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1. Introduction Accurate short-term load forecasting is the basis of reasonable
In 2019, the energy consumption and carbon emission of Chi-
na’s buildings in operation are 24.5 % and 21.5 % of the total for
the country, respectively [1]. Energy savings in buildings have
emerged as a critical area for carbon neutrality. Realizing energy
conservation and carbon emission reduction of buildings is of great
significance to reduce global energy consumption and carbon
emission. In recent years, with the rapid development of higher
education, the number of universities and students is increasing
year by year. The number of campus buildings is growing, and so
is the amount of energy required for their development. Therefore,
the university campus offers a lot of potential for energy savings as
a typical regional architectural complex. Electric energy is an
important part of energy consumption in university buildings.
energy dispatching and optimal operation of buildings [2].
There have been several load forecasting methods presented in

recent decades. Generally, these methods are mainly divided into
conventional statistical methods and machine learning methods.
Conventional statistical models are represented by time series
analysis and regression analysis [3]. Autoregressive Integrated
Moving Average (ARIMA) [4] is a commonly used time series anal-
ysis method, which builds the mathematical model to describe the
change of load based on the historical load data and forecast the
future load. Regression analysis seeks to build a regressive equa-
tion based on historical data to determine the link between load
and influencing factors. Theoretically, statistical models have diffi-
culty capturing the abrupt variation among time series due to their
linear definition.

Machine learning methods can learn the nonlinear relationship
between the inputs and outputs, which makes them achieve great
success in load forecasting. Support Vector Regression (SVR) [5],
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regression trees, Artificial Neural Networks (ANNs), etc., have been
introduced for load forecasting. According to different complicated
scenes, ensemble models like Bagged Regression Trees (BRT) [6]
and Random Forests (RF) [7] were utilized to improve the effective-
ness. An ANN uses multiple neurons to simulate the human brain,
which enables them to provide excellent learning ability of non-
linear features and leads to good generalization capability. There
have been several applications of ANN for load forecasting, includ-
ing Multi-layer Perceptron (MLP) [8,9], Backpropagation Neural
Networks (BPNN) [10], Echo State Networks (ESN) [11], Evolution-
ary Neural Networks (ENN) [12], and Generalized Regression Neu-
ral Networks (GRNN) [13–15]. Compared with the ANN, deep
learning models boost nonlinear fitting ability by expanding hid-
den layers or stacking some particularly built structures, which
demonstrate strong performance in load forecasting and are grow-
ing frequently employed in present. The most popular used deep
learning model in load forecasting is the Recurrent Neural Network
(RNN), which is a type of neural network well-suited to model time
series data. To overcome the difficulties in learning of long-term
dependencies, two kinds of improved RNN, the long-short term
memory (LSTM) network [16] and Gated Recurrent Units (GRU)
network [17,18] have been more popular used in load forecasting.

There are different advantages for different forecasting meth-
ods. Hence, model fusion is introduced to improve the forecasting
performance, such as combining SVM, RF, and LSTM [19], integrat-
ing a Convolutional Neural Network (CNN) and LSTM [20] or GRU
[21], cascading a multi-channel convolutional neural network
(MCNN), and LSTM [22], fusing a CNN and a Temporal Convolu-
tional Network (TCN) [23] and introducing ensemble learning to
fuse several sub-learners [24].

Although several approaches exist for extracting the non-linear
time-series features of the load well enough to make reasonable
forecasts, they can only be used to forecast the specific building
load at a time. People flowing between multiple buildings in a uni-
versity architectural complex result in loads of these buildings hav-
ing certain spatial correlation features. That is to say, the university
architectural complex loads exhibit considerable dynamics in both
the spatial and temporal dimensions. The aforementioned load
forecasting methods neglect the spatial features. It is thus more
advantageous to present a novel model that fully utilizes both spa-
tial and temporal features, with the goal of forecasting loads for all
buildings in an architectural complex at the same time. However,
how to extract the inherent spatio-temporal characteristics of non-
linear and complicated load data and achieve an accurate building
load forecasting remains a challenge.

The graph neural network (GNN) extends the neural network
paradigm to deal with the data represented in the graph. It can
learn and represent unstructured data well, which is also com-
monly employed in structured scenarios [25]. In the field of power
prediction, GNNs are mainly applied to renewable energy genera-
tion forecasting [26–29], but there are few applications of GNNs
for load forecasting. A graph convolutional network (GCN) is a kind
of Graph Neural Network (GNN) that has been frequently utilized
to convey spatial correlation of graph-based data, and it can extract
the spatial characteristics by aggregating the neighborhood infor-
mation of nodes through graph convolution [30].

Aiming to make full use of the spatial and temporal features of a
university architectural complex load, we introduce a GCN to build
a novel deep learning model: a multi-information fusion model
combining spatio-temporal attention with GCN and LSTM (MF-
STAGL) to realize simultaneous and high-accuracy load forecasting
of each building in a university architectural complex. This model
can process the load data directly on the original graph-based net-
work and effectively capture the dynamic spatio-temporal fea-
tures. To the best of our knowledge, this is the first time GCN has
been introduced to forecast the architectural complex loads.
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The main contributions of this paper are summarized as
follows:

(1) Considering the spatio-temporal characteristics of an archi-
tectural complex loads, we propose a multi-information
fusion model combining spatio-temporal attention with
GCN and LSTM (MF-STAGL). Specifically, GCN is introduced
to extract spatial characteristics from the relationships
between buildings in an architectural complex, whereas
LSTMs are used to explain the temporal characteristics of
building loads.

(2) The spatio-temporal attention modules are incorporated to
extract dynamic spatio-temporal correlations of load data.
Spatial attention is employed to represent the complicated
spatial relationships between different buildings. Temporal
attention is utilized to extract dynamic temporal correla-
tions between different timesteps. The adoption of the
attention mechanism aids in maintaining considerable fore-
casting stability as the forecast period extended.

(3) Extensive experiments using actual load data of a university
architectural complex confirm that our model achieves the
best forecasting performances when compared to the exist-
ing models.

The rest of the paper is organized as follows: In Section 2, the
key factors are decided by Person Correlation Analysis; In Section 3,
we propose the short-term load forecasting model based on the
GCN-LSTM; In Section 4, experimental data processing is described
in detail; In Section 5, experiments are performed using actual load
data of a university architectural complex, and the results & discus-
sions are presented. The conclusions are provided in Section 6.
2. Key influencing factor analysis of load

2.1. Selection and qualification of influencing factors

Many factors are affecting the building load. In addition to the
general influencing factors, there are certain changes in the selec-
tion of influencing factors for various geographical regions, scopes,
and types of loads.

The loads of university buildings are not affected by the step
tariff, which is different from that of the residential and commer-
cial buildings. To build multi-information fusion and increase the
accuracy of short-term load forecasting, it is required to select
the key factors impacting load fluctuation from numerous alterna-
tive factors using correlation analysis. We take the load forecasting
of a public university in Beijing as an example, five representative
buildings: Second Canteen, Second Teaching Building, Experimen-
tal Building, Dormitory Building 7, and Main Building are selected
for our study. Considering the building operating conditions, the
following four types of influencing factors are chosen.

(1) Historical load type

Since the load data is essentially a time series, the load data
before the forecasting time has a great impact on the current load.
To account for its variance, the maximum load and minimum load
of the day before are selected.

(2) Temperature type

The influence of temperature on the load is obvious. Tempera-
ture alters cooling and heating demands, resulting in loads gener-
ated by the usage of air conditioners, electric heaters, and other
electrical equipment. As shown in Fig. 1, the maximum load and



Fig. 1. Relationship between daily average temperature and daily maximum load of
the Main Building from May to December.

Table 2
Quantified values of seasonal types.

Season spring summer autumn winter

Value 2 4 3 1

Table 3
Quantified values of date types.

Date type Teaching & office
building

Dormitory
Building

Monday 0.8 0.4
Tuesday 0.7 0.4
Wednesday 0.7 0.4
Thursday 0.7 0.4
Friday 0.7 0.4
Saturday 0.5 0.7
Sunday 0.5 0.7
Mini-break 0.4 0.8
Winter and summer vacation 0.2 0.2
daily average temperature trends in the main building are almost
comparable. In Beijing, the highest temperatures are common in
June and July, when the load is at its peak. Because air conditioner
is no longer required in the fall, the maximum load decreases as
the temperature drops. In the winter, coal-fired heating is used
to compensate for temperature fluctuations, and the load remains
low and relatively stable. Therefore, hourly temperature and daily
average temperature are selected.

(3) Meteorology type

Meteorology conditions may affect the load. On cloudy and
rainy days, for instance, students will go out less, and the dim light
will increase the electricity consumption of indoor lighting equip-
ment. As a result, on average, the load on cloudy and rainy days is
greater than that on sunny days. Furthermore, in recent years, the
air quality has gradually attracted the attention of residents. When
air pollution is serious, the load of air purification equipment
increases, leading to the increase of load. Finally, the weather type,
season, wind speed, and air quality index are selected.

The quantification criteria attempt to depict the growing and
decreasing features of the load under various types. We analyzed
the load variation under various types, and because the quantified
values must be normalized, we simply used discrete natural num-
bers to represent the various types. The quantified value of the cor-
responding type increases as the load increases. The detailed
weather types and corresponding quantified values are listed in
Table 1. Similarly, Table 2 presents the seasonal types.

(4) Date type

The influence of date type on load varies between workdays and
weekends. Classifying the historical load data by date type will aid
in improving the accuracy of short-term load forecasting. In each
week, it is found that the loads on weekdays are higher than those
on weekends. In addition, holidays have a significant impact on the
decline of the load. Most students return home during the winter
Table 1
Quantified values of weather types.

Weather Sunny cloudy light rain

Value 1 2 3
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and summer vacations, the load naturally lowers. Hence, the win-
ter and summer vacations are treated specially.

In addition, according to the load curve analysis, the rest day
load for the Teaching & Office Building is much lower than the
weekday load, the Monday load is impacted by the Sunday load,
and the Friday load differs from the general weekday load (Tuesday
to Thursday) owing to the arrival of Saturday. The load in the Dor-
mitory Building is notably different from that in the Teaching and
Office Building, with the total daily load level being lower than the
rest day. Hence, the university buildings are divided into two cat-
egories: Teaching & Office building and Dormitory Building. Differ-
ent quantification criteria are utilized for different categories. To
summarize, the quantified values are proportional to the load.
The detailed date types and corresponding quantified values are
listed in Table 3.

2.2. Selection of key factors based on Pearson correlation analysis

We choose 30 weeks of data from May to November 2019 to do
the Pearson correlation analysis between the selected factors and
the load. Further, the Student’s t-test is utilized to measure the rep-
resentativeness of the sample to the overall correlation degree. The
results are listed in Table 4.

According to Table 4, considering both the magnitudes of the
Pearson correlation coefficients (larger than 0.2) and the signifi-
cances (smaller than 0.01), five factors, i.e., the maximum and min-
imum load of the day before, hourly temperature, weather type,
and daily type are selected as the key influencing factors, which
are combined with the historical load to form the multi-
information.
3. Multi-information fusion short-term load forecasting model

3.1. Spatio-temporal feature of a university architectural complex
loads

We explore the spatio-temporal correlation using the loads of
five selected buildings on June 12th and 13th, 2019. Fig. 2 presents
moderate rain heavy rain snow

4 5 6



Fig. 2. Normalized loads of five selected buildings.

Table 4
Correlation analysis results.

Type Factor Pearson correlation
coefficient

Significance

Historical
load

Maximum load of the
day before

0.651** 0

Minimum load of the
day before

0.642** 0

Temperature Hourly temperature 0.732** 0
Daily average
temperature

0.220 0.090

Meteorology Weather type 0.511** 0
Season 0.326 0.060
Wind speed 0.023 0.844
Air quality index 0.032 0.887

Date Date type �0.210* 0.008

* indicates a significant correlation at 0.05 level (bilateral); ** indicates a significant
correlation at the 0.01 level (bilateral).The selected key factors are marked in Bold.
the normalized loads of these buildings. It is discovered that there
is a clear temporal characteristic for the loads of each building (cf.
Fig. 2(a)). Furthermore, the loads of different buildings exhibit a
specific spatial correlation at the same period. Taking the loads
of 12th as example, from 10:00 to 14:00 (cf. Fig. 2(b)), there are
4

the university’s busiest hour for people flow. After class, students
eat in the canteen before returning to their dormitories, which is
followed by the afternoon’s classes. As a result of this circum-
stance, the loads of the Second Teaching Building and Experimental
Building decrease and then increase. Conversely, the loads of the
Second Canteen and Dormitory Building 7 fluctuate in the opposite
trend, increasing and then decreasing. As for Main Building (an
office building for faculty), the load decreases slightly when faculty
go to the canteen after work. However, the load will continue to
increase throughout the afternoon, which is when most meetings
take place. Altogether, the load will alter in response to the people
flow, resulting in spatial correlation between the loads of different
buildings in the architectural complex.

In summary, for the architectural complex loads, there are not
only temporal features for each building, but also certain spatial
features among different buildings. For this reason, a multi-
information fusion model combined with spatio-temporal atten-
tion, GCN, and LSTM (MF-STAGL) is designed to realize the short-
term load forecasting of the architectural complex. Fig. 3 shows
the overall framework of the MF-STAGL model.

The proposed model consists of a feature fusion layer, two
STAGL blocks and a fully-connected (FC) layer. The feature fusion
layer is used to fuse the input multi-information. In each STAGL
block, there are a spatio-temporal attention module and a GCN-
LSTM module. To optimize the training efficiency, we adopted a
residual learning framework [31] in each block. Finally, the pre-
dicted loads of all buildings in the architectural complex can be
simultaneously achieved from the outputs of FC. The main mod-
ules are described in detail in Section 3.2 and 3.3.

3.2. Graph convolutional network with spatio-temporal attention

3.2.1. Basic graph convolutional network
In this study, we define the buildings of the university architec-

tural complex as the nodes in a graph G = (V, E, A), where V is a set
of N nodes; E is a set of edges that depict the relationship between
the buildings; A 2 RN�N indicates the adjacency matrix of graph G.
Each timestep contains load and key factor data for each node,
which may be seen as input feature vectors.

Considering the people flows between the buildings of the uni-
versity architectural complex, load data of the buildings can be
seen as nature graph structure data (shown in Fig. 4). The
spectral-based GCN is adopted to extract the topological properties
of university architectural complex loads in the spatial dimension.

In a spectral-based GCN, a graph is represented by its corre-
sponding Laplacian matrix L, which is defined as L ¼ D� A, and
the normalized Laplacian matrix LN is

LN ¼ D�1
2LD�1

2 ¼ IN � D�1
2AD�1

2 ð1Þ
where IN is a unit matrix, and the degree matrix D 2 RN�N is the
diagonal matrix,Dii ¼

P
j2NAij.

The eigenvalue decomposition of the Laplacian matrix is
L ¼ UKUT , where U is the orthogonal matrix composed of eigen-
vectors, K = diag([k0, . . ., kN�1]) 2 RN�N, is a diagonal matrix com-
posed of eigenvalues.

The spectral-based GCN performs convolutional operations
through Fourier transformation on the graph. The graph convolu-
tional operation of feature vector x with a filter g can be defined as

g�x ¼ F�1ðFðxÞ �FðgÞÞ ¼

U UTx� UTg
� �

¼ UgWUTx ð2Þ

where * indicates the graph convolutional operation; � is the Hada-
mard product; and gW = diag(UTg) is the filter parameterized by W.



Fig. 4. The spatio-temporal structure of forecasting data, where the data at each
time slice forms a graph.

Fig. 3. The framework of MF-STAGL, SAtt: Spatial Attention; TAtt: Temporal
Attention; FC: Fully-connected.
It is found that directly achieving the eigenvalue decomposition
on the Laplacian matrix is not so efficient, especially when the
number of nodes is large. Hence, we utilize the Chebyshev polyno-
mials to approximate gW. [32] With kth order Chebyshev polynomi-
als Tk(x),

g � x �
XK
k¼0

WkTk
2L
kmax

� In

� �
x ð3Þ

TkðxÞ ¼ 2xTk�1ðxÞ � Tk�2ðxÞ;

T0ðxÞ ¼ 1; T1ðxÞ ¼ x ð4Þ
where Wk 2 RK is a vector consisting of Chebyshev coefficients; kmax

is the largest eigenvalue. The operation is a Kth order polynomial in
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the Laplacian, which means that the information of the surrounding
0 to Kth order neighbors centered on each node can be extracted by
the convolution kernel gW. For the connections between loads of dif-
ferent buildings, we set K = 1.

The eigenvalue range of normalized Laplacian is [0.2], then,
kmax = 2. Further, to decrease the number of parameters, we can set

W ¼ W 0
0 ¼ �W 0

1 ð5Þ
The graph convolutional operation [33] can be simplified as

g�x � W In þ D�1
2AD�1

2

� �
x ð6Þ

W can be seen as the convolution kernel parameters. At last, we use
the Rectified Linear Unit (ReLU) as the activation function of the
graph convolution module, i.e., the output becomes ReLU(g ⁄ x).

3.2.2. Spatio-temporal attention mechanism
The introduction of an attention mechanism can improve the

learning ability of artificial neural networks, allocate the limited
resources reasonably, and improve the interpretability of artificial
neural networks [34].

In the GCNs, the neighborhood of nodes is commonly aggre-
gated with equal or predefined weights. Loads of different build-
ings in the university architectural complex are dynamically
interrelated. Therefore, their weights should be learned in the
training process. In essence, the spatial attention mechanism is
used to learn the spatial attention matrix S 2 RN�N, which indicates



Table 5
Model design.

Group Name Input shape Output shape

Pre-processing Feature Fusion 32 � 5 � 8 � 12 32 � 5 � 4 � 12

STAGL block1 TAtt 32 � 5 � 4 � 12 32 � 5 � 4 � 12
SAtt 32 � 5 � 4 � 12 32 � 5 � 4 � 12
GCN 32 � 5 � 4 � 12 32 � 5 � 32 � 12
LSTM 32 � 5 � 32 � 12 32 � 5 � 16 � 12

STAGL block2 TAtt 32 � 5 � 16 � 12 32 � 5 � 16 � 12
SAtt 32 � 5 � 16 � 12 32 � 5 � 16 � 12
GCN 32 � 5 � 16 � 12 32 � 5 � 32 � 12
LSTM 32 � 5 � 32 � 12 32 � 5 � 16 � 12

Output FC 32 � 5 � 16 � 12 32 � 5 � 12
the impacting weights between nodes. The attention matrix S is
dynamically computed according to the input of the current layer.
The dynamic extraction of spatial characteristics may be done by
updating the adjacency matrix A with the spatial attention matrix
S.

In the temporal dimension, there are correlations between the
loads in various time steps, and the correlations vary depending
on the scenario. The temporal attention mechanism is included
to model the importance of the inputs of a different time. The tem-
poral attention matrix E is calculated by the fluctuating inputs. We
adapt the inputs by multiplying them by the temporal attention
matrix E.

3.3. Spatio-temporal feature extraction module

As a special type of a RNN, LSTM introduces a gated structure
and uses memory cells to solve the problem of long-term depen-
dence of RNN. LSTM is very suitable for dealing with problems
highly related to time series. Therefore, we introduce LSTM to
achieve the temporal feature of each building load. Further, we
stack a GCN for spatial feature extraction and a LSTM for sequency
feature learning to form the suggested GCN-LSTM module [35].

4. Experimental data processing

4.1. Data collection

All the load data are obtained from the energy-saving monitor-
ing platform system of the considered university, which can auto-
matically collect the load values by hourly communications with
the smart meters installed in the buildings. The time range of the
load data is from 0:00 on May 1th, 2019 to 23:00 on November
30th, 2019. The load data acquisition interval is one hour. Among
the data of key factors, the hourly temperature is obtained from
the National Oceanic and Atmospheric Administration (NOAA),
and other meteorological data are obtained from the website
(https://tianqi.2345.com/).

4.2. Data preprocessing

4.2.1. Remapping of the temperature
Given the substantial seasonal temperature variations in Bei-

jing, a fuzzy criterion is employed to remap the hourly tempera-
ture and daily average temperature to increase the accuracy and
generality of the load forecasting model.

Through the fuzzy membership function, the temperature value
is remapped to the low-temperature, medium-temperature, and
high-temperature. According to the temperature of Beijing, we
define the low-temperature range as �5 ℃ � 8 ℃, the medium-
temperature as 2 ℃ � 17 ℃, and the high-temperature as
17 ℃ � 35 ℃. The temperature membership functions are defined
as follows,

m1 ¼
1 T < T1
T2�T
T2�T1

T1 � T � T2

0 T > T2

8><
>: ð7Þ

m2 ¼
0 T < T3; T > T4

T�T3
T3þT4ð Þ=2�T3

T3 � T � T3 þ T4ð Þ=2
T4�T

T4� T3þT4ð Þ=2 T3 þ T4ð Þ=2 < T � T4

8>><
>>:

ð8Þ

m1 ¼
1 T > T6
T�T5
T2�T1

T5 � T � T6

0 T < T5

8><
>: ð9Þ
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where, T is the output temperature (℃), T1 ¼ �5 ℃, T2 ¼ 10 ℃,
T3 ¼ 8 ℃, T4 ¼ 22 ℃, T5 ¼ 20 ℃, T6 ¼ 33 ℃.
4.2.2. Outlier calibration
Outliers in the load data exist for a variety of causes and should

be calibrated before being fed into the forecasting model. Accord-
ing to the daily and weekly periodicity and the relative stability
of the university architectural complex load, the load difference
at the same time of adjacent days of the same date type is not obvi-
ous without emergencies. Therefore, we compare the load data at
time T with the average load at the same time on the same date
type. When the difference is greater than the preset threshold,
the data can be regarded as abnormal and calibrated by using
the following formula:

Y 0ðtÞ ¼ Yavg þ dðtÞ YðtÞ � Yavg > dðtÞ
Yavg � dðtÞ YðtÞ � Yavg < dðtÞ

�
ð10Þ

where,Y tð Þ is the original value (kW	h),Y 0 tð Þ is the calibrated value
(kW	h),Yavg is the average load at the same time with the same date
type (kW	h), and d tð Þ is the preset threshold.
4.2.3. Data normalization
The value ranges of different key factors and load are varied

widely. Hence, zero-mean normalization is performed to decrease
the gaps. During the experiments, the dataset is randomly split into
the training set, validation set, and test set with a ratio of 6:2:2.
5. Experimental results and analysis

5.1. Experiment setup

The hardware environment of the experiments is: CPU: Intel (R)
Core (TM) i7-8565U, Memory: 16 GB. The software environment is:
Windows 10 64 operating system, Visual Studio coding platform,
Pytorch 1.8.1 and python 3.6.

The detailed structures and the input/output shapes of the
model are listed in Table 5. There are eight features input into
the model, which contains hourly load, maximum load of the day
before, minimum load of the day before, the fuzzed low tempera-
ture, the fuzzed medium temperature, the fuzzed high tempera-
ture, weather type, and the date type. The input time length and
output time length are both twelve, which means that loads of
twelve hours will be predicted by inputting the features of the pre-
vious twelve hours with the proposed model. The input dimension
is 32 � 5 � 8 � 12, where 32 is the Batchsize, 5 means the number
of buildings, 8 represents the number of the input features, and 12
indicates the forecast period. This input allows multiple buildings’
data to be input into the MF-STAGL model at the same time.

https://tianqi.2345.com/


Table 6
Training hyperparameters.

Parameters Value

Learning rate 0.001
Optimizer Adam
Epoch 100
Batchsize 32
Mean Squared Error Loss (MSE) is selected as the loss function,
which allows faster convergence compared to other loss functions.
The training hyperparameters are shown in Table 6.

5.2. Evaluation metrics

Four evaluation metrics are calculated to estimate the predict-
ing performance: Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE) are used to measure the prediction
error, the coefficient of determination R2 and Accuracy are intro-
duced to evaluate the goodness of the fit. The functions of the four
metrics are defined as:

MAPE ¼ 100
N

XN
i¼1

ŷi � yið Þ
yi

����
���� ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ŷi � yið Þ2
vuut ð12Þ
R2 ¼ 1�
PN

i¼1 ŷi � yið Þ2PN
i¼1 Ŷ � yi

� �2 ð13Þ
Accuracy ¼ 1� k Y � Ŷ kF
k Y kF

ð14Þ

where N is the total number of forecasting results; Y are the actual

value of the load (kW	h), Ŷ is the forecasting value of the load

(kW	h); yi is the actual load of point i (kW	h); Ŷ i is the forecast load

of yi (kW	h), and Y
�
is the mean value of the actual value of the load

(kW	h).

5.3. Performances of the proposed model

5.3.1. Comparison of different buildings
With the trained MF-STAGL model, loads of all five buildings

can be predicted at the same time. To evaluate the MF-STAGL
model more comprehensively, the MAPE, RMSE, R2, and Accuracy
were calculated for all five buildings, respectively. The results are
shown in Table 7.

It can be seen from Table 7 that the MAPE of most buildings are
generally less than 5 % except for the building Second Canteen.
Accordingly, the RMSE of Second Canteen is the largest. Fig. 5
Table 7
MAPE, RMSE, R2 and Accuracy of prediction results.

MAPE (%)

Second Canteen 6.86
Second Teaching Building 4.98
Experimental Building 5.03
Dormitory Building 7 4.22
Main Building 3.54

7

shows the 48-hour forecast results of five buildings from October
25, 2019 to October 27, 2019.

Further, we calculated the load fluctuations of five buildings
with Eq. (15), and Table 8 shows the results.

flu ¼ ymax � ymin

ymax
ð15Þ

where flu is the fluctuation, ymax and ymin are the maximum and
minimum of loads in certain period (kW	h), respectively.

Among loads of 48 h, the Second Canteen has the largest fluctu-
ation, which is 2.15 %. And the maximum load is 303.3 kW	h, which
is the highest of all the buildings. As a result, although R2 and the
Accuracy of the Second Canteen are relatively high, the MAPE and
RMSE of the Second Canteen are still the largest. Conversely, due to
the load fluctuation of the Dormitory Building 7 is not so high, the
MAPE and RMSE are not the highest, despite the smallest R2 and
Accuracy. Furthermore, the Main Building has the smallest fluctu-
ation, which is 0.60 %, then the smallest MAPE is achieved with the
highest R2 and Accuracy. These findings demonstrate that the
change in MAPE is related to both the goodness of fit and the
amount of load fluctuation. Based on this conclusion, as well as
the fact that the load of the Experimental Building is much smaller
than the load of the Dormitory Building 7 (the former is nearly-
one-tenth the latter), the load fluctuation of the former is also
much smaller, as a result, even though their R2 are nearly the same,
leading to the lower accuracy of the Dormitory Building 7. To sum
up, the highest MAPE is only 6.86 %, which indicates that the model
still has good forecasting ability for the load with large variations.

The Main Building is an office building. The routine of getting to
and from work is identical to that of getting to and from class to
some extent. Compared with Fig. 5(b) and (c), it is found that the
change law of the load of the Second Teaching Building is a little
more complex than that of the Main Building. Hence, all the eval-
uation metrics of them are almost equal, except for the MAPE of
the Second Teaching Building which is considerably higher.

Unlike the other four buildings, it is obvious that the load of the
Experimental Building has no significant day periodicity (shown in
Fig. 5(e)), which can be attributed to the uncertainty of the opera-
tions of the large experimental equipment. The forecasting load
values are not fitted with high accuracy. Moreover, although the
fitting performance is not so well (R2 = 0.88, Accuracy = 0.90),
MAPE and RMSE are not very poor, which is mainly due to the
low load.

5.3.2. Correlation analysis of loads of buildings
We further calculated the Pearson correlation coefficients using

the forecasting loads of the buildings to study the relations among
the buildings. The results are shown in the form of a heat map in
Fig. 6. Leaving aside the diagonal, the second row is the darkest
of all rows, or the second column is the darkest of all columns. It
indicates that the correlations between the Second Teaching Build-
ing and the other buildings are stronger than those between the
other two buildings. The Second Teaching Building can be seen
as the load flow center, which is closely linked with the office, lab-
oratory, and living areas. There is an obvious flow of students and
RMSE
(kW	h)

R2 Accuracy

14.96 0.96 0.89
8.59 0.96 0.90
2.49 0.88 0.90
8.97 0.87 0.85
8.82 0.96 0.95



Fig. 5. 48-hour forecast results of five buildings.
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Table 8
The fluctuations of five buildings.

Building Name Fluctuation

Second Canteen 2.15 %
Second Teaching Building 1.46 %
Experimental Building 0.82 %
Dormitory Building 7 1.38 %
Main Building 0.60 %

Fig. 6. The correlation coefficients among the buildings.

Fig. 7. Forecasting results of six different models.

Table 9
The evaluation results of the Main Building with six models. The best performances
are marked in Bold.

Model MAPE (%) RMSE
(kW	h)

R2 Accuracy

HA 43.38 52.34 0.58 0.46
ARIMA 7.12 10.02 0.87 0.85
SVR 6.87 9.05 0.89 0.88
LSTM 3.84 8.96 0.95 0.93
MF-STGL 3.77 8.89 0.96 0.94
MF-STAGL 3.54 8.82 0.96 0.95
teachers between the Second Teaching Building and other build-
ings, which brings the load flow.

In addition, the light-colored areas in the figure are mostly
found between the Second Canteen and other buildings. The pri-
mary reason for this is that the load of Second Canteen Building
has little to do with the people flow, resulting in distinct disparities
between the Second Canteen Building and the other buildings. On
the one hand, the fluctuation in the load of the Second Canteen is
larger than the other buildings; on the other hand, the peak and
valley times of the Second Canteen are distinctly different from
those of the other buildings. As a result, the relationship between
the load of Second Canteen and that of the other buildings is weak.
In summary, this analysis reveals that the addition of the graph
convolutional neural network increased the interpretability of
the forecasting model for forecasting the architectural complex
loads from the viewpoints of load flow and load change law.

5.4. Performance comparison with other models

Five commonly used forecasting models, namely History Aver-
age (HA), SVR, ARIMA, LSTM, and a graph neural network model
without spatio-temporal attention mechanism (MF-STGL) are
compared with the MF-STAGL model. Fig. 7 shows the forecasting
results of the Main Building from October 24, 2019, 3:00 pm to
October 27, 2019, 3:00 am using the above six models.

As shown in Fig. 7, except for the HA model, all the models can
track the fluctuation of the load rather effectively. Table 9 shows
the evaluation results of six models for the Main Building. The
MAPE of HA is as high as 43.38 %, the R2 is only 0.58, and the Accu-
racy is just 0.46, which is insufficient for forecasting rapidly vary-
ing loads. The performance of ARIMA and SVR is similar, and the R2

of SVR is higher, which makes the MAPE of SVR smaller. Compared
with a classical statistical model, HA and the traditional machine
learning models ARIMA and SVR, the LSTM, the MF-STGL, and the
MF-STAGL models achieve more accurate forecasting results by
9

introducing neural networks, and the MAPE declines obviously.
Compared with SVR, the MAPE and RMSE of LSTM decrease by
3.03 % and 1.00 %, respectively. MF-STGL combines the temporal
and spatial features, all the evaluation metrics are better than
using LSTM, which only considers the temporal feature. The perfor-
mance of MF-STAGL is the best. With the attention mechanism, the
MAPE and RMSE reduce by 0.23 % and 0.79 % compared with MF-
STGL respectively, which means the attention mechanism is a ben-
efit for tracking detail changes of the loads. The enlarged portion of
Fig. 7 clearly demonstrates this.

5.5. Forecasting stability over longer forecast period

As we all know, the lengthening of the forecast period makes
load forecasting more challenging. Hence, we choose forecast peri-
ods of 1, 6, 12, and 24 h respectively, then predict the load of the
Main Building using four load forecasting models, SVR, LSTM,
MF-STGL, and MF-STAGL during the period from October 25,
2019, 3:00 pm to October 26, 2019, 3:00 pm. The calculated RMSEs
are shown in Fig. 8. The variation of the RMSEs of the four models is
almost linear with the increase of the forecast period, the rate of
change is the largest for SVR and the smallest for MF-STAGL. With
LSTM, the variation rates of LSTM, MF-STGL, and MF-STAGL are rel-
atively small, which benefit from the memory ability of LSTM.
Comparing LSTM and MF-STGL, it is shown that the spatial infor-
mation of the surrounding buildings can be used to reduce the
impact of the forecast period. For MF-STAGL, we believe that the
temporal attention mechanism is the main reason that makes the
variation rate of MF-STAGL minimal. Overall, the combined use
of spatio-temporal features and temporal attention mechanisms



Fig. 8. RMSEs vary with the forecast period.
can maintain the stability of the forecasting to a certain extent
with a longer forecast period.
6. Conclusion

To address the issue of traditional load forecasting methods
focusing on a single building, we proposed the MF-STAGL model,
a short-term load forecasting model that can extract the inherent
spatio-temporal characteristics of nonlinear and complicated load
data and achieve accurate load forecasting of all buildings in an
architectural complex at the same time. In forecasting the actual
load data from a public university in Beijing, the MF-STAGL model
beat conventional statistical approaches and typical machine
learning methods. For the forecasting performances of all build-
ings, the largest MAPE is only 6.86 %, and the smallest R2 and Accu-
racy can reach 0.87 and 0.85, respectively. Furthermore, as the
forecast period expanded, the use of the attention mechanism
helped to maintain considerable forecasting stability. With the
proposed method, the rise in RMSE with increasing forecast period
is only one-fifth of that of the SVR method and half of that of the
LSTM model. Overall, in comparison to traditional load forecasting
approaches, which need many predictions using different models,
the MF-STAGL model can obtain robust and accurate load forecast-
ing results for all buildings in an architectural complex at the same
time, effectively saving model training time. In future efforts, we
will try to introduce the transformer like architectures to improve
the performance and extend them to practical applications.
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