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Abstract
Background To date, the role of blood lipid levels and their association with the onset and prognosis of ALS is controversial. 
We explored these associations in a large, population-based case–control study.
Methods Between October 2010 and June 2014, 336 ALS patients (mean age 65.7 ± 10.7; 57.7% male) and 487 sex- and 
age-matched controls from the same geographic region were recruited within the ALS registry in Southwest Germany. Tri-
glycerides and cholesterol (high-density lipoprotein (HDL), low-density lipoprotein (LDL), total) were measured. The ALS 
cohort was followed up for vital status. Conditional logistic regression models were applied to calculate odds ratio (OR) for 
risk of ALS associated with serum lipid concentrations. In ALS patients only, survival models were used to appraise the 
prognostic value.
Results High concentration of total cholesterol (OR 1.60, 95% confidence interval (CI) 1.03–2.49, top vs. bottom quartile), 
but not HDL, LDL, LDL–HDL ratio, or triglycerides, was positively associated with the risk of ALS. During the median 
follow-up time of 88.9 months, 291 deaths occurred among 336 ALS patients. In the adjusted survival analysis, higher HDL 
(HR 1.72, 95% CI 1.19–2.50) and LDL cholesterol levels (HR 1.58, 95% CI 1.11–2.26) were associated with higher mortality 
in ALS patients. In contrast, higher triglyceride levels were associated with lower mortality (HR 0.68, 95% CI 0.48–0.96).
Conclusion The results highlight the importance to distinguish cholesterol from triglycerides when considering the prognostic 
role of lipid metabolism in ALS. It further strengthens the rationale for a triglyceride-rich diet, while the negative impact of 
cholesterol must be further explored.
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Introduction

Amyotrophic lateral sclerosis (ALS) is the most frequent 
motor neuron disease and is characterized by progres-
sive degeneration of both upper and lower motor neurons. Sebastian Michels, Deborah Kurz, Gabriele Nagel, and Johannes 
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Patients suffer from hypercatabolism [1], which occurs years 
before the onset of motor symptoms [2, 3]. Population-based 
studies reported that weight loss was present in 67.5% of all 
ALS patients at the time of diagnosis [4]. Various studies 
have shown that catabolism is a strong negative prognostic 
factor [5–7] and that high-caloric nutrition favorably influ-
ences the course of the disease [8–11]. ALS patients exhibit 
an increased energy expenditure at rest [1, 10, 12, 13], which 
might be related to hypothalamic [14, 15] and/or mitochon-
drial dysfunction [16, 17].

Interestingly, patients with ALS frequently exhibit 
increased serum lipid and cholesterol levels [18–21]. To 
date, the cause of these changes remains enigmatic, since 
ALS patients tend to be lean at diagnosis [20] and exer-
cise more [22, 23]. Therefore, the influence and prognostic 
significance of lipid metabolism in ALS is controversial. 
High plasma levels of cholesterol have been suggested to be 
neuroprotective and are associated with increased survival 
by some studies [18–20, 22]. However, other data suggest 
that accumulation of cholesterol and its metabolites mediate 
oxidative stress in motor neurons [24, 25] and may increase 
the risk of developing ALS [26]. Hypertriglyceridemia has 
more consistently been associated with prolonged survival 
[18, 19]. However, previous studies show a large heteroge-
neity regarding the association between lipid profiles and 
clinical phenotypes [27]. We suspect that this is partially 
driven by methodological aspects, as most of the existing 
literature relies on retrospective, hospital-based data, which 
are prone to selection and recall bias as well as confounding.

Knowledge about the effect of lipid metabolism on risk 
and prognosis of ALS is important because it implies direct 
clinical consequences, such as dietary recommendations, 
composition of prescribed high-caloric food supplements, 
and the identification of potential future therapeutic targets. 
Therefore, our aim was to examine the associations of total 
cholesterol, high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), and triglycerides with risk of ALS and 
mortality within the ALS cohort in a large, well-character-
ized, population-based study sample.

Methods

Study population and design

The ALS registry Swabia is a population-based clinical-
epidemiological registry in a defined geographic region in 
the South-West of Germany (details see [28]). The catch-
ment area has approximately 8.4 million inhabitants. The 
aim of the registry is to collect data on all newly diagnosed 
ALS patients in Swabia. Consequently, the registry provides 
estimates of epidemiological variables, such as incidence, 
and describes the natural history of ALS, including survival 

status. It further allows for the investigation of risk factors 
for ALS by means of a registry-based case–control study.

Beginning October 01, 2010, all newly diagnosed ALS 
patients were registered prospectively. ALS patients were 
defined by the diagnosis of possible, probable or definite 
ALS according to the revised El Escorial criteria [29].

Additionally, all newly diagnosed and registered ALS 
patients between October 01, 2010 and December 31, 2014 
were asked to provide written informed consent to partici-
pate in a population-based case–control study investigat-
ing risk factors for ALS. For each case, two sex- and age-
matched healthy control subjects from the same geographic 
region were randomly selected. For this purpose, a random 
sample of potential control subjects was acquired from the 
general population as registered in the regional registry 
office of the respective geographic region. Potential healthy 
control subjects were invited by mail to participate. After 
written informed consent, study nurses visited patients and 
healthy controls for an identical standardized interview and 
blood sampling. Response rate was 65% in patients and 19% 
in controls.

ALS patients were actively followed up annually through 
a standardized interview. For survival status, the registration 
offices were contacted annually, and if a patient died, the 
date of death was received (last systematic mortality update 
in December 2020).

Biomarker measurement

HDL, LDL, total cholesterol, and triglycerides (mmol/l) 
were determined from serum samples. Blood was drawn 
at least 1 h after the last food intake in 90.8% of the ALS 
cohort and 86.2% of the healthy control group (details see 
Table 1). Laboratory analyses were performed in the year 
2019 in a blinded fashion at the central laboratory of the 
Department of Clinical Chemistry, Ulm University Medi-
cal Clinic, according to accredited and standardized rou-
tine methods (triglycerides photometrically on the Cobas c 
system; HDL, LDL, and total cholesterol enzymatically on 
the Cobas c system; both from Roche Diagnostics, Basel, 
Switzerland).

Covariates

Data on body mass index (BMI), smoking status, comorbidi-
ties, lifestyle, school education, and use of lipid-lowering 
drugs (statins, fibrates) were collected at baseline assessment 
in ALS patients and healthy controls during a standardized, 
questionnaire-based interview. ALS-specific data including 
ALS functional rating scale revised (ALS-FRS-R), disease 
duration, site of onset (spinal/bulbar), and family history of 
ALS were recorded. We calculated the pre-baseline decline 
of ALS-FRS-R points per month as marker of disease 
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progression based on the formula: (48-ALS-FRS-R Score 
at the first visit)/(months between disease onset and first 
visit). The disease onset was defined as the patient-reported 
time of first symptoms, i.e., first paresis in spinal-onset ALS 
or speech/swallowing disturbances in bulbar-onset ALS.

Ethics statement

International, national, and state rules were applied for the 
implementation of the ALS registry Swabia. We obtained 
ethical approval of the ethical committees of Ulm University 

(reference # 11/10) and the regional medical associations 
(Landesärztekammer Baden-Württemberg reference # 
B-F-2010-062 and Landesärztekammer Bayern reference # 
7/11300).

Statistical analysis

Sociodemographic data, lifestyle, laboratory results, 
comorbidities, and clinical characteristics were analyzed 
descriptively. Generalized linear models were used to 
assess the association between sociodemographic/clinical 

Table 1  Characteristics of ALS 
patients and matched controls

Demographic data, lipid profiles and co-medication for ALS patients and matched healthy controls
BMI body mass index, HDL high-density lipoprotein, LDL low-density lipoprotein, ALSFRS-R ALS func-
tional rating scale revised

NCases ALS-cases NControls Control subjects

Case–control study 336 487
Age (years), mean (SD) 336 65.7 (10.7) 487 66.1 (10.0)
Sex 336 487
 Male, N (%) 194 (57.7) 294 (60.4)

School education, N (%) 336 485
 < 10th grade 187 (54.7) 215 (44.3)
 ≥ 10th grade 149 (44.3) 270 (55.7)

Smoking 331 485
 Ever, N (%) 159 (48.0) 238 (49.1)

BMI (kg  m−2), mean (SD) 336 24.5 (4.0) 485 26.5 (4.1)
 Overweight (≥ 25 kg  m−2), N (%) 136 (40.5) 289 (59.6)

Family history of ALS, N (%) 330 487
 Positive 15 (4.6) 3 (0.6)

Occupational work intensity, N (%) 327 483
 Light (mainly sitting) 115 (35.1) 248 (51.3)
 Moderate (standing and walking) 141 (43.1) 173 (35.8)
 Heavy (physically demanding) 71 (21.8) 62 (12.9)

Time between last meal and blood sampling (h), N (%) 336 487
 ≤ 1 31 (9.2) 67 (13.8)
 > 1–5 264 (78.6) 367 (75.4)
 > 5–10 22 (6.5) 20 (4.1)
 > 10 15 (4.5) 21 (4.3)
 Missing 4 (1.5) 12 (2.5)

HDL (mmol  L−1), median (IQR) 336 1.5 (1.2–1.8) 487 1.5 (1.2–1.8)
LDL (mmol  L−1), median (IQR) 335 3.2 (2.7–3.9) 487 3.3 (2.7–3.9)
LDL–HDL ratio, median (IQR) 335 2.1 (1.7, 2.8) 486 2.4 (1.8, 2.8)
Total cholesterol (mmol  L−1), median (IQR) 336 5.8 (5.0–6.6) 486 5.6 (4.9–6.4)
Triglycerides (mmol  L−1), median (IQR) 336 1.7 (1.2–2.5) 487 1.7 (1.2–2.5)
Lipid-lowering medication, N (%) 336 38 (11.3) 487 97 (19.9)
 Statins 336 36 (10.7) 487 96 (19.7)
 Others (fibrates, etc.) 336 2 (0.6) 487 2 (0.4)

Antidiabetic medication, N (%) 336 26 (7.7) 487 37 (7.6)
 Metformin 336 20 (6.0) 487 34 (7.0)
 Other oral antidiabetics 336 4 (1.2) 487 14 (2.9)
 Insulin 336 6 (1.8) 487 4 (0.8)
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variables and serum levels of HDL, LDL, LDL-HDL 
ratio, total cholesterol, and triglycerides. Models were 
controlled for case–control status, sex, and age.

Conditional logistic regression was used to calculate 
crude and multivariable adjusted odds ratios (ORs) and 
95% confidence intervals (95%-CIs) for the association 
between serum quartiles of HDL, LDL, LDL-HDL ratio, 
total cholesterol, and triglycerides with onset of ALS. 
Quartile cut points were calculated based on the distribu-
tion in controls (Suppl. Table 1).

In the case–control study, logistic regression models 
were conditioned on sex and age-groups and addition-
ally adjusted for relevant covariates (potential confound-
ers) including BMI, smoking (ever), self-reported dia-
betes mellitus, occupational work intensity, educational 
attainment, and family history of ALS. The form of the 
associations was assessed using restricted cubic splines 
with knots at the 5, 35, 65, and 95% percentiles. We log-
transformed the variable triglyceride as it was skewed 
slightly to the right. For graphical representation of the 
results, the variable was back transformed. The models 
are based on data with a full set of covariates.

In the ALS cohort, we investigated the prognostic 
value of HDL, LDL, LDL-HDL ratio, total cholesterol, 
and triglycerides on overall survival as defined by the 
time between onset of first paresis and death/tracheos-
tomy (last systematic mortality update in December 
2020). We performed Cox proportional hazard regres-
sion models to calculate hazard ratios (HRs) and 95% 
CIs by quartiles of HDL, LDL, LDL-HDL ratio, total 
cholesterol, and triglycerides. Model entry for observed 
survival time was time of first visit (baseline visit) to 
adjust for immortal time bias [30, 31]. Cox models were 
adjusted for sex, age, diagnostic delay, site of onset, and 
ALS-FRS-R at baseline as the main independent prognos-
tic factors. In a second step, we additionally adjusted for 
BMI, and smoking (ever). We checked for effect modifi-
cation between all exposure variables and sex in all fully 
adjusted models, respectively. If effect modification was 
detected, the analysis was stratified by sex. We also cal-
culated a Pearson correlation coefficient for self-reported 
weight loss and HDL concentration in serum.

Sensitivity analyses were performed by excluding 
all ALS subjects with revised El Escorial criteria ≤ 2 
(“clinically possible”) and excluding participants taking 
lipid-lowering or antidiabetic medications. All provided 
p-values are two-sided. The significance level was set 
as p < 0.05. Unless otherwise indicated, the OR and HR 
reported refer to the top quartile compared to the lowest 
quartile. The analyses were performed using  SAS® 9.4 
(The SAS Institute, Cary, NC, USA).

Results

Overall, 336 patients with ALS and 487 matched controls 
were included in the case–control study (Table 1). The mean 
age was 65.7 ± 10.7 years in the ALS and 66.1 ± 10.0 years in 
the control group. The ALS cohort had a lower mean BMI of 
24.5 ± 4.0 kg*m−2 compared to controls (26.5 ± 4.1 kg*m−2, 
p < 0.001). Fifteen patients (4.6%) had a positive family his-
tory of ALS compared to three control subjects (0.6%). The 
ALS cohort had lower levels of school education (44.3 vs. 
55.7%) and a higher proportion of physically demanding 
work (21.8 vs. 12.9%) related to their occupation.

Antidiabetic medication was equally frequent in patients 
and controls (7.7 vs. 7.6%). We noted a lower prevalence of 
lipid-lowering medication intake of 11.3% in the ALS cohort 
compared to 19.9% in controls (p = 0.001). Serum concen-
trations of HDL, LDL, LDL-HDL ratio, total cholesterol, 
and triglycerides were similarly distributed among patients 
and controls.

Among the ALS cohort, the median pre-baseline disease 
progression was 0.9 (0.5–1.5) ALS-FRS-R points lost per 
month.

Case–control study

In the case–control study, a higher risk for ALS was 
observed for the top quartile of total cholesterol (OR 1.60; 
95% CI 1.03–2.49) (Fig. 1, Suppl. Table 2). No association 
with ALS risk was found for LDL, HDL, LDL-HDL ratio, 
or triglycerides. Sex was a significant modifier of cholesterol 
associated risk for ALS (p = 0.035). The risk for developing 
ALS with increased cholesterol levels was more pronounced 
in male subjects with an OR of 2.76 (1.48–5.14) in the top 
quartile (Suppl. Table 3).

Survival analysis

In the ALS case cohort, during the median follow-up of 
88.9 months, 291 deaths occurred among 336 ALS partici-
pants (Table 2). The survivor group was characterized by 
more men (77% vs. 54.6%), a higher mean BMI (25.4 ± 4.3 
vs. 24.3 ± 4.0 kg/m2), and a higher median ALS-FRS-R 
(43.0 vs. 38.0).

Increased HDL (HR 1.72, 95% CI 1.19–2.50), and 
LDL (HR 1.58, 95% CI 1.11–2.26) were associated with 
increased mortality (Fig. 2, Suppl. Table 4). Higher tri-
glyceride levels (top quartile), on the contrary, were asso-
ciated with longer survival (HR 0.68, 95% CI 0.48–0.96). 
After additional adjustment for BMI and smoking, the 
detrimental effects of HDL and LDL were still significant 
(HDL: HR 1.54, 95% CI 1.05–2.27, LDL: HR 1.57, 95% 
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CI 1.10–2.26), while the beneficial effect of triglycerides 
was not (HR 0.72, 95% CI 0.50–1.30, Suppl. Table 4), 
indicating that the life-prolonging effect of high triglycer-
ides was partly explained by the associated higher BMI. 
HDL levels did not correlate with patient-reported weight 
loss pre-baseline during the preceding 3 months (r = 0.033, 
p = 0.573).

Discussion

In this population-based study including 336 ALS patients 
and 487 matched controls, we found evidence for an associa-
tion between elevated total cholesterol serum levels and ALS 
risk, but not for HDL, LDL, or triglycerides. Furthermore, 
high triglycerides may be associated with longer survival, 
whereas higher levels of cholesterol were associated with a 
higher mortality.

Despite the   frequently observed weight loss, hyperlipi-
demia is a common phenomenon in ALS patients. Choles-
terol, lipoproteins (HDL and LDL), and triglycerides are 
crucial components of lipid metabolism and are essential for 
a variety of cell functions. Cholesterol, an unsaturated alco-
hol of the steroid family, is mainly synthesized and recycled 
in the liver. Its primary function is to maintain the integrity 
and to modulate the fluidity of cell membranes, as well as 
serving as a precursor for the synthesis of vitamin D and 
all steroid hormones. It also plays a role in cell signaling 
processes affecting various ion channels [32] and modulates 
excitatory synaptic transmission [33].

Our analysis revealed a strong association of increased 
cholesterol levels with both risk and mortality in ALS. In 
the literature, a plethora of examples link signaling path-
ways involved in ALS pathology to lipid metabolism [25]. 
A pathological hallmark of ALS is the presence of cytoplas-
mic inclusion bodies consisting of phosphorylated transac-
tive response DNA-binding protein 43 (pTDP-43). Of note, 
TDP-43 was found to directly modulate expression levels 

Fig. 1  Forest plot showing associations of cholesterol and triglycer-
ides with risk of ALS (case–control study). Lipid metabolism and 
risk for ALS based on values of cases and controls. Crude = condi-
tioned on sex and age group. Adjusted = additionally adjusted for 

educational attainment, occupational work intensity, smoking (ever), 
family history of ALS, body mass index (BMI), and self-reported dia-
betes mellitus. HDL high-density lipoprotein; LDL low-density lipo-
protein, OR odds ratio

Table 2  Patient characteristics by survival status

Characteristics of ALS cases (N = 335) with mortality follow-up by 
survival status
BMI body mass index, ALS-FRS-R ALS functional rating scale 
revised, HDL high-density lipoprotein, LDL low-density lipoprotein

Clinical characteristics in the cohort of ALS cases

Site of onset, N (%)
 Bulbar 336 109 (32.4)
 Spinal 227 (67.6)

Revised El Escorial criteria, N (%) 336
 Clinically suspected 65 (19.4)
 Clinically possible 34 (10.1)
 Clinically probable 92 (27.4)
 Laboratorysupported, probable 117 (34.8)
 Clinically definite 28 (8.3)

ALS-FRS-R, median (Q1, Q3) 335 39.0 (34.0, 42.0)
Diagnostic delay (month), median (Q1, Q3) 336 5.0 (2.6, 9.1)
Invasive ventilation, N (%) 336 13 (3.9)
Pre-baseline ALS-FRS-R progression rate 

(points lost per month), median (IQR)
335 0.9 (0.5–1.5)
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of SREBF2, the master transcription factor of cholesterol 
biosynthesis [34]. Besides SREBF2, cholesterol metabolism 
is controlled by the liver x receptor (LXR), which was found 
to be a modifier for age of onset and survival in ALS patients 
[35].

Another possible explanation for alterations of the meta-
bolic profile might be the involvement of the hypothalamic 
circuit in ALS [36]. An MRI-based study showed that ALS 
patients developed atrophy of the anterior and posterior 
hypothalamus compared to a control cohort [14]. Interest-
ingly, these changes were also observed in presymptomatic 
carriers of pathogenic ALS mutations [14]. Histopathologi-
cally, there is parallel evidence of changes in the hypothala-
mus and hypophysis: toxic protein aggregations of pTDP-43 
and dipeptide repeats in C9orf72-related ALS and ALS with 
frontotemporal dementia (ALS-FTD) have been found in 
the hypothalamic–pituitary axis [37, 38]. These structural 
changes could contribute to disturbances in hypothalamic 
hormone levels and, consequently, to alterations of lipid 
metabolism. Indeed, patients with ALS frequently exhibit 
reduced levels of growth hormone (GH) [39, 40] and altera-
tions of the melanocortin pathway [15]. Under physiological 
conditions, GH stimulates the hepatic LDL receptor, leading 
to reduced total cholesterol and LDL levels [41]. Thus, it 
may be hypothesized that hypercholesterolemia might reflect 
incipient changes related to the underlying ALS pathology. 
Recent findings from large genome-wide association studies 
(GWAS) further support these results by providing evidence 
that elevated LDL [42] and total cholesterol levels [43] were 
risk factors for ALS.

With regard to cholesterol-associated disease risk, sex 
emerged as an important effect modifier, resulting in a sig-
nificantly increased risk for ALS at high cholesterol levels 
in male subjects. Epidemiological and experimental studies 
have shown gender differences with regard to susceptibility 
to ALS and disease progression, suggesting a lower risk of 
developing ALS in women [44, 45]. Several studies attribute 
a protective effect to the female sex hormones estrogen and 
progesterone [46]. Interestingly, both are known to modulate 
lipid metabolism and cholesterol composition, which may 
explain the sex differences in our study.

In our survival analysis, increased levels of HDL, LDL 
and total cholesterol showed a positive association with 
overall mortality in ALS patients. These results were robust 
even after adjustment for established prognostic factors and 
clinical characteristics. Thus, we could not reproduce the 
results of earlier observational studies that had associated 
hypercholesterolemia with prolonged survival time [18–20, 
22]. A possible explanation could be a lack of adjustment 
for cofactors in previous studies [47]. In particular, a high 
BMI is an independent positive prognostic factor which is 
frequently associated with hypercholesterolemia [3, 48] and 
therefore could falsely suggest a beneficial effect of hyper-
cholesterolemia on overall survival. Of note, other studies 
found no association between cholesterol levels and mortal-
ity [48, 49]. Recently, a meta-analysis and population-based 
study by Van Mantgem et al. also showed that higher HDL 
levels were associated with reduced survival. However, the 
authors also demonstrated that elevated HDL concentrations 
negatively correlated with BMI, and HDL may therefore 

Fig. 2  Forest plot showing associations of cholesterol and triglycer-
ides with risk of death in ALS patients. Effect of lipid metabolism on 
survival in the ALS cohort. Crude = adjusted for sex and age groups. 

Adjusted = additionally adjusted for site of onset, and ALS functional 
rating scale revised (ALS-FRS-R). HDL high-density lipoprotein, 
LDL low-density lipoprotein, HR hazard ratio
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represent an epiphenomenon of weight loss [50]. In our 
study, we could not find a correlation between HDL and 
BMI.

In contrast to cholesterol, we observed a significantly 
increased survival for patients with higher triglycerides. 
In the general population, however, increased triglycerides 
levels are associated with increased mortality due to an 
increased incidence of cardiovascular events [51]. Consistent 
with our results, previous retrospective studies had shown a 
positive association between higher triglyceride levels and 
prolonged survival [18, 19]. This effect was no longer sig-
nificant after adjusting for BMI and smoking, indicating that 
this effect may be partly explained by the associated higher 
BMI as a known independent positive prognostic factor.

Triglycerides are produced from lipogenesis in the endo-
plasmic reticulum of cells (mainly hepatocytes and adipo-
cytes) by esterification of fatty acids to glycerol and are also 
largely taken up with food. The primary function of triglyc-
erides is to store and transport energy in the form of fatty 
acids within cells and to provide energy sources in a state 
of starvation and glucose shortage via conversion to either 
glucose or ketone bodies [52]. Thus, high triglyceride lev-
els could potentially counteract ALS-related hypermetabo-
lism and increased energy expenditure [1, 10, 12, 13, 53]. 
Consistently, beneficial effects have been reported for inter-
ventions with high-fat nutritional supplements, including 
prolonged survival in fast progressing patients, decreased 
decline of motor function, stabilization of body weight, and 
reduction of serum neurofilament light chain levels [8, 9, 
54]. Even after adjustment for BMI as a potential confound-
ing factor, our data still suggests a significant trend towards 
reduced mortality associated with higher levels of triglycer-
ides. Thus, in summary, the results support the concept of an 
anti-catabolic, high-caloric, and fat-rich therapy.

Strength and limitations

The strengths of the study are: the study was based on a large 
prospective population-based cohort that was matched for 
sex, age, and area of residency. In addition, we were able 
to obtain prospective long-term data and assessed potential 
confounders by stepwise adjusted analysis. As a limiting 
factor, the genetic background for causative ALS mutations 
were not obtained from the ALS cohort.

Conclusion

In summary, our data suggest a complex association of lipid 
metabolism with risk and prognosis of ALS. Based on our 
results, it is essential to carefully distinguish between cho-
lesterol and triglycerides, taking into account their different 
physiological roles.

On the one hand, the results suggest a negative effect of 
increased cholesterol levels on survival as well as an asso-
ciation between higher cholesterol levels and an increased 
risk of ALS. These associations might be based on the 
interaction between TDP-43 and cholesterol biosynthesis, 
hypothalamic alterations, and/or a genetic overlap between 
cholesterol metabolism and ALS.

On the other hand, we found further evidence for a ben-
eficial effect of increased triglyceride levels on survival, 
strengthening the rationale for an anti-catabolic therapeutic 
approach and highlighting the importance of triglycerides as 
a source of energy to counter hypermetabolism and weight 
loss in ALS.
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