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A Framework for Modular Construction and Evaluation of
Metaheuristics

HELENA STEGHERR*, LEOPOLD LULEY*, JONATHAN WURTH*, MICHAEL HEIDER, and JORG
HAHNER, University of Augsburg, Germany

This paper presents MAHF, a software framework for the highly flexible construction of metaheuristics from individual
components and the subsequent evaluation of these algorithms. At that, MAHF is developed specifically for the experimental
analysis of the algorithmic behaviour during the optimization process with a focus on the influences of the algorithm’s
components. Furthermore, uncommon and incompletely examined operators or frameworks of “novel” metaheuristics are
included as well, so that their usefulness can be assessed. In the following, we will elaborate on MAHF’s structure and its
general goals and application possibilities. Concerning MAHF’s component structure, we will provide examples of its usage
and extension to ensure that it is reusable by others as well.

CCS Concepts: » Computing methodologies — Genetic algorithms; Generative and developmental approaches.
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1 INTRODUCTION

Although performance benchmarking and controlled experimentation are common ways to gain new insights
into metaheuristic algorithms and such empirical studies are regularly published, there is still a lot more to be
experimentally learned about these algorithms. Especially in the light of explainability requirements [2], detailed
analyses of the algorithms’ behaviours during the search process are of increasing interest. Furthermore, reaching
the ultimate goal of mapping algorithmic features to problem or fitness landscape characteristics to facilitate
the configuration or selection of an appropriate algorithm or improve it according to experimental insights is
still pending, though the number of studies in this area is increasing [e.g. 21, 27]. These research interests give
rise to a plethora of different implementations of metaheuristics, both as larger frameworks where different
methods are combined and as individual algorithms. However, especially for supposedly “novel” metaheuristics,
which are usually strongly based on some kind of metaphor for a natural or social phenomenon [cf. 8], code
is often not available, hard to understand or not readily comparable to implementations of other algorithms.
Furthermore, published results often lack a rigorous and fair analysis [1, 34]. Especially the lack of consistent
and transparent analyses led to the formulation of best practices for benchmarking and experimentation [3] and
reproducibility [22].

MAHF! is a software framework, written in the Rust programming language, intended for the modular
construction of metaheuristics and their experimental analysis. Its main goal is to enable the construction of
any metaheuristic framework and algorithm, including known approaches, hybrids, and new ideas, utilizing a
consistent basic set of components. In contrast to many other software frameworks, it aims at including operators
from strongly metaphor-based metaheuristics as well, to enable their rigorous evaluation. While the merit of
these is strongly disputed, it is not impossible that some of the researchers may have had potentially useful ideas,
even if their overall scientific method or presentation is (deeply) flawed. However, we carefully consider whether
an operator is clearly novel and will require a specific implementation, or if it is just a variation of an existing
operator that can be unified in the original implementation.
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MAHEF is explicitly designed for conducting experiments with metaheuristic algorithms. In terms of experimen-
tal evaluations, MAHF provides extensive logging options for a variety of parameters and measures, which can
be adapted and expanded for the specific experimental design. It also presents different evaluation options and
metrics for the gathered data. However, MAHF can be easily adapted to other purposes as well. Its algorithms
can be used for classical performance benchmarking studies and its component structure makes it suitable for
hyperheuristic approaches and automated algorithm design or configuration. Furthermore, applying algorithms
constructed within the framework to real-world problems is possible, so it can be used for direct applications,
although specialized operators or encodings might need to be added. Last but not least, MAHF aims at interoper-
ability, for example by providing access to the COCO benchmark suite [17]—which is already possible—or, in the
near future, enabling the evaluation of the experimental data with IOHanalyzer [38].

We are aware that the necessity of yet another framework is disputable, especially as there are calls for one
overarching general-purpose framework [12, 32]. However, we believe that this, although a compelling idea,
is not feasible and maybe not even sensible. While many frameworks are described as general-purpose, they
often still focus on one specific aspect, e.g. application to real-world problems, benchmarking, easy manual
construction of algorithms (often without many options for components), or automated algorithm configuration.
These aspects overlap, but when wanting to investigate some specific research question, it is often necessary to
expand or adapt the existing framework in that direction. This is not an easy task, e.g. due to the complexity
of the existing code, sparse documentation, or simply insufficient proficiency in the programming language.
Furthermore, there are cases where the performance of the code in terms of physical time is relevant, which
restricts the use of certain programming languages.

In the following, a detailed introduction to the structure and functionalities of MAHF is given. Section 2
provides a short overview of other frameworks and fundamental concepts. In Section 3, the main design principles
and concepts of MAHF are described in detail, highlighting the role and interactions of its different modules. This
includes examples of the incorporated pre-defined algorithms and their application, the existing components
and their implementation, and the usage of optimization problems. Finally, future concepts and extensions to be
integrated into the framework are discussed in Section 4.

2 RELATED WORK

There exist numerous implementations of individual metaheuristics, as well as frameworks capable of providing
different algorithms, in a multitude of programming languages. They usually differ in how they allow the
configuration of metaheuristic algorithms, the operators and other components they provide, and the ways
components can be combined. Most importantly, however, their main goals can differ, e.g. from focusing on only
evolutionary or swarm-based algorithms, or being specialized in automated algorithm configuration.

While revisiting every individual metaheuristic implementation is out of scope, we want to give a short
overview of existing metaheuristic frameworks to help the reader to categorize MAHF according to similarities in
functionality and capabilities. An earlier and more extensive summary of metaheuristic frameworks was provided
by [30]. However, some of the frameworks are not locatable any more or seem to be no longer maintained.
Therefore, we compiled a (non-exhaustive) list of frameworks that don’t suffer from these drawbacks (cf. Table 1).

While MAHF aims at experimental analyses, it will ultimately be similar to ParadisEO [12] and Heuristi-
cLab [37]. However, it should—after incorporating further extensions (cf. Section 4)—be more versatile, with more
components and operators available, while still providing excellent performance. Furthermore, extending MAHF
by new components, operators or optimization problems should be much easier than adding those to ParadisEO
or HeuristicLab, as the suitable structure for this is one of MAHF’s main characteristics. There are, of course, also
metaheuristic implementations written in Rust, though to our knowledge there are none that are comparable to
the frameworks listed above in terms of variety and variability of the included algorithms. As MAHF utilizes a
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Table 1. Some current metaheuristic frameworks

Framework Language URL Sources
ParadisEO C++ https://github.com/nojhan/paradiseo [6, 12, 20]
FOM Java https://www.isa.us.es/3.0/tool/fom/ [29]
HeuristicLab C# https://dev.heuristiclab.com [36, 37]
ECJ Java https://cs.gmu.edu/~eclab/projects/ecj/ [24, 32]
Opt4] Java https://sdarg.github.io/opt4j/index.html [23]
jMetal Java https://github.com/jMetal/jMetal [13, 26]
Cllib Scala https://github.com/ciren/cilib [28]
JGEA Java https://github.com/ericmedvet/jgea [25]
IOHexperimenter C++ https://github.com/IOHprofiler [10, 11]
PSO-X C++ https://code.ulb.ac.be/lab/IRIDIA [7]
DEAP Python https://github.com/deap/deap [15]
Nevergrad Python https://github.com/facebookresearch/nevergrad [31]
SPOT R https://cran.r-project.org/package=SPOT [4]
MitLware Scala https://github.com/MitLware [33]

unified representation of metaheuristics and easily interchangeable components, its structure is in parts similar
to the metaheuristic design patterns as described by [19] and [39], though they were not used as a basis when
implementing MAHF.

MAHF will come with its own evaluation tools. However, data formats for the use of existing tools will be
provided in the future. This will include, for example, IOHanalyzer [38], DSCTool [14] and BIAS [35].

3 THE MAHF FRAMEWORK

MAHEF is a framework for the modular construction of metaheuristic algorithms and their application to opti-
mization problems. It is implemented in the Rust programming language?, which is known for its compile-time
memory- and thread-safety guarantees while offering runtime speed comparable to C++ [18]. While language
speed may not be relevant in (real-world) applications where the evaluation of the objective function takes up
the majority of computing time anyway, and the algorithm has to provide a good enough solution only once,
the same is not true for experiments on benchmark suits like COCO. Faster execution therefore directly aids
practitioners in developing and evaluating algorithms, as more configurations can be examined in the same
amount of time, enabling more comprehensive experiments. MAHF is open-source and can be found on GitHub?,
together with its related projects, e.g. its evaluation tools?.

3.1 Goals and General Concept
MAHF primarily aims at

e providing an extensive collection of different components and operators,
e enabling the construction of any metaheuristic framework or algorithm from individual components, and
o facilitating fair experiments and comparisons of different metaheuristic algorithms.

Zhttps://www.rust-lang.org/
Shttps://github.com/mahf-opt/mahf
4https://github.com/mahf-opt/mahf-evaluation
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In the long run, however, MAHF should be as general-purpose as possible. That means, next to experimental
studies and research, it should also be applicable in real-world optimization scenarios.

MAHEF is implemented under consideration of the notion of a unified view of metaheuristics. That is, meta-
heuristics are modularized into components, some of which are the typical search operators, while others
implement additional functionalities. These components can be used to construct any metaheuristic (framework
and algorithm), additionally making all corresponding types of hybridizations between different metaheuristics
possible, e.g. PSO and EAs or even ACO and EAs.

The following sections will provide a detailed overview of MAHF’s modules, their functions, and their usage.
The next section specifically will motivate and introduce the general architecture of the MAHF framework, after
which the concepts of problems, heuristics, components, and conditions are described in detail. Other features
like logging and evaluation metrics are also outlined. Generally, a focus will be on explaining how to use MAHF
and how to extend and adapt it to one’s requirements. To this end, we will provide sufficient examples of the
individual functionalities. For detailed information on MAHF’s implementation, there is documentation available
within the repository, especially at mahf: :docs.

3.2 Framework

The goal of MAHF is to provide a high-level view of metaheuristics, while still offering fine-grained control over
low-level details. Its most important paradigms are:

e Divide static and dynamic information.
e Everything is a component.
e Components communicate through a shared blackboard.

Static and dynamic information. A metaheuristic execution is split into two parts:

o the algorithm description (e.g. pseudocode) and its initial parameters,
e and the assignment of all variables in the algorithm at a certain point in time.

The algorithm description, or configuration, is static and won’t change over the execution of the algorithm. The
assignment of variables, or algorithm state, on the other hand, is inherently temporary and may change in each
step of the algorithm. In MAHF, a Configuration describes an algorithm, or specifically a metaheuristic, and is
itself stateless. The State then contains all runtime information of an algorithm. Together, Configuration and
State fully describe the execution of a metaheuristic, or algorithm in general.

Component-based architecture. A component is a building block that implements a (small) functionality. They
may access and modify a private internal state, a state that is shared with other components, or the global
metaheuristic state. MAHF treats any such functionality as a component, including any metaheuristic operators,
logging, metrics, and even control flow itself. A reasonable approach to a metaheuristic framework is to specify a
metaheuristic template and pre-implement relevant operators, which can then be used to construct a customized
version of the heuristic. This works reasonably well in practice, as long as the structure of the metaheuristic
itself is not part of the wanted customization. Such a case would then require its own implementation, which,
depending on the framework, may not be time-consuming, but it certainly requires a deeper understanding of
the inner workings of the framework and is a much higher hurdle in general. MAHF tries to avoid this by always
operating on high-level building blocks, which simplifies development and makes it more elegant to implement
large functionality. Low-level control can be gained by implementing custom components, which can be exactly
as lightweight or powerful as needed.

Sharing information between components. Making everything a component is only useful if they share a common
interface. Defining such an interface is not an easy task, as it should offer a level of abstraction high enough to
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gain an advantage over manual implementation, while still offering enough control to realize any reasonable
project within the framework. MAHF employs a state container pattern for this, which itself utilizes Rust’s
type system. Components can insert, modify, read, and remove so-called custom state from the global State
(blackboard). Custom state can be any type that implements the marker trait CustomState, which itself has no
functionality. The State can hold an arbitrary amount of custom state, but a specific type only once. To define
own custom state, a new type can be constructed, either with separate functionality or wrapping existing types.
The visibility of the custom state type also controls who can access it, making it easy to encapsulate custom state.
For example, if a component adapts its parameters at runtime, it may store a private parameter state type in the
State, which can then only be modified by itself, because only it can access the type information. These visibility
rules are necessarily enforced at compile-time.

MAHF defines some common state types, which are relevant for almost all metaheuristics. For example,
Populations is the general state for storing Individuals, the basic unit which groups a solution to an opti-
mization problem and its objective value(s). As its name suggests, it can not only store a single population of
individuals but maintains a stack of populations that can be freely pushed and popped from by components.
This makes it possible to generalize evolutionary operators like selection and replacement to operations on
the population stack, creating a common interface. More details on this will be given in Section 3.5. Other
common state types include (the number of) Iterations or Evaluations, the BestIndividual yet found in
single-objective context, the currently known approximation of the ParetoFront for multi-objective problems,
and a shared seeded random number generator Random. All of this is located in the state module, an overview

of which is given in Figure 1.
«trait»
CustomState

P
Individual 1
== E TR R EEE R = EEREEEEEE 1
1 1 + solution(&self): &P::Encoding
1 + solution_mut(&mut self): &mut P::Encoding
1 + objective(&self): &P::0bjective
Random .
X [
f R 1
L P!
P state: :common
State
+ require<C, T: CustomState>(&self) Populations
+ has<T: CustomState>(&self): bool .
+ take<T: CustomState>(&mut self): T L. + current(&self): &[Individual<P>]
+ get<T: CustomState>(&self): &T - _> + current_mut(&self): &mut Vec<Individual<P>>
+ get_mut<T: CustomState>(&self): &mut T + push(&mut self)
....................................................... + pop(&mut self): Vec<Individual<P>>
iterations(&self): u32
evaluations(&self): u32 et
best_individual(&self): Option<&Individual> " P» 7:
‘Evaluations ‘ BestIndividual

populations(&self): &Populations
random_mut(&self): &mut Random
log(&self): &Log

¥
¥
¥
+ best_objective_value(&self): Option<&SingleObjective> ‘Iter‘ations
¥
+
+

Fig. 1. State management in MAHF: The State container stores arbitrary CustomState that can be read and written by
components. Some common metaheuristic state like trackers for iterations and evaluations or storage for populations of
Individuals are built into the framework. Some types are parametrized by the problem type P.

Fitting it all together. Components in MAHF are immutable in the sense that they only contain parameters that
are not changed during execution and are therefore static information. Note that any mutable state is inserted by
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components into the State at runtime and is therefore not strictly part of the component, but only managed by it.
Specifically, a Configuration only contains a single Block component, which groups arbitrary other components.
A Configuration can be executed by calling the optimize method with a given problem as argument, which
returns the State after the execution has finished. While only the final state of the metaheuristic is relevant for
applications where only the problem’s optimum is sought after, experiments examining metaheuristic behaviour
typically depend on information collected over the whole runtime. MAHF specifically addresses this issue with
an extensive and customizable logging system (cf. Section 3.7).

Figure 2 gives an overview of the core functionality of MAHF, highlighting the interaction and relationships
between Configurations, Components, and the State. Metaheuristics like GA and PSO are represented by
Configurations, which are made up of Components and Conditions (components that evaluate to a boolean
value). Components and conditions communicate using the State, which is instantiated by the Configuration.
The Configuration, Components, and Conditions are parametrized by the problem type. It also shows a selection
of common components extracted from metaheuristics and often-used conditions. The following sections will go
into detail about these modules.

use mahf::prelude: :*;

use problems: :bmf::BenchmarkFunction;

let problem: BenchmarkFunction = BenchmarkFunction: :sphere( 10);

let config: Configuration<BenchmarkFunction> = pso::real_pso(
pso: :RealProblemParameters {
num_particles: 20,
weight: 1.0,
c_one: 1.0,
c_two: 1.0,
v_max: 1.0,

termination: :FixedIterations: :new( 500)
& termination::DistanceToOpt::new(0.01),

let state: State<BenchmarkFunction> = config.optimize(&problem);

println!( , state.best_individual().unwrap());
println!( , problem.known_optimum());

Listing 1. Applying PSO to the Sphere benchmark function: The code constructs the benchmark function with 10
dimensions, configures a real-valued PSO, and executes it for 500 iterations, stopping early if within 0.01 of the known
optimal objective value. Afterwards, the best found individual and the known global optimum are printed. Type annotations
are given for clarity, but are not needed for execution.
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Configuration p
________________________ > State
+ builder(): ConfigurationBuilder A A\
+ optimize(&self, &P): State I [} '
[}
N N Lo
1 1 L h 1
1 L ip h [
i q q q i
, | ConfigurationBuilder L '
1
1 b [}
! pmar § B e
. Pyt P
heuristics «trait» I : «trait» re
Component : ' Condition
ga pso 1 o = B
+ initialize(&self, &P, &mut State) + initialize(&self, &P, &mut State)
+ execute(&self, &P, &mut State) + evaluate(&self, &P, &mut State): bool

de es ils A A
1

components conditions
recombination mutation control_flow logic branching
) BitflipMutation GaussianMutation ‘ Block ‘ ‘ Loop ‘
evaluation
+ rm: f64 + rm: f64
L i + deviation: f64 ‘ Branch ‘ ‘ Scope ‘ Not
initialization . .
UniformMutation .
SwapMutation coo
. + rm: 64 . .
constraints + deviation: f64 + n_swap: u32 termination
000 FixedIterations
+ max_iterations: u32
selection replacement
FixedEvaluations
FullyRandom RouletteWheel Tournament MuPlusLambda
- + max_evaluations: u32
+ offspring: u32 + offspring: u32 + offspring: u32 + max_population_size: u32
+ size: u32
3 StepsWithoutImprovement
ExponentialRank . . RandomReplacement
RandomWithoutRepetition + steps: u32
+ offspring: u32 + max_population_size: u32
+ base: f64 + offspring: u32

Fig. 2. The MAHF framework: Overview of the interaction between configurations, components, and the state.

Applying PSO to the sphere benchmark function might look like the example given in Listing 1. The example
uses a pre-implemented PSO as optimizer. Listing 2 uses Configuration’s builder syntax to construct an Ant
System and applies it to a TSPLIB instance. More information and examples of this will be given in Section 3.4.
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use mahf::prelude::*;

use aco::ant_ops;

use problems::tsp::{ , SymmetricTsp};
use tracking::{files, functions, trigger};

let problem: SymmetricTsp = tsp::Instances::BERLIN52.load();

let config: Configuration<SymmetricTsp> = Configuration::builder()
.do_(initialization: :Empty::new())
.while_(
termination: :FixedEvaluations: :new( 10_000),
|builder| {
builder
.do_(ant_ops: :AcoGeneration: :new(
20, 2.0, 1.0,
0.0,
)
.evaluate()
.update_best_individual()
.do_(ant_ops: :AsPheromoneUpdate: : new(
0.2, 1.0,
)
.do_(tracking: :Logger: :new())
1
)
.build();

let state: State<SymmetricTsp> = config.optimize_with(&problem,

state.insert(Random: :seeded(42));

state.insert(
tracking: :LogSet: :<SymmetricTsp>: :new()

.with(trigger::Iteration::new(50), functions::best_individual),

DE

|state] {

files::write_log_file( , state.log()).unwrap();

Listing 2. Applying Ant System to the TSPLIB Berlin52 instance: The code constructs the TSPLIB instance, configures
an Ant System, and executes it for 10000 objective function evaluations. Every 50 iterations, the best individual yet found is
logged and written to a log file afterwards. Type annotations are given for clarity, but are not needed for execution.
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3.3 Problems
Optimization problems in MAHF have three defining properties:

e a solution encoding E (genotype),
e an objective type O, usually single- (O = R) or multi-objective (O = R", n > 1), and
e an objective function in the form f : E — O.

Those properties are grouped under the Problem and Evaluator traits, which form the minimal requirement for
optimization problems. Several traits are built on top of Problem, which group problems by their characteristics
(e.g. a vector-based solution encoding) or enable heuristics to access problem-specific information (e.g. the
search space boundary in continuous optimization). The basic relationships of problems with single and multiple
objectives are visualized in Figure 3.

«trait» «trait»
Objective Evaluator
A I A + type Problem: Problem
[ — ] [} L T
: : : + evaluate(&self, problem: ..., state individuals:
. . i e . AN
SingleObjective b MultiObjective .
1 |
1 1
! bl
K roblems
«trait» P
................... ?FRR%?W"______"______" ’ SymmetricTSP ‘ ’ coco: :Problem
+ type Encoding oo TmT==
+ type Objective: Objective
--------------------------------------------- ’ BenchmarkFunction ‘

+ name(&self): &str

T T

«trait» «trait»
SingleObjectiveProblem MultiObjectiveProblem
+ type Encoding + type Encoding
+ type Objective = SingleObjective + type Objective = MultiObjective

Fig. 3. Problem representation in MAHF: Every problem is associated with two types: the solution encoding (e.g. real-
valued vector) and the objective type (e.g. single objective). It must then provide means of mapping from one to the other.

MAHEF comes with three problems pre-implemented at the time of writing:

e a collection of popular continuous benchmark functions,
e bindings to the COCO benchmark suite, and
e a selection of TSPLIB instances.

Own problems can be added by implementing the Problem and Evaluator traits for the problem, providing
both metadata and the possibility to evaluate solutions.

3.4 Heuristics

The heuristics module contains a submodule for each pre-implemented metaheuristic. A core goal of MAHF is
to enable the investigation of specific research questions, which naturally entails wildly different requirements
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Configuration::builder()
.while_(termination, |builder| {
builder

.do_(selection)

.do_(crossover)

Lif_(
branching: :RandomChance: :new( pm),
|builder| builder.do_(mutation),

.do_(constraints)
.evaluate()
.update_best_individual()
.do_(replacement)

k)]

.build()

Listing 3. An example GA defined using MAHF’s builder syntax: The selection, crossover, mutation, constraints,
and replacement variables contain components performing the specific operations.

concerning metaheuristic implementations. This module, therefore, is in no way intended to be an exhaustive
implementation of all (problem-specific) metaheuristics found in the literature, but an assembly of common or
distinct heuristics for selected problem types. It has two main purposes: to show how certain components are
used, and to serve as a starting point for custom heuristic definitions. The unmodified implementations in this
module only fit basic needs by design, and practitioners are actively encouraged to rely on MAHF’s powerful
component system to adapt them to their purposes.

Algorithm 1: The example GA in Listing 3 as pseudocode.

Input: Objective function f with domain A, pre-initialized Population P, mutation probability p,
1 ipest <~ NULL;
2 while termination criterion not met do

3 C « selection(P);
4 crossover(C);

5 Generate p € [0,1];
6 if p < p;, then

7 L mutation(C);

Constrain all individuals € C to A;
9 Evaluate all individuals € C using f;

=)

10 Update the best individual ipest;

n | P « replacement(P, C);
Output: Best individual ipegt
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Configuration::builder()
.do_(initialization: :RandomSpread: :new_init(num_particles))
.evaluate()

.do_(state::PsoState::initializer(v_max))
.while_(termination::FixedIterations::new(max_iterations), |builder]| {
builder
.do_(generation: :swarm: :PsoGeneration: :new(
weight, c_one, c_two, v_max,
)
.do_(constraints::Saturation: :new())
.evaluate()
.do_(state: :PsoState: :updater())
D)
.build()

Listing 4. PSO on a real-valued search space using MAHF’s builder syntax.

Each metaheuristic submodule can be split into two parts:

e a generic metaheuristic template, and
e problem-specific metaheuristic configurations based on this template.

For example, the heuristics::ga module contains the generic heuristics::ga::ga template function,
which constructs a component containing a genetic algorithm similar to Listing 3.

The problem-specific implementations, e.g. heuristics::ga::real_ga and heuristics::ga::binary_ga,
define an initialization method for the population, insert appropriate components for selection, crossover, etc.,
into the template and convert it into a full Configuration ready for execution.

MAHEF relies on Rust’s builder pattern® to enable simple and idiomatic metaheuristic definitions. The syntax
is kept as close as possible to pseudocode, so even users not familiar with Rust should be able to grasp the
general structure. Listing 3 and Algorithm 1 show the definition of a simple GA using MAHF’s builder syntax and
pseudocode, respectively. The subroutines for selection, crossover, mutation, and replacement are left unspecified
here.

Note how the Rust code translates into pseudocode almost line by line. A comparison of two definitions of
PSO is shown in Listing 4 and Algorithm 2, this time with all components specified.

Currently, eleven heuristics are pre-implemented, which range from classic metaheuristics like the GA to more
metaphor-based heuristics like Invasive Weed Optimization. Baseline heuristics like random searches are also
included. Table 2 gives a short overview of those heuristics.

New heuristics can be added exactly like shown in Listings 3 to 4, i.e. using MAHF’s ConfigurationBuilder,
or, for convenience, Configuration: :builder. It supports flow control operators like do_, if_, if_else_,
or while_, but also shortcuts for often used components, e.g. evaluate instead of inserting the Evaluator
component manually. This is often used in combination with update_best_individual, which saves the best
individual yet found in a single-objective context. It is also possible to execute components independently of
others by using the scope_ operator, which creates a new child State for the block, leaving the parent state

3See https://doc.rust-lang.org/1.0.0/style/ownership/builders.html for more information on the builder pattern.


https://doc.rust-lang.org/1.0.0/style/ownership/builders.html

14 « Stegherretal.

Algorithm 2: The real-valued PSO in Listing 4 as pseudocode.

Input: Objective function f with domain A, number of particles n, maximal velocity vyay, inertia weight
w, acceleration coeflicients ¢4, ¢, number of iterations k
1 Initialize n particles with a random uniform position € A and velocity € [~Umax, Umax];
2 Evaluate all particles using f;
3 Initialize the local bests and the global best g;
4 fori < 0tokdo

5 Update position and velocity of all particles using «, @1, ¢1, Umax;
6 Constrain all particle positions to A;
7 Evaluate all particle positions using f;

8 Update local bests and the global best g;
Output: Global best position g

Table 2. All heuristics pre-implemented in MAHF (at the time of writing): Note that many components (e.g. selection
strategies) are not problem-specific, and therefore reusable for many different problem types. The “Problem types” column
therefore only refers to the most specific requirements of the components used in a heuristic.

Heuristic Problem types

Ant Colony Optimization (ACO) TSP

Chemical Reaction Optimization (CRO) real-valued

Differential Evolution (DE) real-valued

Evolution Strategy (ES) real-valued

Genetic Algorithm (GA) real-valued, binary

Iterated Local Search (ILS) real-valued, permutation-based
Invasive Weed Optimization (IWO) real-valued

Local Search (LS) real-valued, permutation-based
Particle Swarm Optimization (PSO) real-valued

Random Search (RS) real-valued, permutation-based
Random Walk (RW) real-valued, permutation-based

unmodified by default. This is especially useful for nested local searches or hybrid approaches, which might
perform multiple “inner” iterations with respect to the main loop.

3.5 Components

A major design principle of MAHF is to break a metaheuristic down into modular components that can easily be
replaced or applied in other contexts. The components module contains many such modular building blocks,
which can be used to construct arbitrary metaheuristics. The term “component” is used in a rather broad sense
here, grouping both classical metaheuristic operators and additional functionality like evaluation, calculation of
metrics, or even control flow.

In general, a component is a routine that receives the current state of the metaheuristic and performs some
actions, modifying the metaheuristic state and its internal state in the process. Note that in MAHF, both of these
states are represented by a single State struct. This structure allows the expression of any piece of reusable code
as a component, using the State as a common interface to communicate. MAHF defines various categories of
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Table 3. Component categories with an example component.

Category Example component
Initialization RandomSpread
Selection Tournament
Recombination UniformCrossover
Mutation FixedDeviationDelta
Constraints Saturation
Evaluation SequentialEvaluator

Replacement MuPlusLambda
Miscellaneous  Debug
State-bound ElitistArchive: :update

such components, which range from basic evolutionary operators like selection, recombination, mutation, and
replacement, over heuristic-specific operators such as PSO’s particle position update, to generic functionality
like constraint-handling techniques. An overview of those categories is given in Table 3, each with an example
component.

The following section will focus on the implementation of components in code, illustrating the main concepts
needed for reading and understanding component definitions. Afterwards, the component categories implemented
in MAHF at the time of writing are introduced and motivated using representative components. The component
definitions may be shortened (constructor, asserts omitted, etc.) for the sake of brevity. For an overview and
reference of all implemented components see the documentation of the components module on GitHub.

3.5.1 Implementing components. In code, defining a component can be split into three basic steps:

o Defining the component struct with its parameters,

e adding a constructor, which takes the arguments and returns a Component (optional, but recommended),
and

e implementing the Component trait, i.e. its execute method, which capsules the functionality. Optional
setup can be done in the initialize method.

Listing 5 shows an example PrintPopulation component without parameters, which simply prints the current
population to the standard output. The execute method (line 16 to line 22) receives the State (and problem,
which is not used in this case), extracts the current population, and iterates over all individuals, printing them.

It can be instantiated using its constructor, i.e. the new method: PrintPopulation::new() . Note that the preferred
way to implement such minor test behaviour is to use the Debug component, or rather the short-hand debug
method of the ConfigurationBuilder, together with a closure.

All components can be categorized by their generality: they can be specific to certain problem types (e.g.
TSP), require the problem to have certain properties (e.g. the problem must have a single objective), or have no
restrictions at all. Most components will impose at least some restrictions on the problems or solutions they
can be applied to, which manifests in code as having restrictions on the generic problem type P (or not being
parametrized at all). For example, the PrintPopulation component in Listing 5 requires the problem’s solution
encoding (P: :Encoding) to implement a debug print (line 7 and line 14).

As similar types of components often operate on the state in similar ways, MAHF explicitly encourages the use
of “translator” traits and structs to reduce code duplication. This is accomplished in code by defining a custom trait
with a simpler interface and then implementing a wrapper struct of the trait, which implements the Component
trait. This pattern is used in most of MAHF’s component categories, usually to hide operations on the population
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pub struct PrintPopulation;
impl PrintPopulation {
pub fn new<P: Problem>() -> <dyn Component<P>>
where
P::Encoding: std::fmt::Debug,

s:new( )

}
impl<P: Problem> Component<P> for PrintPopulation
where

P::Encoding: std::fmt::Debug,

{
fn execute(& , _problem: &P, state: &mut State<P>) {
let population: &[Individual<P>] = state.populations().current();
for individual in population {
println!( , individual.solution(), individual.objective())
}
}
3

Listing 5. Definition of a simple example component which prints the current population to the standard output.

stack and to convert between Individual and the solution encoding. For example, the GaussianMutation only
implements the Generation trait and wraps itself with the Generator struct in its constructor, which implements
Component. The implementation of GaussianMutation is shown in Listing 7. Own components and translator
traits and structs can be added in a similar fashion.

3.5.2  Component categories.

Control flow. Four basic primitives of control flow components are implemented in MAHF: Block, Loop, Branch,
and Scope, which correspond to the do_, while_, if_, and scope_ methods of ConfigurationBuilder.

Initialization. Initialization components initialize (a population of) individuals from scratch, using a specified
distribution. They push a new population on the stack managed by the Populations state, ignoring other
populations that may be present. For example, the RandomSpread component generates n uniform-distributed
individuals in a real-valued search space. It requires the problem to define boundaries of the search space and a
vector-based solution encoding. For binary problems, the RandomBitstring can be used to generate n bitstrings,
generating a 1 at each position with a certain probability p.

Selection. Components implementing this evolutionary operator select a subset of the current population,
copying them into a new population on the stack, which can then be modified by other components (e.g. mutation
components). They do not modify the current population. An example is the Tournament component shown
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pub struct Tournament {

pub offspring: u32,

pub size: u32,
}
impl<P: SingleObjectiveProblem> Selection<P> for Tournament {
fn select_offspring<'p>(
& )
population: &'p [Individual<P>],
state: &mut State<P>,
) —> <&'p Individual<P>> {
let mut selection = c:new();
for _ in 0.. .offspring {
let winner = population
.choose_multiple(state.random_mut(), .size as usize)
.min_by_key(|&i| i.objective())
.unwrap(Q);
selection.push(winner);
}

selection

Listing 6. Definition of the Tournament selection component: the winners of of fspring tournaments with size size
are selected.

in Listing 6, which performs the well-known tournament selection, selecting n individuals using a certain
tournament size k.

Generation. This category groups all components which generate a new population from the current population,
usually modifying the current population in-place. Special cases are initialization/generation hybrid components
like RandomSpread, which can be configured to either be an initialization component (generating and pushing a
new population on the stack) or as a generation component (replacing the current population). The generation
category currently defines three subcategories, namely recombination, mutation, and specialized swarm operators.

Generation::Recombination. Recombination or crossover components combine multiple individuals into (multi-
ple) new individuals. An exemplary component for this category is the NPointCrossover component, which
splits two solutions at n points and interleaves them with a certain probability p, creating either one or two
children depending on a parameter.
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Generation::Mutation. Components of this generation subcategory perform a perturbation on single individuals.
The GaussianMutation component (Listing 7), for example, executes a mutation of each solution dimension
with a certain probability p using NV (0, o)-distributed values, as often seen in real-valued evolutionary algorithms.
For permutation-based problems, the InversionMutation component takes a random slice of the solution and
inverts it.

Constraints. As generation components are not required to respect constraints and search space boundaries,
components of this category convert infeasible solutions into feasible ones. The Saturation component, for
example, implements a simple clamp strategy for keeping solutions inside the search space in real-valued
optimization, while the Mirror component reflects the amount exceeding the boundary inwards at the same
boundary.

Evaluation. This category contains components related to objective value(s). For example, the Evaluator
computes objective value(s) for the current population, while the UpdateBestIndividual component tracks the
best individual yet found for problems with a single objective.

Replacement. Replacement components perform the evolutionary operator of replacing individuals from the
parent generation with individuals from the child generation, i.e. mix the current and previous population,
reducing the size of the population stack by one. Example components for this are the MuPlusLambda and
Generational components, which use a u + A strategy (keep n fittest individuals from both generations; cf.
Listing 8) or completely replace the parent population with the child population, respectively.

Miscellaneous. This category groups special components meant as helpers and for debugging. A main example
of this is the Debug component, which allows for quickly inserting custom functionality into a configuration.
It is most efficiently used through the debug() and assert() methods on ConfigurationBuilder (Listing 9),
which accept closures operating on the State or problem. Note that they are meant for debugging only, real
functionality should be implemented by implementing new components.

State-bound. It is not unusual for metaheuristics to have metadata beyond the current population of individuals.
PSO, for example, additionally tracks the velocities and history of individuals, defined in its PsoState. Components
that only revolve around updating a particular state are called state-bound and are usually constructed through a
method on the respective state struct. The component updating an archive of the n best individuals evaluated
(ElitistArchive) using the current population is, for example, constructed using the ElitistArchive: :update
method.

3.6 Conditions

Conditions are similar to components in the sense that they group reusable functionality behind a common
interface. The main difference lies in their application: while components interact only through the state,
conditions are evaluated directly by components. The boolean return value of the evaluate method (condition
equivalent of components execute method) is then used to decide how to proceed: for example, the Branch
control flow component evaluates a Condition to decide on the execution of either the “if” or “else” branch.

3.6.1 Implementing conditions. Conditions are defined identically to components (cf. Section 3.5.1), only imple-
menting the Condition trait instead of Component.

3.6.2 Condition categories.

Logic. Logic conditions allow combining other conditions using boolean operators like AND, OR, and NOT.
They implement the bit operators in Rust, allowing concatenating conditions using the &, |, and ! operators.
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/// Applies a gaussian mutation to each position depending on mutation rate.
/// The distribution is centered around @ and the resulting value is added to the value of the solution.
11/
/// Uses a Gaussian distribution.
11/
/// If rm = 1, all positions of “solution® are mutated.
#[derive(Serialize, Deserialize, Clone)]
pub struct GaussianMutation {

/// Probability of mutating one position.

pub rm: 64,

/// Standard Deviation for the mutation.

pub deviation: f64,
}
impl GaussianMutation {

pub fn new<P>(rm: f64, deviation: f64) -> Box<dyn Component<P>>

where

P: Problem<Encoding = Vec<f64>>,

Box::new(Generator(Self { rm, deviation }))

}
impl<P> Generation<P> for GaussianMutation
where

P: Problem<Encoding = Vec<f64>>,

fn generate_population(
&self,
population: &mut Vec<P::Encoding>,
_problem: &P,
state: &mut State<P>,
) {
let distribution = rand_distr::Normal::new(©.0, self.deviation).unwrap();
let rng = state.random_mut();

for solution in population {
for x in solution {
if rng.gen_bool(self.rm) {
*x += distribution.sample(rng);

Listing 7. Definition of the GaussianMutation component: it mutates each solution dimension with probability rm using
a N (0, o) distribution. Because it only implements the Generation trait, it has to wrap itself in a Generator in its constructor
to be a full Component.
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pub struct MuPlusLambda {

pub max_population_size: u32,
3
impl<P: SingleObjectiveProblem> Replacement<P> for MuPlusLambda {
fn replace_population(
& ,
parents: &mut <Individual<P>>,
offspring: &mut <Individual<P>>,
_state: &mut State<P>,
) {
parents.append(offspring);
parents.sort_unstable_by_key(|i]| *i.objective());
parents. truncate( .max_population_size as usize);

Listing 8. Definition of the MuPlusLambda replacement component: as the name suggests, it performs a i+ replacement
strategy to replace the previous generation.

Termination. Most metaheuristics are not specific to certain termination criteria or can be easily extended
to custom ones. Conditions of this type are primarily intended to control the termination of the main loop, for
example, performing a certain amount of iterations (FixedIterations, cf. Listing 10) or stopping when no better
solution was found in the last n steps (StepsWithoutImprovement).

Branching. Conditions for branching currently include RandomChance, which evaluates to a random outcome
with a certain probability, and metaheuristic-specific criteria for, e.g. CRO.

3.7 Logging

MAHF has an extensive built-in logging system based on triggers and extractors. Triggers describe when
something should be logged by specifying a logging condition, while extractors define what should be logged.
MAHF similarly provides common triggers that allow logging every x iteration or when some state is changed
by a certain amount, but custom triggers can be defined as well. The most commonly used extractor is the
auto extractor, which takes care of logging any primitive state such as integer or floating point values. For
more complex cases, such as logging the population, a custom extractor can be defined as well. Extractors can
log whatever state they want in whatever form they want, so they are a very powerful logging tool. These
triggers and extractors are then combined into a LogSet, which can be inserted into the State when calling
Configuration: :optimize_with. A simple example of this is given in Listing 2, while Listing 11 shows how
more detailed logging might look. When reaching a Logger component in the evaluation, the LogSet will run
every extractor where the trigger’s criteria are met. This simple system allows highly flexible and powerful
logging. When defining a heuristic configuration, a Logger can be inserted in places where logging should
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Configuration::builder()

.do_(initialization: :RandomPermutation::new_init( 1)
.evaluate()
.update_best_individual()

.while_(termination: :FixedEvaluations: :new( 10), |builder]| {
builder

.do_(generation: :RandomPermutation: :new_gen())

.assert(|state| state.populations().current().len() == 1)
.evaluate()

.do_(selection::All::new())
.scope_(|builder]| {
builder.while_(termination::FixedIterations: :new( 100), |builder] {
builder

.do_(selection: :DuplicateSingle: :new( 50))

.do_(generation: :mutation::SwapMutation: :new( 5))

.evaluate()

.do_(replacement: :MuPlusLambda: : new( 1))
b

»
.update_best_individual ()

.debug(]|_problem, state| println!( , state.populations().current()))
.do_(replacement: :MuPlusLambda: :new(1))

D
.build()

Listing 9. Example of the debug and assert capabilities of ConfigurationBuilder on debugging an ILS: line 12 and
line 28 show the usage of assert and debug, respectively.

be performed, usually after an iteration. Figure 4 provides a general outline of the logging module and the
relationships within.

MAHEF logs are stored as dense tables in the CBOR [5] format. It uses the CBOR format to save memory
compared to JSON, but the logs can easily be viewed as such using the tool available on https://cbor.me/. When
viewed as JSON, logs have a structure as shown in Listing 12. MAHF also provides a Python library to conveniently
load stored log files. This allows experiments to be conducted in Rust while doing the evaluation and performance
analysis in Python. Other languages can be used easily as well, as long as they have a CBOR implementation.
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pub struct FixedIterations {

pub max_iterations: u32,

}
impl<P> Condition<P> for FixedIterations
where
P: Problem,
{
fn initialize(& , _problem: &P, state: &mut State<P>) {
state.require::< , Iterations>();
state.insert(Progress(0.));
}
fn evaluate(& , _problem: &P, state: &mut State<P>) -> bool {
let iterations = state.iterations();
state.set_value: :<Progress>(iterations as f64 /
iterations < .max_iterations
3
}

Listing 10. Definition of the FixedIterations condition.

let state = config.optimize_with(&problem, |state| {

state.insert(
LogSet: :new()

.with_common_extractors(trigger::Iteration::new(50))

.with(
trigger::Iteration::new(50),

functions::normalized_diversity::<_, TrueDiversity>,

)

.with(trigger::Iteration::new(100), functions::best_individual)
.with(trigger::FinalIter::new(), functions::best_individual),

s

Listing 11. Logging in MAHF: the number of evaluations, the termination progress (common_extractors), and a diversity
measure are logged every 50 iterations, while the best individual found is logged every 100, and in the final iteration.

.max_iterations as f64);
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{
"names": ["Iteration", "BestFitness"],
"entries": [
L
{"key": 0, "value": 13},
{"key": 1, "value": 100.0}
1,
L
{"key": 0, "value": 2}
]
]
}

Listing 12. An example log file as JSON

While MAHF uses a custom format that is incompatible with other existing formats (such as the IOHprofiler
format [11]), when logging at the required steps, it contains all the data needed to generate files in the respective
formats. In the future, such functionality will likely be provided by MAHF directly.

«trait»
Component<P>

PP
Log LogSet T
+ push(&mut self, step: Step) + with(mut self, trigger: ..., extractor: ...): Self
+ with_auto_extractor<T: CustomState>(mut self, trigger: ...): Self
+ with_common_extractors<T: CustomState>(mut self, trigger: ...): Self

Q

«trait»
Trigger<P>

Extractor [

Entry

+ name: &str
+ value: dyn Serialize

. . tracking: :functions
tracking::trigger

PEERY + auto<T: CustomState, P: Problem>(state: &State): Entry
. 1 S ] + best_individual<P: SingleObjectiveProblem>(state: &State)
Iteration Change |~ + best_objective_value<P: SingleObjectiveProblem>(state: &State)

Fig. 4. Logging in MAHF: The LogSet defines when and what to log using Triggers and Extractors, while the Logger
component performs the actual logging and stores it in the Log for later retrieval.
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3.8 Experiments and Evaluation with MAHF

Tools for the evaluation and analysis of the data can be found in the MAHF-evaluation repository on GitHub®.
While many functionalities of the evaluation procedures are still work in progress, basic tools for examining the
experimental data are already available.

Evaluation and data analysis procedures intended for MAHF’s generated data include data formatting and
preprocessing functions, summary statistics, statistical analysis methods, including Bayesian analysis, for perfor-
mance and behavioural analysis, and the output of results as suitable plots and tables. While evaluation scripts
will be available for common experiment designs, adapting those for own experiments is, of course, possible.
Additionally, common analysis approaches are provided in Jupyter notebooks to exemplify the individual steps
and intermediate results.

Next to extending available analysis procedures, there will also be an option to get the data generated with
MAHF in other data formats, most notably the COCO data format [16]. This will allow, for example, the usage of
IOHanalyzer [38] for analysing and evaluating the results.

Metrics and Measures. MAHF comes with an assortment of metrics and measures to directly include additional
information on the algorithmic runs in the logs. This way, unnecessarily complex and data heavy approaches
such as logging entire populations to calculate the respective values of interest in the subsequent analysis can be
avoided. Furthermore, the resulting values can be used within the algorithm as criteria for adaptation strategies.

Currently, MAHF incorporates different diversity measures as described in [9]. These are applicable to
all population-based algorithms for real-valued problem types. The following measures can be found in the
state::diversity module:

e DimensionWiseDiversity

e PairwiseDistanceDiversity

e TrueDiversity

e DistanceToAveragePointDiversity

All of those measures are normalized as described in [9].
The usage of additional measures and metrics is connected to the logging capabilities of MAHF and thus quite
simple. Other measures, e.g. ones related to convergence, will be added in future releases.

4 FUTURE WORK

MAHF is still in its early stages, but while its main focus currently is on behaviour analysis and experimental
comparisons of metaheuristic algorithms, its modular structure is also promising for other extensions and
approaches. Therefore, in terms of its primary purpose, MAHF will be extended by adding different operators
to recreate more metaheuristics for analysis and comparison. This will especially entail the incorporation of
state-of-the-art algorithms. Furthermore, the assortment of benchmark problems and also real-world problems
will be extended. While MAHEF is currently focused on numerical optimization, these extensions will include a
variety of combinatorial problems and algorithmic operators as well.

Additionally, extending MAHF entails expanding its capabilities to multi-objective problems and respective
algorithmic optimization approaches. While the framework already extends to multiple objectives, no specific
problems and components are implemented yet. Presumably, the COCO bbob-biobj benchmark functions will be
usable as bi-objective benchmark problems.

Finally, with respect to MAHF’s focus on analysis and experimentation, the evaluation procedures, statistical
analysis variations, and plotting options will be extended as well, to provide basic templates for adapting to the
current experimental question.

Shttps://github.com/mahf-opt/mahf-evaluation
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In terms of other extensions, future work on MAHF will most probably include the development and testing of
hyperheuristic approaches. MAHF’s components are most suitable to be utilized by constructive hyperheuristics
and automated algorithm configuration techniques. This can even be extended to not defining the metaheuristic
framework beforehand, but including conditions and internal heuristics in the procedure. Additionally, MAHF
facilitates exchanging components and operators during the search procedure, which will provide additional
options to automatically adapt an algorithm to a given problem.

While special care was taken in the design of MAHF to be understandable by practitioners who are not
proficient in Rust, it is still an obstacle to its more widespread adoption. Exposing some of MAHF’s functionality
to Python will alleviate this issue while enabling integration with the wealth of frameworks for, e.g. machine
learning currently available in the Python ecosystem.

5 SUMMARY

This paper presented MAHF, a framework for the modular construction of metaheuristics utilizing a large
set of components. MAHF’s primary goal is the conduction of large experiments for fair and reproducible
comparisons of different algorithmic strategies, with a focus on analysing their search behaviour next to their
general performance. To this end, it provides extensive algorithm configuration possibilities, measures related to
the algorithmic behaviour, and a wide range of logging options. However, it can also be used for other purposes,
for example real-world applications, hyperheuristic approaches or automated algorithm configuration.

Next to detailing MAHF’s goals, this paper also described the general implementation of its modules to
make MAHF generally easier to use, extend, and adapt to one’s own purposes. This included the choice or
implementation of optimization problems, the use of pre-configured algorithms in the heuristics module, and
the combination and addition of components. While MAHF is still actively developed and expanded, we hope
that the detailed explanation in this paper nevertheless encourages other researchers to try it and see if it fits
their needs.
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