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We develop an exact Green-Kubo formula relating nonequilibrium averages in systems of
interacting active Brownian particles to equilibrium time-correlation functions. The method
is applied to calculate the density-dependent average swim speed, which is a key quantity
entering coarse grained theories of active matter. The average swim speed is determined by
integrating the equilibrium autocorrelation function of the interaction force acting on a tagged
particle. Analytical results are validated using Brownian dynamics simulations. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4966153]

Assemblies of active, interacting Brownian particles
(ABPs) are intrinsically nonequilibrium systems. In contrast to
equilibrium, for which the statistical mechanics of Boltzmann
and Gibbs enables the calculation of average properties,
there is no analogous framework out-of-equilibrium. However,
useful exact expressions exist, which enable average quantities
to be calculated in the nonequilibrium system by integrating
an appropriate time correlation function: the Green-Kubo
formulae of linear response theory.1–3 Transport coefficients,
such as the diffusion coefficient or shear viscosity, are thus
conveniently related to equilibrium autocorrelation functions.
Given the utility of the approach, it is surprising that the
application of Green-Kubo-type methods to active Brownian
systems has received little attention.4

The primary aim of the present work is to extend Green-
Kubo-type methods to treat ABPs. This approach has two
appealing features. First, information about the active system
can be obtained from equilibrium simulations. Second, the
exact expressions derived provide a solid starting point
for the development of approximation schemes and first-
principles theory. The method we employ is a variation of the
integration-through-transients approach, originally developed
for treating interacting Brownian particles subject to external
flow.5–8

A fundamental feature of ABPs is the persistent character
of the particle trajectories. For strongly interacting many-
particle systems, the interplay between persistent motion
and interparticle interactions can generate a rich variety
of collective phenomena, such as motility-induced phase
separation (see Ref. 9 for a recent overview). A quantity
which features prominently in many theories of ABPs9–13 is
the density-dependent average swim speed, which describes
how the motion of each particle is obstructed by its neighbours.
Given the ubiquity of the average swim speed in the literature
on ABPs, we choose it as a relevant observable with
which to illustrate our general Green-Kubo-type approach.
We demonstrate that this quantity can be obtained from
a history integral over the equilibrium autocorrelation of
tagged-particle force fluctuations, which we investigate in
detail using Brownian dynamics (BD) simulation.

We consider a three dimensional system of N active,
interacting, spherical Brownian particles with coordinate ri
and orientation specified by an embedded unit vector pi.
A time-dependent self-propulsion of speed v0(t) acts in the
direction of orientation. Allowing for time-dependence of this
quantity both clarifies the general structure of the theory and
leaves open the possibility to model physical systems for
which the amount of fuel available to the particles is not
constant (see, e.g., Refs. 14 and 15). Omitting hydrodynamic
interactions, the motion can be modelled by the Langevin
equations

ṙi = v0(t) pi + γ
−1Fi + ξi, ṗi = ηi × pi, (1)

where γ is the friction coefficient and the force on particle
i is generated from the total potential energy according
to Fi = −∇iUN . The stochastic vectors ξi(t) and ηi(t)
are Gaussian distributed with zero mean and have time
correlations ⟨ξi(t)ξ j(t ′)⟩ = 2Dt1δi jδ(t − t ′) and ⟨ηi(t)η j(t ′)⟩
= 2Dr1δi jδ(t − t ′). The translational and rotational diffusion
coefficients, Dt and Dr , are treated in this work as independent
model parameters.

It follows exactly from (1) that the joint probability
distribution, P(rN ,pN , t), evolves according to16

∂P(t)
∂t
= Ωa(t)P(t). (2)

The time-evolution operator can be split into a sum of
two terms, Ωa(t) = Ωeq + δΩa(t), where the equilibrium
contribution is given by

Ωeq =

N
i=1

∇i ·
�
Dt (∇i − βFi) � + Dr R2

i , (3)

with rotation operator R = p × ∇p (see, e.g., Ref. 17) and the
time-dependent, active part of the dynamics is described by
the operator

δΩa(t) = −
N
i=1

v0(t)∇i · pi. (4)
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To solve (2) we define a nonequilibrium part of the
distribution function, δP(t) = P(t) − Peq,7 where Peq is the
equilibrium distribution of position and orientation. Using
ΩeqPeq = 0 yields the equation of motion

∂

∂t
δP(t) = Ωa(t)δP(t) + δΩa(t)Peq. (5)

Treating the last term as an inhomogeneity and solving for
δP(t), we obtain a formal solution for the nonequilibrium
distribution

P(t) = Peq −
 t

−∞
dt ′v0(t ′) e

 t
t′ds Ωa(s)
+ βFpPeq, (6)

where e+(·) is a positively ordered exponential function
(see the appendix in Ref. 8) and we have used δΩa(t)Peq
= −βv0(t)FpPeq, with “projected force” fluctuation

Fp =

i

pi · Fi. (7)

The projected force emerges as a central quantity within
our approach and indicates to what extent the interparticle
interaction forces act in the direction of orientation, either
assisting or hindering the self-propulsion. We will show that
this quantity is closely related to the average swim speed in
the active system.

Introducing a test function, f , on the space of
positions and orientations and integrating (6) by parts
yield a formally exact expression for a nonequilibrium
average

⟨ f ⟩(t) = ⟨ f ⟩eq −
 t

−∞
dt ′ v0(t ′)⟨βFpe

 t
t′ds Ω

†
a(s)

− f ⟩eq, (8)

where e−(·) denotes a negatively ordered exponential8 and ⟨·⟩eq
is an equilibrium average over positional and orientational
degrees of freedom. The adjoint operator is given by
Ω
†
a(t) = Ω†eq − δΩa(t), where

Ω
†
eq =


i

Dt (∇i + βFi) · ∇i + Dr R2
i (9)

generates the equilibrium dynamics. The integrand appearing
in (8) involves the equilibrium correlation between the
projected force at time t ′ and the observable f , which evolves
from t ′ to t according to the full dynamics. The average is
nonlinear in v0(t) because of the activity dependence of the
adjoint operator.

The response of the system to linear order in v0(t) is
obtained by replacing the full time-evolution operator Ω†a(t)
in (8) by the time-independent equilibrium operator Ω†eq.
Further simplification occurs if the activity is constant in time,
v0(t)→ v0, leading to

⟨ f ⟩lin = ⟨ f ⟩eq − v0

 ∞

0
dt ⟨βFpeΩ

†
eqt f ⟩eq, (10)

which can be used to define a general active transport
coefficient α = limv0→0(⟨ f ⟩lin − ⟨ f ⟩eq)/v0. Equation (10) is
the desired Green-Kubo relation for calculating the linear
response of ABPs to a time-independent activity.

As mentioned previously, a quantity of current interest
is the average, density-dependent swim speed, v(ρ). This
describes how the bare swim speed, v0, is influenced by

interparticle interactions and is an important quantity in many
of the various theories addressing ABPs.9–13 In particular, the
tendency of the system to undergo motility-induced phase-
separation is determined by the rate of decrease of v(ρ)
with increasing density; a positive feedback mechanism can
result when increasing the local density leads to a sufficiently
strong reduction of the local average swim velocity. The
average swim speed is defined as the nonequilibrium
average

v(ρ) = 1
N


i

vi · pi


, (11)

where vi is the velocity of particle i. Using (1) to eliminate
the velocity in favour of the forces and using the fact that the
Brownian force ξi is uncorrelated with the orientation pi, it
follows that

v(ρ) = v0 +
γ−1

N
⟨Fp⟩. (12)

For a time-independent v0, we can employ (10) to calculate
the average in (12) to linear order

v(ρ) = v0

(
1 − Dt

 ∞

0
dt H(t)

)
, (13)

where the integrand is the equilibrium autocorrelation of
projected force fluctuations

H(t) = 1
N
⟨ βFpeΩ

†
eqt βFp ⟩eq. (14)

Spatial and orientational degrees of freedom decouple in
equilibrium, which enables the orientational integrals in (14)
to be evaluated exactly. This yields

H(t) = 1
3

e−2Dr t β2

F · eΩ

†
eq,stF


eq,s

, (15)

where F is the interaction force acting on an arbitrarily
chosen (“tagged”) particle, Ω†eq,s =


i Dt (∇i + βFi) · ∇i is

the spatial part of the time-evolution operator and ⟨·⟩eq,s
indicates an equilibrium average over spatial degrees of
freedom. The initial value is given by H(0) = β2⟨|F|2⟩eq/3. If
we consider pairwise additive interaction potentials, then the
Yvon theorem20 leads to

H(0) = 1
3
ρ


dr geq(r)∇2βu(r), (16)

where ρ is the number density, u(r) is the passive pair potential,
and geq(r) is the corresponding equilibrium radial distribution
function.

Equation (15) shows that the nontrivial physics underlying
the linear response of the system to activity is contained in the
tagged-particle force-autocorrelation function. This function
was encountered many years ago by Klein and co-workers18

in a study of the velocity autocorrelation in overdamped
Brownian systems. By manipulation of the operator (3), it was
shown that

⟨F(t) · F(0)⟩eq,s =
3

(βDt)2
�
Dt δ(t) − Zeq(t)�, (17)

where Zeq(t) is the velocity autocorrelation function, defined
in terms of the tagged particle velocity, v(t), according to the
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familiar relation

Zeq(t) = 1
3
⟨v(t) · v(0)⟩eq,s. (18)

The velocity autocorrelation function is a quantity of
fundamental interest in describing the dynamics of interacting
liquids and is closely related to other important quantities
(e.g., the mean-squared displacement and self-diffusion
coefficient). Substituting (17) into (15) yields

H(t) = 1
D2

t

e−2Dr t
�
Dt δ(t) − Zeq(t)�, (19)

thus providing, via (13), a direct connection between
Zeq(t) and v(ρ). The latter can thus be determined to
linear order in v0 using a standard, equilibrium BD
simulation. The δ function appearing in Eq. (19) is
cancelled by an equal contribution from Zeq(t)18 ensuring
that H(t) remains finite at t = 0. Finally, we note that H(t)
remains integrable in all spatial dimensions because of the
exponential in (15). There is thus no principal difficulty
in calculating v(ρ) in two dimensions, in contrast to the
situation for transport coefficients, such as the self-diffusion
coefficient, for which the relevant Green-Kubo time-integral
diverges.5

In a recent study of the pressure in active systems, Solon
et al.19 express the density-dependent average swim speed
in the form v(ρ) = v0 + I2/ρ, where ρ is the bulk number
density. The interaction potential is encoded in the quantity I2
via its dependence on a static structural correlation between
density and polarization, which are given, respectively, by
the first and second harmonic moments of the orientation-
resolved single particle density. This leads to the identification
of I2 = −Dt ρ v0

 ∞
0 dt H(t). An advantage of the present

Green-Kubo formulation over that of Solon et al. is that
it enables identification of the relevant relaxation processes
contributing to the decrease of v(ρ). Moreover, we anticipate
that (13) will prove more convenient for the development of
approximations.

In order to test the range of validity of the linear
response result (13), we perform BD simulations on a three-

dimensional system of N = 1000 particles interacting via the
pair-potential βu(r) = 4ε((σ/r)12 − (σ/r)6), where σ sets the
length scale and we set ε = 1. The potential is truncated at
its minimum r = 21/6σ to yield a softly repulsive interaction.
The system size L is determined as L = (N/ρ)1/3 in order
to obtain the desired density. The integration time step is
fixed to dt = 10−5τB where τB = d2/Dt is the time scale of
translational diffusion. The equation for time evolution of
orientation vector (Eq. (1)) is evaluated as an Ito integral.
Measurements are made after a minimum time of 20τB to
ensure equilibration. In order to measure time-correlations,
the system is sampled every τp/100 s, where τp = 1/2DR is
the rotational diffusion time scale. The total run time is 300τB.
We choose the ratio of diffusion coefficients as Dr/Dt = 20,
although there is nothing special about this particular
choice.

In Fig. 1(a) we show the correlator H(t) as a function
of time for a number of different densities, the largest of
which is close to the freezing transition for our model
interaction potential. Aside from the strong increase of H(0)
with increasing density (shown in the inset), the most striking
aspect of the correlator is that the decay of H(t) is much faster
than the time scale of rotational diffusion (note that time is
scaled with τp in the figure). Indeed, very large values of
the ratio Dr/Dt would be required for the exponential factor
in (15) to significantly influence the decay of H(t). In the
limit of large Dr , we obtain H(t) = H(0) exp(−2Drt) and thus
v(ρ)/v0 = 1 − H(0)Dt/(2Dr). We conclude that, provided the
value of Dr is not extremely large, the relevant relaxation
process is the decorrelation of the tagged particle interaction
force.

In the inset of Fig. 1(a), we show the initial value, H(0),
as a function of the density. To check expression (16), we have
confirmed that using geq(r) from our equilibrium simulations
to evaluate the r.h.s. indeed reproduces the t → 0 limit of
our dynamical H(t) data. Moreover, we have also employed
an approximate liquid-state integral equation theory (Percus-
Yevick theory)20 to calculate geq(r) and evaluate H(0). Very
good agreement of the predicted H(0) with simulation data is
obtained.

FIG. 1. (a) The correlator H (t) for a system of soft spheres. The arrow indicates the direction of increasing density. Inset: The initial value H (0) as a function
of the density. Squares: BD simulation. Circles: using Equation (16) and the Percus-Yevick geq(r ) as input. (b) The same data as in (a) on a log scale. The
relaxation becomes faster with increasing density.
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In Fig. 1(b) we replot the data on a semi-logarithmic
scale, with the initial value scaled out. This representation
makes clear that H(t) is non-exponential and that the decay
occurs more rapidly as the density is increased, in contrast to
the structural relaxation of the system, which slows down with
increasing density. The latter observation can be rationalized
by considering that small positional changes can give rise to
large changes in the force for closely packed particles residing
in regions of strong interaction-force gradient. The fact that
H(t) is non-exponential is not surprising, given that it can be
expressed in terms of the velocity autocorrelation function,
a quantity which famously exhibits power law asymptotic
behaviour (“long-time tails”).18,20 Klein et al. have shown
analytically that for a dilute system of Brownian hard-spheres
⟨F(t) · F(0)⟩eq,s ∼ t−

5
2 for long times.

In Fig. 2 we show simulation data for the average swim
speed as a function of density. The red diamonds show the
linear response prediction obtained by using the data of
Fig. 1 in the integral expression (13). This yields a result
for v(ρ)/v0 which is independent of v0. The remaining curves
show data obtained by direct evaluation of (11) using active
BD simulations at three different values of v0. As one might
expect, deviations from linear response occur at lower density
for larger values of v0.

The above observation can be made more concrete by
estimating a region in the (v0, ρ) plane where linear response
breaks down. In Fig. 3 we use our simulation data to map the
locus of points for which the error in the linear response result,
relative to the full active BD simulations, equals 5%. Although
the chosen criterion is somewhat arbitrary, it at least gives a
visual impression of the range of validity of linear response
within the space of our control parameters. The locus of points
shown in Fig. 3 is correlated with the onset of strong spatial
inhomogeneities and phase separation. However, an analysis
of active phase separation would go beyond the scope of the
present work. The linear response formula (13) thus appears to
be reliable for parameter values away from phase separation,
but, beyond this, higher orders in v0 will become important in
determining v(ρ).

FIG. 2. The scaled average swim speed as a function of density. Lines with
symbols: data from direct calculation of (11) using active BD simulations.
Diamonds: the linear response result (independent of v0) calculated using the
equilibrium time correlation function data from Fig. 1 as input to (13).

FIG. 3. The region for which linear response (13) agrees with the result of
active-BD simulations to a relative error less than 5%. ∆v is the difference
between linear response and the active BD simulation result. The breakdown
of linear response is related to the onset of activity-induced phase separation.

To summarize our main findings, we have derived a
formally exact expression (8) for calculating averages in a
system of interacting Brownian particles, subject to a time-
dependent activity v0(t). From this we obtain the linear-
response expression (10) for a time-independent activity.
Application of this result to calculate the average swim
speed yields (13) and identifies the relevant time-correlation
function, H(t), as given by (15). We find that linear response
provides an accurate account of v(ρ) over a large parameter
range, except for those regions of parameter space where
phase separation occurs.

Although we have focused our attention on the linear-
response regime, our exact results could in principle be used
to develop nonlinear theories in the spirit of Refs. 6–8,
which address Brownian particles under external flow. An
important aspect that will be pursued in a future study is the
identification of the range of validity of the linear-response
regime, in particular, how it depends on v0 and Dr. It would also
be interesting to use (8) to investigate the transient dynamics
arising from time-dependent activity, but we defer this line
of enquiry until an experimentally relevant protocol can be
identified. Aside from using an equilibrium integral equation
theory to determine H(0) (inset to Fig. 1(a)), all of the data
presented come from BD simulation. A clear next step is to
investigate approximations to H(t)which enable predictions to
be made from first-principles, without simulation input. Given
relation (19), it seems likely that existing approximations to
the velocity autocorrelation function (e.g., projection operator
approaches) could be usefully exploited.
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