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Abstract

In the context of clinical trials and medical research medical text mining can provide broader

insights for various research scenarios by tapping additional text data sources and extract-

ing relevant information that is often exclusively present in unstructured fashion. Although

various works for data like electronic health reports are available for English texts, only lim-

ited work on tools for non-English text resources has been published that offers immediate

practicality in terms of flexibility and initial setup. We introduce DrNote, an open source text

annotation service for medical text processing. Our work provides an entire annotation pipe-

line with its focus on a fast yet effective and easy to use software implementation. Further,

the software allows its users to define a custom annotation scope by filtering only for rele-

vant entities that should be included in its knowledge base. The approach is based on Open-

Tapioca and combines the publicly available datasets from WikiData and Wikipedia, and

thus, performs entity linking tasks. In contrast to other related work our service can easily be

built upon any language-specific Wikipedia dataset in order to be trained on a specific target

language. We provide a public demo instance of our DrNote annotation service at https://

drnote.misit-augsburg.de/.

Author summary

Since much highly relevant information in healthcare and clinical research is exclusively

stored as unstructured text, retrieving and processing such data poses a major challenge.

Novel data-driven text processing methods require large amounts of annotated data in

order to exceed non data-driven methods’ performance. In the medical domain, such data

is not publicly available and restricted access is limited due to federal privacy regulations.

We circumvent this issue by developing an annotation pipeline that works on sparse data

and retrieves the training data from publicly available data sources. The fully automated

pipeline can be easily adapted by third parties for custom use cases or directly applied

within minutes for medical use cases. It significantly lowers the barrier for fast analysis of

unstructured clinical text data in certain scenarios.
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Introduction

Effective processing of natural clinical language data has increasingly become a key element

for clinical and medical data analysis. Recent trends in the field of natural language processing

(NLP) have established novel data-driven neural approaches to largely improve a broad variety

of language and text analysis tasks like neural machine translation, text summarization, ques-

tion answering, text classification and information extraction in general. Most notably, emerg-

ing from semantic word embeddings like Word2Vec [1] and GloVe [2], contextualized word

embedding techniques like ELMo [3] or BERT [4] based on the Transformer network architec-

ture [5] are applied in order to solve most of context-specific downstream tasks. Attention-

based language models therefore gained popularity among the NLP research community since

they are able to outperform simpler rule-based models, statistical methods like conditional

random fields and other, neural methods like LSTM-based models on core NLP tasks such as

named entity recognition (NER).

On the matter of domain-specific neural approaches for NLP numerous derivatives [6–11]

are applied for various NLP downstream tasks. The trend of these neural approaches appear to

steer towards end-to-end models [12] which are often optimized for specific purposes [13].

While most works focus on English data, creating cross-lingual approaches [4, 14, 15] for med-

ical applications is difficult due to the lack of sufficient data.

Traditional non-deep learning NLP systems often adopt pipeline-based approaches [16, 17]

for text processing in which each pipeline stage performs a modular text processing task,

enabling the reuse of single components on different applications and contexts in a simplified

fashion. The core components often rely on feature-based machine learning or linguistic rule-

based methods, although certain frameworks [16, 18] integrate also neural approaches for cer-

tain NLP tasks in more recent versions. For the framework of [18], a domain-specific model

[19] has been published for biomedical applications for English text data. For German texts,

mEx [20] implements a similar pipeline for clinical texts based on SpaCy [16], albeit its trained

models have not been published.

Historically, NLP software for medical applications has been an ongoing research subject.

The software system medSynDiKATe [21] is an early approach to extract relevant information

from pathology finding reports in German language. Apache cTAKES [22] is another modular

software for medical text processing, following the UIMA architecture, that uses OpenNLP

[23] for text analysis. While [22] is mainly designed for English texts, [24] shows only moder-

ate results for German data when using input text translation into English. HITEx [25] based

on the GATE [26] framework, and MetaMaps [27] present comparable notable implementa-

tions for medical text processing for English text data. Provided as a public web API, PubTator
[28] is a similar text mining tool for English biomedical text annotations with support for a

fixed set of entry types.

From the perspective of commercial software for medical text analysis in German language,

Averbis Health Discovery [29] provides an industry solution to NLP tasks for clinical applica-

tions. For a deeper insight in remaining challenges of non-English medical text processing we

point to the review paper [30]. More information on the situation of clinical text analysis

methods such as for medical concept extraction and normalization or for clinical challenges in

general are presented in review papers [31–33]. In similar contexts, Trove [33] is proposed as a

framework for weak supervised clinical NER tasks. While the latter work yields a broad over-

view on key aspects of different methodological concepts and covers weak supervised settings

with ontology-based knowledge bases in English, it acknowledges the need for further work on

non-English contexts.
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For text annotation and entity linking in general, earlier works focus on Wikipedia and

WikiData as knowledge base. Entity linking on unstructured texts to Wikipedia was shown in

[34–37], even before the WikiData [38] knowledge graph was introduced. Different entity

linking approaches were evaluated and compared in [39]. In addition to WikiData, other

knowledge bases [40–43] have been released as well. For tagging engines like TagMe [37],

refined entity linking systems [44, 45] were released. More recently, neural-based entity link-

ing methods have been proposed [46–48].

Motivation

By considering common natural language processing tasks as a learning problem, this inher-

ently implies the need for training data. Since novel Transformer-based architectures have

been proven effective on large amount of domain-specific training data [6–11], training such

domain-specific models for certain languages from scratch without any pretraining [7, 9, 10]

remains a major challenge due to the lack of appropriate datasets in general. Hence, transfer

learning approaches are commonly used for use case-specific downstream tasks and integrated

in practical application [13], in order to mitigate the required amount of training data and

boost the performance of the model.

Open datasets of biomedical texts and clinical letters for English languages have been pub-

lished [49, 50]. In the particular case of German data resources for clinical letters, the situation

is more dire [30, 51, 52] as no large dataset is publicly available.

In addition, one property of natural language processing methods concerns the possible

dependency on one specific language: Although works on cross- and multilingual language

models like XLM, XLM-R [14, 15] or mBERT [4] present notable results, they indicate higher

downstream task performance scores for monolingual models on non low-resource languages.

Since text processing pipelines need to be manually fine tuned for their corresponding

downstream task on aggregated training data in order to reach significant level of perfor-

mance, these pipelines require a high level of technical skill sets in order to apply existing

methods based on contextualized word embeddings in dedicated domain contexts.

Contributions

Consequently, in this work we primarily focus on methods that do not rely on techniques like

contextualized word embeddings and can be built using a public dataset. From our perspec-

tive, this enables a simplified process for build, deployment and application.

This work presents an open annotation tool for unstructured medical texts which imple-

ments an entity linking solution.

Our key contributions can be considered as an ensemble of the following items:

• Automated build process: Our annotation tool requires precomputed annotation data in

order to perform the entity linking tasks. To preprocess and obtain the annotation data, we

provide a fully automated, end-to-end build pipeline that enables the user to adapt our pipe-

line for custom use cases.

• Use of public data: The annotation tool relies on the publicly available, open WikiData and

Wikipedia datasets. The datasets are used for initial training of the annotation candidate

classifier at build time, and as a knowledge base for entity linking later during the text

annotation.

• Language support: Our implementation is capable of adopting other languages in its build

pipeline. The user can choose a specific language from the set of supported languages in

Wikipedia.
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• Usability: The annotation service offers a simplified RESTful API for entity linking. The user

can input plain text into a basic web interface. In addition, PDF documents can be uploaded

and processed. In the case of using pretrained annotation data, the annotation service can be

easily deployed on premise instantly.

Materials and methods

Open datasets

The need for training data is one of the major issues in the area of data-driven methods. In this

work, we combine two open public data sets in order to retrieve appropriate training data.

WikiData. WikiData [38] is a free open knowledge base with multilingual, structured

data. Its entities (items) are represented in a graph structure, in which each entity consists of

an item identifier and main item label. These items can store short description texts, labels and

potential alias labels for certain languages. In addition, an item may comprise a list of state-
ments to further encode knowledge. Hereby, a statement is defined by a property and a list of

corresponding values. These values can either encode explicit structured values or references

to other entities in the knowledge base. Furthermore, each item can store references to other

wiki entries through its sitelink attribute. Given by the nature of its graphical representation,

the WikiData repository can be queried through a public SPARQL-API. The entire WikiData

knowledge base is also accessible through a file download for local use.

Wikipedia. For the sake of simplicity, the Wikipedia platform is considered in this work

as a set of independent open public language-specific wiki sites. Each wiki site is composed by

a set of wiki pages. A wiki page consists of a page title and the page content. The page content

is written in the Wikitext syntax which constitutes a simplified hypertext markup language.

Plain texts from a wiki page contain words that can reference other wiki pages, and thereby

form a graph-like structure consisting of one node per wiki page. Every wiki page references a

corresponding item from the WikiData knowledge base. These references often expose the

limitation of linking wiki pages to WikiData items due to the diverging concept scope granu-

larity: For instance, the German wiki page for Diabetes mellitus links to the WikiData item

Q12206 which in reverse links back to the German Diabetes mellitus wiki page through the

entity sitelinks. However, the WikiData item Q3025883 represents the concept of Type-2-Dia-
betes and its sitelink back to the German wiki page resolves to the wiki page Diabetes mellitus
with focus on the page section Diabetes Typ 2. This implies a potential loss of information due

to the granularity mismatch since the mapping between wiki pages and WikiData items does

not exhibit the bijective property.

In general, the language-specific wiki dataset can be downloaded in order to obtain the con-

tent of all wiki pages.

Text annotation

One of the decisive components that are vital to such an annotation pipeline is the tagging and

linking component. The high-level task for this component is to identify all semantically corre-

sponding entities of a given knowledge base for a given text and link the affected text positions

by their related entity references. This task is regarded as an entity linking (EL) task.

os ¼ d½s�; �s ¼ linkðosÞ; �s 2 O; ð1Þ

where:

ω = mention

δ = text document
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s = identified text span

� = (concept) entity

O = knowledge base (KB)

link(m) = entity linking function

The objective to approximate the entity linking function link(m) can be decomposed into

two independent subtasks. The first step covers the mention detection and candidate genera-

tion. At this step, all possible entities � from the knowledge base O that match to the detected

mention ω are considered. The second step regards the selection of the best entity candidate

for the mention ω (Entity Disambiguation). The proper design of this step heavily depends on

the ω$ � match scoring function which may incorporate context-dependent scores in addi-

tion to context-independent similarity metrics.

In this work, we heavily rely on OpenTapioca [53] for solving the entity linking objective.

OpenTapioca leverages the tagging functionality of the Apache Solr software in order to imple-

ment the candidate generation step. OpenTapioca creates and prepares a Solr collection in

advance to index all relevant terms of the WikiData knowledge base for accelerated mention

lookup and tagging.

For the estimation of the matching score of a mention to a corresponding entity candidate,

the following local feature vector is defined and sampled for each pair of entity candidate � and

mention ω:

Fðo; �Þ ¼ ð� log pðoÞ; log PRð�Þ; stmdð�Þ; slð�Þ; 1Þ ð2Þ

where:

p(ω) = probability of mention ω in the language model

PR(�) = PageRank score of entity � in KB O

stmd(�) = number of statements of entity �

sl(�) = number of sitelinks of entity �

Hereby, a feature matrix FM0 is constructed from the stacked local feature vectors. The

sequence of detected mentions forms a weighted graph G, where each (ω-�) pair yields a node,

connected to all nodes with neighboring ωneighbor mentions. To represent semantic clusters,

the connection weights between two nodes a, b with their entities �b and �a are modulated by

the probability to reach each other or a common entity �3rd in the knowledge base graph O.

The reachability is limited to first order connectivity. The feature matrix F0 is propagated

along the stochastic adjacency matrix ~M for n iterations, where M represents the unnormalized

(non-stochastic) adjacency matrix of the graph G, resulting in the contextualized feature tensor

(FM0, FM1, � � �, FMn). A support vector machine (SVM) is applied to estimate the score for

each entity candidate of each mention. For a deeper explanation, we point to the original

paper [53].

Whereas the uni-gram language model is computed on the WikiData entity labels as an

approximation, and the Page Rank scores for the entities can be computed on the WikiData

knowledge base graph structure, it is important to note that the SVM classifier cannot be

trained without annotated training data. Thus, the user is required to extract documents and

annotate the documents’ mentions with their related entity links manually.

OpenTapioca requires a tool-specific profile for term indexing that defines all entities which

should be part of the knowledge base O. The text annotation only covers terms that were previ-

ously included in the OpenTapioca profile.
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Text postprocessing and filtering

In order to allow encoding of prior knowledge about the target annotation structure, it is nec-

essary to analyse the input text data by an NLP toolchain. We rely on the library SpaCy [16] in

conjunction with its published pretrained pipeline components. The components mainly con-

sist of a simple universal part-of-speech tagger, a more detailed part-of-speech tagger, a mor-

pholgizer and a dependency parser.

Results

Build pipeline

An automated pipeline has been developed that performs the following steps:

Installation of required components. All required dependencies are installed to the local

machine. This mainly includes a container runtime and basic shell tools.

Automated NIF extraction. We acquire the required training data through a pipeline of

parsing, extraction and transformation steps of the formerly mentioned datasets. First, the

Wikipedia pages for a given language code are parsed. During that step, all referencing terms

in the page texts are extracted and their referenced pages are resolved. Given the OpenTapioca

profile, we then query the SPARQL API to obtain all affected WikiData items. The entire Wiki-

Data dataset is parsed and for each WikiData item sitelink that points to its Wikipedia page,

we add its item identifier to the processed Wikipedia page in the database to establish a bijec-

tive mapping while ignoring more fine-granular WikiData items.

Given the parsed and linked data for WikiData and Wikipedia, we can select all pages

that contain referencing terms in the text to other pages if the related WikiData items were

included by the OpenTapioca profile. By doing so, we treat relevant referencing terms as word

annotations and, therefore, can synthesize the required dataset with annotated mentions. To

avoid irrelevant text sections, only the sentences with relevant terms are further extracted.

For sentence splitting, SpaCy [16] is used. The transformed data is stored in the common NIF

format.

OpenTapioca annotation setup. The initialization steps for OpenTapioca are performed

as follows: Based on the given OpenTapioca profile, all labels and alias terms of the selected

WikiData items are loaded and indexed by the Solr instance. In addition, the buildup of the

entity graph for the PageRank computation as well as the buildup of the uni-gram language

model is run, followed by the training of the SVM classifier on the extracted NIF dataset. The

logical data flow process is visualized in the box Build Stage of Fig 1.

The build pipeline eventually outputs a single package file that is needed for the instant

deployment of the annotation service.

Service

The annotation service provides a platform for text input processing through an HTTP-based

RESTful API as well as through a basic web interface. The implementation integrates the

annotation strategy of OpenTapioca and the entity tagging process through an Apache Solr

instance. For a successful deployment, the prebuilt file package is required which stores the

classifier and language model information as well as the index database of the Solr collection

for accelerated entity lookup.

In addition to the plain text annotation, the service features the processing of PDF docu-

ments with options for data input and output. Concerning the data input, the text from a PDF

document is extracted in order to apply the entity linking task. Therefore, PDF documents

with digital text information can be directly processed. In case of scanned documents that
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Fig 1. Visualization of logical data flow: The box “Build Stage” describes the components for data generation and preparation.

The box “Runtime Stage” illustrates the processing of an annotation request. The components of OpenTapioca and Apache Solr are

shared during build and runtime stage.

https://doi.org/10.1371/journal.pdig.0000086.g001
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encode their information in an image format, an additional OCR step is applied. The OCR

step is based on the Tesseract [54] software.

Concerning the data output, the annotation information can be either provided as a

machine-readable JSON response or as a PDF document with embedded hyperlinks to the cor-

responding WikiData item page for all identified mentions. The service provides the option to

postprocess the input text and its annotations in order to filter out annotations which are

implausible based on their linguistic or structural properties. For instance, one may require

the annotations to have at least one word token tagged as a noun in certain scenarios.

The logical data flow for the annotation service is depicted in the box Runtime Stage of Fig 1.

Build for medical use case

We apply the developed build pipeline and annotation service for our central use case for med-

ical text analysis. The computed initialization data for the annotation service was retrieved by

our build pipeline for our specified use case.

One of the most relevant information in medical letters includes data which is associated to

symptoms, diagnoses, drugs and medications. Therefore, the entity selection process is man-

aged in the way to cover all WikiData items that represent direct or indirect instances of these

concepts in the knowledge base.

Our strategy to select all relevant entries leverages the graphical structure of the WikiData

knowledge base. An item is a part of the knowledge base index if at least one of the following

conditions is satisfied:

• The item has a Disease Ontology (P699) statement entry.

• The item has an UMLS CUI (P2892) statement entry.

• The item has a MeSH descriptor ID (P486) statement entry.

• The item has a MeSH tree code (P672) statement entry.

• The item is a subclass of Medication (P12140).

Since the entity linking task can only detect references to entities that have been indexed

through the build pipeline, an effective feature selection contributes crucially to the capabilities

of our annotation service. In our medical use case scenario, the need for multiple selection fea-

tures can be demonstrated by the fact that the WikiData knowledge base can be considered

incomplete. For instance, 27786 unique entities with an associated UMLS CUI statement can

be found in WikiData at the time of writing. In contrast, the UMLS metathesaurus (2020AB)

consists of 15938386 total entries and 4413090 unique CUIs. Adding the MeSH descriptor ID
(P486) to the UMLS CUI selection feature increases the number of entries by 26932 and there-

fore can add highly relevant items to the knowledge base despite the problem of missing Wiki-

Data UMLS references.

Using multiple direct features of an item for entity selection, however, only mitigates the

described issue. In addition to such direct features, we demonstrate that utilizing the hierarchi-

cal internal WikiData structure can be beneficial in order to further reduce the item miss rate

due to the lack of data or incomplete data in WikiData items: The item Medication (Q12140) is

referenced by several other items through the property Subclass of (P279), and thus, all items

that are a subclass of Medication can be directly selected as relevant entries. In this context, not

only first order subclass items are included but also all n-degree subclass items from the Wiki-

Data hierarchy. For instance the item Opioid (Q427523) is selected through the hierarchy path

Medication� Analgesic� Opioid where� is a Subclass of reference.
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The build pipeline was executed for an German OpenTapioca profile with the formerly

mentioned item selection features. The processing and training was performed on an 8-core

Intel Xeon Silver 4210 virtual machine with 128GB memory. The computation times for vari-

ous pipeline substages are depicted in Table 1. While later substages depend on the defined

OpenTapioca profile and require recomputation on profile changes, earlier substages are inde-

pendent of profile changes. Regarding multicore scaling, parts of the pipeline support the mul-

tiprocess architecture model. The computation times vary based on the number of WikiData

entities and Wikipedia pages. For the presented computation times, the NIF generation stage

processed 95.1M WikiData entities and 5.6M German Wikipedia pages.

As described in the previous chapter, our annotation service exposes a simple HTTP REST

interface as well as a graphical web interface. The web interface is depicted in Fig 2 for an in-

browser text annotation of an anonymized text snippet from the MIMIC-III [49] dataset. For

demonstration purposes, we created a PDF document with the same text content and submit-

ted the document to the PDF upload interface to retrieve an annotated PDF document with its

embedded annotation links as output. The result is shown in Fig 3.

Our pretrained data for an instant service deployment as well as the source code is available

at our project repository page at https://github.com/frankkramer-lab/DrNote.

Performance evaluation

To evaluate the annotation performance we compare our method with Apache cTAKES (ver-

sion 4.0.0.1) and PubTator (https://www.ncbi.nlm.nih.gov/research/pubtator/api.html) as

baseline. Since our method is designed for multilingual use cases and for non-English data in

specific, we focus on German text data for performance comparisons. To avoid inadequate

evaluation issues such as missing UMLS references or ambiguous mappings between non-iso-

morphic knowledge bases, we consider the annotation task as a binary text segmentation task

at which the annotation spans define the binary segmentation mask. For clinical contexts, we

randomly drew 50 samples from the GERNERMED [55] test set and manually corrected incor-

rect annotation spans, since the dataset is based on an automated translation of the n2c2 2018

Table 1. Build Processing Times.

Stage Substage Time Multicore Profile

NIF & OpenTapioca Data download 5h no independent

NIF Page & redirect extraction 2h no independent

NIF Entity extraction 16h yes independent

NIF Entity filtering 24m yes independent

NIF Pagelinks extraction 106h yes independent

NIF NIF file generation 1h no dependent

OpenTapioca Language model creation 16h no independent

OpenTapioca Link extraction 15h no independent

OpenTapioca Link sorting 45s no independent

OpenTapioca Link sparse matrix conversion 24m no independent

OpenTapioca Page rank computation 26m no independent

OpenTapioca Entity indexing 11h no dependent

OpenTapioca Classifier training 2m partly dependent

Build times for German medical use case: NIF-based substages interact with a MongoDB database. MongoDB supports read operations on multiple cores. Profile-

dependent stages require recomputation on profile changes.

https://doi.org/10.1371/journal.pdig.0000086.t001
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ADE and Medication Extraction Challenge [50] dataset with automated annotation alignments.

All labels except for Drug were omitted for comparison reasons.

In order to quantify the domain-shift bias in non-clinical contexts on the biomedical Man-
tra GSC [56] datasets. In these datasets, the annotations are linked to their corresponding

Fig 2. Demo for web interface. Browser-based annotation on example data from the MIMIC-III [49] dataset.

https://doi.org/10.1371/journal.pdig.0000086.g002
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UMLS entries. Since WikiData lacks large parts of the UMLS references mentioned (Medline:

90 out of 309 UMLS concepts known, EMEA: 121 out of 425 UMLS concepts known), the

DrNote scores are also evaluated on a filtered set of UMLS annotations that are reference in

WikiData, yet in all setups, DrNote annotations were limited to entities that are subclasses

Fig 3. Demo for PDF annotation. A PDF page demo with embedded annotations on example data from MIMIC-III [49]

dataset.

https://doi.org/10.1371/journal.pdig.0000086.g003
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(P279) or instances of (P31) of medications (Q12140) for comparison reasons. Apache

cTAKES uses the UMLS metathesaurus directly and therefore does not suffer from incomplete

UMLS data. Given its focus on biomedical texts, PubTator supports the entity concepts gene,

disease, chemical, species, mutation and cellline. The entity concept chemicals is identified by

PubTator through a search-based dictionary lookup in the MeSH thesaurus.

The evaluation results are given as f1 scores based on the character-level text segmentation

masks from the ground truth (GT) and the predicted segmentation in Table 2.

While our method exhibits substantially better text segmentation f1 score performance in

comparison to cTAKES and PubTator, and demonstrates considerable results on the clinical

dataset, all methods show subpar results on biomedical datasets. We mainly attribute this cir-

cumstance to the fact that both biomedical datasets include annotation phrases in part-of-speech

(PoS) forms other than nouns, in which case both methods tend to fail. While cTAKES and Pub-

Tator are incapable of German word stemming due to the focus on English, our method relies

on the nominalized WikiData labels and fails for similar reasons. However, our method seems

to perform better on all datasets which we attribute to the broader set of common alias labels in

WikiData compared to the related UMLS or MeSH entry labels as illustrated in Fig 4. In contrast

to cTAKES, our method can also use linguistic information to avoid obvious PoS-related anno-

tation errors as shown in Fig 5. cTAKES is still able to detect certain German UMLS entities due

to the fact that the German language represents the largest non-English language in the UMLS

metathesaurus, however PubTator uses the English MeSH database and does not include the

German MeSH terms. Conversely, PubTator is able to detect specialized codes from MeSH

whereas cTAKES does not detect certain codes (Fig 6) although the displayed code RAD001 is

present in the UMLS database. With respect to our method, we also identified scenarios in

which correct annotations were skipped due to our filter mechanism meant to exclude non-

medication items as shown in Fig 7. For this particular instance, the item Steroid had been anno-

tated correctly, yet due to the structure in the WikiData graph, the item (Q177911) is not classi-

fied as being a subclass or instance of medication and skipped for that reason.

Discussion

Considering the dire state of natural language processing tools with support for multi-language

data input in the medical context, the presented annotation service can offer useful services for

Table 2. Annotation Performance Evaluation.

Dataset Method F1 score

GERNERMED cTAKES 0.632

GERNERMED DrNote 0.722

GERENRMED PubTator 0.523

Medline GSC cTAKES 0.148

Medline GSC DrNote 0.226

Medline GSC PubTator 0.123

EMEA GSC cTAKES 0.162

EMEA GSC DrNote 0.261

EMEA GSC PubTator 0.0728

Medline GSC DrNote (filtered) 0.414

EMEA GSC DrNote (filtered) 0.503

Evaluation results of cTAKES, PubTator and DrNote (ours) on various datasets. Filtered results exclude annotations

from the ground truth if their corresponding UMLS CUI is not referenced in WikiData.

https://doi.org/10.1371/journal.pdig.0000086.t002
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Fig 4. Comparative Sample 1 and 2. Specialized German term missing in UMLS or MeSH, (Laktulose,Protonenpumpenhemmer, cTAKES &

PubTator).

https://doi.org/10.1371/journal.pdig.0000086.g004

Fig 5. Comparative Sample 3. Artifacts from lack of German linguistics (Das, cTAKES).

https://doi.org/10.1371/journal.pdig.0000086.g005

Fig 6. Comparative Sample 4. Weakness of cTAKES to detect certain codes (RAD001, cTAKES).

https://doi.org/10.1371/journal.pdig.0000086.g006
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research applications and related text analysis tasks. Inherently to the chosen dictionary-based

entity detection and linking approach, the capabilities of the service as well as its limitations

exclude the tool for certain tasks: The entity detection method is limited to only recognize enti-

ties that are part of the WikiData knowledge base label and alias term sets, excluding semanti-

cally related terms or slightly altered, corrupted terms that are closely related to their correct

term when evaluated on the Levenshtein distance metric. A potential remedy for this issue can

be the use of a spellchecker component. The entity disambiguation step cannot reject false pos-

itive mentions in situations where the entity candidate presents imprecise label or alias values.

For instance, the item Universe (Q1) contains the word all as an alias value. Subsequently, all
will be linked to Q1 in the case that Q1 was previously included by the entity selection step. To

effectively counter such artifacts, a deeper semantic understanding is required. However, the

buildup of semantic understanding is mostly handled by utilizing large training data from

certain target domains and poses a major disadvantage of data-driven methods since large

datasets can be challenging to obtain and may jeopardize robust multi-language support. By

offering advanced annotation filter rules based on linguistic features through SpaCy, this may

alleviate the problem in situations where a pretrained SpaCy pipeline is available for the corre-

sponding text language.

Currently, our approach is strictly tied to the label and alias terms from WikiData that are

typically nominalized. Therefore, relevant terms in different part-of-speech configurations

such as adjectives cannot be detected due to the lack of language-dependent stemming or lem-

matization. Further work on such improvements is considered future work.

The synthesis of the annotated dataset of relevant mentions from the Wikipedia and Wiki-

Data datasets and its transformation into the NIF file format only considers links of mentions

at a page to another referenced page whenever the link was inserted manually by a Wikipedia

author. In frequent cases, only the first mention of a referenced concept is linked by the

authors on the page, despite the fact that the mention text may appear multiple times on the

same Wikipedia page. This may induce lower recall scores in contrast to a complete and man-

ual annotation. Our mitigation approach reduces the probability of including false negative

terms by only extracting single sentences from the Wikipedia page texts.

Conclusion

In this work we introduced our annotation service DrNote as an open platform for entity link-

ing in the context of medical text processing with multi-language support. The annotation ser-

vice can operate directly on precomputed initialization data which are provided for instant

deployment. An fully automated build pipeline was presented to enable users to customize the

annotation service for specific needs while the generated dataset solely relies on open public

Fig 7. Comparative Sample 5. Ignored annotations due to WikiData graph structure (Steroid as no subclass/instance of medication), DrNote).

https://doi.org/10.1371/journal.pdig.0000086.g007
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data. We presented the feature support for PDF document processing and annotation as well

as the integration of SpaCy for advanced linguistic-based annotation filtering.

Common limitations of the chosen entity linking approach were further discussed as well

as its conceptual drawback compared to competing data-driven approaches. While purely

data-driven approaches may enable huge advancements over traditional approaches, their

individual applicability for certain languages in the medical context remains to be challenging

due to the lack of sufficiently large training data. Privacy concerns and legal restrictions for

data use and access may hinder further improvements on the availability of such datasets in

the future.
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