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Abstract

Performance analyses based on videos are commonly
used by coaches of athletes in various sports disciplines.
In individual sports, these analyses mainly comprise the
body posture. This paper focuses on the disciplines of triple,
high, and long jump, which require fine-grained locations of
the athlete’s body. Typical human pose estimation datasets
provide only a very limited set of keypoints, which is not suf-
ficient in this case. Therefore, we propose a method to de-
tect arbitrary keypoints on the whole body of the athlete by
leveraging the limited set of annotated keypoints and auto-
generated segmentation masks of body parts. Evaluations
show that our model is capable of detecting keypoints on
the head, torso, hands, feet, arms, and legs, including also
bent elbows and knees. We analyze and compare different
techniques to encode desired keypoints as the model’s input
and their embedding for the Transformer backbone.

1. Introduction

Analyzing athletes during trainings or competitions is
popular among all sports disciplines. In team sports, typical
applications are tactics analyses or the tracking and evalu-
ation of athlete’s running paths and the ball during a game.
Coaches and athletes of individual sports use video anal-
yses to precisely track the body position. They use these
methods to assess the performance of the athletes, to de-
rive improvements, and develop appropriate training rou-
tines. The key to analyze the body position is mostly to
identify the locations of specific keypoints on the body of
an athlete. With these keypoints, exact movements and de-
rived parameters can be evaluated. In this paper, we focus
on the disciplines of triple, high, and long jump. Athletes
of these disciplines are highly interested in their step fre-
quency, speed, and body posture during the in-run and the
jump phase.

Typically, only professional athletes have access to such
evaluations as they require a large effort. 2D Human Pose

Figure 1. Two detection results of arbitrary keypoints on images of
our jump-broadcast dataset using our model, visualized with three
equally spaced lines to both sides of each body part including the
outer boundary in pure color and the central line in white with a
color gradient from the boundary to the central line.

Estimation (HPE) models can help to improve the availabil-
ity of such video analyses, because they can automate the
keypoint detection part which is commonly the most time
consuming task. However, the fixed set of keypoints that
standard 2D HPE models provide is not sufficient for some
kinds of analyses. Adding more keypoints to a fixed set re-
quires annotating all new keypoints in most images, which
is again very time consuming and the resulting model is
still limited to a (larger) fixed set of keypoints. In order
to remove such restrictions, recent works [10, 11] have pro-
posed a technique to detect arbitrary keypoints on the limbs
of humans. They adapt the Vision Transformer (ViT) [2]
based method TokenPose [7] by replacing the learned to-
kens for each fixed keypoint with a query embedding. This
query embedding encodes the keypoint that should be de-
tected. Query embeddings are generated from human read-
able query inputs. After various Transformer layers, the
output of the model corresponding to these query embed-
dings is converted to small heatmaps from which the final
keypoint detection is obtained. However, these methods are
currently limited to the limbs, which we try to overcome in
this paper. Figure 1 shows that our model is capable of de-
tecting arbitrary points on the head, torso, arms, and legs in-



cluding hands and feet. It also correctly estimates keypoints
on bent limbs like elbows and knees. The contributions of
this work can be summarized as follows:

• We enlarge the area of the body for which arbitrary
keypoints can be detected by the feet, hands, torso, and
head. We further improve this model such that it can
detect keypoints on bent elbows and knees correctly.

• We propose different techniques for the model to en-
code the desired target keypoints. We encode the head
either based on a reference line or based on an angle.
Additionally, we use an encoding based on coordinates
of a normalized pose. We further apply different em-
bedding methods to the encoded input.

• We release the jump-broadcast dataset, a new dataset
with 2403 annotated triple, high, and long jump ath-
letes sampled from 27 hours of 26 different TV broad-
cast videos. All images are annotated with 20 key-
points. The dataset further contains 1797 automati-
cally generated segmentations masks. The dataset is
available here: https://www.uni-augsburg.
de/en/fakultaet/fai/informatik/prof/
mmc/research/datensatze/

• Experiments on the jump-broadcast dataset and a sec-
ond triple and long jump dataset prove that our meth-
ods are capable of detecting any desired keypoint
on the body of athletes. We improve the evaluation
scheme of previous work by using more keypoints and
provide a detailed evaluation of the performance of
keypoints located on the different body parts. Our best
approach for the jump-broadcast dataset is available
here: https://github.com/kaulquappe23/
all-keypoints-jump-broadcast

2. Related Work
2D HPE is a popular technique for computer vision aided

analyses in individual sports. Recently, Transformer [14]
based 2D HPE architectures are gaining popularity, while
CNN architectures like the High Resolution Net (HRNet)
[17] are still very common. TokenPose [7] is a Transformer
architecture that achieves the best results with the first three
stages of an HRNet as feature extractor, but there exists
also a pure Transformer variant. All variants make use of
the ViT [2] architecture, which cuts an image or a feature
map into small patches which serve as the input sequence to
the Transformer. ViTPose [19] proves that pure ViT based
HPE models are also capable of achieving SOTA scores by
adding a decoder with deconvolutions after the ViT layers.
The HRFormer [20] architecture combines the ideas of the
HRNet and the ViT and uses ViT layers while maintain-
ing branches of different feature resolutions like the HRNet.

Leveraging the idea of focusing on the part of the image
where the person is located, Zeng et al. [21] cluster tokens
of less important image areas like the background, while
keeping many tokens for important areas. Ma et al. [12] fol-
low a similar idea by deleting the tokens of unimportant im-
age areas. They achieve a more lightweight architecture as
a consequence. Apart from that, focusing on multi-person
pose estimation, Shi et al. [13] propose a fully end-to-end
framework based on Transformers.

Video analyses during training or competitions are com-
mon for most professional sports athletes. Analyses in team
sports often involve tracking and identification of the ball
(and alike) and the players on the field in order to analyze
their trajectories, e.g. in (ice) hockey [4, 15], soccer [1],
volleyball, football, or basketball [4]. The tracking task is
challenging in the domain of sports, as the athletes are sim-
ilarly dressed, move fast and are often occluded or out of
view of the camera. In individual sports, typical analyses
involve estimating keypoints on the human body and sports
equipment. Liu et al. [9] detect the badminton shuttle and
reconstruct its 3D trajectory from monocular videos. Table
tennis stroke types and the poses of the athletes are further
detected by Kulkarni et al. [6]. Stepec et al. [16] use esti-
mated poses of ski jumpers and their trajectories in order to
automatically generate the style score. Hudovernik et al. [5]
estimate the poses of competing Jiu-Jitsu athletes to auto-
matically detect combat positions and derive the scores of
the athletes. Since the footwork is really important in fenc-
ing, Zhu et al. [23] estimate the poses of fencers and classify
fine-grained footwork actions of the athletes.

3. Jump-Broadcast Dataset
We release the jump-broadcast dataset to enable a public

benchmark on arbitrary keypoint detection for triple, high,
and long jump athletes. We have collected 26 videos of
competitions from broadcast TV footage, summing up to 27
hours of video material. 9 videos cover triple jump compe-
titions, 8 videos long jump competitions and the remaining
9 videos high jump competitions. A total of 193 different
male and female athletes are present in the video footage.
The sports sites, lighting conditions and image quality vary
throughout our dataset. Moreover, it contains a lot of ex-
treme poses, especially during the jump phase. We select
the frames by sampling approx. 5 equidistant frames from
each jump (including in-run and jump phase) and each cam-
era perspective. Slow motion replays are mostly recorded
with a different camera and therefore seen as a new camera
perspective. We select 2403 images in total and annotate
them with the following 20 keypoints: head, neck, left/right
shoulder, left/right elbow, left/right wrist, left/right hand,
left/right hip, left/right knee, left/right ankle, left/right heel,
left/right toe tip. Furthermore, the annotations include in-
formation whether a frame corresponds to a slow motion



Figure 2. Cropped example images from the jump-broadcast dataset. Segmentation masks are displayed as an overlay. Annotated keypoints
are visualized in white. These examples show the variety of poses in our dataset, including occlusions, front and side views, the in-run,
and extreme poses during the jump phase.

replay and the name of the athlete as is presented in the TV
broadcast. We split the dataset in 1805 images for training,
576 images for testing and 122 images for validation in such
a way that each athlete is only included in a single subset,
even if they have participated in multiple competitions.

We use the DensePose [3] framework from detectron2
[18] to automatically generate segmentation masks for our
dataset. Since some images are very blurry and the athletes
perform extreme poses in comparison to everyday activi-
ties, some masks are completely or partly wrong. We sort
out the worst segmentation masks by hand but keep masks
that are partly correct. The advantage of our approach is that
it can deal with partly correct segmentation masks in most
cases. In the end, we keep 1797 segmentation masks, 1338
belonging to the training set, 97 to the validation set and
362 to the test set containing the head, torso, left/right up-
per arm, left/right forearm, left/right hand, left/right thigh,
left/right lower leg and left/right foot. Figure 2 visualizes
some images with generated segmentation masks.

4. Method
All variants are based on the TokenPose [7] architecture.

In a first step, this architecture takes an image and feeds it
through the first three stages of an HRNet for feature extrac-
tion. These feature maps are then split into visual feature
patches and embedded to create visual tokens via a linear
projection. The visual tokens are fed jointly with keypoint
query tokens through multiple Transformer layers. In the
end, the output of the ViT corresponding to the keypoint
query tokens is transformed to heatmaps via a shared MLP.
The final keypoint coordinates are then retrieved from the
heatmaps with the DARK [22] method. In contrast to the
pure TokenPose architecture, we do not learn representa-
tions for the keypoint query tokens, but use transformations
to embed human readable encodings in the token domain.
Our method can be applied to any TokenPose variant.

4.1. Ground Truth Generation

For the limbs, we follow the strategy described in [10,11]
to generate ground truth keypoints. At first, we draw a vec-
tor from one enclosing keypoint to the other, which we will

call ve. Second, an orthogonal line lo to ve is created and
the furthest points cl and cr that lie on lo and the segmen-
tation mask are retrieved. cl is always located on the left
side relative to the orientation of ve and cr on the right side.
Arbitrary keypoints are then located on the line between the
so-called intersection points cl and cr. We further add the
constraint that cl and cr need to be part of a coherent area
of the segmentation mask in order to deal with small errors
in our automatically generated segmentation masks, like the
left thigh in the fourth image of Figure 2. We incorporate
the same technique for the feet, using the toe tip and the heel
as the keypoints that enclose the body part. For the torso, we
use the neck as the first enclosing keypoint and the virtual
keypoint in the middle of the hip keypoints as the second
one. Regarding the hands, this technique has the drawback
that it only detects keypoints that lie between the enclos-
ing keypoints. If we would use the hand and wrist keypoint
as enclosing keypoints, our model would not be able to de-
tect the finger tips. Since the finger tips are not annotated,
we extend the line through the wrist and the hand keypoint
beyond the hand keypoint to the boundary of the hand seg-
mentation mask and use this point instead of the hand key-
point as the second enclosing keypoint during ground truth
generation. See Section 4.1.1 for more details.

4.1.1 Head

Standard keypoints that are usable as enclosing keypoints
for the head are neck and the head keypoint itself. In con-
trast to other datasets, where the head keypoint is located
at the top of the head, the head keypoint is located in the
middle of the head in our datasets. Therefore, we cannot
use it as an enclosing keypoint, in this case we would only
be able to detect keypoints on the lower half of the head.
Hence, we use the strategy already described for the hands,
which is also visualized in Figure 3 on the left. At first,
the line ve through the neck and head keypoint is created
and extended to the head top kt and the chest kb, visualized
with orange dots in Figure 3. We select a random interme-
diate point ki on ve (visualized with a green dot in Figure
3), draw the orthogonal line lo to this line, determine the
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Figure 3. Two versions of generating ground truth keypoints on
the head. On the left, the line through the head and neck keypoint
is extended to the head boundary (orange), an orthogonal line to
this line is drawn (white) and a keypoint on this line between the
boundary points of the segmentation mask (blue and yellow) is
chosen (red). On the right, a line (white) rotated around the head
keypoint (green) at a random angle is generated and a keypoint on
this line between the boundary points of the segmentation mask
(blue and yellow) is selected (red).

intersection points cl and cr with the boundary of the seg-
mentation mask and select a random point kf between ki
and cl/r. We call this the extension method.

Since the head is rather round, the creation process close
to the head top seems counterintuitive. The distance be-
tween cl and cr is decreasing and even approaching 0, the
closer ki is to kt. Hence, we propose a second strategy to
generate keypoints on the head. We use the head keypoint
as the center, choose a random angle α ∈ [0, 2π) and ro-
tate a line lh counterclockwise around the center according
to α, while α = 0 corresponds to ve. Then, we continue
as before with detecting cl and cr as the intersection of lh
with the boundary of the segmentation mask and randomly
choosing a point kf between the head keypoint and cl/r,
which is visualized in Figure 3 on the right. cr is used for
angles α ∈ [0, π) and cl for α ∈ [π, 2π). Since we rotate
for a certain angle, we refer to this as the angle method.

4.1.2 Bent Limbs: Elbows and Knees

With the keypoint generation strategy on the limbs as used
in [10, 11], arbitrary keypoints on the upper arm, forearm,
thigh, and lower leg could be detected if they lie in between
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Figure 4. Visualization of the anchor generation at a bent knee.
We generate a line with half the bending angle β through the knee
keypoint, visualized in yellow. Then, we determine the intersec-
tion of that line with the segmentation mask boundary (orange and
green) and select the anchor point within the acute angle, so the
anchor is the orange point in this image.
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Figure 5. Visualization of the keypoint generation on a bent knee.
The anchor point is visualized in orange, the line la in blue. The
intersection point ki is colored green and the point ko yellow. The
final keypoint is visualized in red. The line la always lies some-
where between the yellow and the green line.

the enclosing keypoints. This works well in most cases, but
not if the limbs are strongly bent, which happens frequently
in the case of triple, high, and long jump. Therefore, we
adapt the generation strategy to fit also the case of bent el-
bows and knees. For that purpose, we determine the point
on the inner side of the bent joint at first, which we call the
anchor point or ka in the following. To retrieve that point,
we calculate the bending angle β of the joint, which is the
angle enclosed by the line through the hip and the knee and
the line through the knee and the ankle or the angle enclosed
by the line through the shoulder and the elbow and the line
through the elbow and the wrist. Then, we generate a line li
through the knee or elbow keypoint with half of the bending
angle. We determine the intersections of that line with the
boundary of the segmentation mask and set the anchor ka
as the point on the side with the acute angle. We unify the
segmentation mask for the lower and upper body part in this
case. See Figure 4 for details. In the next step, visualized
in Figure 5, we rotate a line la for a random angle around
the anchor point, starting in a 90◦ angle to the upper body
part (yellow line in Figure 5) and stopping at a 90◦ angle to
the lower body part (green line in Figure 5). We determine
the intersection point ki of la with the vector ve through
the enclosing keypoints of the corresponding body part (up-
per or lower one) and chose a random final keypoint kf ei-
ther between ki and ka or between ki and ko. We do not
discriminate between the segmentation mask for upper and
lower body part in the whole process since the boundary is
often detected rough and it is somehow not clearly defined
where the thigh/upper arm ends and the lower leg/forearm
begins. With this strategy, arbitrary points on bent limbs
can be generated.

4.2. Query Encoding

With the described strategies, it is possible to generate
arbitrary ground truth points. However, it is impossible
to maintain an infinite set of keypoints in the way that a
heatmap is generated for every possible keypoint, like de-
scribed in [10, 11]. Therefore, we use a different strategy



and tell the model which keypoints it should detect with
a special query encoding which is part of the model’s in-
put. Since ViT architectures can deal with inputs of vari-
ous length, it is possible to query for an arbitrary number
of keypoints. In this paper, we evaluate two fundamentally
different query encodings and two nuances for one variant.

4.2.1 Vectors

The fist approach uses multiple vectors to encode the de-
sired keypoint. Let the dataset contain n keypoints, then
the first vector called keypoint vector has length n and the
second vector called thickness vector has length 3. For the
limbs and the feet, we follow the strategy described in [10]
to fill the vectors. Let k1, k2 be two keypoints enclosing a
body part and ki be the orthogonal projection of the de-
sired keypoint on the line lo between k1 and k2. Then
ki = p ·k1+(1− p) ·k2. We set the entries belonging to k1
and k2 in the keypoint vector to p and 1 − p, respectively.
For the torso, we set the keypoint vector entry belonging to
the neck to p and the entries belonging to the left and right
hip joint to 0.5(1 − p), since we use the middle of the two
hip keypoints as the reference point. In case of the hands
and the extension method for the head, where we extend the
line through the reference keypoints k1 and k2 to the points
kt and kb, ki = p · kt + (1 − p) · kb, but we set the en-
tries in the keypoint vector in the same way as before. The
thickness vector is created similarly, let the final keypoint
be kf = q · c1/2 + (1− q) · ki, then we set the middle entry
of the thickness vector to 1− q and the first or last entry to
q, depending if cl or cr is chosen [10].

If the angle method is used for the head, this approach
is not applicable as the creation logic is completely differ-
ent. Therefore, we introduce a third vector called the angle
vector. It has just one entry which is set to 0 in case of all
other body parts, meaning that it is not used. For the head,
its value indicates the rotation angle α in percent, starting
with the line through head and neck keypoint and rotating
counterclockwise around the head keypoint like described
in Section 4.1.1. This means that the lines lh for rotation
angle percentages 0 < p <= 0.5 and 0.5 + p are identical.
They differ in their corresponding intersection point. cr is
used for percentage p and cl for 0.5 + p. The final keypoint
can now be calculated as kf = q · cl/r +(1− q) ·khead, and
we set the thickness vector to [0, 1 − q, q] no matter which
intersection point is used as this information is already en-
coded in the angle vector. We further set the entry of the
keypoint vector corresponding to the head keypoint to 1.

For elbows and knees, we adapt the encoding slightly.
In these cases, ki is not projected perpendicular (along lo)
on the line between k1 and k2, but along the line la and we
further use la to determine the intersection points cl and cr
and the thickness percentage q.

Figure 6. Visualization of the normalized pose. All used body
parts are colored and the fixed keypoints are visualized in white.

4.2.2 Normalized Pose

The second approach involves a normalized human pose,
similar to [10]. The normalized human pose contains the
keypoints and the body part segmentation masks of a hu-
man in a T-shaped pose, visualized in Figure 6. We use feet
turned outwards and hands downwards such that the maxi-
mum area of these body parts is visible in the segmentation
masks. Each desired keypoint is now represented with the
normalized x- and y-coordinate of this pose. Normalized
coordinates mean that the upper left corner has coordinates
(0, 0) and the lower right corner (1, 1). Hence, each key-
point is characterized by only two values in this encoding
approach.

4.3. Keypoint Token Embedding

Each keypoint encoding, no matter which of the three
described options is used, needs to be converted to a token
of the same size as the visual tokens in order to be compat-
ible with the ViT. This process is called embedding. The
straightforward way is to use a linear layer to convert a vec-
tor of arbitrary length to a vector with the desired length. In
case of the vector approach, we have more than one vector
in the encoding. Hence, we have the option to concatenate
the vectors to one vector at first and then embed them, or
to embed them at first to tokens with a half or a third of
the embedding size and concatenate them afterwards. Fur-
thermore, apart from using a single linear layer, we try to
enhance the embeddings by adding more layers and ReLU
operations.

5. Experiments
The base architecture for all our experiments is

TokenPose-Base [7] with an input image size of 192× 256,
an embedding dimension of 192 and a conversion of the fi-
nal embeddings to heatmaps of size 48 × 64. Athletes are
cropped before the images are fed through the network. We



pretrain our model on the COCO dataset [8] and finetune it
on our individual sports related datasets. Random flipping,
random rotation of up to 45◦, random scaling in the range
of [0.65, 1.35], and color jitter are applied as augmentation
techniques during training.

5.1. Evaluation Metrics

We use the Percentage of Correct Keypoints (PCK) and
the Percentage of Correct Thickness (PCT) as evaluation
metrics. Both metrics calculate the percentage of all de-
sired keypoints that the network has correctly predicted at
a threshold t. The PCK uses the distance between the left
shoulder and right hip keypoints times the threshold as the
maximum distance for a correct prediction. We use t = 0.1
and t = 0.05 in our evaluations, which corresponds to ap-
prox. 6cm and 3cm, respectively. The PCT calculates the
differences between the predicted thickness and the ground
truth thickness for keypoints on all body parts analogous to
the keypoint generation by subtraction or addition depend-
ing if the ground truth and predicted keypoint are located
on the same or different sides of the intermediate point/the
head keypoint. Correct predictions are the ones with thick-
ness differences below t. We use t = 0.2 in our evaluations.

[10] uses a random number of up to 50 freely cho-
sen keypoints per image during evaluation. [11] increases
their evaluation strategy to a fixed number of 200 randomly
created keypoints. In this paper, we aim to evaluate the
full range of possible keypoints together with the different
encoding and embedding strategies for certain body parts.
Hence, on each body part, we create a specific set of eval-
uation keypoints: we use thickness 0, 0.5 and 1 and cre-
ate 25 equally spaced keypoints with these thicknesses to
both sides of the body part, resulting in 125 keypoints per
body part. During evaluation, we treat elbows and knees
as individual body parts, too. Hence, if all body parts are
completely visible, this results in a total number of 2250
keypoints per image. The benefit of this strategy is that it
is reproducible and hence provides a comparable metric for
future work. It also weights all body parts equally and al-
lows a separate comparison of the results for each body part.

5.2. Collapsing Elbow and Knee Keypoints

Elbows and knees connect the upper arm with the fore-
arm and thigh with the lower leg, including them in our
method enables retrieving continuous keypoints along the
whole arms and legs. Especially in these cases, it is very
important to interpret ve as a vector and define cl and cr rel-
ative to its direction. This ensures that cl and cr are always
located on the same side of the upper body part (thigh or up-
per arm) and the lower body part (lower leg or forearm). If
cl and cr swap the side between the lower and upper body
part, we can encounter a collapse of the keypoints around
the swapping location, visualized in Figure 7.

Figure 7. Collapsing points around the right elbow and knee (first
image) and the left elbow (second image) in the case that cl and cr
swap sides between the lower and upper body part.

5.3. Triple and Long Jump Dataset

We first evaluate our methods on the triple and long jump
dataset. The quality of its images is higher than that of
the jump-broadcast dataset since the cameras were installed
specifically for the analysis tasks and not for TV broadcasts.
It contains 4101 training images, 1462 testing images and
464 validation images from various sports sites, indoor and
outdoor locations, and from a variety of different athletes
during triple and long jump competitions or trainings. It is
labeled with the same 20 keypoints as the jump-broadcast
dataset. Segmentation masks are also obtained with detec-
tron2 [18] and kept for all images.

We execute four experiments with different embedding
strategies using the vector encoding with the extension tech-
nique for the head, five experiments with the angle tech-
nique and three experiments with the normalized pose en-
coding. The results are displayed in Table 1. Overall,
the different strategies achieve similar results. All are ca-
pable of detecting arbitrary keypoints on all body parts.
Generally, the approaches with the vector encoding achieve
slightly better results in all body parts. Even the extension
strategy and angle strategy achieve similar scores for the
head keypoint. However, the angle strategy improves the
scores for the feet, while the performances for all body parts
on the upper body (torso and arms) slightly drop. The num-
ber of layers in the embedding process does also not make a
large difference independent from the encoding type, which
is in contrast to the results reported in [10]. For the ex-
tension strategy and the normalized pose approach, the sin-
gle layer embeddings achieve even the best overall scores.
Regarding the number of layers before concatenation dur-
ing the embedding, we encounter that later concatenations
slightly improve the results for both encodings. The de-
tection scores vary largely among the different body parts.
The hands seem the most challenging body parts, since the



Enc. Emb. Con. PCK@0.1 PCK@0.05 PCT head torso u.arm elbow f.arm hand thigh knee l.leg foot

V-E 1 1 94.6 82.5 69.7 77.0 65.7 67.6 71.4 64.0 58.6 75.3 75.7 73.4 70.1
V-E 2 1 94.5 82.2 69.6 76.9 68.6 66.7 70.6 64.9 60.7 74.0 74.4 72.4 69.7
V-E 2 0 94.7 82.5 69.3 76.2 68.6 66.2 70.0 63.8 59.3 75.2 73.7 72.9 69.8
V-E 3 1 94.4 82.2 69.4 75.1 66.4 66.5 70.3 64.5 60.5 74.4 74.9 72.8 69.7

V-A 1 1 94.6 82.4 70.8 77.5 68.8 66.3 70.9 64.3 59.9 75.9 75.2 73.7 77.6
V-A 2 1 94.7 82.5 70.3 77.7 68.4 65.4 70.3 64.4 61.0 74.9 74.5 73.0 75.5
V-A 2 0 95.0 82.8 71.0 77.6 68.8 66.6 71.5 65.4 60.8 75.5 75.3 73.4 77.1
V-A 2 2 94.9 82.3 70.1 76.6 67.9 65.6 69.5 65.0 60.3 74.9 74.0 73.1 75.7
V-A 3 1 94.6 82.1 69.7 75.6 66.7 65.9 70.0 63.4 59.4 74.8 73.4 72.4 76.4

NP 1 - 94.1 80.4 65.7 71.4 62.0 57.8 66.0 58.1 53.7 71.9 72.9 71.2 71.2
NP 2 - 93.8 78.4 63.5 67.9 59.5 53.8 65.3 56.5 52.9 69.6 70.7 69.9 67.9
NP 4 - 93.8 79.4 65.2 67.3 59.7 55.4 68.0 58.9 53.3 71.1 73.2 71.6 69.8

Table 1. Recall values for the triple and long jump test set in % at PCK@0.1 and PCK@0.05 and PCT@0.2. These scores are evaluated
on the test set with the fixed keypoints and on the described 2250 keypoints per body part as far as these keypoints exist in the image. The
first column indicates the used encoding: V indicates the vector approach, either with the head extension strategy (symbolized with V-E)
or the head angle strategy (V-A). NP refers to the normalized pose approach. The second column names the number of layers used for the
embedding and the third column the number of layers that is executed before concatenation of the vectors. The third table section contains
the average metric results over all keypoints in the test set, the fourth section lists the PCT scores separately for each keypoint type, left
and right keypoints are combined.

PCT is at most 60.7%. Thighs, knees and head are the body
parts with the best scores over all experiments. These re-
sults can be explained by the fact that these body parts gen-
erally lead to larger (and therefore also thicker) segmenta-
tion masks, which make it easier for the network to learn
and detect precise keypoints. However, it is surprising that
the model achieves a better performance for the elbow key-
points than for the upper arm and the forearm, although the
thickness does not change here. Furthermore, it is notice-
able that the extension strategy performs worse on the feet
than on the legs, while the angle strategy performs better
and the normalized pose approach performs similar over all
experiments. The best overall PCT and PCK@0.05 score
is achieved with the vector encoding and the extension ap-
proach and a single linear layer embedding. Qualitative re-

sults for this dataset are visualized in the first two images in
Figure 8.

5.4. Jump-Broadcast

For the jump-broadcast dataset, we execute two experi-
ments with the vector encoding and the extension strategy,
three experiments with the angle strategy and two experi-
ments with the normalized pose encoding (chosen accord-
ing to the best experiments from the triple and long jump
dataset results). The results are shown in Table 2. Since
the quality of the images is worse than for the triple and
long jump dataset, the scores are generally lower. The ef-
fect that the results of the angle strategy improve the score
for the feet can be observed for this dataset as well. The
improvement is even larger, with an absolute increase of

Figure 8. Detection results for images of the triple and long jump dataset (first two images) and the jump-broadcast dataset (last four
images), visualized with equally spaced lines to both sides of each body part including the outer boundary in pure color and the central
line in white with a color gradient from the boundary to the central line. The first two images are generated with the vector encoding using
the extension strategy and the last four images with the angle strategy for the head in order to show the differences between the strategies.
Occluded/overlapping body parts are omitted for clarity.



Enc. Emb. Con. PCK@0.1 PCK@0.05 PCT head torso u.arm elbow f.arm hand thigh knee l.leg foot

V-E 1 1 90.4 71.1 61.2 61.9 48.3 63.6 57.3 51.9 44.9 67.1 67.3 74.3 61.9
V-E 2 1 90.8 71.6 63.6 66.2 54.0 68.0 59.1 55.7 47.4 69.3 67.5 75.4 64.6

V-A 1 1 90.8 71.3 63.3 63.5 50.7 67.2 58.7 54.6 45.4 67.3 66.9 75.5 70.5
V-A 2 1 90.9 71.1 63.7 63.8 48.6 67.1 58.3 56.2 47.1 68.5 67.7 74.3 71.3
V-A 2 2 91.0 71.6 63.8 65.2 52.2 67.1 57.5 55.6 47.0 68.8 67.7 73.7 72.2

NP 1 - 89.0 68.0 57.3 47.4 39.1 59.0 52.4 46.4 38.3 62.9 64.4 71.3 67.4
NP 4 - 89.2 68.2 58.2 52.4 42.3 59.1 53.1 46.9 39.5 64.2 64.3 71.8 68.3

Table 2. Recall values for the triple and long jump test set in % at PCK@0.1 and PCK@0.05 and PCT@0.2. These scores are evaluated
on the test set with the fixed keypoints and on the described 2250 keypoints per body part as far as these keypoints exist in the image. The
first column indicates the used encoding: V indicates the vector approach, either with the head extension strategy (symbolized with V-E)
or the head angle strategy (V-A). NP refers to the normalized pose approach. The second column names the number of layers used for the
embedding and the third column the number of layers that is executed before concatenation of the vectors. The third table section contains
the average metric results over all keypoints in the test set, the fourth section lists the PCT scores separately for each keypoint type, left
and right keypoints are combined.

over 7% for the best variants. The score for the other key-
points are similar or slighly lower regarding the best variant
of the extension encoding and the angle encoding. Using
more layers shows a marginal improvement for this dataset,
whereby there is no significant difference observable for the
experiments with different concatenations. Keypoints on
the hand body part stay the most challenging ones in this
dataset. However, the scores of the elbow and the forearm
are significantly lower than the score of the upper arm for
this dataset. The best scores are achieved for the lower leg,
the foot, the thigh, the upper arm and the head. The nor-
malized pose approach achieves the lowest overall scores
for this dataset as well. The largest drop is observable for
keypoints on the head and torso body part with an absolute
difference of approy. 10%. The scores for the upper arm,
forearm, and hand further drop more than 5%. Addition-
ally, for this dataset in contrast to the triple and long jump
dataset, the angle strategy achieves the best overall results
(PCT, PCK@0.05 and PCK@0.1) with a two layer embed-
ding and the concatenation after these two layers. Example
detections for this method are displayed in the last four im-
ages in Figure 8.

6. Conclusion

In this paper, we propose a method to detect arbitrary
keypoints on the whole human body for athletes of triple,
long, and high jump. We introduce a new dataset consisting
of images from these disciplines in order to provide a pub-
licly available dataset for future comparisons. This jump-
broadcast dataset comprises 2403 images from 27 hours of
26 different TV broadcast videos showing 193 athletes. We
obtain 1797 segmentation masks of the head, torso, l./r. up-
per arm, l./r. forearm, l./r. hand, l./r. thigh, l./r. lower leg,
and l./r. foot.

We extend the methods introduced in [10, 11] to make
our model capable of estimating arbitrary keypoints on all
body parts. To generate ground truth keypoints for the
hands, which have no second annotated enclosing keypoint,
we extend the line through wrist and hand keypoint to
the boundary of the segmentation mask to obtain a second
point. For the head, we use either the same technique, or
we rotate a line around the head keypoint. We further cal-
culate the points on the inner side of the elbow and knee
joints and rotate around these points in order to generate ar-
bitrary points on the elbow and knee, since these joints are
often heavily bent during jumps and could not be estimated
correctly until now. We evaluate our model with different
encodings of the arbitrary keypoints, either as vectors with
the extension strategy for the head or the angle strategy, or
as keypoint coordinates of a normalized human pose. In
the vector case, we introduce a third vector in case of the
angle strategy and evaluate the performance depending on
the number of embedding layers used before we concate-
nate the embeddings of the single vectors. Evaluations on
the triple and long jump dataset and our newly introduced
jump-broadcast dataset show that the results for all vari-
ants are generally similar. The normalized pose approach
achieves slightly lower scores regarding all experiments.
Concatenating the vector embeddings later results in min-
imal better scores. For both datasets, keypoints on the hand
are the most challenging. The extension and angle approach
for the head have strengths for different keypoints. For the
triple and long jump dataset, the extension approach with a
single layer embedding achieves the best overall score while
the angle approach with a two-layer embedding leads to the
best performance for the jump-broadcast dataset. Hence,
the method proposed in this paper is capable of detecting ar-
bitrary keypoints on the whole human body of triple, long,
and high jump athletes, including bent elbows and knees.
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