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Abstract:  

Background: With genome sequencing entering clinics as a diagnostic tool to detect genetic 

disorders, there is an increasing need for bioinformatics-based solutions that enable precise 

causal variant identification in a timely manner. Workflows for the identification of 

candidate disease-causing variants usually perform the following tasks: i) identification of 

variants; ii) filtering of variants to remove polymorphisms and technical artifacts; and iii) 

prioritization of remaining variants to provide a small set of candidates for further analysis.  

Methods: Here, we present a pipeline designed to identify variants and genes from trio 

sequencing or pedigree-based sequencing data that prioritizes them into distinct hierarchical 

tiers.  

Results: We applied this pipeline to a study of patients with neurodevelopmental disorders 

of unknown cause and identified causal variants in more than 35% of cases.  

Conclusions: Classification and prioritization of large numbers of variants into different tiers 

can help to obtain a smaller set of candidates to facilitate downstream analysis for 

identification of causal variants of genetic diseases. 
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1. Introduction 

Next generation sequencing (NGS) has proven to be a powerful technique to identify causal 

genes of rare genetic disorders [1, 2]. The recent decline in sequencing costs has enabled the use 

of NGS for diagnostics within the broader clinical setting [3-5]. However, more widespread 

generation of sequence data has created new challenges related to the daunting tasks of 

managing, analyzing, and interpreting large data sets [6]. Consequently, bioinformatics tools and 

pipelines must be constantly improved to enable more rapid and effective NGS data analysis to 

keep pace with the flood of data. 

More than three million variants are present in individual genomes that distinguish them from 

the currently used human reference genome [7]. For clinical sequencing projects, this number of 

variants somehow must be reduced to a manageable number of candidate variants before 

conducting downstream analyses to identify causal variants of specific genetic diseases. One 

effective strategy to reduce the number of candidate variants has employed trio sequencing, 

whereby healthy parents are sequenced along with their affected children.  

Generally, workflows for trio- or pedigree-based analysis share three basic steps [8]. In step 

one, raw sequence reads are mapped to the reference genome for each sample individually then 

variants for all samples are analyzed together and the genotype of each sample is determined. In 

step two, technical artifacts and variants which are common in the population are removed, as 

they are highly unlikely to cause rare genetic diseases. Even after this first filtering step, an 

unmanageable number of potential candidate variants still remains, requiring prioritization using 

pedigree information and various annotations to further enrich the list for causal variants of 

disease [8]. 
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Here, we present a complete workflow for candidate variant identification and prioritization for 

analysis of whole exome sequencing (WES) and whole genome sequencing (WGS) data generated 

from trio sequencing or from larger pedigree analyses. 

2. Material and Methods 

We developed a workflow that incorporates read alignment, variant calling, annotation, 

filtering, and prioritization steps. A particular focus is placed on various filtering and annotation 

steps to prioritize variants depending on an assumed inheritance model for disease in each family 

before performing further analyses. 

2.1. Read Alignment 

Raw sequencing data were mapped to the 1000 Genomes Reference Genome Sequence 

(hs37d5) [7] using the Burrows-Wheeler Aligner (BWA) [9] aln algorithm (Version 0.6.2) with 

standard parameter settings except for the setting ‘-q 20’. The resulting SAM files were sorted, 

converted to BAM format and indexed using SAMtools-0.1.19 [10]. Multiple lanes per sample were 

merged and duplicate reads marked using Picard [11] with the following parameter settings, 

‘picard-1.61 MarkDuplicates VALIDATION_STRINGENCY=SILENT REMOVE_DUPLICATES=FALSE 

ASSUME_SORTED=TRUE MAX_RECORDS_IN_RAM=12500000 CREATE_INDEX=TRUE 

CREATE_MD5_FILE=TRUE’. 

2.2. Variant Calling and Annotation 

Single nucleotide variants (SNVs) and small insertion-deletion variants (indels) of 1-20 bps were 

jointly called from all samples obtained from each family using Platypus [12] with following 

parameter settings, ‘Platypus_0.8.1.py callVariants nCPU=10 genIndels=1 genSNPs=1 minFlank=0 -

bamFiles=$List_of_Bam_Files’ --refFile=hs37d5.fa --output=$Output_VCF’. Gene and transcript 

definitions from Gencode v19 [13] were added using ANNOVAR [14] and minor allele frequency 

(MAF) information from 1000 Genomes Phase III and Exome Aggregation Consortium (ExAC) [15] 

databases was added. In addition, allele frequencies from 328 WES and 177 WGS inhouse samples 

(referred to as local controls) were assigned to the variants. 

2.3. Variant Filtering 

Variants that remained after employing all Platypus internal filters were considered further. 

Frequent variants were removed based on a MAF threshold of 0.1% from ExAC and 1000 Genomes 

Phase III databases. To remove technical artifacts specific to our pipeline, variants that were 

present in local controls above the threshold of 2% were considered to be artifacts and were 

removed. 

Next, trio sequencing variant data from each patient and healthy parents were combined to 

efficiently reduce the number of candidates. Only variants fulfilling an assumed inheritance model 

for a given genetic disease were considered further. For an autosomal dominant (AD) disease, only 

de novo variants, i.e. variants which are present in the patient but not in any of the parents, were 

considered as candidates. In the case of autosomal recessive (AR) inheritance from 

consanguineous parents, we expected the genotype to be homozygous in patients and 
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heterozygous in both parents. Hemizygous variants were assumed to be heterozygous in only one 

of the parents and homozygous in the patient. Candidates for X-linked (XL) variants were assumed 

to be heterozygous in the mother and hemizygous in the male patient. Finally, to identify 

candidates for compound heterozygous inheritance of AR diseases, SNVs and indels were 

combined to find two different heterozygous mutations within the same gene in the patient, with 

one variant from one parent and the other variant from the other parent.  

Lastly, variants with low genotype quality (Phred score <20) in at least one sample from the 

family were filtered out. The remaining variants were prioritized to select a list of causal variant 

candidates for further downstream analysis. 

2.4. Variant Prioritization 

Both variants and genes were prioritized using separate analyses and then classified into 

different tiers from which the final candidates were selected. Variants were ultimately prioritized 

based on their effects on protein function, which were predicted from various conservation 

scores. To this end, various annotations from dbNSFP [16], including the GERP score [17] and 

CADD scores [18], were assigned to the variants. The GERP score [17] measures the evolutionary 

conservation of sequences across species; a position with a score greater than two is considered 

to be a highly conserved nucleotide and its alteration is likely to have a high functional impact. 

CADD scores [18] integrate various annotations including sequence conservation scores and 

ENCODE project functional annotations to measure the deleteriousness of a variant. A CADD score 

of 13 derived using the Phred scale was used as a threshold such that prioritized variants above 

that threshold were considered to be within the top 5% of deleterious variants within the human 

genome. 

As illustrated in Figure 1, genes were also prioritized based on their intolerance towards 

functional mutations. Intolerance missense z or pLI scores from ExAC were added if the variant 

was a missense or loss-of-function (LoF) variant, respectively (LoF, includes stop gain/loss, splice 

acceptor/donor or frameshift indels). We considered genes with Z score >2 as intolerant to 

missense variants, while genes with pLI scores > 0.9 were considered intolerant to LoF variants. 

Finally, variants were categorized into two tiers, one for LoF variants and one for missense 

variants and each tier contained three levels. Level 0 of both tiers contained the whole variant set 

before prioritization. Next, LoF variants were moved to level 1 of tier 1 then LoF variants with 

CADD score above the threshold were moved further into level 2. Finally, variants in level 2 which 

could affect gene function while also having pLI scores above threshold were moved into level 3. 

Meanwhile, missense variants were moved from level 0 into level 1 of tier 2 and further 

prioritization of variants into higher levels of tier 2 was done as for tier 1, except that instead of 

the ExAC pLI score, the ExAC missense Z score was used to prioritize variants into level 3. Initially, 

for downstream analysis only variants in level 3 of both tiers were considered. Only after no 

candidates were found in level 3 were variants in lower levels examined. 

Ultimately, prioritized variants were further classified by medical geneticists using the 

guidelines provided by the American College of Medical Genetics and the Association for 

Molecular Pathology [19]. 
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Figure 1 Germline variant analysis pipeline for rare genetic disorders. 

3. Results 

Recently we published results from our clinical exome initiative [4], where we analyzed exome 

data from 60 families with undiagnosed neurodevelopmental disorders (NDD), neurometabolic 

disorders (NMD), and dystonias and found causal variants in 35% of families. In this study, we used 

the results from 39 families within the NDD cohort to demonstrate how the germline analysis 

pipeline effectively filtered and prioritized variants identified from WES data obtained using a trio-

based sequencing strategy. 
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Among the 127 WES samples from 39 families, 201,687 SNVs and 38,186 indels were present, 

with a minimum coverage of 10x. Among these variants, 152,641 SNVs and 14,912 indels present 

in ExAC or 1000 Genome Phase III databases with MAF values above 0.1% were discarded, as were 

variants detected in local controls with a frequency above 2%. After this step, 6,368 SNVs and 451 

indels remained and were used for further analysis. 

In the next step, all variants outside of exonic regions (+/- two base pairs to account for splice 

sites as defined by the Gencode v19 gene model) were removed. The remaining variants were 

classified according to their predicted effect on protein function. After variants that did not cause 

missense and LoF mutations were discarded, 528 SNVs and 29 indels remained which were 

considered rare/private variants with predicted protein functional effects. 

For all 39 families of the NDD cohort, trio sequencing was performed. In addition, in some 

families, genomes of affected or unaffected siblings were also sequenced to facilitate variant 

filtering for recessive and X-linked diseases. For analysis, we considered such cases as separate trio 

families; only in the final steps of the pipeline were results merged, analyzed, and reported for 

each family unit. The pedigree information was used to classify variants into de novo, 

homozygous, hemizygous, and heterozygous variants (Figure 2). Heterozygous SNVs and indels 

were further combined to find compound heterozygous variants present in these families. At the 

end of the variant filtering steps, an average of four de novo, five homozygous, one hemizygous, 

and two pairs of compound heterozygous small variants remained per family. These variants were 

further prioritized into different tiers to select the best candidate causal variants/genes for further 

analysis and confirmation. 

 
Figure 2 Variant filtering in TRIO WES analysis. The number of candidate variants after 

the different filtering steps is shown for the 39 families from the NDD cohort. After 

applying the basic quality filters, functional variants were identified and patient and 

parent data were combined. Based on pedigree information, functional variants were 

further classified into different genetic models. The sample A1434301 contained a high 

number of de novo variants due to poor DNA quality. 
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A total of 69 variants from all samples were annotated as LoF variants and were moved to level 

1 of tier 1. Of those variants, 49 had CADD scores >13 and were moved to level 2 of tier 1; 12 of 

these 49 variants were detected in genes that were predicted to be intolerant to LoF variants and 

were thus moved to level 3 of tier 1 (Figure 3). A total of 529 missense variants were moved to 

level 1 of tier 2. Of these, 296 variants had CADD scores >13 and were moved to level 2 of tier 2; 

67 of these 296 variants were mapped to genes with ExAC missense Z scores >2 and were moved 

to level 3 of tier 2 (Figure 4). 

Ultimately, using these approach candidate causal variants could be identified in 15 families of 

the NDD cohort (table 3, [4]). The inheritance pattern was AD in six of these families, AR in seven 

families and XL in two families. Five of the AD causal variants and two XL causal variants were 

found in level 3 of tier 1 or 2, where the variants and genes satisfied all thresholds set in the 

prioritization step. Interestingly, only one of seven AR families had a variant in the top level of tier 

2. The other AR causal variants had high variant deleteriousness scores, but the genes were 

predicted to be tolerant to new missense mutations. It should be noted that intolerance scores 

were not developed for AR inheritance models. Therefore, gene intolerance score-based 

prioritization should be relaxed in order to maximize the likelihood of finding causal variants of AR 

inherited diseases.  

 
Figure 3 LoF variant prioritization. LoF variants were classified into different levels in 

tier 1. LoF variants with CADD score > 13 and ExAC pLI score > 0.9 were assigned to 

level 3. They constitute the first set of candidate variants to be considered for further 

downstream analysis. The outlier A1434301 is not shown. 
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Figure 4 Missense variants prioritization. Missense variants were classified into 

different levels of tier 2. Only missense variants with CADD score > 13 and ExAC 

missense Z score > 2 are in level 3. These variants constitute the second set of variants 

to be considered after ruling out the level 3 variants in tier 1. The outlier A1434301 is 

not shown. 
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4. Discussion 

Next-generation sequencing makes it possible to identify causal variants of genetic diseases 

without the need for prior hypothesis pinpointing a specific affected gene. Rapidly decreasing 

costs for NGS now permit the routine application of whole exome or even whole genome 

sequencing for use as clinical diagnostic tools. However, genome sequencing in the absence of 

other information generates long lists of candidate variants of uncertain relevance to disease. 

Moreover, the use of manual variant filtering and candidate selection based on background 

knowledge is prohibitive for large studies and routine clinical applications. Therefore these use 

cases require bioinformatics workflows to generate short lists of prioritized candidates. The 

germline analysis pipeline outlined here, by employing trio sequencing or larger pedigree 

sequencing data, narrows the field of candidates variants to identify causal variants for specific 

diseases. In this way, a shorter list of candidate variants can be generated for streamlining 

downstream analysis.  

Generally, workflows for identification of disease-relevant variants rely on prefiltering steps to 

remove common polymorphisms and technical artifacts using publicly available and private 

databases. Of note, the majority of samples in public databases such as ExAC and 1000 Genomes 

originate from the Central European Population (CEP). Although the majority of samples analyzed 

in our study originated from the CEP, the combined MAF from all populations was used. However, 

it is recommended to use population-specific MAF if samples are collected from non-CEP 

populations. In addition, pooling MAF from samples sequenced on the same platform and 

processed within the same pipeline is recommended in order to remove technical artifacts arising 

specifically from the sequencing platform and pipeline used.  

After the filtering steps, predictions regarding the functional impact of variants were used to 

narrow down the set of candidates. Many tools that predict the degree of deleteriousness of a 

variant are based on sequence conservation at the affected position [20]. However, individual 

tools are often not in a good agreement, justifying efforts to use a consensus set of results 

obtained using multiple tools or to use meta-tools that combine the results of multiple individual 

prediction algorithms [8, 16]. For these reasons, our workflow relied on the CADD score [18], 

which integrates multiple levels of information including conservation and functional data, for 

variant prioritization.  

A piece of information that complements the deleteriousness of a variant relates to the 

intolerance of an affected gene to new functional mutations. The intolerance or constraint score 

of a particular gene is calculated from the deviation between the observed number of functional 

mutations in a gene in large populations from the expected number based on the total amount of 

variation in this gene [21]. However, the gene intolerance score can also be misleading; for 

example, it predicts major cancer predisposition genes to be tolerant to new functional mutations 

[20]. Therefore, since some subregions of genes are much more intolerant than other subregions 

to functional mutations, a region-based or exon-based intolerance score could achieve higher 

resolution and therefore lead to better predictions. Furthermore, as noted earlier in the results 

section, the gene intolerance score performs poorly for AR variants. Therefore, a new gene 

intolerance score calculated solely from homozygous variants of the gene should be used to 

prioritize variants for an AR inheritance model. 
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Current studies to identify causal variants in genetic diseases usually only focus on exonic 

functional variants and investigate only SNVs and small indels. Consequently, for up to 60% of 

investigated cases no causal variants could be identified [3, 4, 22]. A possible reason for failure in 

these cases may be that those causal variants are focal copy number variants (CNVs), structural 

variants (SVs), or intronic variants affecting transcript splicing, which cannot comprehensively be 

identified from WES data and thus require WGS for full exploration. Alternatively, causal variants 

might affect nonprotein-coding regions of the genome. While these variants can be identified 

from WGS data, their interpretation and use for prediction of functional effects are much more 

challenging than for coding variants. Recently, multiple efforts have been made to produce more 

accurate tools to predict effect of non-coding variants in Mendelian diseases [23, 24] so that in the 

future inclusion of non-coding variants into prioritization workflows should be possible. 

5. Conclusion 

The rapid decrease in sequencing costs has opened the door to the widespread application of 

genome sequencing in research as well as in clinical diagnostic settings. As a consequence, the 

resulting massive sequence data production has made data analysis and interpretation a daunting 

task, especially in clinical genomics settings where bioinformatics resources may be insufficient. In 

this study we developed an automated variant identification and prioritization pipeline for 

identification of causal variants of genetic disorders. By classification of variants and genes into 

distinct tiers, this pipeline makes it easier to obtain and focus on a small set of candidate variants 

to streamline downstream analysis. The pipeline will continuously be updated by adding new 

more accurate tools and scores to improve pipeline performance and will eventually also 

incorporate SVs, CNVs, and non-coding variants. This strategy should enable the characterization 

of causal variants underlying genetic disorders and facilitate diagnosis of such disorders in clinical 

settings. 
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