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Abstract

We investigate random graphs on the points of a Poisson process in d-dimensional
space, which combine scale-free degree distributions and long-range effects. Every
Poisson point carries an independent random mark and given marks and positions
of the points we form an edge between two points independently with a probability
depending via a kernel on the two marks and the distance of the points. Different
kernels allow the mark to play different roles, like weight, radius or birth time of a
vertex. The kernels depend on a parameter γ, which determines the power-law expo-
nent of the degree distributions. A further independent parameter δ characterises the
decay of the connection probabilities of vertices as their distance increases. We prove
transience of the infinite cluster in the entire supercritical phase in regimes given by
the parameters γ and δ, and complement these results by recurrence results if d = 2.
Our results are particularly interesting for the soft Boolean graph model discussed
in the preprint [arXiv:2108:11252] and the age-dependent random connection model
recently introduced by Gracar et al. [Queueing Syst. 93.3-4 (2019)]
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Recurrence versus transience for weight-dependent random connection models

1 Introduction and statement of results

In this paper we investigate the classical problem of transience versus recurrence
of random walks on the infinite cluster of geometric random graphs in d-dimensional
Euclidean space. We consider a general class of random graph models, which we call
the weight-dependent random connection model. This class contains classical models
like the Boolean and random connection models as well as models that have long edges
and scale-free degree distributions. The focus in this paper is on those instances where
the long-range or scale-free nature of graphs leads to new or even surprising results.

The vertex set of the weight-dependent random connection model is a Poisson process
of unit intensity on Rd × (0, 1), for d ≥ 1. We think of a Poisson point x = (x, s) as a
vertex at position x with mark s. Two vertices x = (x, s) and y = (y, t) are connected by
an edge with probability ϕ(x,y) for a connectivity function

ϕ :
(
Rd × (0, 1)

)
×
(
Rd × (0, 1)

)
→ [0, 1], (1.1)

satisfying ϕ(x,y) = ϕ(y,x). Connections between different (unordered) pairs of vertices
occur independently. We assume throughout that ϕ has the form

ϕ(x,y) = ϕ
(
(x, s), (y, t)

)
= ρ
(
g(s, t)|x− y|d

)
(1.2)

for a non-increasing profile function ρ : R+ → [0, 1] and a suitable kernel g : (0, 1) ×
(0, 1)→ R+, which is non-decreasing in both arguments. Hence vertices whose positions
are far apart are less likely to be connected while vertices with small mark are likely
to have many connections. We standardise the notation (without losing generality, see
comment (i) in [10, p. 312]) and assume that∫

Rd
ρ(|z|d) dz = 1. (1.3)

Then it is easy to see that the degree distribution of a vertex depends only on the
kernel g (see for example [10, Proposition 4.1]), but ρ still has a massive influence on
the likelihood of long edges in the graph.

We next give concrete examples for the kernel g, and demonstrate that our setup
yields a number of well-known models in continuum percolation theory. We define the
functions in terms of parameters γ ∈ [0, 1) and β ∈ (0,∞). The parameter γ determines
the strength of the influence of the vertex mark on the connection probabilities, large γ
correspond to strong favouring of vertices with small mark. In particular, if γ > 0 our
models are scale-free with power-law exponent

τ = 1 +
1

γ
.

The edge density is controlled by the parameter β, increasing β increases the expected
number of edges incident to a vertex at the origin. Varying β can also be interpreted as
rescaling distances and is equivalent to varying the density of the underlying Poisson
process.

• We define the plain kernel as
gplain(s, t) = 1

β . (1.4)

In this case we have no dependence on the marks, hence the model is not scale-free
and we let γ = 0. If ρ(r) = 1[0,a](r) for a = d/ωd and ωd is the area of the unit
sphere in Rd, this gives the Gilbert disc model with radius 1

2
d
√
βa. Functions ρ of

more general form lead to the (ordinary) random connection model, including in
particular a continuum version of long-range percolation when ρ has polynomial
decay at infinity.
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• We define the sum kernel as

gsum(s, t) = 1
β

(
s−γ/d + t−γ/d

)−d
(1.5)

Interpreting (βas−γ)1/d, (βat−γ)1/d as random radii and letting ρ(r) = 1[0,a](r) we
get the Boolean model in which two vertices are connected by an edge if the
associated balls intersect. The case of general profile function ρ is referred to
as soft Boolean model in [11]. We get a further variant of the model with the
min-kernel defined as

gmin(s, t) = 1
β (s ∧ t)γ .

Because gsum ≤ gmin ≤ 2dgsum the two kernels show qualitatively the same be-
haviour.

• For the max-kernel defined as

gmax(s, t) = 1
β (s ∨ t)1+γ ,

we may choose any γ > 0. This is a continuum version and generalization of the
ultra-small scale-free geometric networks of Yukich [34], which is also parametrized
to have power-law exponent τ = 1 + 1

γ .

• A particularly interesting case is the product kernel

gprod(s, t) = 1
β s

γtγ , (1.6)

which leads to a continuum version of the scale-free percolation model of Deijfen et
al. [6, 17], see also [7, 8]. Here s−γ , t−γ play the role of vertex weights. The model
combines features of scale-free random graphs and polynomial-decay long-range
percolation models (for suitable choice of ρ).

• Our final example of a kernel g is the preferential attachment kernel

gpa(s, t) = 1
β (s ∨ t)1−γ(s ∧ t)γ , (1.7)

which gives rise to the age-dependent random connection model introduced by
Gracar et al. [10] as an approximation to the local weak limit of the spatial
preferential attachment model in Jacob and Mörters [22]. In this model, s and
t actually play the role of the birth times of vertices in the underlying dynamic
network, we therefore refer to vertices with small s as old vertices. This model
also combines scale-free degree distributions and long edges in a natural way.

The weight-dependent random connection model with its different kernels has been
studied in the literature under various names, we summarize some of them in Table 1.
A general framework in which models such as ours arise as limits of models on finite
domains recently appeared in [20]. We now focus on a profile function with polynomial
decay

lim
r→∞

ρ(r) rδ = 1 for a parameter δ > 1, (1.8)

and fix one of the kernel functions described above. We keep γ, δ fixed and study the
resulting graph Gβ as a function of β. Note that our assumptions δ > 1 and γ < 1 imply
that Gβ is locally finite for all values of β, cf. [10, p.8]. We informally define βc as the
infimum over all values of β such that Gβ contains an infinite component (henceforth the
infinite cluster); for a rigorous definition we refer to Section 2. If d ≥ 2, we always have
βc <∞, cf. [17]. General considerations show that there is at most one infinite cluster
of Gβ. Indeed, it is established in [9] that on Zd there is at most one infinite cluster if
the edge occupation measure is stationary and obeys the ‘finite energy property’; an
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Table 1: Terminology of the models in the literature.

Vertices Profile Kernel Name and reference
Poisson indicator plain Random geometric graph, Gilbert disc model [31]
Poisson general plain Random connection model [27]

Soft random geometric graph [30]
lattice polynomial plain Long-range percolation [1]
Poisson indicator sum (Poisson) Boolean model [15, 29]
Poisson polynomial sum Soft Boolean model [11]
lattice indicator max Ultra-small scale-free geometric networks [34]
Poisson indicator min Scale-free Gilbert graph [18]
lattice polynomial prod Scale-free percolation [6, 17]
Poisson polynomial prod Inhomogeneous long-range percolation [7]

Continuum scale-free percolation [8]
Poisson general prod Geometric inhomogeneous random graphs [4, 23]
Poisson general pa Age-dependent random connection model [10]

analogous result for Poisson points applies in our case, cf. [5, 29]. Hence, we have that
there is a unique infinite cluster whenever β > βc. We study the properties of this infinite
cluster.

Two cases correspond to different network topologies, see [13, 17, 34]. If γ > 1
2 for

the product kernel, or γ > δ
δ+1 for the preferential attachment, sum, or min kernel, or

γ > 0 for the max kernel, we have βc = 0, i.e. there exists an infinite cluster irrespective
of the edge density. We call this the robust case. Otherwise, if γ < 1

2 for the product
kernel or γ < δ

δ+1 for the preferential attachment, sum or min kernels, we have βc > 0

and call this the non-robust case.
Our main interest is in whether the infinite cluster is recurrent (i.e., whether simple

random walk on the cluster returns to the starting vertex almost surely), or transient
(i.e., simple random walk on the cluster has positive probability of never returning to the
starting vertex). Our results are summarized in the following theorem.

Theorem 1.1 (Recurrence vs. transience of the weight-dependent random connection
model). Consider the weight-dependent random connection model with profile function
satisfying (1.8) and assume that we are in the supercritical regime β > βc.

(a) For the preferential attachment kernel, the infinite component is almost surely

• transient if 1 < δ < 2 or γ > δ/(δ + 1);
• recurrent in d = 2 if δ > 2 and γ < 1/3.

(b) For the min kernel and the sum kernel, the infinite component is almost surely

• transient if 1 < δ < 2 or γ > δ/(δ + 1);
• recurrent in d = 2 if δ > 2 and γ < 1/2.

(c) For the product kernel, the infinite component is almost surely

• transient if 1 < δ < 2 or γ > 1/2;
• recurrent in d = 2 if δ > 2 and γ < 1/2.

(d) For the max kernel, the infinite component is almost surely transient for all 0 <

γ < 1 and δ > 1.
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Figure 1: Recurrent and transient regimes in Theorem 1.1. The dashed line in (a),(b),
(c) indicates the boundary of the robust regime. In the shaded areas of the top two
diagrams the behaviour is unknown. The dotted line in (d) indicates recurrence for d = 2,
which follows trivially from (a).

Remarks:

• d = 1: Note that the kernel in (c) never induces a percolating graph in one dimen-
sion if δ > 2 and γ < 1

2 [6] and the same is true for the kernels in (b) if δ > 2 and
γ < δ−1

δ [12]. In these cases all clusters are trivially recurrent. However, for the
preferential attachment kernel in one dimension with δ > 2, the situation is less
clear. It follows from results by Bode et al. [3] for the ‘KPKVB-model’, that the
product kernel (which essentially coincides with the KPKVB-model after a change
of coordinates) admits percolation for any ρ which is non-increasing and positive in
a neighbourhood of 0, whenever γ = 1

2 and β is sufficiently large. By monotonicity,
it follows that the same is true for the preferential attachment kernel at any γ ≥ 1

2 .
We currently do not not know whether there are γ < 1

2 for which percolation can
occur if β is sufficiently large, see [12] for a more detailed discussion.
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• d = 2. For (b) we conjecture that if δ > 2 the model is transient precisely if γ > δ−1
δ ,

although our current proof only works if γ > δ
δ+1 , which by [13] is the robust

regime. A heuristic argument for this conjectured behaviour is given in [12].

• d ≥ 3: We conjecture transience to hold in (a)–(c) also if δ ≥ 2 for all values of
γ > 0, as long as there is an infinite cluster. The analogous problem is open for
the random connection model (and long-range percolation) in general. An analysis
of this situation is beyond the scope of the present paper, and is postponed to
future work. Mind, however, that transience for sufficiently large values of β can
be established by comparison with bond percolation on Zd.

• Any dimension:

– In (a)–(c) for δ < 2 our models dominate long-range percolation in the transient
regime [1]. This does not make our analysis redundant, as we show transience
for all β > βc where βc may be strictly smaller than for the dominated model.

– For all kernels we consider, our investigation shows that robustness of the
infinite cluster is sufficient for its transience, in particular this is the case in
(d) for all values of γ ∈ (0, 1) and δ > 1. It would be interesting to ascertain
this implication in greater generality.

– We have excluded the boundary cases δ = 2 and γ = 1
2 from our main result,

as in these cases the behaviour is dependent on fine details of the profile and
kernel and therefore less suitable for the universal approach we develop.

– Our results are in particular true for the plain kernel (corresponding to the
case γ = 0 in (b) and (c)), for similar results in this case see [33].

For a summary of the results we refer to Figure 1. Arguably, the preferential
attachment and sum kernels are the most interesting, but also technically the most
involved models, and may therefore be considered as the main contribution of the
present paper. Indeed, the results for the product kernel are in correspondence with
the findings of Heydenreich, Jorritsma and Hulshof [17]. The behaviour at the critical
point βc for the the plain kernel (1.4) for d ≥ 2, has recently been investigated in [16]
and, in the framework of long-range percolation, in [21]. However, note that Berger
[1] had previously shown that there is no infinite cluster in long range percolation at
β = βc if δ < 2, a result that was later adapted to the product kernel [8] and that can be
shown to remain true for our model whenever δ < 2, cf. the footnote on p. 18. Different
parametrisations have been used for the various models that can be treated in our
framework, we have provided a translation in Table 2.

Table 2: Correspondence of parameters between our paper and [6, 7, 8, 17].

parameters in this paper parameters in [6, 7, 8, 17]

β = λd/2

δ = α/d

γ = d
α(τ−1)

Overview of the paper Before we prove our results, we describe the model in a more
rigorous manner in Section 2. In Section 3, we treat the transience regimes indicated
in Theorem 1.1. The recurrence results are established in Section 4. Finally, a few
basic results from electrical network theory, which are used frequently in our proofs,
are collected in the appendix. Throughout, we use the notation f(x) � g(x) if f, g are
positive functions such that f(x)/g(x) are bounded away from 0 and∞.
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2 The weight-dependent random connection model

Construction as a point process We give now a formal construction of the weight-
dependent random connection model. To this end, we enhance the construction given
in [16, Sections 2.1 and 2.2] by additional vertex marks. For further constructions, see
Last and Ziesche [25] and Meester and Roy [28]. We construct the weight-dependent
random connection model as a deterministic functional Gϕ(ξ) of a suitable point process
ξ. Let η denote a unit intensity Rd-valued Poisson point process, which we can write as

η = {Xi : i ∈ N}; (2.1)

such enumeration is possible by [24, Corollary 6.5]. In order to define random walks on
the random connection model, it is convenient to have a designated (starting) vertex,
and we therefore add an extra point X0 = 0 when needed. This corresponds to working
with a Palm version of the Poisson point process, which we denote by η0.

We further equip any Poisson point Xi, i ∈ N0, with an independent mark Si drawn
uniformly from the interval (0, 1). This defines a point process η′ := {Xi = (Xi, Si) : i ∈
N} and η′0 := {Xi = (Xi, Si) : i ∈ N0} on Rd × (0, 1), where here and throughout we
write N0 = N ∪ {0}. Let (Rd × (0, 1))[2] denote the space of all sets e ⊂ Rd × (0, 1) with
exactly two elements; these are the potential edges of the graph. We further introduce
independent random variables (Ui,j : i, j ∈ N0) uniformly distributed on the unit interval
(0, 1) such that the double sequence (Ui,j) is independent of η′. Using < for an arbitrarily
fixed order on Rd, we can now define

ξ0 :=
{(
{(Xi, Si), (Xj , Sj)}, Ui,j

)
: Xi < Xj , i, j ∈ N0

}
, (2.2)

which is a point process on (Rd × (0, 1))[2] × (0, 1). Similarly, we use ξ to denote the
configuration without the additional point at the origin. Mind that η′0 might be recovered
from ξ0. Even though the definition of ξ0 formally depends on the ordering of the points
of η0, its distribution does not. We now define the weight-dependent random connection
model Gϕ(ξ) as a deterministic functional of ξ; its vertex and edge sets are given as

V (Gϕ(ξ)) = η′, (2.3)

E(Gϕ(ξ)) = {{Xi,Xj} ∈ V (Gϕ(ξ))[2] : Xi < Xj , Ui,j ≤ ϕ(Xi,Xj), i, j ∈ N}. (2.4)

In this section we have written Gϕ(ξ) in order to make the dependence on the
connection function ϕ explicit; in the following sections we will often fix a kernel function
as well as the parameters δ and γ, and write, just as in Section 1, Gβ = Gβ(ξ) or
Gβ0 = Gβ(ξ0) if we wish to add the vertex at the origin. Furthermore, we use the notation
Ux,y for Ui,j whenever x = Xi and y = Xj , i, j ∈ N0, to denote the edge marks.

The FKG inequality We further obtain a correlation inequality for increasing events
known as FKG-inequality. We call a measurable function f defined on point processes on
(Rd × (0, 1))[2] × (0, 1) increasing if it is increasing in the underlying point process η with
respect to set inclusion, decreasing with respect to vertex marks and decreasing with
respect to edge marks. Following arguments in [16, Section 2.3], we get for increasing
functions f1, f2 that

E[f1(ξ)f2(ξ)] = E
[
E[f1(ξ)f2(ξ) | η]

]
≥ E

[
E[f1(ξ) | η] E[f2(ξ) | η]

]
≥ E[f1(ξ)] E[f2(ξ)].

(2.5)

The first inequality uses the monotonicity properties of ϕ (here we conditioned on the
vertex set η), the second inequality is obtained through FKG for point processes, see
e.g. [24, Theorem 20.4]. Note that Gϕ(·) itself is an increasing map with respect to the
natural partial order on labelled graphs.
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Percolation Since 0 := (X0, S0) ∈ V (Gϕ(ξ0)), we write {0↔∞} for the event that the
random graph Gϕ(ξ0) contains an infinite self-avoiding path (x1,x2,x3, . . . ) of vertices
with xi ∈ V (Gϕ(ξ0)), i ∈ N, such that {0,x1}, {x1,x2}, {x2,x3} . . . ∈ E(Gϕ(ξ0)), and we
say that in this case the graph percolates.

We denote the percolation probability by

θ(β) = P
(
0↔∞ in Gβ0

)
,

if kernel and profile are fixed. Note that by ergodicity, we have θ(β) > 0 if and only if
there exists an infinite cluster in Gβ almost surely and that θ(β) is non-decreasing in β
(recall that the infinite cluster is unique). This allows us to define the critical percolation
threshold as

βc := inf{β > 0 : θ(β) > 0} ≥ 0. (2.6)

Consequently, we call the model supercritical, if β > βc and critical if β = βc.

Random walks We recall that, as γ < 1 < δ, the resulting graph Gϕ(ξ0) is locally
finite, i.e.∑

y∈V (Gϕ(ξ0))

1{{x,y} ∈ E(Gϕ(ξ0))} <∞ for all x ∈ V (Gϕ(ξ0)) almost surely,

cf. [10]. Given Gϕ(ξ0) we define the simple random walk on the random graph Gϕ(ξ0)

as the discrete-time Markov process (Yn)n∈N which starts at Y0 = 0 and has transition
probabilities

PGϕ(ξ0)(Yn = y | Yn−1 = x) =
1
{
{x,y} ∈ E(Gϕ(ξ0))

}∑
z∈V (Gϕ(ξ0)) 1

{
{x, z} ∈ E(Gϕ(ξ0))

} ,
for x,y ∈ V (Gϕ(ξ0)), n ∈ N. We say that Gϕ(ξ0) is recurrent if

PGϕ(ξ0)
(
∃n ≥ 1 : Yn = 0

)
= 1,

otherwise we say that it is transient. Moreover, we say that the connected component of
v ∈ η in Gϕ(ξ) is transient (resp. recurrent) if Gϕ(Θ−vξ) is transient (resp. recurrent) in
the sense above (where Θvη(A) = η(A+ v) is the spatial shift).

3 Transience

In this section, we prove the transience statements of Theorem 1.1. In Section 3.1,
we focus on the robust regime, i.e. γ > 0 for max-kernel, γ > 1/2 for product kernel, and
γ > δ/(δ + 1) for preferential attachment, sum and min-kernel. For δ < 2 and general
γ > 0 we need a modified argument which is given in Section 3.2.

3.1 Transience in the robust regime

Proving transient behaviour for the robust case hinges on a renormalisation sequence
argument devised in its original form by Berger [1] for the case of long-range percolation,
which we now briefly sketch. The key idea is to check for the existence of a subgraph of
the infinite component that branches sufficiently quickly as one considers the graph at
larger and larger scales, which in turn yields that the subgraph, and consequently the
infinite component, is transient. We start by considering a large but finite box of Rd and
choosing the vertex with the smallest mark inside the box. We call this vertex dominant.
When the mark of this dominant vertex is sufficiently small, we consider the box good.
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We next construct the quickly branching subgraph by considering ever larger scales
and interpreting good boxes of a smaller scale as vertices while ignoring the remaining
boxes. At each stage, we tile the current box into disjoint boxes of the previous size
and check which of these boxes are good. Note that they occur independently and
with the same probability for all smaller boxes. Then, the bigger box is called good
whenever a sufficiently large proportion of the boxes contained in it is good, these boxes
are sufficiently well connected with each other and there exists a vertex in the newly
constructed cluster with mark smaller than some even smaller predetermined value. By
repeating this procedure at larger and larger scales we obtain a renormalised graph
sequence that is contained in the infinite component of the graph and can be shown to
be transient using a fairly straightforward conductance argument as in [1], cf. Lemma
3.4.

Before we formalise this argument, we first introduce some technical results that we
use to prove our claims. We observe that the preferential attachment and sum kernels
are both dominated by the min kernel

gsum(s, t) ≤ gmin(s, t) and gpa(s, t) ≤ gmin(s, t).

Furthermore, γ > δ
δ+1 implies the robustness of the resulting graphs and in particular

that βc = 0 for all the above mentioned kernels. Combined, this allows us to deduce the
transience of the graphs obtained from the sum and preferential attachment kernels by
only considering the min kernel and proving the transience thereof.

Two-connection probability bounds and other useful properties We start with
the observation that in the case of the min kernel two vertices with sufficiently small
marks are fairly likely to be connected via a vertex with a large mark, which we refer to
as a connector. This result is a variation of [19, Lemma A.1].

Lemma 3.1. Given two vertices x = (x, s), y = (y, t) of Gβ with s, t ≤ 1/2 define

k(x,y) = s−γρ
(
β−1tγ

(
s−

γ
d + |x− y|

)d)
and

q(x,y) =
ρ(β−1)κd

2
(k(x,y) ∨ k(y,x)) ,

where κd is the volume of the d-dimensional unit ball. Then, with probability at least

1− e−q(x,y),

there exists z = (z, u) ∈ η × (1/2, 1) which is a common neighbour of both x and y.

If vertices x and y share a common neighbour z as above, then we call the interme-
diate vertex z = (z, u) a connector, and we say that x and y are connected through a
connector.

Proof. Let Xc denote the set of common neighbours z = (z, u) of x and y with mark
u > 1/2, that is, the vertices which satisfy

Ux,z ≤ ρ(
1

β
sγu1−γ |x− z|d) and Uy,z ≤ ρ(

1

β
tγu1−γ |y − z|d).

Consider now the set X x
c of vertices (z, u) ∈ Xc with |x− z|d ≤ s−γ that satisfy Ux,z ≤

ρ(1/β) and Uy,z ≤ ρ( 1
β t
γu1−γ |y − z|d). By the thinning theorem, X x

c forms a Poisson point
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process with total intensity∫ 1

1/2

∫
B
s−γ/d (x)

ρ(β−1)ρ(β−1tγ |y − z|d) dz du

≥ ρ(β−1)

2

∫
B
s−γ/d (x)

ρ(β−1tγ(|x− z|+ |x− y|)d) dz

≥ ρ(β−1)κd
2

s−γρ(β−1tγ(s−γ/d + |x− y|)d).

(3.1)

Hence, P(Xc = ∅) ≤ P(X x
c = ∅) ≤ exp

(
− ρ(β−1)κd

2 k(x,y)
)
. Reversing the roles of x and y

yields the stated result.

We next state a technical result that allows us to draw conclusions on the mark
distribution of the vertex with the smallest mark from a set of vertices, knowing that the
largest mark among them is smaller than some given value.

Lemma 3.2. Let (Ui)i≤n be a collection of independent on (0, 1) uniformly distributed
random variables. Then, for 0 ≤ a < b ≤ 1, we have

P( min
i=1...n

Ui > a | max
i=1...n

Ui < b) ≤ e−na/b. (3.2)

Furthermore, for U uniformly distibuted on (0, 1) and x < y,

P(U < x |U < y) = P(yU < x). (3.3)

Proof. In order to prove the first bound, we use the simple fact that P(U > a |U < b) =

1− a
b . Since 1− x ≤ e−x, it is true that

P( min
i=1...n

Ui > a | max
i=1...n

Ui < b) =
(
1− a

b

)n ≤ e−na/b,

which proves the claim. The second statement of the lemma follows trivially from

P(U < x |U < y) =
P({U < x} ∩ {U < y})

P(U < y)
=
x

y
= P(yU < x).

Proof of transience We now formalise the definition of a renormalised graph sequence
discussed earlier in this section.

Definition 3.3. We say that the graph G = (V,E) is renormalised for the sequence
(Cn)n∈N if we can construct an infinite sequence of subgraphs of G such that

• the vertices of the l-stage subgraph (l ≥ 1) are labelled by

Vl(jl, . . . , j1) for all jk ∈ {1, . . . , Ck} with k = 1, . . . , l,

• for l ≥ m we set

Vl(jl, . . . , jm) =
⋃

1≤uk≤Ck
for k=1...,m−1

Vl(jl, . . . , jm, um−1, . . . u1),

• for every l > m > 2, every jl, . . . , jm+1, and all pairs um, wm ∈ {1, . . . , Cm} and
um−1, wm−1 ∈ {1, . . . , Cm−1} there is an edge inG between a vertex in the collection
Vl(jl, . . . , jm+1, um, um−1) and a vertex in the collection Vl(jl, . . . , jm+1, wm, wm−1).

• for completeness, a 0-stage subgraph is a single vertex.
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Vn(1)

Vn(1, 1) Vn(1, 2)

Vn(1, 1, 1)

Vn(1, 1, 2)

Vn(1, 2, 1)

Vn(1, 2, 2)

Figure 2: A renormalized graph sequence (stages n−2, n−1 and n), where Cn = Cn−1 =

Cn−2 = 2 and Cn−3 = 3. For n = 4, the individual points in the picture can be understood
as single vertices, whereas for n > 4 they represent collections of vertices Vn(1, 1, 1, 1),
Vn(1, 1, 1, 2), etc.

We may think of a renormalised graph as having a recursive structure: vertices are
forming the 0-stage subgraphs, and every n-stage subgraph consists of a number Cn of
(n− 1)-stage subgraphs with the property that each pair of (n− 2)-stage subgraphs in
any of these is linked by an edge; see Fig. 2.

Lemma 3.4 ([1, Lemma 2.7]). A graph renormalized for the sequence (Cn)n∈N is tran-
sient if

∑∞
n=1 C

−1
n <∞.

We now prove transience for the min kernel when γ > δ
1+δ (i.e., we are in the robust

case), and explain afterwards the modifications for the other kernels.

Proposition 3.5. Let Gβ be the weight-dependent random connection model with min
kernel and γ > δ

1+δ . Then, for all β > 0, the infinite component of Gβ is transient.

Our proof is inspired by the arguments in [17, Prop. 5.3]. However, our proof has
the necessary coarse graining ideas built into the construction and therefore yields the
result for all values of β directly.

Proof. Begin by choosing a positive constant ε smaller than 2(δ + 1)γd− 2δd, which is
possible since γ > δ

δ+1 implies this expression is strictly positive. Next, let n∗ be a large
constant whose value we will fix later in the proof. Define, for n ≥ 1,

un =
1

c1
(n∗ + n)−

ε
γ(δ+1) 2−

(n∗+n)dδ
n∗γ(δ+1)

(
(n∗+n)!
n∗!

)− 2dδ
γ(δ+1)

, (3.4)

where c1 = ( 1
2κdρ(1/β)βδ−1d−dδ/2)−1/γ(δ+1) is a positive constant, and κd is the volume

of the d-dimensional unit ball. Let B be the event that in a given box of side-length
D1 := 2(n∗ + 1)2 there exists a vertex with mark smaller than u1 and define pB to be
the probability of this event. A simple calculation using the properties of Poisson point
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processes yields that there exists a positive constant c for which

pB = 1− exp{−u1D
d
1} ≥ 1− exp

{
− cn

− ε
γ(δ+1)

− 2dδ
γ(δ+1)

+2d
∗

}
and, by choice of ε, the probability pB can therefore be made arbitrarily close to 1 by
choosing n∗ large. Although we will not explicitly highlight this throughout most of the
proof, we work from here on under the assumption that n∗ is sufficiently large for pB to
be close to 1 (say, greater than 3/4) so that the quantities where pB appears are all of the
same order of magnitude as if pB was simply equal 1. We define for n ≥ 2 the sequences

Cn := pB(n∗ + n)2d, Dn := 2(n∗ + n)2.

Next, we partition Rd into disjoint boxes of side length D1; we call them 1-stage boxes.
We now define the renormalization procedure. We partition Rd again, grouping Dd

2

1-stage boxes together to form 2-stage boxes. We continue like this for all n ≥ 3, so that
the n-stage boxes represent a partitioning of Rd into boxes of side length

∏n
i=1Di.

We now define what it means for a box to be “good” or “bad”, starting with 1-stage
boxes. We declare a 1-stage box as good if it contains at least one vertex with mark
smaller than u1, and for each good 1-stage box we declare the vertex with the smallest
mark to be 1-dominant. We define L1(v) to be the event that the 1-stage box centered
around v is good, and omit v when considering the box containing the origin. We declare
a 2-stage box as good if it contains at least C2 good 1-stage boxes and among the
corresponding 1-dominant vertices at least one has mark smaller than u2. As before, we
define L2(v) to be the event that the 2-stage box centered around v is good, and omit v
when considering the box containing the origin.

For n ≥ 3, let Q be the set of all good (n − 1)-stage subboxes of the n-stage box Q.
We declare Q as good if the following three conditions hold:

(E) Q contains at least Cn boxes;

(F) for any pair of boxes Q′, Q′′ ∈ Q every pair of distinct (n− 2)-dominant vertices in
Q′ and Q′′ is connected through a connector;

(G) at least one of the boxes Q′ ∈ Q contains an (n− 1)-dominant vertex with mark no
larger than un.

We declare for each good n-stage box the vertex with the smallest mark as the n-dominant
vertex. We now define En(v), Fn(v) and Gn(v) to be the events that conditions (E), (F )

and (G) hold for the n-stage box containing vertex v. When considering the origin, we
omit the vertex in this notation. We do the same for the event Ln(v), which we define to
be the event that the corresponding n-stage box is good.

Due to translation invariance it is enough to show that

P
( ∞⋂
n=1

Ln

)
> 0

in order to prove our claim. First, note that

P
( ∞⋂
n=1

Ln

)
= 1− P

( ∞⋃
n=1

Lcn

)
≥ 1−

∞∑
n=1

P(Lcn).

Therefore, it suffices to show that the sum on the right can be made smaller than 1.

EJP 27 (2022), paper 60.
Page 12/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP748
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Recurrence versus transience for weight-dependent random connection models

For n = 1, we already have that P(Lcn) = 1− pB which can be made arbitrarily small
by setting n∗ large. For n ≥ 2 we decompose the event Lcn with respect to En, Fn and
Gn and obtain that

P(Lcn) ≤ P(Ecn) + P(F cn |En) + P(Gcn |En), (3.5)

where we set P(F c2 |E2) as 0 in order to simplify notation.
We first bound P(F cn |En) for n ≥ 3. To do that, let X be the restriction of the marked

point process η′ to vertices with marks smaller than 1/2. Then, given X , the event
En and, for two vertices in X , the existence of a vertex in η′ \ X connecting them are
increasing events depending only on the edge marks and on the marked vertices of η′\X .
Thus, given X , they are positively correlated. Next, note that any two vertices in the
same n-stage box are at most

√
d

n∏
k=1

Dk =
√
d2n
(

(n∗+n)!
n∗!

)2

away from each other and similarly any (n − 2)-dominant vertices have mark smaller
than un−2. Therefore, using Lemma 3.1 the conditional probability given X that two
(n − 2)-dominant vertices of X belonging to the same n-stage box are not connected
through a connector is smaller than

exp
{
− 1

2ρ
(

1
β

)
κdβ

δu
−γ(δ+1)
n−2

(
(s ∨ t)−γ/d +

√
d2n
( (n∗+n)!

n∗!

)2)−dδ}
,

where we highlight that the bound is uniform in the locations of the two vertices and that
the (s∨ t)−γ/d term is unbounded from above. We therefore consider the cases when s∧ t
is bigger or smaller than (

√
d2n((n∗ + n)!/n∗!)

2)−d/γ and obtain with the help of Lemma
3.2 that the conditional probability given X of two (n− 2) dominant vertices belonging
to the same n-stage box being connected to a common vertex of η′\X is smaller than

exp
{
− 1

2ρ(β−1)κdβ
δu
−γ(δ+1)
n−2 d−

dδ
2 2−ndδ( (n∗+n)!

n∗!
)−2dδ

}
+ exp{−cn log(n∗ + n)}

≤ exp{−β(n∗ + n)ε} ∨ exp{−c̃n log(n∗ + n)},

where c̃ is a positive constant and we used that log(n!) � n log n. Next, there are(
Dd
nD

d
n−1

2

)
< 4d(n∗ + n)4d

possible pairs of distinct (n − 2)-stage boxes in an n-stage box and therefore at most
4d(n+ 1)4d connections via a connector vertex. Conditionally on X , the events Fn and En
are increasing with respect to points, edges and vertex marks which are not determined
by the configuration X . Consequently, conditionally on X , F cn and En are negatively
correlated. By taking the union bound we thus obtain

PX (F cn |En) ≤ exp{d log(4) + 4d log(n∗ + n)− β(n∗ + n)ε ∧ c̃n log(n∗ + n)}, (3.6)

where we write PX for the conditional expectation given X . Taking the expectation
and using that this bound is uniform in X yields the same bound for the unconditional
probability.

Next, we bound P(Gcn |En). For some positive constant c2 we write

un
un−1

=
(

n∗+n
n∗+n−1

)− k
γ(δ+1) 2−

dδ
n∗γ(δ+1) (n∗ + n)−

2dδ
γ(δ+1) ≥ c2(n∗ + n)−

2dδ
γ(δ+1)
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and therefore using Lemma 3.2 we get

P(Gcn |En) ≤ exp
{
− Cn un

un−1

}
≤ exp

{
− c2pB(n∗ + n)

2d(γ(δ+1)−δ)
γ(δ+1)

}
, (3.7)

where the exponent of the term n∗ + n is positive whenever γ > δ
δ+1 . To keep things

concise, we will refer to this exponent as k from now on.
In order to bound the remaining term of (3.5) we will again use X . Crucially, given

X the events Ln−1(v) are all positively correlated. To see why, note that for any fixed
configuration of vertices from X , the event Ln−1(v) depends only on the realization of
the edge marks and the marked vertices in η′ \ X , i.e. the connector vertices. Since
the number of required edges and vertices from η′\X does not change for a given
realization of X , all Ln−1(v) are increasing events and therefore positively correlated.
Consequently, given X and using a standard coupling argument, the collection of events
Ln−1(v) stochastically dominates events with the same marginal distribution but sampled
independently. We obtain

P(Ecn) = E[PX (Ecn)] ≤ E[PX (Ẽcn)] = P(Ẽcn),

where we denote by Ẽcn the event that there are at most Cn good (n − 1)-stage boxes
in the n-stage box, with each event Ln−1(v) sampled independently. We can therefore
proceed as if the events Ln−1(v) were independent. We use this by invoking Chernoff’s
bound that says that if X ∼ Bin(m, q),Θ ∈ (0, 1), then

P(X < (1−Θ)mq) ≤ exp
{
− 1

2Θ2mq
}
.

For q = P(Ln−1), m = Dd
n and Θ = 1− Cn

Ddn

1
P(Ln−1) this leads to

P(Ecn) ≤ exp
{
− 2d−1

(
1− pB

2d
1

P(Ln−1)

)2

P(Ln−1)(n∗ + n)2d
}
,

= exp{−2−d−1(2dP(Ln−1)− pB)2(n∗ + n)2dP(Ln−1)−1}
≤ exp{−2−d−1(2dP(Ln−1)− pB)2(n∗ + n)2d}, (3.8)

where we used the definitions of Cn, Dn and the definition of En itself. This bound is only
valid if P(Ln−1) is sufficiently large for Θ to be smaller than 1. For n = 2, this is satisfied
by construction, since Θ simplifies to 1− 1

2d
. For n ≥ 3 this follows inductively from the

argument below. Combining (3.8), (3.6) and (3.7) into (3.5), we obtain the recursive
inequality

P(Lcn) ≤ exp{d log(4) + 4d log(n∗ + n)− β(n∗ + n)ε ∧ c̃n log(n∗ + n)}
+ exp{−c2pB(n∗ + n)k}+ exp{−2−d−1(2dP(Ln−1)− pB)2(n∗ + n)2d}.

By setting n∗ large enough we get for n ≥ 2 that

P(Lcn) ≤ 2 exp{−c3pBβ(n∗ + n)ε ∧ (n∗ + n)k ∧ n log(n∗ + n)}
+ exp{−2−d−1(2dP(Ln−1)− pB)2(n∗ + n)2d}.

Define now the sequence `n := 1
3 (n + 1)−3/2 and observe that

∑∞
i=1 `i < 1. We then

obtain inductively for n ≥ 2 that

P(Lcn) ≤ 2 exp{−c3pBβ(n∗ + n)ε ∧ (n∗ + n)k ∧ (n∗ + n) log(n∗ + n)}

+ exp{−2−d−1(2d(1− 1
3n
−3/2)− pB)2(n∗ + n+ 1)2d}

≤ 1
3 (n+ 1)−3/2= `n,
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where we finally take n∗ large enough for the second inequality to hold and use implicitly
that pB approaches 1 as n∗ is made large. This also yields that P(Lc1) = 1 − pB < `1.
Altogether, for n∗ large, this gives the existence of the renormalized graph sequence
with positive probability, and by Lemma 3.4 the result follows.

This concludes the proof of Theorem 1.1 for the min kernel when γ > δ
δ+1 . As outlined

at the beginning of the section, the preferential attachment and sum kernels dominate
the min kernel and they are therefore, ceteris paribus, also transient. We now focus on
the weight-dependent random connection model with the remaining kernels of Theorem
1.1. The main difference is that these kernels lead to transient graphs by using direct
connections between the dominant vertices, without having to rely on connector vertices.
Therefore, we use the same strategy as for the min kernel but using direct connection
probabilities instead of the two-connection probabilities from Lemma 3.1. We first look
at the product kernel, for the corresponding lattice model, scale-free percolation, the
analogous result was obtained in [17].

Proposition 3.6. Consider the weight-dependent random connection model Gβ with
product kernel, where γ > 1

2 and β > 0. Then Gβ is transient almost surely.

Proof. We claim that when γ > 1
2 , the statement of Proposition 3.5 holds for the product

kernel as well. To see why, we repeat the steps of the proof of Proposition 3.5, setting
Cn and Dn as before, replacing the value of un in (3.4) by

un = β
1
2γ d−

d
4γ (n∗ + n+ 2)−

ε
2γδ 2−

d(n∗+n+2)
2n∗γ ( (n∗+n+3)!

n∗!
)−

d
γ ,

with ε < d(2− 1
γ ). Then, continuing along with the proof, we obtain instead of (3.7) that

P(Gcn |En) ≤ exp{−c2(n+ 1)d(2− 1
γ )},

which is again a decreasing function of n, since the exponent of (n + 1) is positive for
γ > 1

2 . The rest of the proof then proceeds unchanged.

The last kernel left to consider is the max kernel gmax. Here, just like in the product
kernel case, direct connections between vertices suffice to show that the graph is
transient.

Proposition 3.7. Consider the weight-dependent random connection model Gβ with
max kernel and any γ > 0. For any β > 0 we have that Gβ is transient almost surely.

Proof. The result follows by repeating the proof of Proposition 3.6, setting

un :=
1

c1
(n∗ + n+ 2)−

ε
δ(1+γ) 2−

(n∗+n+2)d
n∗(1+γ) ( (n∗+n+3)!

n∗!
)−

2d
1+γ

where c1 is a constant depending on ρ, d and β, and ε < γ
1+γ . Then, P(Gcn |En) is again

decreasing in n precisely when γ > 0.

3.2 Transience in the non-robust case

The transience result We now turn to transience for non-robust supercritical perco-
lation clusters in the weight-dependent random connection model. Of particular interest
is the case limr→∞ ρ(r)rδ = 1 with δ ∈ (1, 2) and preferential attachment kernel g = gpa.
However, we see in Theorem 3.8 that the precise form of g is not very important, and in
fact our argument applies for all the kernels discussed in Section 1. The general strategy
of the proof is similar to the robust case, in that we show that the infinite cluster contains
a transient subgraph.

EJP 27 (2022), paper 60.
Page 15/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP748
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Recurrence versus transience for weight-dependent random connection models

On the one hand, in the non-robust regime (i.e., if βc > 0) this is a little more delicate,
since the backbone of dominant vertices, which is only present in the robust case, cannot
be used. On the other hand, the slow decay of connection probabilities as a function
of distance allows us to relate the model to an instance of long-range percolation on
the lattice via a coarse graining argument. A similar approach was used by Deprez and
Wüthrich [8], the model there corresponds to our product kernel. We now reformulate
the transience result for δ < 2.

Theorem 3.8. Let Gβ denote the weight-dependent random connection model where

(a) g is bounded, that is, g∗ := sup(s,t)∈(0,1)2 g(s, t) <∞;

(b) ρ is regularly varying at∞ of index −δ with δ ∈ (1, 2).

Then, for all β > βc, the graph Gβ is transient almost surely.

Mind that assumption (b) always holds if (1.8) is satisfied and that assumption (a) is
satisfied by all our kernels so that Theorem 3.8 readily implies our transience claims if
δ < 2. Let B denote a non-empty domain in Rd. A cluster in B is a connected component
of the subgraph of Gβ induced by all vertices with positions in B. The key result needed
to establish transience is the following statement concerning percolation on finite boxes.

Proposition 3.9 (Local density of percolation clusters). Consider Gβ with β > βc under
the assumptions of Theorem 3.8. For any λ ∈ (0, 1), and any ε > 0, there exists an
M0 ∈ N, such that for all M > M0

P
(
there is a cluster of size at least Mλd in [−M/2,M/2)d

)
≥ 1− ε.

We postpone the proof of Proposition 3.9 and first show how to obtain Theorem 3.8
from Proposition 3.9.

Proof of Theorem 3.8. We apply a coarse-graining argument to relate the continuum
model to a bond-site percolated lattice model based on the clusters obtained in Propo-
sition 3.9. The coarse graining scheme has three parameters: a typically large M ∈ N
controlling the coarse graining scale, a density exponent λ ∈ (0, 1) moderating the size
of the coarse grained clusters and some small ε ∈ (0, 1) to account for the probability
of local defects. As indicated by the notation, the relation of M,λ and ε is going to
be dictated by Proposition 3.9. To construct the coarse grained lattice configurations
G′ = G′(M,λ, ε) from Gβ, consider the rescaled lattice MZd. To each site v ∈ Zd, we
assign the box Bv = Mv + [−M/2,M/2)d. A site v is declared occupied if there is a
cluster in Bv with at least Mλd vertices. To every occupied site v, we assign an occupying
set W (v) of precisely dMλde vertices, which induce a connected subgraph of a cluster in
Bv as defined above. The existence of such vertex sets is guaranteed by the requirement
that v be occupied. Since there are typically many possible candidates for W (v) for
any given occupied lattice point v, we choose one in an arbitrary but local fashion, i.e.
the choice depends only on the marked point process configuration ξ inside Bv. Two
occupied lattice points v, w ∈ Zd communicate (denoted by v ↔ w) if their corresponding
occupying sets are linked by an edge in Gβ . For any two occupied lattice points v, w ∈ Zd
we have

P(v 6↔ w|ξ|Bv∪Bw) ≤ P(@(x1,x2) ∈W (v)×W (w) : {x1,x2} ∈ E(Gβ))

≤
∏

((x1,t1),(x2,t2))∈W (v)×W (w)

(
1− ρ

(
g(t1, t2)|x1 − x2|d

))
,

where ξ|Bv∪Bw indicates the configuration restricted to the boxes Bv, Bw. Note that
there exists some universal constant C <∞, such that |x1 − x2| ≤ CMk uniformly for all
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(x1, x2) ∈ Bv × Bw, whenever ‖v − w‖∞ = k ≥ 1. Moreover, since g(t1, t2) ≤ g∗ < ∞ by
assumption and |W (v)| = |W (w)| ≥Mdλ by construction for all occupied sites, we obtain
the deterministic bound

P(v 6↔ w|v, w occupied) ≤ exp
(
−M2dλρ

(
g∗(CM‖v − w‖∞)d

))
.

Since ρ is regularly varying of index −δ ∈ (−2,−1), we can find z0 <∞, c > 0 and δ∗ < 2

such that ρ(z) ≥ cz−δ
∗

for all z > z0. Consequently, we may fix M1, such that for any
M > M1

P(v ↔ w|v, w occupied) ≥ 1− exp

(
−c∗

M2dλ−δ∗d

|v − w|δ∗d

)
=: p′v,w, v, w ∈ Zd, (3.9)

where c∗ = c∗(ρ, g
∗, d) is some constant independent of λ. Note that the estimate in (3.9)

holds uniformly for all configurations in which v, w are occupied, independently of the
occupation status of other vertices and whether they communicate or not. It thus follows
from (3.9) that the configuration({

1{v occupied} : v ∈ Zd
}
,
{
1{v,w communicate} : {v, w} ∈ (Zd)[2]

})
dominates a long-range percolation model on a site-percolated instance of Zd with site
retention probability 1− ε = P(0 is occupied) and edge probabilities p′v,w, for v, w ∈ Zd.
We denote this model by G′(M,λ, ε). By Proposition 3.9, we can choose λ > δ∗/2 and
then M sufficiently large such that both ε is arbitrarily close to 0 and p′v,w dominates the
connection probability in an arbitrarily dense long-range percolation cluster with edge
decay parameter δ∗d < 2d. For such a choice of parameters it follows from [1, Lemma
2.7] that G′ is transient almost surely.

It remains to argue why transience of the coarse grained model implies transience of
the original graph. A slightly different argument in the same spirit is given in [1, p. 545]
for long-range percolation, but we provide an explicit construction. Let V ′ and E′ denote
the sites and edges of the coarse-grained configuration G′. By Theorem A.1, transience
of G′ is equivalent to positivity of the effective conductance Ceff(0,∞) in the electrical
network obtained from (V ′, E′) in which each edge in E′ is assigned a unit conductance.
Recall that each node in v ∈ V ′ ⊂ Zd is associated with a connected subgraph on the
vertex set W (v) in Gβ0 contained inside the box Bv and each edge in E′ incident to v

requires the existence of an edge in Gβ0 with one endpoint x ∈ W (v). Choose for each
edge such an endpoint and denote the sets of all the chosen points by X(v). Let v 6= 0,
let T (v) be a subtree of Gβ0 that spans W (v) (which exists, because we required W (v) to
be connected) and equip the edges of T (v) with unit conductances. By monotonicity and
the fact that W (v) contains at most Mλd + 1 vertices, the effective conductance between
any two leaves of T (v) ⊂ G′ is bounded from below by the effective conductance between
the two endpoints of a line graph with Md vertices. The same estimate holds for any two
points in X(v), since X(v) is contained in T (v). It follows, again by monotonicity, that if
we collapse T (v) ⊂ Gβ0 into the single vertex v (whilst keeping all edges connecting T (v)

to vertices in different boxes) and reduce the conductance on any edge e incident to v
which corresponds to an edge in G′ to 1/(1+Md), then we obtain a network with effective
conductances which are dominated by those of the graph obtained from G′ by expanding
the vertices into the respective trees T (v). An analogous argument also holds for the
case v = 0. We conclude, that if we assign to each edge of G′ the conductance (1 +Md)−1

we obtain an electrical network whose effective conductance between any given vertex
and∞ are dominated by those of the subgraph of Gβ obtained by expanding all v ∈ V ′
into their corresponding T (v). This establishes transience of Gβ, since multiplying the
conductances in G′ by a constant factor has the same effect on the effective conductance
Ceff(0,∞).
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Remark 3.10. For ‖v − w‖∞ = 1, the estimate (3.9) yields that the coarse-grained ran-
dom connection model dominates a (vertex-percolated) supercritical nearest-neighbour
bond percolation cluster, which yields transience in d ≥ 3 without recourse to long-range
percolation, see [14].

Local density of percolation clusters We now turn to the proof of Proposition 3.9.
We present a more direct (but weaker) sprinkling argument than the one given for
the analogous (but stronger) statement [1, Lemma 2.3] for long-range percolation. Fix
β > βc and β′ ∈ (βc, β). Our construction in Section 2 provides a coupling Gβ and Gβ′

from the same configuration ξ in such a way that Gβ′ ⊂ Gβ . The following lemma extends
this observation. To formulate it, we write qGβ for the geometric graph obtained from
Gβ by performing independent Bernoulli percolation with retention probability q ∈ [0, 1]

on the edges of Gβ .

Lemma 3.11. For any β′ ∈ (0, β) there exists some q(β′) ∈ (0, 1) and a coupling of the
random geometric graphs Gβ ,Gβ′ and q(β′)Gβ such that under the coupling

E
(
Gβ
′)
⊂ E

(
q(β′)Gβ

)
⊂ E

(
Gβ
)
.

Proof. The second inclusion is trivial for any q(β′) ∈ [0, 1]. The first inclusion follows by
the observation that the scaling properties of the underlying Poisson process η allow us
to couple Gβ′ and Gβ in such a way, that Gβ′ coincides precisely with Bernoulli percolation
on the vertices of Gβ for some retention probability q(β′) ∈ (0, 1). On any non-trivial
connected graph, it is easily seen that Bernoulli percolation of edges and Bernoulli
percolation of vertices with the same retention parameter q can be coupled in such a way
that the edge percolation configuration dominates the vertex percolation configuration.
Applying this coupling to the connected components of Gβ yields the first inclusion.

An important consequence of Lemma 3.11 is that under the coupling

P
(
{x,y} ∈ E(Gβ) | Gβ

′)
≥ (1− q(β′)) ρ(g∗|x− y|d), (3.10)

for all pairs x = (x, y),y = (y, t) with x,y ∈ η′ independently of each other and indepen-
dently of the occupation status of {x,y} or any other edge in Gβ′ .

Proof of Proposition 3.9. The estimate (3.10) allows us to employ a simplified version1

of the renormalisation construction used in [1]. The basic building blocks of the renor-
malisation scheme are localised clusters in Gβ′ which we construct now. Fix β′ ∈ (βc, β)

and let C(β′) denote the infinite cluster in Gβ′ . Consider the collections of boxes

B(l) = {lx+ [−l/2, l/2)d : x ∈ Zd}, l ∈ N.

Let m ∈ N be given. For any box B ∈ B(m), we write V(B) for those vertices of C(β′)
that have positions in B. Let ε > 0 and θ0 ∈ (0, θ(β′)). Then we may choose m so large
that

P(|V(B)| ≥ θ0m
d) ≥ 1− ε/2 for all B ∈ B(m)

since the probability of the left hand side converges to 1 as m → ∞ due to ergodicity.
For B ∈ B(m), we now define the event

E0(B) = {|V(B)| ≥ θ0m
d,V(B) is contained in a connected component of Gβ

′
∩ ∂k(B)},

1 Our proof is simpler than the proof of [1, Lemma 2.3] in the 2014 arXiv-version, but comes at the expense
of assuming β > βc, whereas the variants of Proposition 3.9 in [1] and [8] work under the assumption of the
existence of an infinite component and imply β > βc. Since we only need the weaker statement, we give a
self-contained proof of Proposition 3.9 and remark in passing, that the stronger version can be obtained by
adapting the proof of [8, Lemma 6.1] to our model.
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where ∂k(B) denotes the k-neighbourhood of B with respect to ‖ · ‖∞ in Rd and G ∩ A is
a shorthand for the subgraph of G induced by vertices with positions in A ⊂ Rd. Since
the infinite cluster is unique, there exists k = k(m) ∈ N such that for any B ∈ B(m),

P(E0(B)) > 1− ε.

If E0(B) occurs for some B ∈ B(m), then we call the associated collection V(B) of
vertices a (θ,m, k)-precluster (in B).

Our next goal is to recursively construct more and more strongly localised clusters
from the preclusters in Gβ using the independent sprinkling induced via (3.10). By our
standing assumption on the regular variation of ρ, we may further increase m (and thus
possibly k(m)) such that ρ(v) ≥ cρv

−δ∗ for all v ≥ g∗dd/2md and some δ∗ ∈ (δ, 2). Let
λ ∈ (0, 1) be arbitrary and choose

η >
2

d

(
1

1− λ
∨ 1

1− δ∗/2

)
.

Now set

θn =
1

n2
, and σn = d(n+ 1)ηe, n ∈ N.

The cubes

B ∈ B

(
m

n∏
i=1

σi

)
,

are called stage-n boxes. Note that for n ≥ 1, each stage-n box B contains precisely σdn
stage-(n − 1) boxes, which we call the subboxes of B. A stage-0 box B is good if the
event E0(B) occurs, i.e. if it contains a (θ0,m, k)-precluster. A stage-1 precluster inside
a stage-1 box B is a collection of θ1σ1 preclusters, each contained in a different subbox
of B, which are all at graph distance 1 of each other in Gβ . Similarly, for n > 1, a stage-n
precluster inside a stage-n box B is a collection of θnσn stage-(n− 1) preclusters, each
contained in a different subbox of B, which are all at graph distance 1 of each other in
Gβ . If n ≥ 1, then a stage-n box is good if it contains a stage-n precluster.

Note that a stage-n precluster contains at least

vn := θ0m
d
n∏
i=1

θnσn

vertices. Consequently, if a stage-n box B is good, then there must be a connected
component in Gβ ∩ ∂k(Γ) of size at least vn. For any stage-n box B, let B̃ denote the
union of B with all its 3d− 1-neighbouring stage-n boxes (including diagonal neighbours).
Since k depends only on m, but not on n it follows that there exists a stage N such that
for all n ≥ N and any stage-n box B, we have ∂k(B) ⊂ B̃ and we conclude that on the
event {B is good} there exists a connected component of Gβ inside B̃ of size at least

vn = θ0m
d
n∏
l=1

θlσ
d
l ≥ q1θ0m

d
n∏
l=1

l−2+ηd = q1θ0m
d

(
n∏
l=1

lηd

)1− 2
ηd

≥ q2
θ0

3λd
vol(B̃)λ

for some constants q1, q2, which implies the claim of the proposition once we show that
the probability P(B is not good) can be made arbitrarily small for sufficiently large n.

To this end, we consider for each n the n-stage box Bn containing the origin, which is
sufficient due to translation invariance. Let En denote the event that Bn is good and let
Fn denote the event that at least θnσn subboxes of Bn are good. It follows from Markov’s
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inequality that

P(F c
n) = P

( ∑
B′⊂Bn subbox

1{B′ is not good} > (1− θn)σdn

)
≤ 1

1− θn
P(Ec

n−1), n ∈ N.

(3.11)
Let now B(1), B(2) be good subboxes of Bn, n ≥ 1, and let V1,V2 denote their largest
stage-(n− 1) preclusters. Note that these can be determined by considering only Gβ′ and
additional edges in Gβ within the subboxes B(1), B(2). By observing that the estimate
(3.10) holds independently for each potential edge between V1,V2, we obtain that, given
Gβ′ and all box-to-box connections made in previous stages,

P(V1,V2 are not at distance 1 in Gβ) ≤
∏

((x1,t1),(x2,t2))
∈V1×V2

(
1− (1− q(β′))ρ(g∗|x1 − x2|d)

)
≤

∏
((x1,t1),(x2,t2))∈V1×V2

e−(1−q(β′))ρ(g∗|x1−x2|d)

≤
∏

((x1,t1),(x2,t2))∈V1×V2

e−(1−q(β′))ρ(g∗ diam(Bn)d)

≤ e−(1−q(β′))ρ(g∗ diam(Bn)d)v2n−1 .
(3.12)

Now note that diam(Bn)d = dd/2vol(Bn), and that ρ(g∗d
d/2 vol(Bn)) ≥ cvol(Bn)−δ

∗
by

choice of m for some constant c. We thus conclude from (3.12) that there exists some
small constant ν = ν(d, β′, g, ρ) > 0 such that

P(V1,V2 are not at distance 1 in Gβ) ≤ e−ν v
2
n−1vol(Γn)−δ

∗

, (3.13)

and that this estimate holds independently for any pair of good subboxes B(1), B(2) and
independently of the formation of all previous stages of the recursion.

Combining (3.13) with a simple union bound, we obtain that

1− P(En|Fn) ≤ σ2d
n e−ν v

2
n−1vol(Bn)−δ

∗

. (3.14)

Since

v2
n−1vol(Bn)−δ

∗
= σ−δ

∗d
n (θ0m

d)2−δ∗
n−1∏
l=1

θ2
l

n−1∏
l=1

σ2d−δ∗d
l

≥ c θ0m
2d−δ∗dn−δ

∗d((n− 1)!)η(2−δ∗)d−4

for some constant c, it is straightforward (if necessary by further increasing m) to deduce
the existence of small constants ν1, ν2 such that for all n ≥ 1

1− P(En|Fn) ≤ e−ν1((n−1)!)ν2 ≤ εθn,

In particular, combining this estimate with (3.11) we have that

P(Ec
n) ≤ P(F c

n)+P(Ec
n|Fn) ≤ εθn+

1

1− θn
P(Ec

n−1) ≤ εθn+(1+2θn)P(Ec
n−1), for n ≥ 1.

It follows that
P(Ec

n) ≤ (1 + 3θn)(ε ∨ P(Ec
n−1)), for n ≥ 1,

and recursively we obtain that

P(Ec
n) ≤ 2ε

n∏
l=1

(1 + 3θl), for n ∈ N. (3.15)

Since (θn) is summable, it follows that the right hand side of (3.15) is uniformly bounded
by some constant multiple of ε which suffices to conclude the proof, since ε was chosen
arbitrarily.
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4 Recurrence

In this section, we prove the recurrence results of Theorem 1.1. We develop contin-
uum versions of sufficient criteria for recurrence from [1]. As a rule of thumb, these
criteria can only work if the correlations between edges induced by the vertex marks are
not too strong. In particular it is necessary that the expected number of neighbours of 0

has a finite second moment, therefore all recurrence conditions in Theorem 1.1 require
(at least) that γ < 1/2. We work with general geometric random graphs with vertices
given by an (unmarked) unit intensity Poisson process. Therefore, to keep the notation
concise when we specialise to our model, we break with our conventional notation and
identify vertices x = (x, s) with their location x throughout this section. Consequently,
we also view potential edges as elements of η[2] or η[2]

0 instead of the corresponding
marked sets.

Lemma 4.1. Let X∞ be a unit intensity Poisson process on R2. Consider a random
graph H on this point process, where points x, y ∈ X∞ = V (H) are joined by an edge
with conditional probability P|x−y|, given X∞. If

lim sup
r→∞

rαPr <∞,

for some α > 4, then any infinite component of H is recurrent.

Lemma 4.1 is a continuum adaptation of a result by Berger [1] for general lattice-
based long-range percolation models2. Note that, in particular, no assumptions on the
(in)dependence of the edges are required. Before we prove Lemma 4.1 below, we discuss
its consequences for the kernels we are interested in.

Proof of Theorem 1.1, recurrence for min, sum and product kernel if d = 2. We wish to
apply Lemma 4.1. We have gsum ≤ gmin and we are only interested in upper bounds on
the connection probabilities, thus we only need to treat the sum and product kernels.
Recall that by (1.8) we may bound ρ(z) ≤ cρz

−δ, z > 0. For S, T independent on (0, 1)

uniformly distributed random variables we thus find, for r > 1,

Pr = 2E
[

1
2ρ(g(S, T )r−2)

]
≤ 2

(
1− E

[
e−ρ(g(S,T )r−2)

])
≤ 2

(
1− E

[
e−g(S,T )−δcρr

−2δ
])
.

(4.1)

The expectation on the right hand side is the Laplace transform F̂Z(g) of Z(g) = g(S, T )−δ

evaluated at λ = cρr
−2δ. Now observe that, for x > 0,

P
(
Z(g) > x

)
=

{
P
(
S−

γ
2 + T−

γ
2 > β−

1
2x

1
2δ

)
, if g = gsum,

P
(
S−γT−γ > β−

1
2x

1
δ

)
, if g = gprod.

(4.2)

Now the right hand side of (4.2) is the tail probability of either the sum or the product
of two independent power-law random variables and it is easy to see that the tail
index α ∈ (0,∞) of a heavy-tailed distribution remains unchanged under independent
multiplication or summation, respectively. Evaluating the corresponding tail indices, we
now infer from (4.2) that there exists some slowly varying function ` (depending on g),
such that

P
(
Z(g) > x

)
= `(x)x−

1
γδ for x > 0. (4.3)

2Note that like Berger’s version [1, Theorem 3.10], the result remains true if we only assume translation
invariance. However, we restrict ourselves to connection probabilities that depend only on distance, since it
saves some notation. Furthermore, [1, Theorem 3.10] includes the case α = 4. After thorough inspection of
the arguments in [1], we believe that this is only justified in the case of percolation models with uncorrelated
edges. Otherwise, one needs some control on the correlations, cf. our recurrence proof for the preferential
attachment kernel below.
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By monotonicity of Pr in γ we may assume that γ > 1/δ (recall that 1/δ < 1/2 by
assumption) and in this case it is a consequence of Karamata’s Tauberian Theorem [2,
Corollary 8.1.7] that (4.3) is equivalent to the existence of some εg > 0 and some slowly
varying function ˜̀such that

1− F̂Z(g)(λ) = ˜̀(λ)λ
1
γδ for λ ∈ (0, εg).

Inserting this asymptotic bound into (4.1) yields that there exits a third slowly varying
function ¯̀ such that Pr ≤ ¯̀(r)r−2/γ for all sufficiently large r, which, by Lemma 4.1,
implies recurrence of the corresponding graphs whenever γ < 1/2.

In order to apply the Nash-Williams criterion (Theorem A.2) and prove Lemma 4.1,
we adapt the the approach from [1] to our setting. To begin with, we turn the graph into
an electrical network by assigning conductance 1 to each edge.

Discretisation: We assign to each point x = (x1, x2) ∈ Z2 the half-open cube Γx =

[x1− 1/2, x1 + 1/2)× [x2− 1/2, x2 + 1/2). For each x, we collapse all Poisson points inside
Γx into x, remove any resulting loops and retain all other edges with their conductances.
This yields a long range electrical network with parallel edges that dominates the original
graph in terms of effective conductance. Now, if a point pair {x, y} is joined by m > 1

parallel edges, we remove m− 1 of them and increase the conductance on the remaining
edge to m. The parallel law for electrical networks implies that the effective conductance
of the electrical network is not affected by this step. We denote the resulting network on
Zd by L = L(H). Note that

P({x, y} ∈ E(L)) ≤ P(∃{u, v} ∈ E(H) : u ∈ Γx, v ∈ Γy) ≤ sup
x∗∈Γx,y∗∈Γy

P|x∗−y∗|,

where we have used that E|X∞ ∩ Γx| = 1. Since the diameter of the cubes Kx, x ∈ Z2 is
uniformly bounded, it follows that if

lim sup
r→∞

rαPr <∞

for some α > 0, the same must be true for the connection probabilities of lattice points
in L.

Edge projection: Given the lattice-based long-range model L, we now project the
long edges to nearest-neighbour edges: For every long (i.e. not nearest-neighbour)
edge {x, y} = {y, x} in L with conductance cxy, we remove the edge {x, y} and increase
the conductance for every nearest-neighbour bond in the shortest rectangular nearest-
neighbour cycle containing x and y by cxy(|x1 − y1| + |x2 − y2|). Due to the serial and
parallel laws, the effective conductance is not decreased by this step. The resulting
nearest-neighbour network is denoted by N .

Lemma 4.2. Let X∞ be a unit intensity Poisson process on R2. Consider a random
graph on this point process, where points x, y ∈ X∞ are connected with probability
P|x−y|, such that

lim sup
r→∞

rαPr <∞,

for some α > 3. For the electrical network N with conductances (Ce)e∈E(Z2) constructed
above, we have that:

(1) All conductances are finite almost surely.

(2) The effective conductance of the network is bigger or equal to the effective conduc-
tance of the original network.

(3) The distribution of edge conductances in N is shift invariant.
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(4) If α > 4, then the conductance Ce of an edge has a Cauchy tail, i.e. there exists a
constant c such that P(Ce > cn) ≤ n−1 for every n ≥ 1.

To prove the lemma, it is convenient to first introduce some notation. For ` ∈ N and
any nearest-neighbour edge e ∈ E(Z2), let Π`(e) denote the set of all potential edges in

X
[2]
∞ which contribute an amount of ` to Ce, i.e. pairs {x, y} ∈ X

[2]
∞ which are discretised

to (x′1, x
′
2), (y′1, y

′
2) with |x′1 − x′2|+ |y′1 − y′2| = `. Since the discretisation step shifts points

by a uniformly bounded distance, it follows that there exist global constants d1, d2, such
that

d1|x− y| ≤ |x′1 − x′2|+ |y′1 − y′2| ≤ (d2|x− y|) ∨ 1 (4.4)

for any {x, y} ∈ X∞, and since X∞ is a homogeneous Poisson point process we have that

E|Π`(e)| � `2 and E|Π`(e)|2 . `4, (4.5)

as `→∞ for any e ∈ E(Zd).

Proof of Lemma 4.2. Our construction ensures that assertions (2) and (3) are satisfied.
Let us now show (1). By (3), it suffices to consider the fixed edge e0 = {(0, 0), (1, 0)}.
Clearly, it holds that

Ce0 =
∑
`∈N

`
∑

{x,y}∈Π`(e0)

1{{x, y} ∈ E(H)}

By (4.4) and (4.5), we have that the probability that the `-th term in the outer sum is
non-zero is at most of order

`2P`/d2 . `2−α.

Consequently, Ce0 is almost surely finite if α > 3 by an application of the Borel-Cantelli
Lemma. Finally, to show (4), we apply Markov’s inequality and obtain

P(Ce0 > n) ≤ ECe0
n

,

which implies (4), since

ECe0 .
∞∑
`=1

`3P`/d2 . `3−α <∞

if α > 4, where we have again used (4.4) and (4.5).

The key to establishing Lemma 4.1 is one final result from [1], which we cite with-
out proof.

Theorem 4.3 ([1, Theorem 3.9]). Let G be a random electrical network on the lattice Z2,
such that all of the edges have the same conductance distribution, and this distribution
has a Cauchy tail. Then G is almost surely recurrent.

Notice that we do not require any independence in the theorem.

Proof of Lemma 4.1. By the steps (A)-(E) and the remarks following each step, the
conductance between two lattice points of the projected electrical network is bigger
than the effective conductance between their preimages in the original graph in the
continuum. Therefore, if the projected electrical network is recurrent, so is the original
graph. By Lemma 4.2, the conductances of the projected network have Cauchy tails and
by Theorem 4.3, this implies that the network is recurrent.
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Recurrence result for preferential attachment kernel in d = 2 We wish to apply
Theorem 4.3, but we unfortunately cannot rely on Lemma 4.1, since even for γ < 1/2

the preferential attachment kernel induces a model with Px,y � |x− y|−4, as we will see
below. To address this complication, we need to supplement first moment bounds on the
edge probability by bounds on edge correlations. To formulate bounds on connection
probabilities in a concise manner, we rely on translation invariance and consider, as an
auxiliary object, the unit intensity Poisson process η0,r on R2 with the two additional
points (0, 0) and (r, 0), where r > 0. Throughout the remainder of the proof, we always
keep ρ(z) � z−δ with δ > 2 and an instance of the preferential attachment kernel gpa

with γ < 1/2 fixed.

Lemma 4.4. For r > 0 and s ∈ (0, 1] write

Qr(s) =

∫ 1

0

ρ(β−1gpa(s, u)r2) du

for the probability that ((0, 0), s) is connected with a given point at distance r. If γ < 1/2

and δ > 2, then we have for s ∈ (0, 1) and r > 1,

Qr(s) .


1
{
s < r−

2
γ

}
+ 1

{
r−

2
γ ≤ s < r−2

}
r−

2
1−γ s−

γ
1−γ + 1

{
r−2 ≤ s

}
r−

2
γ s−

1−γ
γ

if γ > 1/δ,

1
{
s < r−

2
γ

}
+ 1

{
r−

2
γ ≤ s < r−2

}
r−

2
1−γ s−

γ
1−γ + 1

{
r−2 ≤ s

}
r−2δs1−δ

if γ < 1/δ.

Here and in the remainder of this section, we use the notation f(x) . g(x), if there is
a constant C <∞ (which may depend on β, γ, δ, the function ρ and the kernel gpa, but
not on r and s) such that f(x) ≤ Cg(x) for all sufficiently large x.

Proof of Lemma 4.4. We first assume that γ ∈ (1/δ, 1/2) 6= ∅ (recall that δ > 2). Due to
our assumption on ρ there exists a constant c̃ ∈ (1,∞) depending on the choice of the
function ρ, the kernel gpa and β, such that the connection probability (for 0 < s ≤ t < 1)
is bounded from above by

ρ(gpa(s, t)r2) ≤ c̃
(
1 ∧ (sγt(1−γ)r2)−δ

)
.

Integrating over the mark of (r, 0) with r > 1 fixed, we obtain that

Qr(s) .
∫ s

0

1 ∧ (uγs(1−γ)r2)−δ du+

∫ 1

s

1 ∧ (sγu(1−γ)r2)−δ du =: I1(s) + I2(s).

Evaluating the integrals yields

I1(s) . 1{s < r−2} s+ 1{r−2 ≤ s}
(
r−

2
γ s−

1−γ
γ + r−2δ− 2

γ (1−γδ)s−(1−γδ)− 1−γ
γ (1−γδ)

)
. 1{s < r−2} s+ 1{r−2 ≤ s} r−

2
γ s−

1−γ
γ ,

and

I2(s) . 1
{
s < r−

2
γ

}
(1− s)

+ 1
{
r−

2
γ ≤ s < r−2

}(
r−

2
1−γ s−

γ
1−γ + r−2δ− 2

1−γ (1−(1−γ)δ)s−γδ−
γ

1−γ (1−(1−γ)δ)
)

+ 1{r−2 ≤ s} r−2δs1−δ

. 1
{
s < r−

2
γ

}
+ 1

{
r−

2
γ ≤ s < r−2

}
r−

2
1−γ s−

γ
1−γ + 1{r−2 ≤ s} r−2δs1−δ,
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where we have used for I1 that γ > 1/δ and for I2 that γ < 1/2 < (δ − 1)/δ. Combining
both expressions and using that both r−2/γs−(1−γ)/γ ≥ r−2δs1−δ (where γ > 1/δ) precisely
if s ≥ r−2, as well as r−2/(1−γ)s−γ/(1−γ) > s precisely if s < r−2, we obtain that

Qr(s) . 1
{
s < r−

2
γ

}
+ 1

{
r−

2
γ ≤ s < r−2

}
r−

2
1−γ s−

γ
1−γ + 1

{
r−2 ≤ s

}
r−

2
γ s−

1−γ
γ ,

as claimed. The calculation for γ < 1/δ proceeds analogously, the only difference being
that

I1(s) . 1{s < r−2} s+ 1{r−2 ≤ s} r−2δs1−δ,

and that r−2/γs−(1−γ)/γ ≤ r−2δs1−δ if s ≥ r−2, which yields

Qr(s) . 1
{
s < r−

2
γ

}
+ 1

{
r−

2
γ ≤ s < r−2

}
r−

2
1−γ s−

γ
1−γ + 1

{
r−2 ≤ s

}
r−2δs1−δ,

in this case.

The reason for our study of Qr(s) is the following result, which provides sufficient
conditions to apply Theorem 4.3. By Lemma 4.2 (1), we have that almost surely

Ce ≤ lim
N→∞

C(N)
e <∞, (4.6)

where

C(N)
e =

N∑
`=1

`
∑

{x,y}∈Π`(e)

1{{x, y} ∈ E(H)}, N ≥ 1,

as long as the point-to-point connection probabilities P|x−y| are of order at most |x− y|−α
for some α > 3.

Proposition 4.5. Let X∞ be a unit intensity Poisson process on R2 with an additional
point at the origin and random graph on this point process in which points x, y ∈ X∞
are connected with probability P|x−y| where (Pr)r>0 is such that

lim sup
r→∞

r4Pr <∞ and lim sup
N→∞

E
(
C

(N)
e

)2
N

<∞ for any e ∈ E(Zd).

Then the connected component of this graph is almost surely recurrent.

Proposition 4.5 is the reason why we need the restriction γ < 1/3 for the preferential
kernel in Theorem 1.1. As the calculation at the end of this section shows, the sufficient
condition in Proposition 4.5 does not hold for this kernel if γ ≥ 1/3.

Proof of Proposition 4.5. The statement follows from Theorem 4.3 upon verifying the
Cauchy-tail property for the projected conductances Ce. Fix a large integer n and
consider the event

En =
{
∃{x, y} ∈

⋃
`≥n

Π`(e) : {x, y} ∈ E(H)
}
.

Arguing precisely as in the proof of Lemma 4.2(1) and using that Pr . r−4, we can find
K1,K2 <∞, such that

P(En) ≤ K1

∑
`≥n

`2P` ≤ K2n
−1.

Similarly, we can bound
EC(n)

e ≤ K1

∑
l≤n

l3Pl ≤ K2 log n
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for suitable K1,K2 <∞. It follows that

P(Ce > n) ≤ P
(
C(n)
e > n

)
+ P(En) . P

(
|C(n)
e − EC(n)

e |2 >
∣∣∣n− EC(n)

e

∣∣∣2)+ n−1,

and EC(n)
e . log n together with the assumption on the second moment E(C

(N)
e )2 and

Markov’s inequality imply the existence of some constant C <∞ such that

P
(
|C(n)
e − EC(n)

e |2 >
∣∣∣n− EC(n)

e

∣∣∣2) ≤ P(|C(n)
e − EC(n)

e |2 >
(n

2

)2)
≤ 4C

n
,

which establishes the Cauchy tail.

We can now conclude the proof of the recurrence result for the preferential attach-
ment kernel.

Proof of Theorem 1.1, recurrence for preferential attachment kernel if d = 2. We need
to verify the assumption of Proposition 4.5. From Lemma 4.4, it follows that for any
r > 1,

Pr =

∫ 1

0

Qr(s) ds . r−
2
γ + r−

2
γ (1− γ

1−γ )− 2
1−γ + r−2(1− 1−γ

γ )− 2
γ ≤ 3r−4,

where we have used that γ < 1/2 to evaluate the integral. Note that we only need
to consider the case that γ > 1/δ, since Pr is non-decreasing in γ for each r. For the

derivation of an upper bound for the second moment of EC(N)
e , note that by translation

invariance we may restrict our attention to the bond e0 := {(0, 0), (1, 0)}. To lighten

notation, we write C(N) := C
(N)
e0 and Π` := Π`(e0), ` ∈ N, for the remainder of the proof

and use the variables e, f to denote generic potential edges in η[2]. We now calculate

E(C(N))2 . E
( N∑
`=1

N∑
m=1

`m
∑

(e,f)∈Π`×Πm

1{e, f ∈ E(Gβ)}
)

≤ 2E
( N∑
`=1

∑̀
m=1

`m
∑

(e,f)∈Π`×Πm

1{e, f ∈ E(Gβ)}
)

= 2

N∑
`=1

`−1∑
m=1

`m
[
EΣ`,m0 + EΣ`,m1

]
+ 2

N∑
`=1

`2EΣ`.

(4.7)

Note that we have used that the contribution from terms with ` > m is in distribution
the same as from terms with ` < m in the second step. The three random variables
Σ`,m0 ,Σ`,m1 and Σ` are given as

Σ`,m0 =
∑

(e,f)∈Π`×Πm:
e∩f=∅

1{e, f ∈ E(Gβ)},

Σ`,m1 =
∑

(e,f)∈Π`×Πm:
|e∩f |=1

1{e, f ∈ E(Gβ)},

Σ` =
∑
e∈Π`

1{e ∈ E(Gβ)},

respectively. We now bound the expectations of these random variables using (4.4) and
(4.5). We obtain

EΣ` . `2 P`, (4.8)

EJP 27 (2022), paper 60.
Page 26/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP748
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Recurrence versus transience for weight-dependent random connection models

as well as

EΣ`,m0 = E
( ∑
e∈Π`

1{e ∈ E(Gβ)}
∑
f∈Πm:
f∩e=∅

1{f ∈ E(Gβ)}
)

≤ E
( ∑
e∈Π`

1{e ∈ E(Gβ)}
)
E
( ∑
e∈Πm

1{e ∈ E(Gβ)}
)

. `2 P` m
2 Pm,

(4.9)

where we have used that edges which have no vertex in common are sampled indepen-
dently of each other. Finally,

EΣ`,m1 . E
( ∑
{x,y}∈Π`

∑
z∈η:

m/d1<|z−y|≤m/d2

1
{
{{x, y}, {y, z}} ⊂ E(Gβ)

})
. `2mP`,m,

(4.10)

where we used the notation

P`,m =

∫ 1

0

Q`(s)Qm(s) ds

for the probability that two potential edges of length ` and m, respectively, with one
vertex in common are present in E(Gβ). Inserting (4.8)–(4.10) into (4.7) yields

E(C(N))2 .
N∑
`=1

`3
`−1∑
m=1

m2 P`,m +

N∑
`=1

`3 P`

`−1∑
m=1

m3 Pm +

N∑
`=1

`4 P`,

hence to show that E(C(N))2 . N , it remains to show that the first sum is of order N ,
since it follows from P` . `−4 that the second and third sum are at most of order N for
any γ < 1/2. Equivalently, we may verify that

∑`−1
m=1m

2 P`,m . `−3, which is the final
part of our argument.

From now on, we work under the assumption that γ < 1/3. We first consider the case
δ > 3. We only need to treat γ ∈ (1/δ, 1/3), for if we show that

∑`−1
m=1m

2 P`,m . `−3 for
such γ it also holds for γ ≤ 1/δ by monotonicity. Lemma 4.4 yields, for ` ≥ m and γ < 1/3,
that

P`,m =

∫ 1

0

Q`(s)Qm(s) . `−
2
γ + 1{m < `γ} `−

2
γ

∫ m−2/γ

`−2

s−
1−γ
γ ds

+ `−
2
γm−

2
1−γ

∫ m−2

`−2∨m−2/γ

s−
1−γ
γ −

γ
1−γ ds

+ `−
2
γm−

2
γ

∫ 1

m−2

s−
2−2γ
γ ds

+ `−
2

1−γ

∫ `−2∧m−2/γ

`−2/γ

s−
γ

1−γ ds

+ 1{m ≥ `γ}`−
2

1−γm−
2

1−γ

∫ `−2

m−2/γ

s−
2γ

1−γ ds.

The sum over the first term `−2/γ is of the desired order, since

`−1∑
m=1

m2 `−2/γ � `3−2/γ ≤ `−3,
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for any γ ≤ 1/3. The remaining terms are bounded by a constant times

1{m < `γ}
(
`−

2
γ−2(1− 1−γ

γ ) + `−
2
γm−

2
1−γ−

2
γ (3− 1

γ(1−γ) ) + `
2γ−2
1−γ −2

)
+ 1{m ≥ `γ}

(
`−

2
γ−6+ 2

γ(1−γ)m−
2

1−γ + `−
2

1−γm
1

1−γ (4− 2
γ ) +m−

2
1−γ `−2+ 4γ−2

1−γ

)
+ `−

2
γm−

2
γ−6+ 4

γ

=1{m < `γ}
(

2`−4 + `−
2
γm

2
γ2(1−γ)

− 2
1−γ−

6
γ

)
+ 1{m ≥ `γ}

(
`−4m−

2
1−γ + `−

2
1−γm

4γ−2
γ(1−γ) + `

4γ−2
1−γ −2m−

2
1−γ

)
+ `−

2
γm

2
γ−6.

Multiplying by m2 and summing over m yields

`−1∑
m=1

m2 P`,m . `3γ−4 + `−1− 2
1−γ + `−3 ≤ 3`−3,

where we have used that γ < 1/3 for the second term of the sum as well as in the final
bound.

Let us finalise the proof by dealing with the case δ ≤ 3. In this case, necessarily,
γ < 1/δ, due to our standing assumption that γ < 1/3, and we need to apply the second
case in Lemma 4.4 to obtain an estimate for

∑`−1
m=1m

2 Pl,m. Repeating the steps above
yields

Pl,m . `−
2
γ + `−2δm2δ−6

+ 1{m < `γ}
(
`−4 + `−2δm

1
γ (2δ−4)

)
+ 1{m ≥ `γ}

(
`−4m−

2
1−γ + `

2γ
1−γ−4m−

2
1−γ + `−

2
1−γm

4γ−2
γ(1−γ)

)
.

We only need to consider those summands of
∑`−1
m=1m

2 P`,m that did not appear already
in the previous calculation, for these we get as upper bound a constant times

`−3 + `−6+3 γ
1−γ + `3γ−4 ≤ 3`−3,

because γ < 1/3. The proof is complete.

A Elements of electrical network theory

In this section, we provide some well-known results for reference. The basic frame-
work used behind the scenes of both our recurrence and transience proofs is that of
electrical network theory. We restrict ourselves to recalling some basic results that we
need in our proofs, a comprehensive treatment of the theory can be found for instance
in [26]. A connected loop-free multigraph G = (V (G), E(G)) together with a conduc-
tance function C : E(G) → (0,∞) is called a network. Note that we may always view
C as a function defined on V (G)[2] setting C(e) = 0 for potential edges e /∈ E(G). The
random walk Y = (Yi)i≥0 on (G,C) is obtained by reweighing the transition probabilities
of simple random walk on G according to C, i.e. the walker chooses their way with
probabilities proportional the sum of the conductances on the edges incident to their
current position. In particular, we obtain simple random walk on G as a special case, if
C is constant. We consider a locally finite network G, i.e.

π(x) :=
∑

e∈E(G):e incident to x

C(e) <∞ for all x ∈ V (G),

EJP 27 (2022), paper 60.
Page 28/31

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP748
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Recurrence versus transience for weight-dependent random connection models

then π is an invariant measure for Y . Let further PG(v → Z) denote the probability
that Y visits Z ⊂ V (G) before returning to v ∈ V (G) when started in Y0 = v ∈ V (G).
To characterise recurrence and transience of Y in infinite networks it is convenient to
define the effective conductance between v ∈ V (G) and Z ⊂ V (G) as

Ceff(v, Z) = CGeff(v, Z) = π(v)PG(v → Z),

for finite G and then extend the notion to infinite graphs via a limiting procedure. In
particular, by identifying all vertices at graph distance further than n from v ∈ V (G)

with one vertex zn (whilst removing any loops and keeping multiple edges with their
conductances) we obtain a sequence of finite networks (Gn, Cn). Moreover, the limit

CGeff(v,∞) = lim
n→∞

CGneff (v, zn) ∈ [0,∞) for v ∈ V (G),

is well-defined. The following characterisation of recurrence and transience is classical,
see e.g. [26, Theorem 2.3].

Theorem A.1. Y is transient if and only if

Ceff(v,∞) > 0 for some v ∈ V (G).

Morevover, if Ceff(v,∞) > 0 for some v ∈ V (G), then Ceff(v,∞) > 0 for all v ∈ V (G).

In particular, a vanishing upper bound on the effective conductance is sufficient for
recurrence. Let v ∈ G be fixed. Recall that a cutset Π (for v) in G is a set of edges that
separates v from∞, i.e. the connected component of v ∈ (V (G), E(G) \Π) is finite.

Theorem A.2 (Nash-Williams, see e.g. [32]). Let Y0 = v and {Πn}∞n=1 be disjoint cutsets
for v. Denote by CΠn the sum of the conductances of edges in Πn. Then

Ceff(v,∞) ≤

(∑
n

C−1
Πn

)−1

.

In particular, if ∑
n

C−1
Πn

=∞,

then the random walk Y is recurrent.

We close this section by stating a few rules for calculating effective conductances,
which are used in many instances throughout the paper.

Theorem A.3 (Electrical network calculus, see e.g. [26]). Let G be a multigraph and let
C,C ′ be conductances on E(G).

• (Parallel Law) Replacing two parallel edges (i.e. two edges adjacent to the same
pair of vertices) e1, e2 ∈ E(G) by a single edge with conductance C(e1) + C(e2)

leaves the effective conductance Ceff unchanged.
• (Series Law) If a vertex x ∈ V (G) of degree two and its incident edges (x, y), (x, z)

(with y 6= z) are replaced by a single edge (y, z) with conductance (C(x, y)−1 +

C(x, z)−1)−1, then the effective conductance Ceff(v, w) remains unchanged (for all
v, w 6= x).

• (Monotonicity Principle) If C(e) ≤ C ′(e) for all e ∈ E(G), then

Ceff(v, Z) ≤ C ′eff(v, Z) for all v ∈ V (G), Z ⊂ V (G).

• (Short-circuiting) If x, y ∈ V (G) are collapsed into one vertex and all edges are
retained then the effective conductances between all remaining vertices do not
decrease.

• (Flow-cut inequality) If v ∈ V (G) and Z,Z ′ ⊂ V (G) are disjoint and such that v and
Z are disconnected in G upon removing all edges incident to Z ′, then

Ceff(v, Z) ≤ Ceff(v, Z
′).
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