
Sheinman, Sharma, and MacKintosh Reply: The
authors of the preceding Comment [1] raise an interesting
question about ambiguities in defining the Fisher exponent
τ. Ordinarily, such critical exponents are determined by the
behavior in the thermodynamic limit. In the percolation
theory context the number of connected clusters with mass
s scales as [2,3]

ns ∝ s−τ ð1Þ

in the infinite size limit, M → ∞, up to possible logarith-
mic corrections. To estimate the value of τ numerically,
however, one must consider systems with finiteM, together
with an appropriate finite-size scaling consistent with
Eq. (1) as M → ∞. As in the Comment [1], one approach
often used in the percolation literature [3] is

ns ¼ Ms−τf

�
s

Mdf =d

�
; ð2Þ

where d is the dimensionality (d ¼ 2 here) and df is the
fractal dimension of the clusters. The function f ðs=Mdf =dÞ
is constrained to have no power-law dependence is the
regime 1 ≪ s ≪ M and has to vanish for s > M. In random
percolation (RP) df < 2 and τ ¼ d=df þ 1 > 2 [3].
Demanding conservation,

Z
∞

1

snsds ¼ M; ð3Þ

means that Eq. (2) is consistent with (1) only for τ ≥ 2.
Thus, the approach in the Comment [1] presupposes that

τ ≥ 2 and is incapable of identifying possible values of
τ < 2.
For this reason, in addition to the standard RP ansatz, we

also used an ansatz consistent with Eq. (1), while allowing
for possible τ < 2:

ns ¼ Mτ−1s−τf

�
s
M

�
: ð4Þ

This is consistent with Eq. (1), while satisfying Eq. (3) for
τ < 2. In general, with no information about τ being
larger or smaller than 2, one should analyze the numerical
data for both cases. We do this in Fig. 1, e.g., by plotting
sτns=Mτ−1 vs s=M for the case τ < 2. We find good
collapse and near constancy of sτns=Mτ−1 for τ ¼ 1.82
and over a wide range of s=M up to ∼0.1. By contrast,
attempting the same collapse for τ ¼ 2, where both our
ansatz and that of the Comment [1] are equivalent, we do
not find the expected near constancy of s2ns=M. Thus,
while it may not be possible to entirely rule out τ ¼ 2with
significant logarithmic corrections, our results appear to
be more consistent with τ ¼ 1.82. In the inset, however,
we have plotted the distribution log-linear, in a way
closely analogous to the Comment [1]. Here, we do not
find evidence of a logarithmic dependence. Our data are,
in fact, consistent with a weak exponent 0.18, as indicated
by the thick line.
We thank the authors of the Comment [1] for their

interest and the useful discussion of subtleties in interpret-
ing the numerical data. But, we fundamentally disagree
with their approach that tacitly assumes τ ≥ 2.
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FIG. 1. Collapse attempts of the cluster masses distribution of
the NEP model [4] at p ¼ pc using τ ¼ 1.82 < 2 (main figure)
with definition (4) and τ ¼ 2 with equivalent (for this value of τ)
definitions (2) and (4) (inset) for different system sizes (see the
values of

ffiffiffiffiffi
M

p
in the legend). The line in the inset corresponds to

the power law with 0.18 ¼ 2–1.82 exponent.
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