Valley transformed to
corn? The challenges of developing characterization models
that are able to do this on a scientific basis will be discussed in
Part 2 of this paper series.

Consequential assessments of land use will also need to
account for indirect land use changes elsewhere in response
to direct transformations of land from food to fuel crop
(Kløverpris et al 2008). Searchinger et al. (2008) modeled
greenhouse gas emissions from indirect land use changes
with a global model of the agricultural sector to indicate
which regions would likely replace the lost food sources
and estimate the type of land cover that would be
transformed. For a biodiversity impact assessment, account-
ing for indirect land use changes such as this would also
require a scenario of parcel-level land use changes in these
secondary regions in order to track the changes in habitats.
Even though this would be the correct approach to
estimating biodiversity impacts from large-scale changes
in fuel crop production, lack of spatial data and local
knowledge about the secondary regions combined with the
large uncertainties surrounding indirect effects are likely to
render this very challenging.

Besides developing spatially explicit crop production
models, GIS can complement LCA in other ways as well.
GIS modeling can identify locations for biorefineries within
a “harvest shed” with an adequate biomass supply from
which more precise estimates of transportation costs and
distances can be made (Voivontas et al. 2001; Western
Governors’ Association 2008). The cost information could
refine the crop production scenarios (Noon and Daly 1996),
while transportation distances could refine the estimates of
fossil fuel inputs associated with GHGs. Other inventory
flows are also likely to be spatially varying and amenable to
GIS modeling, such as soil carbon (Liebig et al 2008), soil
organic matter (Sheehan et al. 2003), irrigation, or
fertilization (Azapagic et al. 2007), and therefore, these
may also respond nonlinearly to increases in references
flows. Thus, the potential application of GIS in support of
LCA has barely been tapped.

5 Conclusions

For processes that transform or occupy substantial land areas,
the precision of LCA can be improved by accounting for
spatial variation in their input–output relationships. GIS
technology offers the combination of spatial data and
analytical functions to quantify flows from specific locations.
GIS-based inventory modeling of production processes that
transform and/or occupy a substantial amount of land, such as
agricultural production and resource extraction, allows several
refinements in LCA:

1. Land use can be modeled as a nonlinear function of
agricultural or resource output (Fig. 3).

2. Other inputs and outputs related to land use, such as
irrigation water, fertilizer, nitrogen runoff, and soil
carbon, can also be modeled more accurately.

3. Land use of processes can be described in detail and
expressed as elementary input flows of habitat types.

Quantifying impacts on biodiversity from land-hungry
processes, such as fuel crop production, requires spatially
explicit representations of precisely howmuch land is used and
where the use occurs. In consequential LCA, land use changes
can be modeled through if-then type modeling, scenario
analysis, or more predictive approaches. Predictive
approaches, such as forecasts, would have to be based on
agro-economic modeling that account for biophysical factors,
market conditions (demand for and price of crops), and
landowner behavior. No such forecasts for our study area
exist, and developing this type of model was outside the scope
of this project. To ensure plausibility of land use scenarios,
basic drivers and constraints, such as profitability and land
ownership, should be taken into account, as shown in this
study.
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In Part 2 (Geyer et al., submitted), the elementary input
flows of habitat size and composition are combined with
characterization models for potential biodiversity impact
that account for species richness, abundance, and evenness.
Species abundance and evenness are only meaningful in the
context of an ecologically relevant spatial area, typically an
ecoregion. The geographic scope of life cycle inventory
modeling with spatially explicit land use should therefore
be entire ecoregions. The elementary flows of habitat types
should be tracked separately for each ecoregion if more
than one is involved in production. Geographers have much
to contribute to LCA. Kløverpris et al. (2008) noted that
geography, along with other disciplines, can aid in
modeling and assessing land use. We agree and specifically
recommend that geospatial analysis be used for spatially
explicit inventory modeling and impact assessment. Cou-
pling LCA with GIS thus has the potential to significantly
advance the theory and practice of life cycle assessment and
improve its value as a decision support tool (Bengtsson et
al. 1998).
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