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We present theoretical and experimental studies of the elastic response of fibrous networks subjected to
uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and
collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear
modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/
stiffening of these networks under compression/extension, together with a nonlinear response to shear,
but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain
influences the nonlinear mechanics of fibrous networks. Using a computational network model with
bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for
fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the
experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on
the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary

conditions in determining the mechanical response of hydrogels.

1 Introduction

Proteins, essential molecules of living organisms, can be found
in the form of fibrous networks both inside and outside
the cells."” The cytoskeleton, blood clots and extracellular
matrices of tissues all consist of fibrous protein networks.
The mechanics of these systems depend not only on the elastic
properties of the individual fibres but also on geometrical
properties of the network such as average connectivity, cross-
linking and branching distance.*®*"® One of the generic
mechanical features of these structures is their nonlinear
strain-stiffening behaviour. The nonlinear stiffening is ubiqui-
tous in biological systems and is apparent in the rapid increase
of the material stiffness when subject to strain.*'°>* This
makes them compliant to small deformations and resistant
to large deformations. An increased resistance to large strains
can act as a protection mechanism against tissue damage.'>*"
The property of a strain dependent stiffness of biopolymers has
also inspired recent efforts to create synthetic polymers with
similar properties.>

Several experimental and theoretical studies have focused
on understanding the nonlinear mechanics of filamentous
networks.®>"2433 This striking behaviour can be understood
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for both thermal (entropic) and athermal (enthalpic) models.
Affine thermal models are based on the nonlinear force-extension
relation for individual semiflexible filaments between network
junctions,**** where the entropic stretching of the filaments or
cross-linker proteins leads to a reduction in the amplitude of
the transverse thermal undulations that in turn gives rise to a
dramatic entropic strain stiffening.>*'** The origins of stiffening in
athermal models in contrast lie in non-affine collective deforma-
tion of the fibrous networks composed of interconnected elastic
rods,””?*"*' which can result in a nonlinear mechanical response
at the network level, even for networks composed of purely linear
elastic elements.>**"?%*?

Many experiments have been performed on reconstituted
networks of biopolymers.*®'"'317:21 These constitute a new
class of biological soft matter systems with remarkable material
properties. Moreover, studies on these yield valuable input and
tests for theoretical modeling of extracellular matrices and the
cytoskeleton in vivo,%?224:31,32:43

Although intracellular networks, extracellular matrices and
whole tissues show many similar mechanical properties, there
are several important differences. Extracellular matrices tend to
be much more open structures with larger pore size, making
them more compressible than the typically finer intracellular
meshworks on the same time-scales: as the incompressible fluid
flows in and out, the networks can effectively change their volume.
Also, extracellular biopolymers tend to have a larger persistence
length. This is in particular true of collagen, which forms networks
that can be treated as athermal and fully mechanical*>3"32444



In several studies, the mechanical response of tissues under
compression/extension has been investigated.'®**">* 1t has been
found that tissues exhibit stiffening under compression.*®*¢1-53
In addition, some reports have also reported some stiffening
under extension.'®*®>° Incompressible continuum models and
finite element methods have been exploited to describe such
behaviour.*®%*7>°

In contrast, biopolymer networks, including collagen matrices
similar to the networks in whole tissues soften under compres-
sion and stiffen under extension®’ on time scales long enough
for influx/efflux of interstitial fluid. As we discuss here, one
difference between the two systems, tissues and extracellular
networks, is closely related to the difference in the applied
boundary condition. This behaviour is also completely different
from that of the linear synthetic polymers such as polyacrylamide
that do not show any stiffening for the same range of uniaxial
strains.*”> Here, we consider disordered lattice-based network
models with comparable average connectivities (coordination
number) to real biopolymer networks.”” The networks consist
of bendable and stretchable fibres. By applying a fixed (lateral)
boundary condition on our network under uniaxial strain, we can
account for the mechanical behaviour we observe for reconsti-
tuted fibrin and collagen hydrogels. We also show that applying a
global volume constraint on the network results in stiffening for
both compression and extension.

Here, we focus on the effect of prestress, in the form of
network extension and compression, on the properties of these
networks. These are important aspects that have not received as
much attention as shear rheology in recent work.*® Prestress, in
which residual stresses exist in an unloaded sample, happens
frequently in cells and tissues.”®>® Prestress can be natural and
useful, e.g., in the cardiovascular system, where it can increase
pressure resistance,’® and in cells, where myosin II motors can
increase cell/gel stiffness by the generation of active, internal
stresses.®'®® Moreover, in blood clots, active, contractile stresses
due to platelets are vital for wound closure.®* But, prestress
alteration can also be harmful as in pathologic conditions
including hypertension and atherosclerosis.®>*® Generally, the
mechanical properties of prestressed systems differ from relaxed
systems, due to intrinsic nonlinearities. Experiments have
shown that biopolymer networks polymerized in the rheometer
develop normal stresses.*”> Though the origins of such normal
stress are not always understood, it is evident that the mechan-
ical response of the network is influenced by such initial
stresses.”! It has also been shown that active agents such as
molecular motors acting on networks can give rise to increased
stiffness®*®” and normal stress.®® However, even in the absence
of active agents, normal stresses can arise as in the polymeriza-
tion process or simply due to an initial extension or compres-
sion applied to the network prior to subjecting the network to a
shear deformation. The latter is the approach followed by
ref. 45. Here, we systematically investigate the nonlinear mechanics
of networks that have been subjected to an initial uniaxial
deformation. We focus primarily on a computational model
that can account for experiments in ref. 45, as well as new
experiments presented here. We show that the prestress due to

the initial deformation impacts the linear shear modulus and
the onset of stiffening in the nonlinear shear stiffening curves.

The paper is organised as follows: Section 2 briefly describes
the network model used here. Section 3 concisely explains the
experimental methodology. In Section 4, we show the effects of
prestress in the form of extension and compression on linear
shear modulus and the nonlinear strain-stiffening both in experi-
ments and simulation. We conclude in Section 5 with a brief
summary and present our conclusions.

2 Model

To study the mechanical properties of biopolymer networks, we
employ a minimal model to generate disordered, lattice-based
networks. The networks are based on 2D triangular or 3D face-
centred cubic (FCC) lattices with lattice spacing, [,. Starting
from these networks, we use a phantomization process to generate
phantom networks with a local coordination number or connectivity
z = 4, since higher connectivities are unphysical in experimental
systems for networks consisting of cross-linked fibres (z = 4) and
branching (z = 3). This phantomization is done for 2D networks
by modifying triangular lattices such that at every lattice vertex,
where three fibres cross, one filament is chosen at random and
disconnected from the other two, allowing it to move freely as a
phantom chain with no direct mechanical interaction with other
two filaments.®® For the 3D FCC lattice, where six fibres cross at
each node, we randomly choose three independent pairs of
cross-linked filaments.”® The phantomization procedure, sets
the connectivity of the respective networks precisely to z = 4.
We further dilute the networks by random removal of bonds
(fibre segments) between vertices. This is done to achieve the
desired connectivity z, where 3 < z < 4. It is also possible
to reach this connectivity by only using the dilution process.
The resulting networks are then called 2D diluted triangular
lattices. We also ensure that there are no fibres spanning the
full network.”®

Importantly, this procedure results in a disordered network
structure, in spite of the initial, regular lattice structure. Moreover,
the resulting connectivity lies below the threshold of marginal
stability for purely pairwise central-force interactions in both
2D and 3D, as identified by Maxwell:""”? this threshold is
twice the dimensionality of the system. This means if spring-
like interactions were the only relevant contribution to the
Hamiltonian, these structures should be floppy and unstable.
Networks of biopolymers are, however, stable 3D structures
with average connectivity below this isostatic threshold.”” In
fact, such sub-isostatic networks can be rigid due to additional
103637 internal or applied
or thermal fluctuations.” Here, we include bending
interactions in our model. To reduce any edge effects, periodic
boundaries are imposed with Lees-Edwards boundary conditions.”®

stabilising interactions, such as bending,
stresses®"7>7*

The cross-links or branching points are permanent in our networks
and they hinge freely with no resistance. Prior simulations of
networks consisting of cross-linked or branched fibres,">”””®

with and without freely-hinged cross-links, have shown very
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similar behaviour in mechanical properties for the same average
connectivity z. This suggests that additional bending interactions
at the cross-links, as can be expected for both fibrin and collagen,
will not significantly affect our model predictions.

The filaments in the network are described by an extensible
wormlike chain (EWLC) model (bending and stretching con-
tributions) and the Hamiltonian of the system # is obtained by
summing over all the fibres,*® f:

# =3 Ug zds_,» + Jg (%) 2ds_f} . (1)

Here, x is the bending rigidity of the individual filaments, yu is
their stretch modulus and, 7 and d//dsyare the unit tangent and
longitudinal strain respectively at a point sy along the fibre
contour. Here, we only consider athermal networks, which have
been shown to successfully capture the mechanics of collagen
networks.*"*> Although the individual elements of the model
are linear, the network mechanics are highly nonlinear. The
schematic of the model in 2D is shown in Fig. 1.

The dimensionless bending rigidity is defined as i = «/ (ul?)
which we vary in our networks while keeping 1 = 1 constant. For
3D networks based on FCC lattices, [, is the same as the distance
between the cross-links, l.. For 2D phantom networks, the
average distance between the cross-links is somewhat larger,”
1.4], for z ~ 3.3. Given a homogeneous cylindrical rod
of radius  and Young’s modulus E, from classical beam theory,*°

di

dsy

[ ~

1
u=nr’Eand k = gr“E. From this, i = Zrz/loz, which is propor-

tional to the protein volume fraction ¢, which can be seen as
follows. Within a volume I, in the network, there will be of

Fig.1 2D schematic representation of the model: the network is a 2D
diluted triangular lattice with lattice spacing, lo. Each bond is assumed to
act like a spring with stretch modulus, u. The blue and red colouring of the
filament shows its extension and compression. Fibres can also bend at the
hinges with bending rigidity, x which is shown by the yellow bent fibre. The
dimensionless parameter, fibre rigidity, x is then defined as the ratio
between the bending rigidity, x and stretch modulus, u where [o? is used
for dimensional purposes, & = i/ (ulg?).
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order one fibre segment of volume, mr°l,, corresponding to a
volume fraction®® ¢ ~ r? /> ~ &. Hence, the most relevant values
of & for biopolymer systems range from®"*® 10~ to 107>.
Although « is naturally related to the volume fraction of the
gel, it is not independent of the type of biopolymer. For
instance, given expected differences in the Young’s modulus
and fibre diameter between collagen and fibrin, one cannot
necessarily directly compare, e.g., the ratio of collagen to fibrin
concentrations with a ratio of k values. One can, for a single
polymer type, compare a ratio of concentrations with a corres-
ponding ratio of k values, as shown in both ref. 31 and 32. We
have used these prior references to help us choose appropriate
parameters for collagen. For fibrin, however, we do not have an
independent way of determining k. Thus, this parameter
should be considered to be an undetermined fit parameter.
To find the elastic stresses or responses of these networks,
the relevant deformation is applied to the network and then the
energy is minimised using the conjugate gradient minimisa-
tion method.®* We are in particular interested in shear stress,
g, the storage modulus, G, and normal stress, oy, all of which
are obtained using the minimised total elastic energy, E. Shear
stress is calculated from the derivative of the minimised elastic
energy density E/V of the network, where V is the system area
(volume) in 2D (3D), with respect to the applied shear strain, y:

1 0FE
Vo (2)

[

From this, the storage modulus is obtained as the ratio

O
G==-. (3)

7
The normal stress, oy, is calculated from the derivative of the
energy with respect to uniaxial strain &:

_10E
ON = T/E (4)

Our simulation results are in units of ul~¢, where d is the
dimension of the system. All the simulation results are carried
out on large enough systems sizes to minimise finite size
effects. In an undiluted network, we use in 3D, 30° nodes and
50> nodes in 2D for all the reported results unless otherwise
specified. The probability of existing bonds in 3D networks is
p = 0.85, in 2D phantom networks is p = 0.9 and in 2D diluted
triangular networks is p = 0.58.

In the simulation, both 2D and 3D networks are studied,
although biopolymer networks are inherently 3D structures.
Recent computational studies of the lattice-based networks
have shown remarkable quantitative agreement between 2D
and 3D networks, both in their linear and nonlinear mechan-
ical behaviour, provided that the networks have the same
connectivity z and are below the 2D isostatic threshold.**”°
The elasticity of 2D networks can be mapped to those from 3D by
correctly accounting for the line density’® p oc I3~ Moreover,
the overall elastic properties of lattice- and off lattice-based
network models have been demonstrated to be similar.>"**7°



For comparison with experiments, we use fixed lateral
boundaries, for which the ratio of normal stress to uniaxial
strain gives the longitudinal modulus M = oy/¢ for small strains
¢. These boundary conditions are most relevant to extracellular
networks of collagen and fibrin in a rheometer, for which
the lateral dimension is typically much larger than the axial
dimension (i.e., gap size). For networks that adhere to the axial
boundaries (rheometer plates), this aspect ratio, together with
the open network structure and flow of fluid in and out during
rheological measurements, leads to effectively fixed lateral
boundaries and a vanishing of the (apparent) Poisson ratio.**
Here, we investigate the effect of uniaxial deformation on the
shear and normal stresses and storage modulus of the networks.
To apply uniaxial deformation to our networks, the length of
the system in the direction perpendicular to the shear stress is
initially rescaled. For example, to have a system subject to 10%
compression (extension), the axial length of the system is
decreased (increased) accordingly. After applying this global
deformation, the energy of the network is minimised before
applying any shear measurements. This is similar to having a
system in the prestressed state before these measurements.
Then the effect of this prestress on the linear shear modulus
and nonlinear shear strain-stiffening curves are investigated. It
is important to note that fibrin is known to differ from collagen
at high strain/stress. Fibrin fibers undergo significant and
nonlinear stretching, for which protein unfolding has recently
been implicated.®* ®

3 Experimental

To prepare collagen networks, collagen type 1 (isolated from calf
skin, MP Biomedicals, Santa Ana, CA, USA), 10x phosphate-
buffered saline (PBS), 0.1 M NaOH and ddH,0 were warmed
to room temperature and added in appropriate ratios to yield a
2.5 mg ml* collagen concentration in 1x PBS solution with a
neutral pH. To prepare fibrin networks, fibrinogen (Fbg) stock
solution (isolated from human plasma and plasminogen
depleted, CalBioChem, EMD Millipore, Billerica, MA, USA,)
1x T7 buffer (50 mM Tris, 150 mM NacCl at pH 7.4), CaCl,
stock and thrombin (isolated from salmon plasma SeaRun
Holdings, Freeport, ME, USA) were added at appropriate ratios
to yield 2.5 or 10 mg ml~" fibrinogen, 30 mM Ca®" and 0.5 U
thrombin per mg of Fbg. Samples are polymerized between the
parallel plates of a rheometer or tensile tester. Samples are
completely surrounded by the buffer thus the fluid can flow in
and out freely.

The rheology data were acquired similarly as in ref. 45
Briefly, a strain-controlled rheometer (RFS3, TA Instruments,
New castle, DE, USA) was used in a parallel-plate configuration
with plate diameters of 8 mm, 25 mm or 50 mm. Uniaxial strain
was applied by changing the gap between the plates after sample
polymerization, shear strain was applied by rotating the bottom
plate. The upper plate was connected to a force sensor measur-
ing both torque and normal force. Shear moduli were calcu-
lated by accompanying rheometer software (TA Orchestrator).

Normal stress was calculated by dividing the force measure-
ments by the plate area. Uniaxial strain dependence was tested
by recording the shear moduli and normal force in time, at a
constant frequency of 10 rad s~ ' and low shear strain of 2%,
while applying step-wise uniaxial strain and letting the samples
relax in between steps for 100-1200 seconds, depending on the
sample and step size. The normal stress measurements were
complemented with tensile tester measurements (Instron 5564)
using the same testing set-up as with the shear rheometer.
Shear strain amplitude dependence was tested by applying shear
strain at a constant frequency of 1 rad s~ ', while increasing the
shear strain amplitude logarithmically with 20 pts per decade
starting at 2% shear strain.

4 Results and discussion: elastic
properties of networks under
extension and compression

Under typical physiological conditions, tissues in the body are
constantly subjected to complex deformations. It is thus important
to see how the mechanical properties of such systems vary under
application of both shear as well as axial strain. As mentioned
in the introduction, reconstituted networks of biopolymers are
good candidates for studying real biopolymer scaffolds. In this
work, we investigate the role of prestress generated by the
uniaxial strain on the mechanical properties of extracellular
networks of collagen and fibrin.

We compare experimental results with simulation results
from 2D and 3D networks (see Model section). In order to
compare the results from simulation to our experiments, we
apply fixed lateral boundary conditions. Our 2D and 3D networks
have comparable average connectivities as those observed in the
extracellular networks.’” Both experimental and computational
results show softening for compression and stiffening for exten-
sion (which is different from the results obtained from the
measurements on tissue).’®**3°"3% we focus on the impact of
prestress generated due to the uniaxial strain on the mechanical
properties of these systems. In subsection 4.1 the impact on the
linear shear modulus and in 4.2 the strain-stiffening curves
are considered. In both subsections (4.1 and 4.2), the effect
of uniaxial strain on normal stresses is also investigated. In
subsection 4.3, we discuss the effect of global volume boundary
condition on the simulation results which imposes the incom-
pressibility condition on the networks.

4.1 Effect of prestress on linear shear modulus

We investigate the role of uniaxial strain in the form of extension
or compression on the linear shear modulus. Experimentally, the
samples are subjected to an incremental series of compression/
extension. At any given uniaxial deformation, the dynamic shear
modulus is measured at an amplitude of 2% shear strain and
frequency of 10 rad s~ . In between each compression/extension
step, the networks are allowed to relax for 100 to 1200 seconds
depending on the step size or sample. A tensile tester is used to
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Fig. 2 Normal stress (o) (unfilled blue symbols) and linear shear modulus
(G) (filled red symbols) vs. uniaxial strain (¢): (a) data from measurements on
collagen (2.5 mg ml™) (O) and fibrin (10 mg ml™2) (V).%° The range of linear
shear elasticity is approximately 5-10% in both cases.*® The normal stress is
set to zero before doing the measurements. (b) Data from simulations
on a 3D phantom lattice for two different & values, 1 x 10~ (O) and
1.8 x 1073 (V). (c) Data from simulations on a 2D phantom lattice for two
different & values, 1.1 x 10~* (O) and 2.2 x 10* (V). The data in the three
panels are normalised by the linear shear modulus of the unloaded network
(¢ = 0), Go. In the simulations, network with lower fibre rigidity which
resembles behaviour of collagen, stiffens faster. There is a good qualitative
agreement between theory and experiment.

measure the uniaxial stress of the samples after relaxation for
similar levels of uniaxial strain.

Similarly, in the simulations, the networks are subjected to
successive 1% increments of either compression or extension.
After each step, the energy is first minimised and the normal
stress oy is calculated before measuring the linear shear
modulus. To measure this, small shear strain (1%) is applied
and again the energy of the network is minimised before
applying the next uniaxial strain step. This process continues
over the full £10% uniaxial strain range, with fixed lateral
boundary conditions. The results are shown in Fig. 2. We use
the following sign convention: positive uniaxial strains repre-
sent extension, while negative values indicate compression.
As expected, when the networks are compressed, both experi-
ments and simulations show positive normal stresses, corres-
ponding to compressive stresses that would lead to expansion
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in the absence of applied external stress. In Fig. 2a, normalised
shear modulus G and normal stress oy are shown versus
uniaxial strain ¢ for both 2.5 mg ml™" collagen and 10 mg
ml™? fibrin networks. As can be seen here, the linear shear
modulus changes under uniaxial strain. Both fibrin and col-
lagen samples stiffen under extension but soften under com-
pression.*® Moreover, the collagen samples stiffen more rapidly
under extension than do the fibrin samples.

In the experiments, the normal stress is always set to zero
before doing the measurements. This can be seen from the data
where we have zero normal stress at ¢ = 0 in Fig. 2a. In Fig. 2b,
G and oy for two phantomized 3D FCC networks with fibre
rigidities k = 1 x 107 and & = 1.8 x 1073 are shown. In Fig. 2c,
G and oy for two 2D phantom networks with & = 1.1 x 10~* and
% =12.2x 1073 are plotted. As noted above, & is expected to be
proportional to the volume fraction. Thus, the larger value
implied for fibrin is qualitatively consistent with the higher
fibrin concentration. In Fig. 2, the linear shear modulus of
unloaded networks is used to normalize the curves. These
results are very different from those of tissues.'®*®°0™3
As can be seen in Fig. 2, both 2D and 3D networks agree
qualitatively well with the experimental results. Considering
also prior experimental results in ref. 45, the qualitative beha-
viour of the elastic properties versus uniaxial strain appears to
be rather insensitive to concentration in experiments and to K
in simulations.

The similarity of our results for 2D and 3D networks is
consistent with prior simulations. In ref. 79, for instance, very
good quantitative agreement was shown between 2D and 3D
network shear response, both linear and even highly nonlinear,
provided that one compares networks with the same average
connectivity (z), and one accounts for the effectively different
concentrations of fiber (measured as line length per unit area/
volume in 2D/3D). The strain thresholds were even shown to be
in quantitative agreement between 2D and 3D for networks
with the same average connectivity (z), so long as this is well
below the corresponding isostatic (Maxwell) thresholds in the
respective dimensions. Realistic networks of both collagen
and fibrin satisfy this latter condition for both 2D and 3D. In
what follows, we show primarily simulation results from 2D
networks. We have done this mostly in order to reduce finite-
size effects, since we are able to achieve larger linear dimen-
sions in 2D networks.

In Fig. 2, we note that for positive uniaxial strain ¢ > 0, the
magnitude of the normal stress shows similar behaviour to the
shear modulus: in both the model and experiment, as the shear
modulus G increases under extension, so does |oy|, although
on is negative under (positive) uniaxial strain. In fact, under
extension (¢ > 0), the change in the shear modulus G — G,
relative to the unstrained value G, at ¢ = 0 is predicted to vary
approximately linearly with oy, as shown in Fig. 3a. The
predicted dependence of G — G, on oy is consistent with fibrin
at 2.5 and 10 mg ml ™" indicated in Fig. 3b. In Fig. 3, for
simulations and experiments, both axes are normalised by the
corresponding shear modulus, G,. The resulting dimensionless
data allow for a direct quantitative comparison of simulation



Fig. 3 The normalised increase in linear shear modulus after extension versus the corresponding change in magnitude of normal stress: (a) data from
simulations on 2D diluted phantom triangular lattice with different k. The normalisation is with respect to Gg. The dashed line with slope one represents
(G — Go) = 5|onl, corresponding to a good approximation for & = 1073, This same line is superimposed in (b) showing excellent quantitative agreement
with experiments in that panel. In (b), data (filled symbols) are shown for fibrin samples at 2.5 mg ml™* and 10 mg ml~%. These have also been normalised
by Go. Moreover, the unfilled upright (green) triangle data shows 3D simulation results for a network with & = 10~* and the unfilled inverted (purple)
triangle data are 2D simulation results for a network with the same bending rigidity as that of 3D network.

with experiment. The dashed line in both panels of Fig. 3
corresponds to (G — G,) =~ 5|ay| for & = 1073, which agrees
to within a factor of two with both 2D and 3D simulations for
i = 107*, as well as experiments. Prior work on collagen®" and
model networks with compliant crosslinks®® have also reported
an approximate linear scaling of modulus with the normal
stress. Interestingly, we also observe in Fig. 3 an apparent
systematic difference of approximately a factor of three between
2D and 3D. This may be due to the effectively stronger influence
of lateral boundaries in 3D compared with 2D: in 3D, the fixed
boundaries occur along two lateral axes, while there is only a
single lateral axis in 2D. With this in mind, it may not be
surprising that the experiments appear to be intermediate
between 2D and 3D, since some radial relaxation of the sample
is possible experimentally, which is not accounted for in the
simulations.

4.2 Strain-stiffening and its dependence on prestress

We now consider the following questions: (1) how do the shear
strain stiffening curves change with applied extension and
compression? (2) How does the onset of shear strain stiffening
change for different prestressed states? (3) How does the
normal stress vary when we apply nonlinear shear deformation
to prestressed networks? The samples are first subjected to
an applied static compression/extension in a strain-controlled
rheometer with parallel plates. The uniaxial strain is applied by
changing the gap size between the two plates. As in our previous
measurements, volume change is allowed by surrounding the
sample with solvent. An oscillatory shear strain of constant
frequency of 1 rad s~ with an increasing magnitude is subse-
quently applied. The shear storage modulus is then measured.
In the simulations, 2D and 3D diluted phantom networks are
first compressed/extended with similar amounts of uniaxial

strains as in the experiments, after which the energy of the
network is minimised. Normal stresses are calculated and then
by keeping the uniaxial strain fixed, the network is subjected to
increasing shear deformation from 1% until 100% in logarith-
mic steps. After each shear step, the energy of the system is again
minimised and the storage modulus is calculated.

In Fig. 4a, the strain-stiffening curves from a 2D diluted
phantom lattice with fibre rigidity & = 2.2 x 10~* are shown for
different amounts of uniaxial strains. In Fig. 4b, the nonlinear
strain-stiffening curves from 2.5 mg ml " fibrin samples are
presented for different amounts of prestress. The stiffening
curve for 0% uniaxial strain is also shown in both panels for
comparison. Both simulation and experimental results are
normalised by the linear shear modulus G, of the unloaded
network. As can be seen in Fig. 4, the experimental results show
good qualitative agreement with the simulation results.
Extended networks are stiffer and compressed networks are
softer. The variation in the onset of stiffening for different
uniaxial strains also shows similar behaviour as in the simula-
tion results. By applying compression the onset of stiffening
shifts towards larger strains relative to the case without any
uniaxial load suggesting that nonlinear behaviour is delayed.
The more compressed the sample, the larger the shear strains
at which the nonlinear behaviour is seen. This can be under-
stood within a simple physical picture, in which network
compression results in fibres that buckle or bend due to the
smaller energy cost for bending than compression (see Fig. 5a
and b). This, in turn, results in a reduced end-to-end distance of
the fibres and an excess length®"” (the difference between contour
length and end-to-end distance). This excess length delays the
shear strain onset of fibre stretching. Thus, compression shifts
the onset of stiffening to larger shear strains. In contrast, the
inverse happens for extended networks. The smaller excess
length results in smaller onset of stiffening. The shift in the
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Fig. 4 Normalised storage modulus G vs. shear strain y for networks with imposed uniaxial strains. The results for the unloaded networks are shown for
better comparison. Linear shear modulus Gp of the unloaded sample is used for normalisation: (a) data from simulations on 2D phantom networks
with & = 2.2 x 107*. (b) Data from measurements on fibrin (2.5 mg ml™). The error bars are also shown. The downturn in the curves for strains larger
than ~100% corresponds to sample detachment from the plates. The corresponding data are shown with lighter colors. Strain-stiffening curves are
qualitatively similar for the loaded networks both in experiments and simulation to the unloaded network. The only case which shows a significant
deviation is the most extended network ¢ = 10% where strain-stiffening is less pronounced. Compressed networks start from lower values thus they are
softer. Extended networks lie above the unloaded network and so they are stiffer. The onset of stiffening shifts to the right (higher strains) for the
compressed networks and it shifts to lower strains for extended networks with the exception of the most extended sample ¢ = 10%.

onset to lower strains with the applied extension occurs only
over a limited range of uniaxial extension. Beyond a certain
extension, it appears that the strain threshold for the onset of
stiffening increases with the applied extension. This happens
because beyond a certain extension, no excess lengths can build
up in the fibres. In fact, after a sufficiently large extension, the shear
response of a network can be captured by the affine prediction.
In an affinely deformed network, the elastic response is only
governed by stretching modes for any applied shear strain.

It is informative to look into the variation of the normal
stresses during shear stiffening and compare the results under
varying amounts of prestress. Different studies investigated the
normal stresses of biopolymer networks when sheared. The
normal stresses of these networks are negative under shear*®®”
which are opposite in sign (direction) compared to those
measured from most elastic solids. This is known as the
Poynting effect.*®® From symmetry arguments, the normal
stresses (if analytical) should only be functions of even powers
of y. For low strains, oy ~ > is expected based on symmetry
considerations.*>*”**®” The absolute values of normal stresses
of the same networks as in Fig. 4 and 5 are shown in Fig. 6.
Again, for comparison, the results of the network with no
uniaxial load is also shown. As expected, the normal stresses
from simulation results for networks without uniaxial load
initially show the y”* regime (see Fig. 6a). Extension and compres-
sion loads introduce opposite effects on the uniaxial response of
the network. When networks are extended, they tend to pull the
boundary downward (negative normal stress) while compression
induces an upward (positive normal stress) response. The
normal stress of the compressed networks start from positive
values while the extended ones show negative values for low
shear deformations. With increasing shear strain, the extended
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Fig. 5 Relative energy contributions for a 2D phantom network with
©=122x10"* and different applied uniaxial strain () vs. shear strain,
y (a) relative contribution of total stretching energy to the total elastic
energy of the network (b) relative contribution of total bending energy
to the total elastic energy of the network. By applying extensive
loads, the stretching energy contribution of the network gets larger and
consequently the bending energy contribution gets smaller. In the case
of 10% applied uniaxial extension, the network energy becomes
initially dominated by stretching and one no longer sees a transition from
bend-dominated to stretch-dominated behavior. Indeed, its response is
increasingly becoming affine. The symbols in panel (a) are the same as
in panel (b).



Fig. 6 Absolute value of the normal stress (|an|) vs. shear strain 7 for different applied uniaxial strain (a) data from simulations on a 2D phantom network
with & = 2.2 x 1074, We can see that the normal stresses in the cases with imposed uniaxial compression and extension do not show the expected 72
dependence in the no uniaxial case. (b) Data from measurements on fibrin (2.5 mg ml™). The data corresponding to the downturn in storage modulus
curves (see Fig. 4b) are shown with lighter colors. In both theory and experiment, the normal stresses in the extended networks are always negative but
the normal stresses in the compressed networks change sign from the initial positive to negative values. The dip in the compressed networks show the
sign change of the normal stress. The normal stress values are normalised by the linear shear modulus Gg of the network with no imposed uniaxial strain.

networks show even larger negative normal stresses while the
initial positive normal stresses of the compressed networks
decrease in magnitude, then cross over at zero to switch sign.
The dip in the normal stress of the compressed networks
(in absolute value) show the sign change. It might seem that
the strain at which the sign change of the normal stress occurs
coincides with the onset of stiffening. However we find that it is
not the case. The experimental results shown in Fig. 6b are
similar to those of the model, although the strain threshold for
the sign change for the normal stress is higher by a factor of
approximately five in experiments. Experimentally, the smaller
normal stresses corresponding to lower strains are somewhat
difficult to resolve due to device limitations. The data corres-
ponding to the downturn in storage modulus curves of Fig. 4b
are shown with lighter colors.

It has been demonstrated that for the network without an
imposed uniaxial strain, shear and normal stresses become
comparable at the onset.*"®” In Fig. 7, we show shear stress,
storage modulus and normal stress versus shear strain. We
consider the three cases: no uniaxial strain, compression and
extension. The linear shear modulus G, has been used for the
normalisation. Normal and shear stresses become comparable
at the onset of stiffening. This holds for unloaded and com-
pressed networks (see Fig. 7a and b). However, for extended
networks, this is not the case (see Fig. 7c). Here, at the onset of
stiffening, the shear stress is still smaller than the normal
stress. It is important to note that the onset of stiffening does
not coincide with the shear strain at which normal stress
changes sign as seen in Fig. 7b.

4.3 Tissues and global volume constraint boundary condition

As seen in the previous subsections, experimental and compu-
tational results show softening for compression and stiffening
for extension of biopolymer networks in solvent, which is in

Fig. 7 Comparison of the normalised shear o5 and normal stresses o and
storage modulus G versus shear strain 7. Linear shear modulus Gq of the
unloaded network has been used for all the normalisations. At the onset of
stiffening, normal and shear stresses become comparable for unloaded
networks which has been noticed both theoretically and experimentally
(panel a).3*® This is still the case for compressed networks (panel (b)).
For extended networks, this is not the case (panel (c)).
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Fig. 8 Normalised normal stress (unfilled blue symbols) and shear mod-
ulus (filled red symbols) for 2D phantom triangular ((z) = 3.2) and 2D
diluted triangular networks ((z) = 3.3) both with fibre rigidity, & = 107*
under uniaxial extension and compression with global volume constraint
boundary condition. The data are normalised by the shear modulus at zero
uniaxial strain Go. We see stiffening for both compression and extension.
Here we use networks of 302 nodes.

contrast with experimental reports of stiffening under compres-
sion for tissues.”’>* This property can be seen in our networks if
we apply appropriate boundary conditions for incompressibility,
in which the sample expands (contracts) laterally under uniaxial
compression (expansion). For incompressible 2D networks, the
lateral strain is equal and opposite to the axial strain, corres-
ponding to a Poisson ratio of unity.

In Fig. 8, we have used the 2D network model similar to the
previous subsections with the only difference being the global
volume constraint, to impose the incompressibility condition.
The difference between the two curves is their corresponding
network structure. We show the result for a 2D phantom network
with (z) = 3.2 and a 2D diluted triangular network with (z) = 3.3 for
which this connectivity is reached by random bond removal. We
observe stiffening for both uniaxial compression and extension.
The strain at which stiffening starts (about 5% for 2D phantom
network and about 8% for 2D diluted triangular network) or the
shape (steepness) of the curve is dependent on the network
structure as well as fibre rigidity. In 3D networks, considering
the global volume constraint, the lateral strain is not the same as
axial strain. Despite the Poisson ratio of one half in 3D, one would
expect stiffening for both compression and extension.

5 Conclusions

We have studied the elastic properties of networks to which
uniaxial strain has been applied. Specifically, we studied, both
experimentally and in simulation, normal and shear stresses,
as well as strain-stiffening and the linear shear modulus. The
experimental results from reconstituted networks of fibrin and
collagen have been compared with results from lattice-based
networks with physiological connectivity, in both 2D and 3D.
Networks in both 2D and 3D give similar behaviour for the same
connectivity. In both cases, we find good qualitative agreement with
experiments. In the experiments, the rheometer is surrounded with
buffer allowing for water to freely move in or out. In simulations,
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fixed boundary conditions are used to be consistent with
experiments. By using fixed boundary conditions, applied extension
or compression results in a volume change. Prestress resulting from
the applied extension and compression, strongly affects the network
elastic response. Softening due to compression and stiffening
due to extension are observed for both experiments and simula-
tions. By applying a global volume constraint in order to account
for the volume-preserving aspect of tissue,'® our simulation
results show stiffening for both extension and compression.
The linear shear modulus increases with the normal stress and
exhibits an approximately linear scaling with normal stress both
in experiment and in simulation.

The strong dependence of the mechanics of extracellular
networks on prestress can be expected to have important
consequences for both fundamental tissue mechanics, as well
as for tissue engineering. The softening of compressed samples
and the dependence of the strain onset of stiffening, for
instance, are likely to be important mechanical parameters
for synthetic tissue scaffolds. Network simulations are powerful
techniques to gain more insight into these mechanical para-
meters for the design of such scaffolds and other biocompa-
tible materials.
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