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AbstractFor critical bond-percolation on high-dimensional torus, this paper proves
sharp lower bounds on the size of the largest cluster, removing a logarithmic correc-
tion in the lower bound in Heydenreich and van der Hofstad (Comm Math Phys
270(2):335358, 2007). This improvementnally settles a conjecture by Aizenman
(Nuclear Phys B 485(3):551582, 1997) about the role of boundary conditions in crit-
ical high-dimensional percolation, and it is a key step in deriving further properties
of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (Ann
Probab 36(4):12671286, 2008) implies appropriate bounds on diameter and mixing
time of the largest clusters. We further prove that the volume bounds apply also to
anynite number of the largest clusters. Finally, we show that any weak limit of the
largest connected component is non-degenerate, which can be viewed as a significant
sign of critical behavior. The main conclusion of the paper is that the behavior of crit-
ical percolation on the high-dimensional torus is the same as for critical Erdos-Re·nyi
random graphs.
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398 M. Heydenreich, R. van der Hofstad

1 Introduction

1.1 The model

For bond percolation on a graphGwe make any edge (or ‘bond’)occupiedwith prob-
abilityp, independently of each other, and otherwise leave itvacant. The connected
components of the random subgraph of occupied edges are calledclusters. For a ver-
texvwe denote byC(v)the unique cluster containingv, and by|C(v)|the number
of vertices in that cluster. For our purposes it is important to consider clusters as sub-
graphs (thus not only as a set of vertices). Our main interest is bond percolation on
high-dimensional tori, but our techniques are based on a comparison withZ d results.
We describe theZ d -settingrst.

1.1.1 Bond percolation onZ d

ForG=Z d , we consider two sets of edges. In thenearest-neighbor model, two ver-
ticesxandyare linked by an edge whenever|x−y| =1, whereas in thespread-out
model, they are linked whenever 0<x−y ∞ L. Here, and throughout the paper,
we write· ∞ for the supremum norm, and| · |for the Euclidean norm. The integer
parameterLis typically chosen large.

The resulting product measure for percolation with parameterp∈[0,1]is denoted
byP Z,p , and the corresponding expectationE Z,p . We write{0↔x}for the event that
there exists a path of occupied edges from the origin 0 to the lattice sitex(alternatively,
0 andxare in the same cluster), and dene

τZ,p (x):=P Z,p (0↔x) (1.1)

to be thetwo-pointfunction. By

χZ(p):=


x∈Zd

τZ,p (x)=E Z,p |C(0)|

we denote the expected cluster size onZ d . The degree of the graph, which we denote
by, is=2din the nearest-neighbor case and=(2L+1) d −1 in the spread-out
case.

Percolation onZ d undergoes a phase transition aspvaries, and it is well known
that there exists a critical value

pc(Zd)=inf{p:P Z,p (|C(0)| =∞) >0} =sup{p:χ Z(p) <∞},(1.2)

where the last equality is due to Aizenman and Barsky [2] and Menshikov [17].

1.1.2 Bond percolation on the torus

ByT r,d we denote a graph with vertex set{−r/2, . . . ,r/2 −1} d and two related
sets of edges:
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Random graph asymptotics on high-dimensional tori II 399

(i) The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulor) in
exactly one component. Fordxed andrlarge, this is a periodic approximation
toZ d . Here=2dforr≥3. We study the limit in whichr→ ∞withd>6
xed, but large.

(ii) The spread-out torus: an edge joins verticesx=(x 1, . . . ,x d)andy=
(y1, . . . ,y d)if 0<max i=1,...,d |xi −y i |r L(with| · | r the metric onZ r ).
We study the limitr→ ∞, withd>6xed andLlarge (depending ond) and
xed. This gives a periodic approximation to range-Lpercolation onZ d . Here
=(2L+1) d −1 provided thatr≥2L+1, which we will always assume.

We writeV=r d for the number of vertices in the torus. We consider bond percolation
on these tori with edge occupation probabilitypand writeP T,p andE T,p for the prod-
uct measure and corresponding expectation, respectively. We use notation analogously
toZ d -quantities, e.g.

χT(p):=


x∈Tr,d

PT,p (0↔x)=E T,p |C(0)|

for the expected cluster size on the torus.

1.1.3 Mean-eld behavior in high dimensions

In the past decades, there has been substantial progress in the understanding of perco-
lation in high-dimensions (see e.g. [3,5,914,20] for detailed results on high-dimen-
sional percolation), and the results show that percolation on high-dimensional innite
lattices is similar to percolation on innite trees (see e.g., [8, Sect. 10.1] for a discus-
sion of percolation on a tree). Thus, informally speaking, the mean-eld model for
percolation onZ d is percolation on the tree.

More recently, the question has been addressed what the mean-eld model is of
percolation onnitesubsets ofZ d , such as the torus. Aizenman [1] conjectured that
critical percolation on high-dimensional tori behaves similarly to critical Erdos-Re·nyi
random graphs, thus suggesting that the mean-eld model for percolation on a torus
is the Erdos-Re·nyi random graph. In the past years, substantial progress was made
in this direction, see in particular [6,7,15]. In this paper, we bring this discussion to
the next level, by showing that large critical clusters on various high-dimensional tori
share many features of the Erdos-Re·nyi random graph.

1.2 Random graph asymptotics on high-dimensional tori

We investigate the size of the maximal cluster on the torusT r,d , i.e.,

|Cmax| :=max
x∈Tr,d

|C(x)|, (1.3)

at the critical percolation thresholdp c(Zd). We start by improving the asymptotics of
the largest connected component as proved in [15]:
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400 M. Heydenreich, R. van der Hofstad

Theorem 1.1(Random graph asymptotics of the largest cluster size)Fix d>6and
L sufciently large in the spread-out case, or d sufciently large for nearest-neighbor
percolation. Then there exists a constant b>0, such that for allω≥1and all r≥1,

PT,p c(Zd )


ω−1V 2/3 |C max|ωV 2/3


≥1− b

ω
.(1.4)

The constant b can be chosen equal to b6 in[ 6,Theorem1.3]. Furthermore, there are
positive constants c1 and c2 such that

PT,p c(Zd )


|Cmax|>ωV 2/3


 c1

ω3/2 e−c2 ω.(1.5)

We recall thatris present in ( 1.4) in two ways: We consider the percolation measure on
Tr,d , andV=r d is the volume of the torus. The upper bound in (1.4) in Theorem 1.1
is already proved in [15, Theorem 1.1], whereas the lower bound in [15, Theorem 1.1]
contains a logarithmic correction, which we remove here by a more careful analysis.

We next extend the above result to the other large clusters. For this, we writeC (i)

for thei th largest cluster for percolation onT r,d , so thatC (1) =C max and|C (2)||C (1)|
is the size of the second largest component; etc.

Theorem 1.2(Random graph asymptotics of the ordered cluster sizes)Fix d>6and
L sufciently large in the spread-out case, or d sufciently large for nearest-neighbor
percolation. For every m=1,2, . . .there exist constants b 1, . . . ,b m >0, such that
for allω≥1, r≥1, and all i=1, . . . ,m,

PT,p c(Zd )


ω−1V 2/3 |C (i) |ωV 2/3


≥1− bi

ω
.(1.6)

Consequently, the expected cluster sizes satisfyE T,p c(Zd )|C(i) |≥b ′
i V 2/3 for certain

constants b′
i >0. Moreover,|C max|V −2/3 is not concentrated.

By the tightness of|C max|V −2/3 proved in Theorem 1.1,|C max|V −2/3 not being
concentrated is equivalent to the statement that any weak limit of|C max|V −2/3 is
non-degenerate.

Nachmias and Peres [19] proved a very handy criterion establishing bounds on
diameterandmixing time of lazy simple random walkof the large critical clusters for
random graphs obeying (1.4)/(1.6). The following corollary states the consequences of
the criterion for the high-dimensional torus. To this end, we call alazy simple random
walkon anite graphG=(V,E)a Markov chain on the verticesVwith transition
probabilities

p(x,y)=

⎧
⎪⎨
⎪⎩

1/2 ifx=y;
1

2 deg(x) if(x,y)∈E;

0 otherwise,

(1.7)
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Random graph asymptotics on high-dimensional tori II 401

where deg(x)denotes the degree of a vertexx∈V. The stationary distribution of this
Markov chainπis given byπ(x)=deg(x)/(2|E|). Themixing timeof lazy simple
random walk is dened as

Tmix(G)=min

n:p n(x,·)−π(·) TV 1/4 for allx∈V


,(1.8)

with pn being the distribution afternsteps (i.e., then-fold convolution of p), and
· TV denoting the total variation distance. We write diam(C)for the diameter of the
clusterC.

Corollary 1.3(Diameter and mixing time of large critical clusters [ 19])Fix d>6
and L sufciently large in the spread-out case, or d sufciently large for nearest-neigh-
bor percolation. Then, for every m=1,2, . . ., there exist constants c 1, . . . ,c m >0,
such that for allω≥1, r≥1, and all i=1, . . . ,m,

PT,p c(Zd )


ω−1V 1/3 diam(C (i))ωV 1/3


≥1− ci

ω1/3 ,(1.9)

PT,p c(Zd )


ω−1VT mix(C(i))ωV


≥1− ci

ω1/34 .(1.10)

1.3 Discussion and open problems

Here, and throughout the paper, we make use of the following notation: we write
f(x)=O(g(x))for functionsf,g≥0 andxconverging to some limit, if there
exists a constantC>0 such thatf(x)Cg(x)in the limit, andf(x)=o(g(x))if
g(x)=O(f(x)). Furthermore, we writef=(g)iff=O(g)andg=O(f).

The asymptotics of|C max|in Theorem 1.1 is an improvement of our earlier result
in [15], which itself relies in an essential way on the work of Borgs et al. [6,7]. The
contribution of the present paper is the removal of the logarithmic correction in the
lower bound of [15, (1.5)], and this improvement is crucial for our further results, as
we discuss in more detail now. We give an easy proof that the largestmcomponents
obey the same volume asymptotic as the largest connected component, using only
Theorem 1.1 and estimates on the moments of the random variable

Z≥k =#{v∈T r,d : |C(v)|≥k}(1.11)

derived in [6,7]. Similar ingredients are used to derive that|C max|V −2/3 is not con-
centrated. Given these earlier results, our proofs are remarkably simple and robust,
and they can be expected to apply in various different settings. Thus, while our results
substantially improve our understanding of the critical nature of percolation on high-
dimensional tori, the proofs given here are surprisingly simple.

Random graph asymptotics at criticality.Our results show that the largest percolation
clusters on the high-dimensional torus behave as they do on the Erdos-Re·nyi random
graph; this can be seen as the take-home message of this paper. Aldous [4] proved
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that, for Erdos-Re·nyi random graphs, the vector

V −2/3 |C(1)|,|C (2)|, . . . ,|C (m) |


converges in distribution, asV→ ∞, to a random vector(|γ 1|, . . . ,|γ m |), where|γ j |
are the excursion lengths (in decreasing order) of reected Brownian motion. Nach-
mias and Peres [18, Theorem 5] prove the same limit (apart from a multiplication
with an explicit constant) for randomd-regular graphs (for which the critical value
equals(d−1) −1). In light of our Theorems 1.11.2, we conjecture that the same limit,
multiplied by an appropriate constant as in [18, Theorem 5], arises for the ordered
largest critical components for percolation on high-dimensional tori.

The role of boundary conditions.The combined results of Aizenman [ 1] and Hara et al.
[10,11] show that a box of widthrunderbulkboundary conditions in high dimension
satises|C max|≈r 4, which is much smaller thanV 2/3. This immediately implies an
upper bound on|C max|underfreeboundary conditions. Aizenman [ 1] conjectures that,
under periodic boundary conditions,|C max|≈V 2/3. This conjecture was proven in
[15] with a logarithmic correction in the lower bound. The present paper (improving
the lower bound) is the ultimate conrmation of the conjecture in [1].

The critical probability for percolation on the torus.An alternative definition for
the critical percolation threshold on a general high-dimensional torus, denoted by
pc(Tr,d), was given in [6, (1.7)] as the solution to

χT(p c(Tr,d))=λV 1/3, (1.12)

whereλis a sufciently small constant. The definition of the critical value in ( 1.12)
appears somewhat indirect, but the big advantage is that this definition exists for any
torus (includingd-cube, Hamming cube, complete graph), even if an externally dened
critical value (such asp c(Zd)as in ( 1.2)) does not exist. It is a major result of Borgs
et al. [6,7] that Theorem 1.1 holds withp c(Zd)replaced byp c(Tr,d)for the following
tori:

(i) thed-cubeT 2,d asd→ ∞,
(ii) the complete graph (Hamming torus withd=1 andr→ ∞),

(iii) nearest-neighbor percolation onT r,d withd≥7 andr d → ∞in any fashion,
includingdxed andr→ ∞,rxed andd→ ∞, orr,d→ ∞simultaneously,

(iv) periodic approximations to range-Lpercolation onZ d forxedd≥7 andxed
largeL.

Remarkably, our results in Theorem 1.2 and Corollary 1.3 hold also for all of the
above listed tori whenp c(Zd)is replaced byp c(Tr,d). One way of formulating The-
orem 1.1 is to say thatp c(Tr,d)andp c(Zd), under the assumptions of Theorem 1.1,
are asymptotically equivalent.

One particularly interesting feature of Theorem 1.2 is its implications for the crit-
ical value in (1.12). Indeed, the definition of the critical value in (1.12) is somewhat
indirect, and it is not obvious thatp c(Tr,d)reallyisthe most appropriate definition.
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Random graph asymptotics on high-dimensional tori II 403

In Theorem 1.2, however, we prove that any weak limit of|C max|V −2/3 is non-degen-
erate, which is thehallmark of critical behavior. Thus, Theorem 1.2 can be seen as
yet another justication for the choice ofp c(Tr,d)in ( 1.12).

2 Proof of Theorem 1.1

The following relation between the two critical valuesp c(Zd)(which is ‘inherited’
from the innite lattice) andp c(Tr,d)(as dened in ( 1.12)) is crucial for our proof.

Theorem 2.1(TheZ d critical value is inside theT r,d critical window)Fix d>6and
L sufciently large in the spread-out case, or d sufciently large for nearest-neighbor
percolation. Then there exists C pc >0such that p c(Zd)and p c(Tr,d)satisfy

pc(Zd)−p c(Tr,d)

 C pc V −1/3.(2.1)

In other words,p c(Zd)lies in a critical window of orderV −1/3 aroundp c(Tr,d).
By the work of Borgs et al. [6,7], Theorem 2.1 has immediate consequences for the
size of the largest cluster, and various other quantities:

Corollary 2.2(Borgs et al. [ 6,7])Under the conditions of Theorem 2.1, there exists
a constant b>0, such that for allω≥1,

PT,p c(Zd )


ω−1V 2/3 |C max|ωV 2/3


≥1− b

ω
.(2.2)

Furthermore,

c V 2/3 E T,p c(Zd ) (|Cmax|) C V 2/3 and cχ V 1/3 E T,p c(Zd ) (|C|) C χ V 1/3

(2.3)

for some c,C,c χ ,C χ >0. Finally, there are positive constants b C , cC , CC such that
for kb CV 2/3,

cC√
k

P T,p c(Zd ) (|C|≥k )  CC√
k
.(2.4)

All of these statements hold uniformly as r→ ∞.

The reader may verify that Corollary 2.2 indeed follows from Theorem 2.1 by using
[6, Theorem 1.3] in conjunction with [7, Proposition 1.2 and Theorem 1.3]. Note that
(2.2) in particular proves (1.4) in Theorem 1.1.

We explicitly keep track of the origin of constants by adding an appropriate sub-
script. Forrst time reading the reader might wish to ignore these subscripts.

We are now turning towards the proof of Theorem 2.1. To this end, we need the
following lemma:
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404 M. Heydenreich, R. van der Hofstad

Lemma 2.3For percolation onZ d with p=p c(Zd)−K −1V −1/3, there exists a
positive constant C̃ (depending on d and K , but not on V ), such that



u,v∈Zd ,u=v

u−v∈r Zd

τp(u)τ p(v) C̃ V −1/3.(2.5)

The lemma makes use of a number of results on high-dimensional percolation onZ d ,
to be summarized in the following theorem.

Theorem 2.4(Z d -percolation in high dimension [912])Under the conditions in
Theorem 1.1, there exist constants cτ ,C τ ,c ξ ,C ξ ,c ξ2 ,C ξ2 >0such that

cτ

(|x| +1) d−2 τ Z,p c(Zd )(x)
Cτ

(|x| +1) d−2 .(2.6)

Furthermore, for any p<p c(Zd),

τZ,p (x)e − x∞
ξ(p) , (2.7)

where thecorrelation lengthξ(p)is dened by

ξ(p) −1 =−lim
n→∞

1

n
logP Z,p ((0, . . . ,0)↔(n,0, . . . ,0) ) ,(2.8)

and satises

cξ


pc(Zd)−p

−1/2 ξ(p)C ξ


pc(Zd)−p

−1/2
as p↗p c(Zd).(2.9)

For themean-square displacement

ξ2(p):=


v∈Zd |v|2τZ,p (v)
v∈Zd τZ,p (v)

1/2

,(2.10)

we have

cξ2


pc(Zd)−p

−1/2 ξ 2(p)C ξ2


pc(Zd)−p

−1/2
as p↗p c(Zd).

(2.11)

Finally, there exists a positive constant C̃χ , such that theexpected cluster sizeχ Z(p)

obeys

1




pc(Zd)−p
 χ Z(p) C̃χ




pc(Zd)−p
 as p↗p c(Zd).(2.12)
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Random graph asymptotics on high-dimensional tori II 405

Some of these bounds express that certain critical exponents exist and take on their
mean-eld value. For example, (2.6) means that theη=0, and similarly ( 2.12) can
be rephrased asγ=1. The power-law bound ( 2.6) is due to Hara [10] for the near-
est-neighbor case, and to Hara et al. [11] for the spread-out case. For the exponential
bound (2.7), see e.g. Grimmett [8, Proposition 6.47]. Hara [9] proves the bound (2.9),
and Hara and Slade [12] prove (2.11) and (2.12) (the latter in conjunction with Aizen-
man and Newman [3]). The proof of all of the above results uses the lace expansion.

Proof of Lemma 2.3 We split the sum on the left-hand side of (2.5) in parts, and treat
each part separately with different methods:



u,v∈Zd :
u=v

u−v∈r Zd

τZ,p (u)τ Z,p (v)2


v



u:u=v
|u||v|

u−v∈r Zd

τZ,p (u)τ Z,p (v)

=2 ((A)+(B)+(C)+(D) ) ,(2.13)

where

(A)=


v



2r|u||v|
u−v∈r Zd

τZ,p (u)τ Z,p (v),

(B)=


|v|>MV 1/6 logV



u: |u|2r
u−v∈r Zd

τZ,p (u)τ Z,p (v)

(2.14)
(C)=



2r<|v|MV 1/6 logV



u: |u|2r
u−v∈r Zd

τZ,p (u)τ Z,p (v),

(D)=


|v|2r



u: |u|2r
u−v∈r Zd

τZ,p (u)τ Z,p (v)

andMis a (large) constant to bexed later in the proof. We proceed by showing that
each of the four summands is bounded by a constant timesV −1/3, in that showing
(2.5).

Consider(A)rst. To this end, we prove forxedv∈Z d ,



2r|u||v|
u−v∈r Zd

τZ,p (u)C τ

|v|2

V
.(2.15)

Indeed,



2r|u||v|
u−v∈r Zd

τZ,p (u)


2|u| |v|
r +1

u∈Zd

τpc (ru+(vmodr) ) .(2.16)
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406 M. Heydenreich, R. van der Hofstad

By (2.6), this is bounded above by

Cτ



2|u| |v|
r +1

(r (|u|−1 ) +1 )−(d−2)  Cτ

rd−2



1|u| |v|
r

|u|−(d−2) .(2.17)

The discrete sum is dominated by the integral

Cτ r−(d−2)



0|u| |v|
r

|u|−(d−2) duC τ C◦ r−d |v|2

2
C τ C◦

|v|2

V
,(2.18)

as desired (withC ◦ denoting the surface of the(d−1)-dimensional hypersphere).
Consequently, using (2.15),

(A) Cτ C◦
V



v

|v|2τZ,p (v) Cτ C◦
V

ξ2(p) 2 χZ(p)

 Cτ C◦ C2
ξ2

C̃χ

V


pc(Zd)−p

−2
(2.19)

by the bounds in Theorem 2.4. Insertingp=p c(Zd)−K −1V −1/3 yields the desired
upper bound(A)C V −1/3.

For the bound on(B)we start by calculating



u: |u|2r

τZ,p (u)


u: |u|2r

τpc(Zd )(u)


u: |u|2r

Cτ

(|u| +1) d−2 O(r 2).(2.20)

For the sum overvwe use the exponential bound of Theorem 2.4: From (2.8)(2.9)
and our choice ofpit follows thatτ Z,p (v)exp

−C|v|V −1/6


for some constant
C>0. Consequently,



|v|>MV 1/6 logV
u−v∈r Zd

τZ,p (v)


|v|> M
r V 1/6 logV

τZ,p (rv+(umodr) )




|v|> M
r V 1/6 logV

exp

−r (|v|−1 ) CV −1/6


.(2.21)

This sum is dominated by the integral



|v|> M
r V 1/6 logV

exp

−r|v|CV −1/6


exp


r C V −1/6


dv,(2.22)
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which can be shown by partial integration as being less or equal to

const(C,M,d)
V d/6

V
(logV )d exp


− M

C
logV


exp


r C V −1/6


.(2.23)

This expression equals

const(C,M,d)V d/6−1−M/C+C(1/d−1/6) (logV )d .(2.24)

We nowxMlarge enough such that the exponent ofVis less than−(1/3+2/d).
Thisnally yields

(B)


u: |u|2r



|v|>MV 1/6 logV
u−v∈r Zd

τZ,p (u)τ Z,p (v)

const(C,M,d)r 2 o


V −(1/3+2/d)


=o


V −1/3


.(2.25)

In order to bound(C)we proceed similarly by bounding

(C)C 2
τ



u: |u|<2r

(|u| +1 )−(d−2)


2r|v|MV 1/6 logV
u−v∈r Zd

(|v| +1 )−(d−2) .(2.26)

A domination by integrals as in (2.16)(2.18) allows for the upper bound

C r2 M2 V 1/3 (logV) 2

V
,(2.27)

and this iso

V −1/3


ifd>6 for anyM>0.

Thenal summand(D)is bounded as in ( 2.26) by

C2
τ



u: |u|<2r

(|u| +1 )−(d−2)


v: |v|2r
u−v∈r Zd

(|v| +1 )−(d−2) .(2.28)

The second sum can be bounded uniformly inuby



v: |v|2r
u−v∈rZd

(|v| +1 )−(d−2) (2r) −(d−2) #{v: |v|2r,u−v∈rZ d}(2r) −(d−2) 5d ,

(2.29)

while therst sum is bounded byC r 2. Together, this yields the upper boundC r −(d−4) ,
and this iso


V −1/3


ford>6.

Finally, we have proved that(A)C V −1/3, and that(B),(C),(D)are of order
o

V −1/3


. This completes the proof of Lemma 2.3. ≤
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Proof of Theorem 2.1 Assume that the conditions of Theorem 1.1 are satised. Then
by [15, Corollary 4.1] there exists a constant>0 such that, whenr→ ∞,

pc(Zd)−p c(Tr,d) 


V −1/3.(2.30)

It therefore sufces to prove a matching lower bound.
We takep=p c(Zd)−K −1V −1/3. The following bound is proven in [15]:

χT(p)≥χ Z(p)

⎛
⎜⎜⎜⎝1−


1

2
+p 2 χZ(p)

 

u,v∈Zd ,u=v

u−v∈r Zd

τZ,p (u)τ Z,p (v)

⎞
⎟⎟⎟⎠ .(2.31)

Indeed, this bound is obtained by substituting [15, (5.9)] and [15, (5.13)] into [15,
(5.5)]. Furthermore, by our choice ofpand ( 2.12),K −1V 1/3 χ Z(p) C̃χ K −1V 1/3.
Together with (2.5),

χT(p)≥K −1V 1/3


1−


1/2+p 2 K −1 C̃χ V 1/3


C̃V −1/3


≥˜cK V 1/3,

(2.32)

where˜cK is a small (though positive) constant. Under the conditions of Theorem 1.1,
also the following bound holds by Borgs et al. [6]: Forq≥0,

χT


pc(Tr,d)− −1q


 2

q
;(2.33)

cf. the upper bound in [6, (1.15)]. The upper bound (2.30) allowsKbe so large that
p<p c(Tr,d). Consequently, the conjunction of (2.32) and (2.33) obtains

2

(p c(Tr,d)−p c(Zd)+K V −1/3)
≥χ T(p)≥cK V 1/3.(2.34)

This implies

pc(Zd)≥p c(Tr,d)+


K− 2

cK 


V −1/3,(2.35)

as desired. ≤
The proof of Theorem 2.1 concludes the proof of (1.4) in Theorem 1.1, and it

remains to prove (1.5).

Proof of( 1.5) The proof uses the exponential bound proven by Aizenman and New-
man [3, Proposition 5.1] that, for anyk≥χ T(p) 2,

PT,p (|C|≥k ) 
 e

k

1/2
exp


− k

2χ T(p) 2


.(2.36)
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In order to apply this bound on the torus, we bound

PT,p (|Cmax|≥k )  1

k



v∈V
PT,p (|Cmax|≥k, v∈C max)  V

k
PT,p (|C|≥k ) .

(2.37)

Together with (2.36), we obtain forω>χ T(p) 2V −2/3,

PT,p


|Cmax|≥ωV 2/3


 e1/2

ω3/2 exp


− ωV 2/3

2χ T(p) 2


.(2.38)

We now choosep=p c(Zd)and use thatχ T(p c(Zd))C χ V 1/3 to see that indeed,
forω>C 2

χ
, by (2.12),

PT,p c(Zd )


|Cmax|≥ωV 2/3


 e1/2

ω3/2 exp


− ω

2C̃2
χ


.(2.39)

≤

3 Proof of Theorem 1.2

Proof of( 1.6) The upper bounds on|C (i) |in Theorem 1.2 follow immediately from
the upper bound on|C max|in Theorem 1.1. Thus, we only need to establish the lower
bound.

Recall the definition ofZ ≥k in (1.11), and note that

Ep(Z ≥k)=VP T,p (|C|≥k ) .(3.1)

By construction,|C max|≥kif and only ifZ ≥k ≥k. We shall make essential
use of properties of the sequence of random variables{Z ≥k}proved in [ 6]. Indeed,
[6, Lemma 7.1] states that, for allpand allk, Var p(Z ≥k)Vχ T(p).When we take
p=p c(Zd), then, by (2.3) in Corollary 2.2 above, there exists a constantC Z such
thatχ T(p c(Zd))C Z V 1/3. Consequently,

Var pc(Zd )(Z ≥k)C Z V 4/3 (3.2)

uniformly ink. Now, further, by ( 2.4) in Corollary 2.2, there existsc C >0 such that

PT,p c(Zd ) (|C|≥k ) ≥ 2c C√
k

.(3.3)

Takek=V 2/3/ω, for someω≥1 sufciently large. Together with the identity
in (3.1),

Epc(Zd )(Z ≥k)≥2c C ω1/2V 2/3.(3.4)
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Thus, by the Chebychev inequality,

Ppc(Zd )


Z≥k c Cω1/2V 2/3


P pc(Zd )

Z≥k −E pc(Zd )(Z ≥k)
 ≥c C ω1/2V 2/3



c −2
C ω−1 V −4/3 Var pc(Zd )(Z ≥k) CZ

c2
C ω

.(3.5)

We takeω>0 large. Then, the eventZ ≥k >c C ω1/2V 2/3 holds with high proba-
bility. On this event, there are two possibilities. Either|C max|≥c C ω1/2V 2/3/i, or
|Cmax|<c C ω1/2V 2/3/i, in which case there are at leastc C ω1/2V 2/3/|Cmax|≥i
distinct clusters of size at leastk=ω −1V 2/3. We conclude that

PT,p c(Zd )


|C(i) |ω −1V 2/3


P pc(Zd )


Z≥k c C ω1/2V 2/3



+Ppc(Zd )


|Cmax|≥c C ω1/2V 2/3/i



 CZ

c2
C ω

+ i b̃

cCω
, (3.6)

where b̃is chosen appropriately from the exponential bound in ( 1.5). This identies
bi asb i =i b̃/cC +C Z/c2

C , and proves (1.6). ≤
We complete this section with the proof that any weak limit of|C max|V −2/3 is non-

degenerate. Theorem 1.1 proves that the sequence|C max|V −2/3 istight, and, therefore,
any subsequence of|C max|V −2/3 has a further subsequence that converges in distri-
bution.

Proposition 3.1(|C max|V −2/3 is not concentrated)Under the conditions of Theo-
rem 1.1,|C max|V −2/3 is not concentrated.

In order to prove Proposition 3.1, we start by establishing alower boundon the
variance ofZ ≥k . That is the content of the following lemma:

Lemma 3.2(A lower bound on the variance ofZ ≥k)For each k≥1,

Var p(Z ≥k)≥VP T,p (|C|≥k )

k−VP T,p (|C|≥k )


.(3.7)

ProofWe have that

Var p(Z ≥k)=


u,v

PT,p (|C(u)|≥k,|C(v)|≥k ) − 
VP T,p (|C|≥k )

2
.(3.8)

Now, we trivially bound



u,v

PT,p (|C(u)|≥k,|C(v)|≥k ) ≥


u,v

PT,p (|C(u)|≥k,u↔v )

=VE[|C|1 {|C|≥k}]≥V kP T,p (|C|≥k ) .

(3.9)

Rearranging terms proves Lemma 3.2. ≤
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Lemma 3.3(An upper bound on the third moment ofZ ≥k)For each k≥1,

Ep[Z 3
≥k]Vχ T(p) 3 +3E p[Z ≥k]Vχ T(p)+E p[Z ≥k]3.(3.10)

ProofWe compute

Ep[Z 3
≥k] =



u1,u2,u3

PT,p (|C(u 1)|≥k,|C(u 2)|≥k,|C(u 3)|≥k )

=


u1,u2,u3

PT,p (|C(u 1)|≥k,u 1 ↔u 2,u 3)

+3


u1,u2,u3

PT,p (|C(u 1)|≥k,u 1 ↔u 2,|C(u 3)|≥k,u 1 ↔/u3)

+


u1,u2,u3

PT,p
|C(u 1)|≥k,|C(u 2)|≥k,|C(u 3)|≥k,u i ↔/uj∀i=j



=(I)+3(I I)+(I I I). (3.11)

We shall bound these terms one by one, starting with(I),

(I)


u1,u2,u3

PT,p (|C(u 1)|≥k,u 1 ↔u 2,u 3) =VE p[|C|21{|C|≥k}]

VE p[|C|2]Vχ T(p) 3, (3.12)

by the tree-graph inequality (see [3]). We proceed with(I I), for which we use the
BK-inequality, to bound

(I I)


u1,u2,u3

PT,p ({|C(u 1)|≥k,u 2 ∈C(u 1)}◦{|C(u 3)|≥k} )




u1,u2,u3

PT,p (|C(u 1)|≥k|,u 2 ∈C(u 1))P T,p (C(u 3)|≥k)

=VE p[|C|1{|C|≥k}]E p[Z ≥k]E p[Z ≥k]Vχ T(p).(3.13)

We complete the proof by bounding(I I I), for which we again use the BK-inequality,
to obtain

(I I I)


u1,u2,u3

PT,p ({|C(u 1)|≥k}◦{|C(u 2)|≥k}◦{|C(u 3)|≥k} )




u1,u2,u3

PT,p (|C(u 1)|≥k|)P T,p (C(u 2)|≥k)P T,p (|C(u 3)|≥k)=E p[Z ≥k]3.

(3.14)

This completes the proof. ≤
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Now we are ready to complete the proof of Proposition 3.1:

Proof of Proposition 3.1 By Theorem 1.1, we know that the sequence|C max|V −2/3

is tight, and so isV 2/3/|Cmax|. Thus, there exists a subsequence of|C max|V −2/3 that
converges in distribution, and the weak limit, which we shall denote byX ∗, is strictly
positive andnite with probability 1. Thus, we are left to prove thatX ∗ is non-degen-
erate. For this, we shall show that there exists anω>0 such thatP(X ∗ >ω)∈(0,1).

To prove this, we choose anωthat is not a discontinuity point of the distribution
function ofX ∗ and note that

P(X ∗ >ω)=lim
n→∞ PT,p c(Zd )(|Cmax|V −2/3

n >ω),(3.15)

where the subsequence along which|C max|V −2/3 converges is denoted by{V n}∞n=1 .
Now, using (1.11), we have that

PT,p c(Zd )(|Cmax|V −2/3
n >ω)=P T,p c(Zd )


Z

>ωV
2/3
n

>ωV 2/3
n


.(3.16)

The probabilityP T,p c(Zd )


Z>ωV 2/3 >ωV 2/3


is monotone decreasing inω. By the

Markov inequality and (2.4), forω≥1 large enough and uniformly inV,

PT,p c(Zd )


Z>ωV 2/3 >ωV 2/3


ω−1V −2/3VP T,p c(Zd )


|C|≥ωV 2/3


 CC

ω3/2 <1.

(3.17)

In particular, the sequenceZ >ωV 2/3 V −2/3 is tight, so we can extract a further sub-
sequence{V nl }∞l=1 so that alsoZ >ωV 2/3 V −2/3 converges in distribution, say toZ ∗

ω.
Then, (3.17) implies that

P(Z ∗
ω =0)=1−P(Z ∗

ω >0)=1−lim
l→∞

PT,p c(Zd )


Z

>ωV
2/3
nl

>0


=1−lim
l→∞

PT,p c(Zd )


Z

>ωV
2/3
nl

>ωV 2/3
nl


>0.

(3.18)

Further, by Lemma 3.2,

Var pc(Zd )(Z >ωV 2/3 V −2/3)≥V −1/3PT,p c(Zd )(|C|>ωV 2/3)

×

ωV 2/3 −VP T,p c(Zd )(|C|>ωV 2/3)



≥V 1/3PT,p c(Zd )(|C|>ωV 2/3)

ω−C Cω−1/2


,

(3.19)

which remains uniformly positive forω≥1 sufciently large, by ( 2.4). Since there is
also an upper bound on Var pc(Zd )(Z >ωV 2/3 V −2/3)(this follows from ( 3.2)), it is possible
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to take a further subsequence{V nlk
}∞k=1 for which Var pc(Zd )(Z >ωV 2/3 V −2/3)converges

toσ 2(ω) >0. Since, by Lemma 3.3, the third moment ofZ >ωV 2/3 V −2/3 is bounded, the
random variable(Z >ωV 2/3 V −2/3)2 in uniformly integrable, and, thus, along the sub-
sequence for whichZ >ωV 2/3 V −2/3 weakly converges and Var pc(Zd )(Z >ωV 2/3 V −2/3)

converges in distribution toZ ∗
ω, we have

Var(Z ∗
ω)=lim

k→∞
Var pc(Zd )(Z >ωV

2/3
nlk

V −2/3
nlk

)=σ 2(ω) >0.(3.20)

Since Var(Z ∗
ω) >0, we must have thatP(Z ∗

ω =0) <1. Thus, by ( 3.18) and the
above, we obtain thatP(Z ∗

ω =0)∈(0,1),so that

P(X ∗ >ω)=lim
n→∞ PT,p c(Zd )


|Cmax|V −2/3

n >ω


=lim
k→∞

PT,p c(Zd )


Z

>ωV
2/3
nlk

V −2/3
nlk

>0



=P(Z ∗
ω >0)∈(0,1). (3.21)

This proves Proposition 3.1. ≤

4 Diameter and mixing time

Letd C denote the graph metric (orintrinsicmetric) on the percolation clusterC.

Theorem 4.1(NachmiasPeres [ 19])Consider bond percolation on the graphGwith
vertex setV, V= |V|<∞, with percolation parameter p∈(0,1). Assume that for
all subgraphsG ′ ⊂Gwith vertex setV ′,

(a)E G′,p
E

{u∈C(v):d C(v)(v,u)k}  d 1k, v∈V ′;
(b)P G′,p

∃u∈C(v):d C(v)(v,u)=k
 d 2/k, v∈V ′,

whereE(C)denotes the number of open edges with both endpoints inC. If for some
clusterC

PG,p


ω−1V 2/3 |C|


≥1− b

ω
,(4.1)

then there exists c>0such that for allω≥1,

PG,p


ω−1V 1/3 diam(C)ωV 1/3


≥1− c

ω1/3 ,(4.2)

PG,p (Tmix(C) >ωV )  c

ω1/6 ,(4.3)

PG,p


ω−1V>T mix(C)


 c

ω1/34 .(4.4)
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We apply the theorem forG=T r,d andp=p c(Zd). Theorem 1.2 implies that (4.1)
holds for theith largest clusterC=C (i) ,i∈N. Hence Corollary 1.3 follows from The-
orems 1.2 and 4.1 once we have veried conditions (a) and (b) in the above theorem.
In fact, (4.3) is a slight improvement over (1.10).

Before proceeding with the verication, we shall comment on how to obtain Theo-
rem 4.1 from the work of Nachmias and Peres [19]. Indeed, Theorem 4.1 is very much
in the spirit of [19, Theorem 2.1], though theO-notation there depends onβ. The
bound (4.2) is nevertheless straightforward from [19, proof of Theorem 2.1(a)] and
(4.1). For (4.3) we use (4.2) together with the boundT mix(G)8|E|diam(G), valid
for anynite (random or deterministic) graphGwith edge setE, cf. [ 19, Corollary
4.2].

Furthermore, subject to conditions (a) and (b) of Theorem 4.1, there exist constants
C1,C 2 >0 such that for anyβ>0,D>0,

PG,p


∃v∈V: |C(v)|>βV 2/3,T mix(C(v)) <

β21

1000D 13 V



D −1


C1 +C 2β
3 D−2


; (4.5)

which is obtained by combining [19, (5.4)] with the display thereafter. From this we
can deduce (4.4) by choosingD=1000 −1/13ωandβ=ω −1/34.

We complete the proof of Corollary 1.3 by verifying that the conditions in Theo-
rem 4.1(a) and (b) indeed hold for critical percolation on the high-dimensional torus.

Verication of Theorem 4.1(a).The clusterC(v)is a subgraph of the torus with degree
, therefore we can replace the number of edges on the left hand side by the number of
vertices (and accommodate the factorin the constantd 1). In [15, Proposition 2.1], a
coupling between the cluster ofvin the torus and the cluster ofvinZ d was presented,
which proves thatC(v)can be obtained by identifying points which agree modulorin a
subset of the cluster ofvinZ d . A careful inspection of this construction shows that this
coupling is such that itpreservesgraph distances. Since

{u∈C(v):d C(v)(v,u)k} 
is monotone in the number of edges of the underlying graph, the result in Theo-
rem 4.1(a) for the torus follows from the boundE p

{u∈C(v):d C(v)(v,u)k}  
d1kfor critical percolation onZ d . This bound was proved in [16, Theorem 1.2(i)].

≤

Verication of Theorem 4.1(b).For percolation onZ d , this bound was proved in [16,
Theorem 1.2(ii)]. However, the event

∃u∈C(v):d C(v)(v,u)=k


is not monotone,
and, therefore, this does not prove our claim. However, a close inspection of the proof
of [16, Theorem 1.2(ii)] shows that it only relies on the bound that

PT,p c(Zd )(|C(v)|≥k)C 1/k 1/2 (4.6)

(see in particular, [16, Section 3.2]). The bound (4.6) holds forkb 1V 2/3 by
[6, (1.19)] and Theorem 2.1 (whereb 1 is a certain positive constant appearing in
[6, (1.19)]). Fork>b 1V 2/3 we use instead (2.36). Alternatively, one obtains (4.6)
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from the correspondingZ d -bound (proven by BarskyAizenman [5] and HaraSlade
[12]), together with the fact thatZ d -clusters stochastically dominateT r,d -clusters by
[15, Proposition 2.1]. This completes the verication of Theorem 4.1(b).≤
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