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Abstract.  The equations of motion of active systems can be modeled in terms 
of Ornstein–Uhlenbeck processes (OUPs) with appropriate correlators. For 
further theoretical studies, these should be approximated to yield a Markovian 
picture for the dynamics and a simplified steady-state condition. We perform 
a comparative study of the unified colored noise approximation (UCNA) and 
the approximation scheme by Fox recently employed within this context. We 
review the approximations necessary to define eective interaction potentials 
in the low-density limit and study the conditions for which these represent the 
behavior observed in two-body simulations for the OUPs model and active 
Brownian particles. The demonstrated limitations of the theory for potentials 
with a negative slope or curvature can be qualitatively corrected by a new 
empirical modification. In general, we find that in the presence of translational 
white noise the Fox approach is more accurate. Finally, we examine an 
alternative way to define a force-balance condition in the limit of small activity.
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1. Introduction

Active Brownian particles (ABPs) provide a simple, minimal model system to study 
the collective behavior of active matter. The many-body Brownian dynamics simula-
tions of these systems have provided considerable insight into a range of interesting 
nonequilibrium phenomena, such as the accumulation of particles at boundaries [1–5] 
and motility-induced phase separation [6]. Much of the phenomenology of ABPs can be 
captured using coarse-grained, hydrodynamic theories [6–10], which do not contain all 
information about the interparticle correlations. Some progress has recently been made 
in the linear response regime, which allows to decouple the equations of motions of the 
one-body density and polarization vector [11].

Contents

1. Introduction 2

2. Theory 4

2.1. Colored-noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Eective equilibrium approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3. Two versions of the steady-state condition . . . . . . . . . . . . . . . . . . . . 6

3. Eective-potential approximation (EPA)	 7
3.1. Calculation of eective potentials . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Limitations and possible corrections . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3. Comparison to computer simulations of two active particles . . . . . . . . . 10

3.3.1. The role of approximations, dimensionality and thermal noise. . . . 10

3.3.2. Soft-repulsive Brownian system in three dimensions. . . . . . . . . . . 12

3.3.3. Difficulties for non-convex potentials. . . . . . . . . . . . . . . . . . . . 13

4. Low-activity approximation 15

4.1. Alternative derivation of a local force-balance condition . . . . . . . . . . . . 16

4.2. Low-activity approximation of eective potentials . . . . . . . . . . . . . . . 17

5. Conclusions 18

Acknowledgments 19

Appendix A. Simulation details 19

Appendix B. Eective many-body force in the Fox approximation 20

Appendix C. Integration of the first equality in equation (12)	 22

Appendix D. Integration of the second equality in equation (12)	 23

References 25



3

Due to the inherent diculty of dealing simultaneously with both the translational 
and orientational degrees of freedom in active systems, attempts to develop a first-
principles theory have largely focused on a simpler, related model, in which the particle 
dynamics are represented by a set of coupled Ornstein–Uhlenbeck processes (OUPs). 
Within this model an exponentially correlated noise term, with a given correlation 
time, serves as proxy for the persistent trajectories of ABPs (connections between the 
two models were explored in [12]). While the removal of orientational degrees of free-
dom does indeed simplify the problem, it comes at the cost that one has to deal with 
the non-Markovian dynamics of the translational coordinates. Fortunately, there exist 
various approximation methods [13–19] which enable the OUP model to be repre-
sented using an eective Markovian, and therefore tractable, dynamics. Two dierent 
approaches to doing this, (i) the unified colored noise approximation (UCNA) of Hänggi 
et al [13, 14], based on adiabatic elimination on the level of the Langevin equations, 
and (ii) the Fox approximation [15, 16], for which an approximate Fokker–Planck 
equation is developed, have recently been adopted in the context of developing simple 
theoretical tools to describe active particles [12, 20–26].

When applied to active matter, both the UCNA and Fox approximations are 
referred to as ‘eective equilibrium’ approaches. The Markovian character of the 
dynamics implies that they obey a Fokker–Planck equation from which an eective 
probability distribution can in principle be obtained. Indeed, the possibility of mim-
icking the behavior of nonequilibrium ABPs using an equilibrium system of passive 
particles, interacting via eective interactions, was suggested by several researchers 
(see, e.g. [27]) who observed that the phase separation induced by activity in systems 
of repulsive ABPs closely resembles that familiar from passive systems with an attrac-
tive interaction. Despite its appeal, several years were required before this observation 
could be turned into something more concrete. By starting from the simpler OUP 
model it became possible, via application of the UCNA [20–24] and Fox [12, 25, 26] 
approximations, to put the notion of an eective equilibrium description on a firmer 
footing.

In this paper, we will compare and contrast the two dierent approaches to 
eective equilibrium. We will highlight the main approximations involved and assess 
the validity of the eective-potential approximation (EPA), which has been employed 
in previous work to investigate the activity-induced modifications of the microstruc-
ture and motility-induced phase separation [12]. This analysis clarifies both the 
nature of the approximations involved and suggests ways in which the description 
can be improved.

The paper is laid out as follows: in section 2 we first specify the model under 
consideration and describe the UCNA and Fox approaches to obtaining an eective 
equilibrium picture highlighting similarities and dierences between them. In sec-
tion 3 we describe in detail the EPA, where the emphasis is placed on the UCNA due 
to its simpler structure. The resulting approximate eective potentials are compared 
to computer simulations using a standard soft-repulsive and a non-convex (Gaussian 
core) potential. In section 4 we consider an alternative approach to obtain pairwise 
forces, i.e. the low-activity limit, and make contact to the EPA. Finally, we conclude 
in section 5.

https://doi.org/10.1088/1742-5468/aa8c1f
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2. Theory

In this section, we introduce the common starting point of both the UCNA and Fox 
approach. Since particles driven by Gaussian colored noise originally were not intended 
as a model for an active system, the choice of parameters in the literature may depend 
on the dimensionality and on whether contact to ABPs is made [12] or not [20]. We 
will also clarify some notational issues.

2.1. Colored-noise model

We consider the coupled stochastic (Langevin) dierential equations

ṙi(t) = γ−1Fi(r1, . . . , rN) + ξi(t) + vi(t) (1)

of N particles. The motion of each particle i∈{1, . . . , N} at position ri(t) is determined 
by conservative Fi and stochastic forces γξi and γvi. The friction coecient γ=(βDt)

−1 
is related to the translational Brownian diusivity Dt and β=(kBT )

−1 is the inverse 
temperature. We assume that the total interaction force Fi(r

N)=−∇iU(rN) can be 
written as the gradient of a pairwise additive many-body potential

U(rN) =

(
ν(ri) +

1

2

N∑
k=i

u(ri, rk)

)
, (2)

consisting of the one-body external fields ν(ri) and the interparticle potentials 
u(ri, rk)=u(|ri − rk|).

The vector ξi(t) represents the translational Brownian diusion by a Gaussian 

(white) noise of zero mean and 〈ξi(t)ξj(t′)〉=2Dt1δijδ(t− t′) with the unit matrix 1. 
Here and in the following the dyadic product of two vectors with d components results 
in a d× d matrix. Any contraction as in a scalar product or a matrix-vector product 
will be explicitly indicated by a ‘·’. Hereafter, we shortly refer to the variable ξi(t) as 
(thermal) noise. The OUPs vi(t) defined by

v̇i(t) = −vi(t)

τa
+

ηi(t)

τa
(3)

with 〈ηi(t)ηj(t
′)〉=2Da1δijδ(t− t′) describe a fluctuating propulsion velocity as a non-

Gaussian (colored) noise of zero mean and

〈vi(t)vj(t
′)〉 = v20

d
1δije

− |t−t′|
τa =

Da

τa
1δije

− |t−t′|
τa . (4)

Here we introduced the active time scale τa at which the orientation randomizes and 
the active diusion coecient Da=v20τa/d, where v20=〈v2

i (t)〉 is the average squared 
self-propulsion velocity and d the spatial dimension.

The colored-noise model for active particles contains two parameters describing the 
magnitude and persistence of the self propulsion. We now aim to clarify some nota-
tional dierences in the literature. The persistence time τa can be explicitly related 
to the equations of motion of run and tumble particles [28] or ABPs [12, 29]. The 
above definitions correspond to the latter case with τa=D−1

r /(d− 1), where Dr is the 

https://doi.org/10.1088/1742-5468/aa8c1f
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rotational Brownian diusion coecient. Another common choice [23] amounts to 
consider τR=D−1

r  and Da=v20τR/(d− 1)/d. In the following, we use τ̃ :=τa/γ≡βτd2, 
where d is the typical diameter of a particle and the dimensionless persistence time 
τ = τaDt/d

2 has been introduced in [12, 25].
Since the dimensionless active diusivity Da :=Da/Dt implicitly depends on the 

persistence time, it constitutes the most general measure for the activity (together with 
the persistence length v0τa). In order to connect to a system of ABPs [12, 25], it is con-
venient to consider instead of Da a dimensionless velocity Pe=v0d/Dt, i.e. the Peclét 
number. In the literature, some other definitions of a Peclét number are used, which we 
will not consider here. One peculiar property of a system of active OUPs is that, even 
at vanishing self-propulsion velocity v0=0, or Da=0, there is a contribution of vi(t) to 
equation (1) arising from a finite reorientation time τa [26]. One thus does not recover 
the equation of motion of a passive (Brownian) particle, as in the ABPs model. In the 
long-time limit, however, the contribution to the dynamics becomes irrelevant and the 
same steady state is described as for a passive Brownian particle, see appendix A for 
more details. A proper passive system can be recovered from equation (1) only in the 
limit τa→0, in the sense that the velocity correlation in equation (4) reduces to a white 
noise. A Brownian system is then represented by Da=1 when the thermal-noise vari-
able ξi(t) is removed, or, trivially, by setting Da=0 which amounts to neglecting the 
contribution of the OUPs.

2.2. Eective equilibrium approach

The most important step towards a theoretical study of the OUPs model is to derive 
from the non-Markovian stochastic process (1) an equation of motion for the N-particle 
probability distribution fN(r

N , t). In this section, we will discuss the dierences 
between the multidimensional generalizations of the UCNA [13, 14] and the Fox [15, 
16] approaches to eective equilibrium and expound the surprising similarities between 
these two approximations in the (current-free) steady state.

As a central quantity emerging in both cases, we define the dN × dN friction tensor 
Γ[N ] with the components

Γij(r
N) = 1δij − τ̃∇iFj = δijΓii(r

N) + (1− δij)τ̃∇i∇ju(ri, rj) (5)

resulting in the Hessian of U  and the diagonal d× d block

Γii(r
N) := 1+ τ̃∇i∇i

(
ν(ri) +

N∑
k=i

u(ri, rk)

)
(6)

not to be confused with Γ[1](r1) for N=1 particle. In the following, we briefly denote by 

Γ−1
ij  the ijth block component of the inverse tensor Γ−1

[N ].
The UCNA [20, 21] amounts to explicitly inserting the OUPs (3) into the over-

damped limit of the time derivative of (1), resulting in the modified Langevin equa-

tion ṙi(t)=Γ−1
ij (r

N)
(
γ−1Fj(r

N) + ξj(t) + ηj(t)
)
. It is now straight-forward to obtain for 

this (approximate) Markovian system driven by white noise the Smoluchowski equa-

tion ∂fN(r
N , t)/∂t = −

∑N
i=1 ∇i · Ji(r

N , t) with the probability current (the superscript 
(u) denotes that the UCNA has been used)
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J
(u)
i =

∑
k

DtΓ
−1
ik ·

(
βFkfN − (1 +Da)

∑
j

∇j ·
(
Γ−1
jk fN

))
. (7)

Note that the UCNA remains valid as long as the friction tensor (5) is positive definite.
The Fox approximation scheme applied to (1), on the other hand, only makes use of 

the correlator (4) of the OUPs, which, in turn, may also be interpreted as the correla-
tor of vi(t)�v0pi(t) corresponding to a coarse-grained equation of motion representing 
ABPs with a constant velocity v0 in the direction of their instantaneous orientation pi 
which is subject to Brownian rotational diusion [12]. This method directly yields the 
approximate Smoluchowski equation (superscript (f)) with [26, 30]

J
(f)
i = Dt

(
βFifN −∇ifN −Da

∑
j

∇j · (Γ−1
ji fN)

)
, (8)

where the regime of validity is the same as for UCNA. The major dierence between 
equations (7) and (8) only impacts the eective description of the dynamics as a result 

of the additional factor Γ−1
ik  arising on the level of the Langevin equation within the 

UCNA. Note that in the original generalization of the Fox result [12] the tensor from 
equation (5) was incorrectly obtained as Γij≈δij(1− τ̃∇i · Fi), which we will later iden-
tify as the (diagonal) Laplacian approximation. It will turn out that this (or another) 
approximation is necessary to obtain physical expressions for the eective interaction 
potentials.

2.3. Two versions of the steady-state condition

In contrast to the dynamical problem, the (current-free) steady-state conditions

βFiPN −
∑
j

∇j · (DjiPN) = 0
 (9)

for the stationary distribution PN(r
N) can be cast in a coherent form, defining the 

eective diusion tensor D[N ](r
N) = DtD[N ](r

N), such that only the components

D(u)
ij (rN) := (1 +Da) Γ

−1
ij (r

N), (10)

D(f)
ij (r

N) := 1δij +Da Γ
−1
ij (r

N). (11)

dier between the UCNA (u) and Fox (f) results.

Multiplying equation (9) with D−1
ik  and summing over repeated indices, the steady-

state condition takes the more instructive (approximate) form [21]

0 =
∑
i

D−1
ik · βFiPN −∇kPN − PN∇k ln | detD[N ]| =: βFeff

k PN −∇kPN (12)

introducing the eective force Feff
k (rN). The term ∇k ln | detD[N ]| is an approximation 

for 
∑

ij D
−1
ik ·∇j · Dji, which becomes exact in the UCNA [21]. For the Fox approach, 

we argue in appendix B that this is still true in some important special cases, such 
that equation (12) is accurate enough for our purpose. For high particle numbers N 
the contribution of the o-diagonal elements to D[N ] becomes increasingly irrelevant 

https://doi.org/10.1088/1742-5468/aa8c1f
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[21], which amounts to setting Dij→δijDij. Assuming this diagonal form, the deter-
minant in equation (12) can be replaced according to detD[N ]→detDkk as we have ∑

ij D
−1
jk ·∇j · Dij≡D−1

kk ·∇k · Dkk≈∇k ln | detDkk| before approximating the expres-
sion in the last step (compare appendix B).

Putting aside the dynamical behavior, described in section 2.2, the only dierence 
between the UCNA or Fox approximation is manifest in the definitions, (10) and (11), 
of D[N ]. Using UCNA the active diusivity Da only appears as part of a prefactor in 
(10), so that the friction matrix Γ[N ], representing a correction due to activity, contrib-
utes to the steady-state result even in the case Da=0, that is when v0=0 and τa=0. 
Hence, the logical parameter suggested by the UCNA to tune the activity is τa, with 
the passive system (Dij=1δij) restored only in the limit τa→0. This appears to be an 
artifact of the pathological contribution of τa to the displacement of the OUPs, whereas 
the connection to the experimentally more relevant system of ABPs is lost. For the lat-
ter it appears more natural to tune v0 at constant τa. In the derivation of the Fox result 
(11), on the other hand, the explicit time evolution of the OUPs in equation (3) is irrel-
evant, suggesting a better approximate representation of ABPs [12]. This reflects that 
we recover the (same) passive system for either v0=0 or τa=0 (in the presence of noise).

Ignoring the noise contribution for Da�Dt, the UCNA and Fox approximations 
practically describe the equivalent eective steady states. The major advantage of this 

approximation, or the UCNA result in general, is that the inverse D−1
[N ]∝Γ[N ] is pair-

wise additive, even if Dt=0. Then the eective many-body potential H[N ] defined as 
Feff

k (rN)=−∇kH[N ](r
N) can be written in a closed form [20, 21], admitting the explicit

solution PN(r
N) ∝ exp(−βH[N ](r

N)) of equation (9). Due to the more nested form of 
equation (11) the Fox approximation does in general not admit an analytic result. 
As H[N ] is not pairwise additive in either approach, some further approximations will 
become necessary to construct a predictive theory, which we discuss in the following 
sections.

3. Eective-potential approximation (EPA)

Regarding the possible applications using standard methods of equilibrium liquid-state 
theory a desirable strategy is to approximate Feff

k  in equation (12) in terms of pair poten-
tials. This approach allows to describe the phase behavior of ABPs approximated as 
particles propelled by a set of coupled OUPs, which has been discussed in detail [12, 25] 
for passive soft-repulsive and Lennard-Jones interactions in three dimensions. However, 
it can be criticized that (I.i) a system which obeys detailed balance is used to represent 
the interactions in an active system, (I.ii) the validity criteria of the underlying theory 
might be violated so that further approximations are required and (I.iii) higher-order 
particle interactions are neglected, which are believed to be important for the phase 
separation in an active system. In the following, we define the eective pair interaction 
and motivate dierent approximations, which we compare to computer simulations of 
two ABPs and two particles propelled by OUPs. It is our objective to comment on the 
aforementioned points and illustrate the qualitative dierences between the Fox and 

https://doi.org/10.1088/1742-5468/aa8c1f
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UCNA. For the sake of simplicity, we will restrict the presentation of technical aspects 
to the UCNA results.

3.1. Calculation of eective potentials

To identify an eective pair potential ueff(r), we consider N=2 interacting particles, 
i.e. the low-density limit of equation (12). Ignoring the external forces for now by set-
ting ν(r)≡0, it is easy to verify that

∇1βu
eff(r) =

(
D−1

11 −D−1
21

)
·∇1βu(r) +∇1 ln | detD[2]| (13)

and analog equation for ∇2u
eff(r), where we used ∇2u(r)=−∇1u(r) and r= |r1 − r2|. 

Keeping in mind that we seek to employ this eective potential to approximately rep-
resent the interaction of many particles, it appears undesirable that an equal statistical 
weight is put to both the diagonal D−1

11  and the o-diagonal components D−1
21  of the 

diusion tensor. As an alternative we propose the eective potential

∇kβu
eff
diag(r) = D−1

kk ·∇kβu(r) +∇k ln | detDkk|, (14)

with k ∈ {1, 2}, obtained for a diagonal form of D[2] with ν(r) ≡ 0. For completeness we 
find in the one-particle limit a quite similar formula

∇βνeff(r) = D−1
[1] ·∇βν(r) +∇ ln | detD[1]| (15)

for the eective external field νeff(r), since for N=1 we have D[1]=D11. Note that a 
quite dierent expression for an eective external potential can be derived starting 
from the equations of motion for ABPs [25, 31].

Integration of the above equalities yields the desired formulas for the eective poten-
tials depending only on the bare potential u(r) or ν(r) and the activity param eters Da 
and τa [12]. Alternatively, we could have directly defined [21, 23] νeff(r) :=H[1](r) and 
ueff(r) :=H[2](r1, r2) from the many-body potential H[N ](r) identified in the solution of
(9), which is, however, inconvenient when the Fox approach is used. Assuming a bare 
potential u(r) obeying limr→∞ u(r)=0, the integrated form of (13) reads

βueff(r) = β
u(r) + τ̃(∂ru(r))

2

1 +Da

− ln
∣∣∣E(d−1)

1 (τ, r)E2(τ, r)
∣∣∣ , (16)

where ∂r=∂/∂r and

En(τ, r) := 1 + 2τ̃ rn−2∂n
r u(r), n∈{1, 2} (17)

are the Eigenvalues of Γ[2]. We can further identify ∇1u(r) in the first term of equa-
tion (13) as the Eigenvector of D−1

11 −D−1
21  corresponding to the Eigenvalue E2/(1 +Da). 

Note that in (16) we could equally introduce an eective energy scale βeff=β/(1 +Da) 
to absorb the factor (1 +Da) [21, 23]. We refrain to do so as this interpretation would 
not be consistent with the the way Da enters within the Fox approach.

3.2. Limitations and possible corrections

Studying equation (16) more carefully, we notice that the eective potentials do not 
always behave in a physical way. This is because, in violation of the validity condition 

https://doi.org/10.1088/1742-5468/aa8c1f
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of both the UCNA and the Fox approximation, the diusion tensor D[2] is not positive 
definite for a large number of relevant potentials. In general, we easily see that the 
logarithm will diverge whenever one of the Eigenvalues En(τ, r) vanishes. Given a posi-
tive and convex bare potential u(r)>0, the eigenvalue E2 is strictly positive, which also 
means that the eective attraction solely arises from the term including the logaritm. 
However, as we have ∂ru(r)<0 in this case, the eigenvalue E1 will vanish at a certain 
value of r and we require a further approximation to remedy the unphysical behavior 
of ueff(r) in d>1 dimensions. At a highly non-convex or negative region of the bare 
potential, the same problem occurs for E2. Interestingly, if we only require knowledge of 
an eective potential on a finite interval where the eigenvalues are positive, its overall 
unphysical behavior is irrelevant [26].

First note that there is a broader range of admissible bare potentials when the 
diagonal approximation, equation (14), of the eective pair potential is used, or if we are 

interested in the one-body external field, equation (15). This can be understood from 

the explicit formula for ueff
diag(r), which we obtain from equation (16) by rescaling all 

terms proportional to τ with a factor 1/2. In the following, we propose dierent ways 
to generally rid the eective potential of possible artifacts of vanishing eigenvalues in 
the last term of equation (13). A correction of the first term is not necessary and also 
has no noticeable eect.

Let us first assume that u(r)>0 is convex, i.e. it represents a soft-repulsive interac-
tion. Then a sucient criterion (due to the presence of the term 1δij in equation (5), 
some other potentials are allowed that are only slightly negative and slightly non-con-
vex) for the matrix Γ[N ] to have strictly positive eigenvalues would be that it depends 
on an elliptic dierential operator rather than ∇i∇j. Therefore, a convenient approx-
imation is to redefine equation (5) by an elliptical operator, the simplest example of 
which is the Laplacian ∆=∇ ·∇. Upon substituting

∇i∇j → 1∇i ·∇j (18)
the eective potential becomes

βueff
∆ (r) = β

u(r) + τ̃(∂ru(r))
2 − 2(d− 1)

∫∞
r

ds τ̃ (∂su(s))2

s

1 +Da

− ln

(
1 + 2τ̃ ∂2

ru(r) + 2(d− 1)τ̃
∂ru(r)

r

)

(19)
where the additional term compared to (16) cannot be integrated in general. This 
Laplacian approximation has been successfully employed (together with the Fox and 
diagonal approximation) in explicit calculations [12, 25]. In d=1 dimensions both 
dierential operators reduce to the second derivative and equation (19) is equal to 
equation (16), which provides a good account of active particles interacting with a soft-
repulsive potential [23].

An alternative way is to empirically rectify the explicit formula for ueff(r) in equa-
tion (16). Most intuitively, one can expand the argument of the logarithm up to the 
first order in τ. In fact, this small-τ approximation is quite similar to the Laplacian 
approximation (19) (and completely equivalent in one dimension), but we do not recover 
the additional term involving the integral. Performing the small-τ approximation of 
the full expression (16) appears too crude, as an expansion of the logarithm does not 

https://doi.org/10.1088/1742-5468/aa8c1f
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converge for τ̃
∑

l>1 ∆u(r, rl) > 2. The resulting eective potential will thus become 
totally uncontrolled for short separations of highly-repulsive particles.

A more elaborate correction that may also be applied to highly non-convex poten-
tials is the inverse-τ approximation, an empirical strategy maintaining the leading order 

in τ, while not disregarding higher-order terms. This is achieved by substituting in 

equation (16) En(τ, r)→E
(i)
n (τ, r)>0, where

E(i)
n (τ, r) :=

{
1/(2− En(τ, r))

En(τ, r)
if En(τ, r) < 1
otherwise

. (20)

The major advantage of this approximation is that it yields quite similar results to the 
full potential whenever the validity condition is only slightly violated and the eective 
potential does not diverge if the bare potential is finite. The empirical motivation 
behind this correction is that En constitutes the two leading terms of the ‘resummed’ 
Taylor series of E

(i)
n  in the case En<1. As described in appendix B, the most conve-

nient implementation of the inverse-τ approximation for the Fox result is to identify 

the expression for En(τ, r) in detD(f)
[2]  and use equation (20).

3.3. Comparison to computer simulations of two active particles

In section 3.1 we introduced dierent strategies to define a suitable eective interac-
tion potential in the eective-equilibrium approximation for the colored-noise model. 
Now we illustrate under which conditions an approximate treatment according to sec-
tion 3.2 becomes necessary and compare the theoretical results to computer simula-
tions. The easiest way to determine an eective potential numerically is to set up a 
two-particle simulation, measure the radial distribution function g(r) and calculate 
βueff

sim(r)=− ln g(r). By doing so, we make the same approximation (I.iii) as in the 
theory to ignore the many-particle character of the interaction. However, the simula-
tions for ABPs and OUPs, detailed in appendix A, take into account the orientation 
dependence and the non-Markovian character of the dynamics, respectively.

3.3.1. The role of approximations, dimensionality and thermal noise. We first discuss 
some general observations in the UCNA for a soft-repulsive system with the bare 
potential βu(r)=(r/d)−12. The behavior of the Fox result is qualitatively similar. As 
expected, the full expression for the eective potential in equation (16) is impractical 
as it diverges at a certain distance rdiv, determined by the condition rdiv=(24τ)−1/12d, 
which is when the first eigenvalue E1 within the logarithm vanishes, whereas E2 is 
always positive. As suggested by figure 1(a), this behavior is most problematic at 
larger values of τ, where ueff(rdiv) should be rather negative, as it is the case in d=1 
dimensions. We further see in figure 1(a) that this eect becomes more severe with 
increasing dimension. Both the inverse-τ and Laplacian approximations successfully 
cure this unphysical divergence, which we see in figure 1(b). As employing the diagonal 

form ueff
diag(r) of the eective potential simply amounts to a rescaling of τ, we observe 

in figure 1(b) that it results in a smaller eective diameter of the repulsive part but a 
flatter potential well. Accordingly, rdiv becomes smaller.
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Since the definition of the active diusivity Da depends on the dimension d, not all 
parameters τ, Da and Pe can be kept constant upon varying the dimensionality. For 
a constant reorientation time τ and propulsion velocity Pe the eective attraction in 
figure 1(c) is stronger in lower spatial dimensions for both approximations considered, 
which coincide with the full expression in d=1. This behavior appears sensible, as two 
particles have less possibilities to avoid each other upon collision, and is in qualita-
tive agreement with computer simulations of active OUPs. Moreover, we understand 
that motility-induced phase separation is harder to observe in higher dimensions [32]. 
Keeping Da constant instead of Pe (which then decreases with decreasing dimension) 
the same trend is observed in figure 1(d) for the inverse-τ approximation and comp-
uter simulations, whereas the result for the Laplacian approximation barely changes 
with dimensionality. Comparing the qualitative behavior in figures 1(c) and (d), we 
recognize in all spatial dimensions that the numerical eective potential is of longer 
range than the theoretical predictions in any approximation. This observation confirms 
the criterion discussed in [14] that the UCNA is expected to become less accurate for 
larger separations where a typical length scale of the active motion, closely related to 
the eective diusion tensor, equation (10), exceeds the spatial scale over which the 
force field varies.

As the involved approximations become cruder in higher spatial dimensions, the 
quantitative agreement with the simulation results in figures 1(c) and (d) becomes 
worse. For d=1, a remarkable agreement between the UCNA and simulation results for 
the radial distribution of two particles has been reported in [20], where ξi(t) in equa-
tion (1) was set to zero. Doing so in our simulations also, we observe in figure 2(a) that 
the eective potential deepens and its repulsive barrier becomes steeper. This curve 
is in excellent agreement with the theoretical result for zero noise, obtained by both 
the UCNA and Fox approach upon dropping the first term in equations (10) and (11), 
respectively. The full UCNA result is only slightly dierent in the repulsive regime. 
Intriguingly, we also recognize in figure 2(a) that the simulation data including the 
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Figure 1. Eective potentials in the presence of thermal noise for a soft-repulsive 
βu(r)=(r/d)−12 from the UCNA in d=1 (dotted lines), d=2 (dashed lines) and 
d=3 (solid lines) dimensions. (a) Full result, equation (16), for the active diusivity 
Da=4.8 and persistence times τ=0.025 (thick, brighter lines) or τ=0.1 (thin, 
darker lines). (b) Comparison to the diagonal form (dot-dashed lines) in d=3 for 
Da=4.8 and τ=0.1. The thick lines correspond to the inverse-τ approximation, 
equation (20) of equation (16), and the thin lines to the Laplacian approximation, 
equation (19). (c) Approximate results compared to simulations of active OUPS 

(lines with triangles) at τ=0.025 and a constant Peclét number Pe=
√
dDa/τ=24, 

as Da increases with decreasing d. (d) Approximate results compared to simulations 
of active OUPS at Da=4.8 and τ=0.025.
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noise term are excellently represented by the Fox approach. We can understand these 
observations by recapitulating the idea behind the two approximations. The UCNA 
amounts to manipulating equation (1) by calculating the second derivative of ri(t) 
in order to eliminate the variable vi(t) in equation (3). The original discussion of the 
accuracy of this approximation does not account for the presence of the second sto-
chastic variable ξi(t). In contrast, the Fox approach is only dedicated to determine the 
approximate contribution of the colored noise vi(t) to the eective probability current 
in equation (8), which is independent of other terms in equation (1). Therefore, the Fox 
theory has a broader range of applicability and should be accurate in both the presence 
and the absence of thermal noise.

Finally, we note that the excellent agreement between theory and computer simula-
tions in one dimension implies that the diagonal approximation is not justified when it 
comes to describing a two-body system. It is, however, interesting to consider a single 
particle in an external field of the same form as the interparticle potential consid-
ered above. In agreement with the theoretical prediction, the computer simulations in 
figure 2(b) show nice agreement between the two-body system and a one-body system 
with the double value τ=0.05 of the persistence time. We further observe that the 
theoretical result for one body is even closer to the simulation data than for two bodies.

3.3.2. Soft-repulsive Brownian system in three dimensions. We also performed comp-
uter simulations of ABPs (described in appendix A) for d=3. For a finite active 
diusivity, figure 2(c) reveals that the numerical eective potentials for the two consid-
ered models with and without noise are nearly identical over the full range of separa-
tions. As for d=1, the eective potential of active OUPs (and ABPs) in the absence of 
thermal noise has a deeper well and a larger repulsive diameter. Quantitatively, this 
dierence is much more pronounced in three dimensions. In the following, we restrict 
ourselves to systems with thermal noise and compare in figures 2(d) and 3 to the pre-
dictions of the theory. As in figures 2(c) and (d), our simulations of ABPs and OUPs, 
shown in the first column of figure 3, are in nice agreement for all sets of considered 
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Figure 2. Eective potentials in a soft-repulsive system with and without thermal 
noise. (a) Comparison to simulations of active OUPS in d=1 with Da=4.8 and 
τ=0.025, as in figure 1(d), including the Fox approximation (dashed lines) and 
simulations without thermal noise (labeled with dots). In the latter case, UCNA 
and Fox are equivalent (dot-dashed line). (b) As figure 2(a), but for a single active 
particle in an external potential βν(r)=(r/d)−12 with τ=0.05 chosen such that the 
theory predicts the same curves as for two particles with τ=0.025 (the two-body 
simulation results for τ=0.025 from figure 2(a) are shown as thin solid lines for 
comparison). (c) Simulations of two ABPs (empty symbols) and OUPs for τ=0.05 
and Da=2.4 in d=3 dimensions. (d) As figure 2(c) (with noise) compared to the 
Laplacian approximation, equation (19), and the inverse-τ approximation as labeled.
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parameters. This is quite surprising since, on the many-particle level, ABPs and OUPs 
have dierent steady states [33, 34]. On the basis of our data for the simplistic two-
body system we could rather conclude that OUPs subjected to thermal noise are an 
excellent model for ABPs at moderate activity [12, 25].

We see in figure 2(d) that the depth of the attractive well of all theoretical ver-
sions of the eective potential in d=3 dimensions is significantly overestimated when 
compared to the simulations of both ABPs and OUPs. The inverse-τ approximation 
appears to provide the best guess of the point at which the eective potential changes 
its sign. To facilitate further qualitative comparison we chose the y axes in figure 3 
according to the deviation from the simulations (first column), i.e. by a factor of 10 for 
the Laplacian approximation (second column) and 5 for the inverse-τ approx imation 
(third column). The chosen approximations exhibit a behavior similar to the full theor-
etical results of equation (16) in the physical region for r>rdiv, shown in the last col-
umn. The dierences arising from using the exact eective force in equation (12) are 
discussed in appendix B.

For the considered soft-repulsive bare potential, we observe in figure 3 some notable 
quantitative dierences between the UCNA and Fox results, even at relatively high 
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Figure 3. Eective potentials in three dimensions for soft-repulsive spheres, 
βu(r)=(r/d)−12, obtained within the Fox (thick, brighter lines) and UCNA 
(thin, darker lines) and by numerical simulations of ABPs (empty triangles) and 
active OUPs (filled triangles). Columns from left to right: simulations; Laplacian 
approximation, equation (19); inverse-τ approximation, equations (16) with (20); 
equation (16) only for r>rdiv (see figure 1(a) for the full result). Rows from top to 

bottom: increasing the active diusivity Da at constant persistence time τ=0.05; 

increasing Da and τ at constant Peclét number Pe=
√
3Da/τ=12; increasing τ at 

constant Da=2.4. The sequence from the solid to the dotted lines corresponds to 
increasing the respective parameter(s) Da from Da=1.2 or τ from τ=0.025 by a 
factor of two in each step (dashed lines are always for the same set of parameters).
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Figure 4. Eective potentials from the UCNA in three dimensions for Gaussian-
core particles, βu(r)=exp(−(r/d)2). (a) Comparison of the divergences in the 
full result from equation (16) and the Laplacian approximation, equation (19), 
for dierent persistence times τ. (b)–(d) Inverse-τ approximation and computer 
simulations for active OUPs for the same parameters as in rows 1–3 of figure 3, 
respectively. The bare potential is shown as the thick dot–dot-dashed line.

Da. The eective diameter of the repulsive part is generally smaller than in the UCNA, 
whereas the overall attraction is weaker in the Fox approach. This becomes most 
apparent in the Laplacian approximation. The first row of figure 3 contains the eective 
potentials evolving for a constant persistence time τ when the active diusivity Da (or 
the Peclét number Pe) is increased. All approaches accordingly predict an increased 
eective attraction and the minimum of the potential is shifted to smaller separations 
[12, 25]. The Fox results exhibit a stronger variation with Da, which is also more con-
sistent with the numerical data. Similarly, the eective potentials in the second row 
deepen with increasing τ at constant Pe, where the location of the minimum is almost 
unaected. The most interesting behavior is observed in the third column at constant 
Da. Again, all approaches agree that the minimum is shifted to larger separations with 
increasing τ, but the eective attraction predicted by the simulations is nearly con-
stant, as simultaneously the magnitude of the self-propulsion is decreased. This obser-
vation is not consistent with the UCNA results.

Based on the presented simple comparison, our conclusion is that the best choice for 
the theoretical eective potential is the Fox approach in the inverse-τ approx imation. 
Upon further increasing the activity (not shown), the quantitative discrepancy of the 
Laplacian approximation becomes even more pronounced. Regarding figure 1(b) one 
might get the impression that the additional assumption of the diagonal form of the 
eective potential also results in a slightly better (quantitative) agreement with the 
simulations. However, we stress that it is not clear how far the eective pair potentials 
can accurately describe the many-body situation, as there are no higher-order interac-
tions present in a two-body simulation.

3.3.3. Difficulties for non-convex potentials. The most compelling argument in favor of 
the inverse-τ approximation arises from considering non-convex bare potentials, a case 
in which the Laplacian approximation becomes useless above a certain value of τ. This 
issue has already been discussed for a Lennard-Jones potential [30] and we will consider 
here the potential βu(r)=exp(−(r/d)2) of an active Gaussian-core fluid. Although this 
model has not received much attention in theories for ABPs, it is quite appealing from 
a theoretical perspective. Most prominently, this bare potential is a known exceptional 
case in which a simple mean-field theory is particularly accurate [35, 36], which might, 
in a way, also hold for the eective potential of the active system.
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The eective potential of an active Gaussian-core fluid is discussed in figure 4 within 
the UCNA. As the absolute value of both the curvature and slope of this model poten-
tial is bounded, the Fox results (not shown) are quite similar, even for the moderate 
values of Da considered here. When the persistence time τ is suciently small, the 
eective potential, equation (16), does not diverge and the dierent approximations 
behave in a quite similar way. Interestingly, we observe in figure 4(a) that the diver-
gence of the Laplacian approximation sets in at an even smaller value of τ�1/12 than 
for the full potential. The latter diverges at two points, each related to one of the two 
eigenvalues, if τ�1/4.

In figures 4(b)–(d) we discuss the only suitable form of the eective potential, i.e. 
the inverse-τ approximation. Intriguingly, the predicted behavior depends on in which 
way, i.e. by means of which parameter, the activity is modified. Increasing the active 
diusivity (or the Peclét number) at a constant value of τ results in a less repulsive 
core. Upon increasing τ, however, the height of the maximum increases and an attrac-
tive well develops at larger separations. Counterintuitively, we observe that in this 
case the eective interaction becomes more repulsive than in the passive case and also 
for the inverse-τ approximation. Our computer simulations (also carried out for values 
of τ much larger than shown in figure 4) confirm that this is an artifact of the theory, 
related to the negative curvature of the bare potential. At constant τ the evolution of 
the theoretical results agrees qualitatively with the simulations. The simulation data 
are, however, not very sensitive to changes in the persistence time. At constant Da 
the theory predicts the correct trend upon increasing τ, whereas this is not the case at 
constant Peclét number.

To argue about the validity of the EPA, we consider two classes of bare interac-
tions. Firstly, soft-repulsive and convex potentials lead to quite accurate results in 
one dimension, but require an empirical correction in higher dimensions. Secondly, the 
understanding of the behavior of particles interacting with a bare potential which has 
a negative curvature remains one of the most urgent open problems in our theoretical 
framework. At the moment, the only way to obtain a workable theory in this case is 
by employing the inverse-τ correction introduced in equation (20). Further numerical 
and theoretical analysis will be needed to clarify this issue fully. Finally, we note that 
potentials with attractive parts do not a priori constitute a problem for the theory, but 
usually have regions in which they are non convex. For a discussion of such problems 
see also [26, 30].

4. Low-activity approximation

A second strategy to simplify the steady-state condition is to perform an expansion 

in the activity parameter τ. At linear order, the eective diusion tensor D[N ](r
N) 

becomes pairwise additive. In this low-activity approximation, a YBG-like hierarchy 
can be obtained by successively integrating equation (9) over N − n coordinates [21], 
which allows defining a mechanical pressure and interfacial tension [22]. Moreover, for 
the active system evolving according to equations (1) and (4) it has been demonstrated 
that there exists a regime for small values of τ, where the principle of detailed balance 
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is respected [37]. This suggests that, at leading order in this parameter, the approx-
imations resulting in equation (9) are perfectly justified.

Knowing, however, that equation (9) contains the same information as equation (12), 
which depends logarithmically on the parameter τ, we should clarify whether (II.i) the 
low-activity expansion converges, (II.ii) it is sucient to only consider the leading 
order and (II.iii) one can obtain similar results when employing the EPA. To do so, we 
demonstrate how the first member (n=1) of the YBG hierarchy can be rederived from 
equation (12) and discuss the consequences of approximating Feff

k  in terms of pair inter-
actions. Again, we only discuss the UCNA, where, without any further approximation, 
the inverse diusion tensor is found to be pairwise additive.

4.1. Alternative derivation of a local force-balance condition

By saying we integrate a multidimensional vector equation (label i) over N − 1 coor-
dinates we understand multiplying each side by δ(r − ri), followed by summation over 
all particles i and integration over all N spatial coordinates. We further define the 

average 〈X〉 :=〈〈 ˆ∑N
i=1 δ(r − ri)XiX〉〉/ρ(r) of a vector X i(r

N), where 〈〈·〉〉 denotes the 

full canonical ensemble average and ρ(r) = 〈〈ρ̂〉〉 is the average of the density operator 

ρ̂=
∑N

i=1 δ(r− ri). Approximating now the inverse mobility matrix in equation (10) as 

Γ−1
ij (r

N)≈(1− τ̃∇i∇jU)δij and integrating equation (9) over N − 1 coordinates, we 

find the first member

−ρ(r)〈∇βU〉 = (1 +Da) (∇ · (1ρ(r)− τ̃ ρ(r)〈∇∇U〉)) , (21)
of a YBG-like hierarchy [21, 22] for the active system, where, explicitly,

〈DU〉 = Dν(r) +

∫
dr′

ρ(2)(r, r′)

ρ(r)
Du(r, r′) (22)

for any (nontrivial) dierential operator Di acting on ri. In the derivation of (21) it 
turns out that the o-diagonal components of the mobility tensor do not contrib-
ute at first order in τ [22]. Hence, we might as well have assumed the diagonal form 
Γij ≈ δijΓii at linear order in τ beforehand.

In order to connect to the EPA, we derive a YBG-like hierarchy from equation (12). 
Assuming the diagonal form Γij ≈ δijΓii, the integration over N − 1 coordinates of the 
first equality is carried out in appendix C. Making use of the equilibrium version of the 
YBG hierarchy and expanding the expression ln(det Γii(r

N)) up to first order in τ the 
result is

0 = −D−1
I (r)ρ(r)〈∇βU〉 −∇ρ(r) + τ̃ ρ(r)〈∇ ·∇∇U〉+ ρ(r)

1 +Da

τ̃

∫
dr′ (∇∇u(r, r′)) ·∇ρ(2)(r, r′)

ρ(r)

(23)
introducing the averaged inverse diusion tensor (compare equation (10))

D−1
I (r) :=

〈Γii〉
1 +Da

=
1+ τ̃〈∇∇U〉

1 +Da

. (24)

Multiplying equation (23) with DI ≈ (1 +Da)(1− τ̃〈∇∇U〉) it is easy to verify in appen-
dix C that at first order in τ it becomes equivalent to (21) up to a term proportional 
to the expression in the second line, which we consider as a higher-order contribution.
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In order to derive equation (23) in the Fox approach, an additional approximation is 

required, as the inverse of D(f)
ij  from equation (11) is not proportional to Γij. We would 

thus need to redefine DI in equation (24) according to equation (11) where 〈Γii〉−1 takes 

the role of Γ−1
ij . Regarding the presented alternative derivation of equation (21) in gen-

eral, its validity appears to be in question. This is because to derive the intermediate 
result in equation (23) it is necessary to expand a logarithmic term, the Taylor series of 
which only has a finite radius of convergence. We further assumed explicitly the diago-
nal form of the mobility tensor to avoid further terms that are not present in the original 
result. Employing the EPA in the next step will shed more light on these issues.

4.2. Low-activity approximation of eective potentials

Having established a connection between (9) and (12) also at linear order in τ, we 
now turn to the case in which the second equality in (12) does not hold. This is when 

we assume Feff
k ≈−∇kU eff=−∇k

(
νeff(rk) +

∑
l=k u

eff(rk, rl)
)

along the lines of (2) but 

within the EPA using the results derived in section 3.1. As detailed in appendix D, the 
obvious result is that all correlation functions between more than two particles vanish 
in the approximate integrated version

0 = −∇ρ(r)− ρ(r)
〈
∇βU eff

〉
 (25)

of (12). Ignoring the interparticle interactions the approximation involving only νeff(r) 
becomes exact. This situation is the same as discussed in [21].

Considering the interacting system, we multiply equation (25) with DI as done 
previously for (23). According to appendix D, we can only approximately reproduce 
equation (21) by doing so. This reflects both the limitations of the EPA and an incon-
sistency between equations (9) and (12) when they are subject to the same type of 
approximation, as we discuss in the following. We observe that (III.i) the coupling 
between external and internal interactions is ignored by equation (25) (III.ii) spurious 
three-body correlations appear on the left-hand-side of equation (21) (III.iii) the sec-
ond term on the right-hand side of equation (21) is recovered but involves a seemingly 
unjustified expansion and (III.iv) if we do not explicitly assume a diagonal diusion ten-
sor, the last term in equation (21) changes by a factor two. As we are mainly interested 
in bulk systems, the first point is only briefly commented on in appendix D.

The term including the bare interaction force in equation (12) depends on the posi-
tion of three bodies. Hence, the pairwise approximation, which amounts to setting∑
l,j=k

(∇k∇ku(rk, rl)) (∇ku(rk, rj)) −→
∑
j=k

(∇k∇ku(rk, rj)) (∇ku(rk, rj)) , (26)

should not be too crude. Moreover, we have discussed in section 3.2 that such a contrib-
ution to the eective force is usually purely repulsive and thus plays only a minor role 
in characterizing a possible phase transition. However, we show in appendix D that the 
definition (24) of the averaged diusion tensor DI is not fully compatible with the EPA, 
resulting in point (III.ii). This is in contrast to the clean derivation of equation (21), 
where equation (9) is recovered from equation (12) by multiplication with the many-
body eective diusion tensor D[N ] before integrating over N − 1 positions.
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The last term PN∇k ln | detD−1
kk (r

N)| in (12), although considered here for a diagonal 
diusion tensor, constitutes a full N-body quantity. Recall from the discussion in sec-
tion 3 that an approximation as a pairwise quantity might be quite poor and an expan-
sion of the logarithm does not converge. However, we demonstrate in appendix D that 
successively employing the EPA and expanding for small τ̃  according to

∇ ln

∣∣∣∣∣ det
(
1+ τ̃∇∇

∑
l>1

u(r, rl)

)∣∣∣∣∣ −→ ∇ ·
∑
l>1

ln | det (1+ τ̃∇∇u(r, rl)) |

−→ τ̃
∑
l>1

∇∆u(r, rl) +O(τ 2) (27)

eventually results in full consistency with the respective term in equation (21), stated as 
point (III.iii). This suggests that the expansion to first order in τ "implies" making the 
EPA when equation (12) is our starting point. Despite the aforementioned crudity of 
this expansion, we argue that equation (21) is valid, as its clean derivation from equa-
tion (9) does not require dealing with a logarithmic term. The last step in equation (27) 
is required to recover equation (21) without inducing undesired higher-order terms in τ, 
as, similar to point (III.ii), the integrated version is incompatible with the chosen DI. 
However, we stress that this approximation should certainly be avoided when calculat-
ing the fluid structure.

Finally, we demonstrate in appendix D that the o-diagonal elements of the 
diusion tensor entering in equation (12) contribute to equation (25). Hence, the pres-
ent approach would be even more inconsistent with equation (21) if we did not assume 
the diagonal form, as noted in point (III.iv). We also note that the same problem occurs 
for the according generalization of equation (23). In principle we could define in this 
case an additional averaged diusion tensor DI,od, corresponding to the o-diagonal ele-
ments, which could counteract this inconsistency. Such a calculation would, however, 
not be useful when an eective pair potential is employed.

5. Conclusions

In this paper we studied dierent ways to define an eective pair interaction potential 
between active particles. Our numerical investigation reveals that a two-particle sys-
tem of ABPs and active OUPs exhibits a quite similar behavior. These results serve 
as a benchmark to test the approximations involved in recent eective equilibrium 
approaches, which have been reviewed and compared in detail. For spatial dimensions 
higher than one we introduced an empirical way to rid the theoretical result of possible 
divergences, which also appears to yield the best agreement with the simulation data, 
although the eective attraction is still significantly overestimated. Regarding the quite 
accurate one-dimensional results and the qualitative features of the eective potentials 
in three dimensions, the Fox approximation is superior to the UCNA when the transla-
tional Brownian noise cannot be neglected. In the absence of noise both approximation 
schemes admit the same steady-state solution.
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Further analysis is needed to better understand the role of the neglected many-
body interactions in both the two-body simulations and the theory, which are thought 
to be imperative for a quantitative description of active systems [30]. The presented 
theor etical approach follows two major approximate steps to define the eective pair 
potential. First, we map the equation of motion (1) onto a deterministic Fokker–Planck 
equation (eective equilibrium picture) and then we define pair forces from the two-
particle limit assuming a vanishing probability current. It could well be that the map-
ping in the first step breaks down parts of the many-body nature of the interactions in 
the active system, such that the eective attraction in the many-body system becomes 
accessible already on the level of pair interactions. As a logical next step, it seems 
worthwhile to study the eective potential extracted from computer simulations of a 
many-particle system, in order to clarify how far the strong attraction of the eective 
potential needs to be seen as the result of a fortuitous cancellation of errors.

The low-activity limit in the eective equilibrium picture also results in pairwise 
forces. Under this assumption, we revealed some minor inconsistencies between the 
two equivalent steady-state conditions in equations (9) and (12), although the latter 
contains a logarithmic term. Relatedly, it was recognized in [22] that dierent routes 
to define the active pressure only coincide at lowest order in the activity parameter τ. 
We suspect that further dierences will occur at higher orders in τ and when employing 
further approximations, such as the EPA. We conclude that the route to follow should 
be carefully chosen for each problem, together with the underlying approximations.

The obvious purpose of both the low-activity approximation and the EPA is to 
allow for an analytically tractable theory. It appears that the condition given by 
equation (12) supported by eective pair potentials is most convenient for accessing 
structural properties [12, 23, 25], whereas the low-activity expansion of equation (9) 
provides a direct way to define mechanical properties [22]. Moreover, our analysis sug-
gests that the thermodynamic results obtained from equation (12) can be rescaled in 
order to obtain a workable definition of mechanical active pressure and surface tension. 
Arguably, the most simplistic scaling factor would be the diusivity 1 +Da of an ideal 
gas, which can be absorbed into an eective temperature [21, 22, 25]. A more general 
approach will be detailed in the second paper of this series.
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Appendix A. Simulation details

We performed Brownian dynamics simulations of a system composed of two particles 
of unit diameter d=1 interacting through a soft-repulsive potential or a Gaussian 
soft-core potential. The potential is truncated at a distance of r=2d. In the simula-
tions of active OUPs, evolving according to equation (1), each particle is subjected to 
Gaussian thermal noise and non-Gaussian (colored) noise. The latter yields two distinct 
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contributions to the displacement of each particle: one drift term, proportional to the 
reorientation time τ and one Gaussian process, proportional to 

√
Da/τ  [26]. For a van-

ishing active diusivity Da, the drift term decays exponentially in time and is therefore 
irrelevant in the long-time limit. The integration time step is fixed to dt=10−4τB where 
τB=d2/Dt is the time scale of translational diusion. The total run time of the simula-
tion is 106τB. For every dt, we calculate the distance between the two particles. The 
pair-correlation function is obtained in a standard way from the distance distribution. 
We have verified that, for the case of Da = 0 and finite τ, the obtained pair-correlation 
function is independent of τ, although the short-time displacement is not.

We also performed Brownian dynamics simulation of ABPs, for which the colored-
noise variable vi(t) in equation (1) is replaced with the vector v0 pi(t) describing a con-
stant velocity v0 of the self-propulsion in the direction of the instantaneous orientation. 
The equation ṗi(t)=ηi(t)× pi(t) for the time evolution for the orientation vector pi(t) 
of each particle i is evaluated as an Ito integral, where ηi(t) is a white noise describing 
rotational diusion. The integration time step is fixed to dt = 10−4 and the total run 
time is 104τB.

Appendix B. Eective many-body force in the Fox approximation

In this appendix we discuss the accuracy of equation (12) of the main text in the Fox 
approximation, i.e. choosing the eective diusion tensor from equation (11). The accu-
rate definition of the eective force is

βFeff
k =

∑
i

D−1
ik · βFi −

∑
ij

D−1
ik ·∇j · Dji (B.1)

since the conversion∑
ij

D−1
ik ·∇j · Dji ≈ ∇k ln | detD[N ]| (B.2)

is only correct in the following cases:

1. for a system with no thermal noise. As stated in the main text, in this case 
the Fox and UCNA results are equivalent. Making use of the symmetry rela-

tion ∂γD−1
αβ =∂βD−1

αγ (with Greek indices labeling components and particles) and 
Jacobi’s formula the identity in equation (B.2) can be explicitly verified [21].

2. for a passive system, since Dij≡1δij.

3. at leading order in the activity parameter τ, where D−1
αβ = δαβ(1 +Da)−

τ̃Da∂α∂β U +O(τ̃ 2) and the same arguments as under point 1. can be used.

4. for N�2 particles in an eectively one-dimensional symmetry, i.e. if there exists 
a coordinate frame in which the non-trivial contributions to D[N ] reduce to an at 
most a 2× 2 tensor with identical diagonal elements. This can be easily shown 
by an explicit calculation
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(a) in d = 1 dimensions

(b) for a planar interaction potential

(c) in the Laplacian approximation (18)

As a simple counter example to the cases listed above, we note that equation (B.2) 
does not generally hold for N=1 and d=2, since ∂xν(x, y)=−∂yν(x, y), whereas under 
point 4. we have ∂1u(x1−x2)=−∂2u(x1−x2). As for the approximate formulas (13) and 
(14), we find that the dierence between the eective forces, equation (B.1), for N=2 
particles with and without diagonal approximation is only a factor 2 in front of each 
factor τ.

Comparing the requirements for points 1. and 2. we can say that equation (12) is 
correct for both Da�Dt and Da�Dt, indicating that it should be a good approx imation 
over all ranges of the parameter Da. Moreover, the assumption of a small persistence 
time τ is required in the derivation of the eective equilibrium approach [12, 20, 21]. 
Considering point 3, this means that the approximation in equation (B.2) is consistent 
with the underlying theory. Indeed, figures B1(a) and (b) show that the approximation 
is best for either small or large Da and small τ, respectively. In general, the dierence 
is not significant compared to other approximations shown in figure 3 of the main text.

If the validity criterion En(τ, r)>0 for the eigenvalues, given by equation (17), of 
Γ[2] is violated, neither side of equation (B.2) results in physically eective potentials. 
Therefore, the most important benefit of the approximate form on the right-hand side 
is that it enables the inverse-τ approximation to be employed, as described in sec-

tion 3.2: the eigenvalues E
(f)
n (τ,Da, r) of D(f)

[2] can be written as

E(f)
n (τ,Da, r) = 1 +

Da

En(τ, r)
 (B.3)

so that we can substitute En(τ, r) according to equation (20) of the main text. The 

substitution of E
(f)
n  or a more general manipulation of D(f)

[2] is inconvenient since the 

eective potential would still diverge for En=−Da although the bare potential does 
not. Therefore, the third column of figure 3 contains the optimal implementation of the 
the inverse-τ approximation for the Fox approach. Also recall that, according to point 

1,1 1,2 1,3 r /d

-0,6

-0,4

-0,2

βu
ef

f (r
)

(a) Eq. (16), τ=0.05

increasing 
and Pe

Fox without Eq. (A2)

Fox

Da

1 1,2 1,4 r /d

-0,4

-0,2

0

βu
ef

f (r
)

(b) Eq. (16),     =2.4

Fox

increasing τ and
decreasing PeFox without

Eq. (A2)

Da

Figure B1. Closeups of the Fox results for the full eective potentials from 
equation (B.2) as in figure 3 (a) top right with additional data for Da=0.6 and 
Da=0.3 and (b) bottom right with additional data for τ=0.0125 and τ=0.006 25. 
The thinner lines correspond to the results without making the approximation in 
equation (B.2).
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4.(c), the results in the Laplacian approximation are the same for both expressions in 
equation (B.2).

Appendix C. Integration of the first equality in equation (12)

The derivation of equation (21) by integrating equation (9) over N − 1 coordinates is 
quite similar to that of the YBG hierarchy in a passive system. The first member

0 = ∇ρ(r) + ρ(r)∇βν(r) +

∫
dr′ρ(2)(r, r′)∇βu(r, r′) = ρ(r)∇µ (C.1)

is recovered from (21) when setting τ = Da = 0. The second equality reflects the inter-
pretation of the term on the left-hand side as the gradient of the chemical potential μ, 
which is constant in equilibrium. The second member reads

0 = ∇ρ(2)(r, r′′) + ρ(2)(r, r′′)∇ (βν(r) + βu(r, r′′)) +

∫
dr′ρ(3)(r, r′, r′′)∇βu(r, r′) = ρ(2)(r, r′′)∇µ.

(C.2)
and is related via the second equality to the first member. With the help of these exact 
equilibrium sum rules we will now derive equation (23) by integrating equation (12) 
over N − 1 coordinates. Our presentation closely follows the derivation of a dynamical 
density functional theory including a tensorial diusivity [38], whereas we only con-
sider the steady-state condition.

We start by writing the first equality in (12) as

0 =
∑
i

D−1
ik · (−∇iPN + βF iPN) +D−1

ik ·∇iPN −∇kPN + PN∇k ln | detD−1
kk |, (C.3)

where we further used the concept that the negative logarithm is the logarithm of the 
inverse argument and replaced detD[N ] with detDkk by assuming the diagonal form. 
Integration of (C.3) over N − 1 coordinates yields (within UCNA)

1

1 +Da

(
−∇ρ(r)− ρ(r)∇βν(r)−

∫
dr′ρ(2)(r, r′)∇βu(r, r′)

− τ̃∇∇ν(r) ·
(
∇ρ(r) + ρ(r)∇βν(r) +

∫
dr′ρ(2)(r, r′)∇βu(r, r′)

)

− τ̃

∫
dr′′∇∇u(r, r′′) ·

(
∇ρ(2)(r, r′′) + ρ(2)(r, r′′)∇ (βν(r) + βu(r, r′′)) +

∫
dr′ρ(3)(r, r′, r′′)∇βu(r, r′)

)

+∇ρ(r) + τ̃ (∇∇ν(r)) ·∇ρ(r) + τ̃

∫
dr′ (∇∇u(r, r′)) ·∇ρ(2)(r, r′)

)

−∇ρ(r) +N

∫
dr2 . . .

∫
drNPN(r, r2, . . . , rN)∇ ln

∣∣∣∣∣det
(
1+ τ̃∇∇

(
ν(r) +

∑
l>1

u(r, rl)

))∣∣∣∣∣ = 0

(C.4)
As the Fox result (11) for D−1

ik  is not a pairwise quantity, a further approximation is 
required to obtain a similar hierarchy. Now we eliminate the term in brackets within 
the third line containing the three-body correlation function with the help of (C.1) and 
(C.2) and expand the logarithm up to linear order in τ. The result is
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− 1

1 +Da

(
1+ τ̃∇∇ν(r) + τ̃

∫
dr′′

ρ(2)(r, r′′)

ρ(r)
∇∇u(r, r′′)

)
·
(
ρ(r)∇βν(r) +

∫
dr′ρ(2)(r, r′)∇βu(r, r′)

)

−∇ρ(r) + τ̃ ρ(r) (∇ ·∇∇ν(r)) + τ̃

∫
dr′ρ(2)(r, r′)∇ ·∇∇u(r, r′)

+
1

1 +Da

τ̃

∫
dr′ (∇∇u(r, r′)) ρ(r) ·∇ρ(2)(r, r′)

ρ(r)
= 0 (C.5)

where we used the identity ∇∆ = ∇ ·∇∇. The term in the last line stems from replac-

ing ∇ρ(2)(r, r′′) in the third line of equation (C.4) with ρ
(2)(r,r′′)
ρ(r)

∇ρ(r), which does not 

cancel out with the expression in the fourth line of equation (C.4).
For convenience we adopt the notational convention of the main text (22) and iden-

tify the d× d matrix in the first line of equation (C.5) as the inverse of an ensemble-
averaged diusion tensor

DI(r) := (1 +Da)

(
1+ τ̃∇∇ν(r) + τ̃

∫
dr′

ρ(2)(r, r′)

ρ(r)
∇∇u(r, r′)

)−1

=

(
1+ τ̃〈∇∇U〉

1 +Da

)−1

= (1 +Da) (1− τ̃〈∇∇U〉) +O(τ 2).

(C.6)

Now we multiply equation (C.5) with DI and drop all higher-order terms ∝ τ 2, which 
yields

ρ(r)〈∇βU〉 = (1 +Da) (−∇ρ(r) + τ̃ ((∇ρ(r)) · 〈∇∇U〉+ ρ(r)〈∇ ·∇∇U〉))

+ τ̃

∫
dr′ (∇∇u(r, r′)) ρ(r) ·∇ρ(2)(r, r′)

ρ(r)

= (1 +Da) (−∇ρ(r) + τ̃∇ · (ρ(r)〈∇∇U〉))

−Daτ̃

∫
dr′ (∇∇u(r, r′)) ρ(r) ·∇ρ(2)(r, r′)

ρ(r)
. (C.7)

In the last step we made use of the identity

∇ · (ρ(r)〈∇∇βU〉) = (∇ρ(r)) · 〈∇∇βU〉+ ρ(r)〈∇ ·∇∇βU〉+ ρ(r)

∫
dr′ (∇∇βu(r, r′)) ·∇ρ(2)(r, r′)

ρ(r)

(C.8)
to recover up to the last term the first member of the YGB-like hierarchy stated in 
equation (21) of the main text. Taking into account the definition Da ∝ τ  of the active 
diusion coecient, we argue that the additional term is not relevant at linear order in 
τ. Alternatively, taking the mean-field approximation ρ(2)(r, r′) ≈ ρ(r)ρ(r′), this term 
will also vanish. We thus have rederived a result obtained in a much simpler way in 
[21]. The demonstrated equivalence of equations (9) and (12) in the low-activity limit 
is, however, not obvious and breaks down when higher-order terms in τ are included.

Appendix D. Integration of the second equality in equation (12)

Assuming pairwise interaction potentials, the integration of the second equality in 
equation (12) over N − 1 coordinates results in
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0 = ∇ρ(r) + ρ(r)∇βνeff(r) +

∫
dr′ρ(2)(r, r′)∇βueff(r, r′)

= ∇ρ(r) + ρ(r)
(
D−1

[1] (r)∇βν(r)−∇ ln | detD[1](r)|
)

+

[∫
dr′ρ(2)(r, r′)

(
D−1

11 (r, r
′) ·∇βu(r, r′)−∇ ln | detD11(r, r

′)|
)]

ν=0
(D.1)

where in the second step we have inserted the eective external (15) and pair poten-
tial (14). To be consistent with appendix C we used the diagonal form of the latter. In 
the absence of interparticle interactions, u(r) = 0, it is easy to verify that both equa-
tions (D.1) and (C.4) simplify to the same equality

∇ρ(r) + ρ(r)

(
(∇βν(r)) · (1+ τ̃∇∇ν(r))

1 +Da

−∇ ln | det (1+ τ̃∇∇ν(r)) |
)

= 0, (D.2)

which is a trivial consequence of the fact that the many-body potential is the sum of 
single-particle contributions: the friction tensor (5) is diagonal and all equations decou-
ple. Comparing the result (D.1) in the interacting case to equation (C.5), we notice that 

the EPA ignores the cross terms proportional to τ̃∇∇ν(r) ·
∫
dr′ρ(2)(r, r′)∇βu(r, r′) 

and τ̃∇βν(r) ·
∫
dr′ρ(2)(r, r′)∇∇u(r, r′), coupling the external and internal interactions 

on the level of pair correlations. It is, however, possible to capture these terms within 
a generalized eective external two-body field in the spirit of [23]. This amendable 
dierence aside, we now discuss the bulk system.

Setting ν(r) = 0 in equation (D.1) becomes

∇ρ(r) +

∫
dr′ρ(2)(r, r′)

(
(∇βu(r, r′)) · (1+ τ̃∇∇u(r, r′))

1 +Da

−∇ ln | det (1+ τ̃∇∇u(r, r′)) |
)

= 0

(D.3)
This result amounts to setting

τ̃

1 +Da

∫
dr′′ (∇βu(r, r′′)) ·

∫
dr′ρ(3)(r, r′, r′′)∇∇u(r, r′) → 0, (D.4)

N

∫
dr2 . . . drNPN(r

N)∇ ln

∣∣∣∣∣det
(
1+ τ̃∇∇

∑
l>1

u(r, rl)

)∣∣∣∣∣→
∫

dr′ρ(2)(r, r′)∇ ln | det (1+ τ̃∇∇u(r, r′)) |

(D.5)

in (C.4), which is a logical consequence of the higher-order correlations being ignored. 

Restricting ourselves to the leading order in τ both sides of (D.5) reduce to the equiva-

lent form τ̃
∫
dr′ρ(2)(r, r′)∇ ·∇∇u(r, r′). In contrast, making use of (C.2), the approx-

imation (D.4) to the bare force term is equivalent to setting

τ̃

1 +Da

∫
dr′′

ρ(2)(r, r′′)

ρ(r)
∇∇u(r, r′′) ·

∫
dr′ρ(2)(r, r′)∇βu(r, r′)

+
τ̃

1 +Da

∫
dr′ (∇∇u(r, r′)) ρ(r) ·∇ρ(2)(r, r′)

ρ(r)

→ τ̃

1 +Da

∫
dr′ρ(2)(r, r′)(∇βu(r, r′)) · (∇∇u(r, r′)) (D.6)
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in (C.5). Thus the factorization in the first line of (C.5) is not possible, such that, upon 
multiplying with DI defined in equation (C.6) there remains an additional term

τ̃

∫
dr′ρ(2)(r, r′)(∇βu(r, r′)) ·

(
∇∇u(r, r′)−

∫
dr′′

ρ(2)(r, r′′)

ρ(r)
∇∇u(r, r′′)

)
(D.7)

proportional to τ on the left-hand-side of equation (C.7). This means that the EPA 
introduces a three-body term to the YBG-like hierarchy (21). The reason for this 
discrepancy is that the eective diusion tensor DI is defined independently of the 
approximation made in equation (D.4).

Finally, we note that if we employ in equation (D.1) the eective pair potential 
(13) that does not correspond to a diagonal diusion tensor, we will have to modify 
equation (D.3) by setting τ → 2τ . This, in general, reflects the inconsistency between 
the low-activity expansions of the two versions of the steady-state condition given by 
equations (9) and (12), which is not a consequence of approximating the eective force 
in the second form using pair potentials. In particular, we would also have to substitute 
τ → 2τ  in equation (C.7), as both sides in equation (D.5) are equivalent at the linear 
order in τ. However, in equation (D.7) only the first term should then be multiplied by 
the factor two, as the second term arises from DI and not from the eective potential.
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