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Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic
networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the
elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational
approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of
rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics.
If they are different, it is not clear which of these represents a better model for biological networks. Here, we
show that both approaches are essentially equivalent for the same network connectivity, provided the networks
are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we
even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic
response. We provide a description of the linear mechanics for both architectures in terms of a scaling function.
We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the
stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the
self-generated normal stresses that develop under deformation. Different network architectures have different
susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening
mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks.

DOI: 10.1103/PhysRevE.93.012407

I. INTRODUCTION

The elastic stress response of living cells and tissues is
governed by the viscoelasticity of complex networks of fila-
mentous proteins such as the cytoskeleton and the extracellular
matrix [1–9]. This property of such biological gels not only
makes living cells and tissues stiff enough to maintain shape
and transmit forces under mechanical stress but also provides
them the compliance to alter their morphology needed for cell
motion and internal reorganization. Unlike ordinary polymer
gels and other materials with rubberlike elastic properties,
however, biological gels behave nonlinearly in response to
deformation. One classic feature is strain stiffening, where a
moderately increasing deformation leads to a rapid increase
in stress within the material. Such is observed in gels of
cytoskeletal and extracellular fibers [6–8,10–19] and in soft
human tissues [20]. Another interesting aspect of elastic
nonlinearity is the so-called negative normal stress. Most solid
materials exhibit what is known as the Poynting effect [21]
where the response is to expand in a direction normal to an
externally applied shear stress. This effect explains why metal
wires increase in length under torsional strain. By contrast,
crosslinked biopolymer gels exhibit the opposite response to
shear deformation, which can be understood either in terms of
the inherent asymmetry in the extension-compression response
of thermal semiflexible polymers or nonaffine deformations in
athermal fiber networks [22–24].

Research on the elastic properties of fiber networks often
aimed to elucidate the microscopic origins of viscoelasticity
has generated significant progress, making way for models
that highlight the importance and interplay of semiflexible
filaments, crosslink connectivity, network geometry, and
disorder. An important consideration when modeling the
elastic response of biological gels with fiber networks is
the inherent instability of the underlying geometry with
respect to stretching. Whether intracellular or extracellular

biopolymer networks are studied, the constituent fibers usually
form either crosslinked or branched architectures [25–27],
corresponding to an average connectivity below the Maxwell
isostatic criterion for marginal stability of spring networks
with only stretching response. Such systems, however, can be
stabilized by a variety of additional interactions, such as fiber
bending rigidity [9,28,29], thermal fluctuations [30], internal
stresses generated by molecular motors [31,32], boundary
stresses [26], or even strain [27,33]. These stabilizing fields
give rise to interesting linear and nonlinear elastic behavior.

Detailed analytical and computational work on the linear
elastic response of networked systems reveals two distinct
regimes: an affine regime dominated by extension or compres-
sion of the fibers and a crossover to a nonaffine one dominated
by fiber bending [34–37]. In addition to fiber elasticity, these
linear regimes are also found to be dictated by network
structure and disorder and can exhibit rich zero-temperature
critical behavior, including a crossover to a mixed regime [29].
Such linear regimes in turn have important consequences to
the nonlinear response where large deformations are involved.
In particular, large stresses applied to a network initially
dominated by filament bending would lead to a strong strain-
induced stiffening response [27], which coincides with the
onset of negative normal stress [22,24].

In general, the variety of computational models to under-
stand certain specific aspects of linear or nonlinear network
elasticity can either be based on off-lattice [24,34–36,38–40]
or lattice structures [29,41–44], which can also be combined
with a mean-field approach [29,37,45,46]. Indeed, much has
been done with lattices to understand linear elasticity, in con-
trast to nonlinear elasticity often studied on random networks.
The advantage of lattice models is the computational efficiency
as well as the relative ease with which one can generate
increasingly larger network sizes. We intend to study nonlinear
elasticity using a lattice-based model and compare with results
on a random network. We begin with a detailed description
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of the disordered phantom network used to study the elastic
stress response of passive networks with permanent crosslinks
[41,42,47]. This model allows independent control of filament
rigidity, network geometry and crosslink connectivity. We
present our results in the nonlinear elastic regime, focusing
on shear stiffening and negative normal stress. Finally we
conclude with implications when using lattice-based models
to understand nonlinear elasticity of stiff fiber networks.

II. MODELING SUBISOSTATIC ATHERMAL NETWORKS

Biopolymers can form either crosslinked or branched
network structures that have average connectivity somewhere
between threefold (z = 3) at branch points and fourfold
(z = 4) at crosslinks [25–27]. If these nodes interact only
via central forces such as tension or compression of springs,
the network rigidity vanishes and the resulting networks are
inherently unstable [48]. However, it is known that these
subisostatic systems can be stabilized by other effects such
as the bending of rigid fibers [28,29,35,49]. In this section,
we describe a minimal model of a subisostatic network in
which the constituent fibers are modeled as an elastic beam the
rigidity of which is governed by pure enthalpic contributions.

A. Network generation

We generate a disordered phantom network [41,42] by
arranging fibers into a d-dimensional space-filling regular
lattice of size W d (number of nodes). We use triangular and fcc
lattices for d = 2 and 3, respectively. The network occupies
a total volume [or area for two-dimensional (2D) lattices]
V = v0W

d , where v0 is the volume (or area) of a unit cell.
Periodic boundaries are imposed to reduce edge effects. Freely
hinged crosslinks bind the intersections of fiber segments
permanently at the vertices, which are separated by a uniform
spacing �0. Since a full lattice has a fixed connectivity of
either zmax = 6 (2D) or zmax = 12 [three-dimensional (3D)],
we randomly detach binary crosslinks (i.e., z = 4) at each
vertex. Starting from a 2D triangular network, this results in
an average distance lc between crosslinks, where lc = 3�0/2,
while lc = �0 for the 3D fcc lattice. In either case, this
procedure creates a network with connectivity z = 4 composed
of phantom segments that can move freely and do not interact
with other segments, except at crosslinks. Thus far, all fibers
span the system size which leads to unphysical stretching
contributions to the macroscopic elasticity. We therefore cut
at least one bond on each spanning fiber. Finally, to reduce the
average connectivity to physical values of z < 4, we dilute the
lattice by cutting random bonds with probability q = 1 − p,
where p is the probability of an existing bond. Any remaining
dangling ends are further removed. The lattice-based network
thus generated is subisostatic with average connectivity 2 <

z < 4, average fiber length L = �0/q, and average distance
between crosslinks lc = �0 for an initial undeformed fcc lattice
and lc � 1.4�0 for an initial triangular lattice with z � 3.2.

Mikado networks are generated by random deposition of
monodisperse fibers of unit length onto a 2D box with an area
W × W . A freely hinged crosslink is inserted at every point
of intersection resulting in a local connectivity of 4. However,
some of the local bonds are dangling ends and are removed

from the network, thus bringing the average connectivity
below 4. The deposition continues until the desired average
connectivity is obtained.

For the rest of this work, we use lc to denote the average
distance between crosslinks for both lattice-based and Mikado
networks. For simplicity and unless otherwise stated, we use
lc = �0 for both 2D and 3D lattice-based networks.

B. Fiber elasticity

In modeling fiber networks, each fiber can be considered
as an Euler-Bernoulli or Timoshenko beam [40,47]. From
a biological perspective, it is important to consider the
semiflexible nature of the fibers to account for the finite
resistance to both tension and bending. When the network is
deformed, any point on every fiber undergoes a displacement
which induces a local fractional change in length dl

ds
and a

local curvature | dt̂
ds

|. The elastic energy thus stored in the fiber
is given by [36]

Hf = μ

2

∫
f

(
dl

ds

)2

ds + κ

2

∫
f

∣∣∣∣ dt̂

ds

∣∣∣∣
2

ds, (1)

where the parameters μ and κ describe the one-dimensional
Young’s (stretch) modulus and bending modulus, respectively.
The integration is evaluated along the undistorted fiber contour.
The total energy H = ∑

f Hf is the sum of Eq. (1) over all
fibers.

Treating the fiber as a homogeneous cylindrical elastic
rod of radius a and Young’s modulus E, we have from
classical beam theory [50] μ = πa2E and κ = 1

4πa4E. These
parameters can be absorbed into a bending length scale
lb = √

κ/μ = a/2. One can normalize lb by the geometric
length lc to obtain a dimensionless fiber rigidity κ̃ = (lb/lc)2,
or

κ̃ = κ

μl2
c

. (2)

As noted in Sec. II A, for simplicity we take lc to be the
lattice spacing �0 of the 2D and 3D lattice-based networks. For
Mikado networks, lc is the average spacing between crosslinks.

In our network of straight fibers with discrete segments, a
midpoint node is introduced on every segment to capture at
least the first bending mode over the smallest length scale lc.
The set of spatial coordinates {rj } of all nodes (i.e., crosslinks,
phantom nodes, and midpoints) thus constitutes the internal
degrees of freedom of the network. Under any macroscopic
deformation, e.g., simple shear strain γ , the nodes undergo a
displacement {rj } → {r ′

j } which induces the dimensionless
local deformations λj = δ�j/�j and θj = |t̂j,j+1 − t̂j−1,j |.
Here, δ�j = �′

j − �j is the length change of a fiber segment
with rest length �j = |rj+1 − rj | and t̂i,j is a unit vector
tangent to segment 〈ij 〉. The fiber then stores an elastic energy
expressed as a discretized form of Eq. (1):

Hf = 1

2

∑
j∈f

(
μ�jλ

2
j + κ

lj
θ2
j

)
,

where lj = 1
2 (�j−1 + �j ). By taking lj � �j � lc, we can

rewrite this equation with an explicit dependence on
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deformation and fiber rigidity as

Hf (γ,κ̃) = μlc
∑
j∈f

Ĥj (γ,κ̃), (3)

where Ĥj = 1
2 (λ2

j + κ̃θ2
j ) is a dimensionless elastic energy

of a fiber segment. Note that the dependence on {λj ,θj } is
accounted for by the macroscopic strain γ .

C. Network elasticity

The network elasticity is determined not only by the
rigidity of the constituent fibers but also by the network
connectivity, which we characterize equivalently by z or the
average crosslinking density L/lc, that is also the number
of crosslinks per fiber. This ratio has been shown to govern
the network’s affine or nonaffine response to the applied
deformation [35,42]. A higher density of crosslinks leads to
a more affine (i.e., uniform) deformation field. By contrast,
fewer crosslinks per fiber allows the possibility of exploring
nonuniform displacements resulting in a nonaffine response
[34,43]. Effectively, the network elasticity can be characterized
by κ̃ and L/lc.

The stress and moduli depend on the energy density U ,
i.e., energy per unit volume. Since the expression for the total
energy involves an integral along the contour length of all
fibers, U is naturally proportional to the total length of fiber
per unit volume. Thus, ρ, together with the energy per length,
μ, set the natural scale for energy density, stress, and modulus.
Thus, we write

U = μρ〈Ĥj (γ,κ̃)〉s = μ

ld−1
c

Ũ(γ,κ̃), (4)

where 〈·〉s is an average over all fiber segments. Expressing ρ

as ρ̃l1−d
c where ρ̃ is a dimensionless number of fiber segments

in a unit volume, we have Ũ = ρ̃〈H̃j (γ,κ̃)〉s. Successively
differentiating Eq. (4) with respect to γ , one obtains σ =
∂U
∂γ

= μρσ̃ (γ,κ̃) and K = ∂σ
∂γ

= μρK̃(γ,κ̃).
In our simulations, the line density ρ is specific to the chosen

network architecture. In the lattice-based networks, we have
ρ̃2D = 6p√

3
and ρ̃3D = 12p√

2
(see Appendices). With lc = l0 in

lattice-based networks, the line density can be easily calculated
for any given bond dilution probability q (see Appendices). For
the off-lattice Mikado network, one can also define an average
distance lc between crosslinks. However, one does not need to
know lc explicitly to calculate the line density ρM of a Mikado
network: ρM = ρ̃M/L, where ρ̃M = nL2 and n is the number
of fibers per unit area [51]. The line density ρ is thus explicitly
known for lattice and off-lattice models and, as we show below,
can be used to draw a quantitative comparison between the two
computational approaches. It also follows that comparison
between simulation results and experiments is possible by
accounting for the line density ρ̃ of the specific network
architecture. In particular, any measured quantity X (e.g.,
stress or modulus) must be compared as X

μl1−d
c

= ρ̃X̃(γ,κ̃), or

as X
μL1−d = ρ̃MX̃(γ,κ̃) in the case of Mikado networks. Since

κ̃ is dimensionless, different network architectures for a fixed
connectivity z can be characterized by their respective ρ̃.

For 3D networks, the dimensionless fiber rigidity κ̃ is also
related to the material concentration in a biopolymer network

through the volume fraction of rods. For any given network
structure of stiff rods, a cylindrical segment of length lc and
cross-section πa2 occupies a volume fraction φ = πa2ρ ∝
a2/l2

c . Since the fiber rigidity κ̃ = κ/μl2
c ∼ a2/l2

c , we obtain
κ̃ ∝ φ. Indeed, it has been shown that reconstituted collagen
network mechanics is consistent with a reduced fiber rigidity
κ̃ that is proportional to the protein concentration [26,27].

To explore the elastic response of the network, the volume-
preserving simple shear strain γ is increased in steps over
a range that covers all elastic regimes, typically from 0.1 to
1000%. At each δγ strain step, the total elastic energy density
is minimized by relaxing the internal degrees of freedom using
a conjugate gradient minimization routine [52]. Lees-Edwards
boundary conditions [53] ensure that the lengths of segments
crossing the system boundaries are calculated correctly. From
the minimized total elastic energy density, the shear stress
σ and differential shear modulus K are evaluated. We also
determine the normal stress τ = ∂U

∂ε
|
γ

where ε is a small
uniform deformation applied normal to the shear boundaries.
Measuring these quantities allows us to characterize the elastic
regimes of the network which depends on the rigidity of the
constituent fibers, the average density of crosslinks, as well as
the applied deformation.

One can immediately identify different elastic regimes from
the stiffening curves in Fig. 1(a): (i) a linear regime at low
strain for which K = G is constant and (ii) a nonlinear regime
showing a rapid increase of K for γ � γ0 where γ0 is the
strain at the onset of nonlinearity. For networks with longer
fibers and higher L/lc, the strain γ0 shifts to lower values.
The linear modulus G reveals two distinct regimes as shown
in the inset: (1) a bend-dominated regime with G ∼ κ̃ and
(2) a stretch-dominated regime at high κ̃ , where bending is
suppressed and the response is primarily due to stretching,
i.e., G ∼ μ. Finally for large strains γ � γc, which is the
critical strain for which a fully floppy κ = 0 network develops
rigidity, the stiffness grows independently of κ̃ as stretching
modes become dominant. Here, the stiffening curves converge
to that of the κ = 0 limit. This convergence is indicative of
the ultimate dominance of stretching modes over bending for
strains above γc (see Sec. IV).

Interestingly, we find that the characteristic features of
stiffening are remarkably insensitive to local geometry (i.e.,
Mikado versus lattice based) and even dimensionality, for
networks with the same average connectivity z. This holds,
however, only below the respective isostatic thresholds, which
are different in two and three dimensions. Specifically, we
show in Fig. 1(b) that 2D Mikado and 2D lattice-based
networks of the same z show even quantitative agreement,
once we account for the difference in fiber density μρ̃.
By simply rescaling the stiffness with ρ̃, it seems that any
explicit dependence of stiffness on the local geometry is
factored out. Figure 1(c) shows a similar insensitivity to
dimensionality, again accounting for network density ρ̃. This
is even more apparent when plotting the normalized linear
modulus G/ρ̃ versus κ/μl2

c with the actual lc for 2D and 3D
lattices, as shown in the inset to Fig. 1(c). As noted in Sec.
(II A), we defined the reduced bending rigidity κ̃ = κ/(μ�2

0)
for lattice-based networks, although the average distance lc
between crosslinks is somewhat larger than the lattice spacing
�0 by the construction of our 2D lattice-based networks. Taking

012407-3



A. J. LICUP, A. SHARMA, AND F. C. MACKINTOSH PHYSICAL REVIEW E 93, 012407 (2016)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0 (a)

K

10
−5

10
−4

10
−3

10
−2

10
−1

K
/
ρ̃

(b)

10
−3

10
−2

10
−1

10
0

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

γ

K
/
ρ̃

(c)

FIG. 1. (a) Stiffness K of a 2D lattice-based network as a function
of the macroscopic strain γ . The black data correspond to L/lc = 3
(z = 3.2) while the red data are for L/lc = 9 (z = 3.8). In both
cases, the stiffness is constant for low γ . At the onset of nonlinear
stiffening marked by green symbols, K increases rapidly until γ =
γc, defined in the limit of κ̃ = 0 (blue dashed curves). For γ � γc,
all curves collapse as stiffening is independent of κ̃ and dominated
by fiber stretching. The strain γ0 at the onset of nonlinearity shifts
to lower strains with increasing L/lc. Inset: The linear modulus G

plotted as a function of fiber rigidity κ̃ also shows two elastic regimes:
G ∼ κ̃ (dashed line of unit slope) and G ∼ κ̃0 (solid horizontal line).
Symbol colors represent the same L/lc values in the main plot. (b) 2D
Mikado (green data, L/lc = 11, z = 3.6) and 2D lattice-based (blue
data, L/lc = 6, z = 3.6) network simulations normalized by their
respective ρ̃, show the same qualitative behavior. (c) Stiffening curves
from 3D (gray data) and 2D (black data) lattice-based networks, both
with z = 3.2 show the same qualitative behavior as well as the same
γc. The 3D and 2D data are each normalized by ρ̃3D and ρ̃2D. Inset: For
the same z = 3.2, the normalized linear modulus G/ρ̃ in 2D networks
becomes virtually indistinguishable from 3D networks when plotted
vs κ/μl2

c , using the average distance lc between crosslinks, i.e., lc �
1.4�0 in 2D networks and lc = �0 in 3D networks.

the actual values of lc for 2D (�1.4�0) and 3D (�0) networks
at the same z = 3.2, one obtains an almost perfect collapse
of the data. Moreover, for the same connectivity (<4), even
the strain thresholds γ0 and γc agree between Mikado and 2D
lattice-based networks, and between 2D and 3D lattice-based
networks [26,27].

III. LINEAR REGIME

The linear regime is characterized by a constant modulus G

over the range of γ < γ0. As mentioned above and shown in
the inset of Fig. 1(a), the linear modulus exhibits two distinct

regimes: a bend-dominated one in which G ∼ κ̃ and one in
which G is independent of κ̃ and is a stretch-dominated regime
where G ∼ μ. The crossover between the two regimes has
been shown to be governed by a nonaffinity length scale λNA,
which is determined by lc, lb as follows [35,36,42]:

λNA = lc

(
lc

lb

)ζ

. (5)

The exponent ζ depends on the network structure and the
ratio L/λNA determines the crossover between the elastic
regimes as

G

GAFF
∼

(
L

λNA

)2/ζ

, (6)

where GAFF is the modulus in the affine limit. In our lattice-
based networks, GAFF ∼ μ�1−d

0 . For λNA � L, the modulus is
governed by bending modes in the network. On the other hand
for λNA < L, the modulus is governed by stretching modes.

Using mean-field arguments, [36] found that ζ � 2/5 for
off-lattice 2D Mikado networks, while for 3D fcc lattice-based
networks [42] found that ζ = 1. Here, we focus on 2D lattice-
based networks and show that ζ = 1, as for the 3D fcc-based
networks in [42]. In Fig. 2(a), we show G/GAFF versus L/λNA.
As can be seen, data obtained for different values of L/lc
collapse on a master curve with slope 2/ζ = 2. Significant
deviation from the master curve is seen for data corresponding
to relatively small values of L/lc. This has been observed in a
previous study on 3D fcc networks where such is attributed to
a different scaling for networks in the vicinity of the rigidity
percolation regime [42]. However, on replacing L by (L −
Lr), where Lr ≈ 2.94 is the average fiber length at rigidity
percolation, we obtain an excellent collapse for all values of
L/lc with slope 2/ζ = 2 [Fig. 2(b)]. It follows from the above
correction that in the linear regime G/GAFF ∼ κ(L − Lr)2

as shown in the inset of Fig. 2(b). The scaling G/GAFF ∼
κL2 is known for 3D fcc lattice-based networks for L � Lr

[42]. Interestingly, such scaling behavior has been observed in
experiments on hydrogels [54]. As we show above, the same
scaling holds in 2D lattice-based networks.

With ζ = 2/5, the modulus of off-lattice Mikado networks
can be quantitatively captured by Eq. (6) [35,36]. The mean-
field argument implicitly assumes that the nonaffinity length
scale is larger than the bending correlation length which is
given by

λb = lc

(
lb

lc

)ζ

. (7)

Moreover, both λNA and λb are assumed to be larger than lc. It
has been previously pointed out that in the limit of very flexible
rods or for low concentrations Eq. (7) would predict λb < lc,
which is an unphysical result [36]. Thus when lb/lc becomes
very small, by fixing λb = lc, one obtains ζ = 1 and λNA =
l2
c/lb. Since the nonaffinity length scale obtained under the

assumption of λb = lc is the same as found in lattice-based 2D
and 3D networks, it seems that indeed the bending correlation
length is very close to lc. One does not expect this to hold
for L approaching Lr where highly nonaffine deformations
would include bending that occurs on length scales much larger
than lc. However, as we show above, by making an empirical
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FIG. 2. Collapse of linear modulus with nonaffinity length scale (a) without and (b) with Lr correction. Red symbols represent networks in
the vicinity of the rigidity percolation regime. The inset of (b) shows the collapse of the linear modulus with κ̃(L − Lr).

correction to the length, i.e., replacing L by (L − Lr), the
scaling Eq. (6) is extended all the way up to the minimum
length Lr required for rigidity percolation.

As shown above, the primary difference between the
two types of network structures, lattice and off-lattice, is in
their bending correlation length. However, with appropriately
chosen exponent ζ , the linear modulus from both off-lattice
and lattice-based networks can be quantitatively captured
by Eq. (6). Thus, we conclude that Eqs. (5) and (6) give
a unified description of the linear mechanics of fibrous
networks independent of the detailed microstructure. In the
next section, we focus on the stiffening regime, γ0 � γ � γc.
We demonstrate that independent of the details of the network,
the nonlinear mechanics can also be described in a unified way.

IV. NONLINEAR REGIME

The shear and normal stresses are shown in Fig. 3(a). In
the linear regime, σ is linear in strain while τ is always
negative and quadratic as expected from symmetry arguments
[21–24]. The negative sign in the normal stress is characteristic
of biopolymer gels and has been observed in experiments
[22], where it was attributed to the asymmetric thermal force-
extension curve of the constituent fibers [55] or to nonaffine
deformations of athermal networks [56–58], which lead to an
effective network-level asymmetry in the response [23,24].
For very low strains, σ ∼ γ and −τ ∼ γ 2. As γ increases, the
shear and normal stresses become increasingly comparable in
magnitude. We define γ0 as the strain at which |σ | = |τ |, above
which both stresses rapidly increase as the strain approaches
γc. For γ > γc, both stress curves converge to their respective
κ = 0 limits similarly observed for the K versus γ curves in
Fig. 1. In the large strain limit, the shear response is again linear
in strain, while the normal response approaches a constant.

An interesting feature of the strain stiffening regime can
be observed in the K versus σ curves shown in Fig. 3(b),
which reveal two distinct nonlinear stiffening regimes: a bend-
dominated stiffening initiated by the points (σ0,K0) at the
onset strain γ0 which proceeds to stiffen as K ∼ σ α , with α

increasing for decreasing κ̃ [lower inset of Fig. 3(b)]; and a

stretch-dominated stiffening where all curves converge to K ∼
σ 1/2 [24,41,59]. These results are consistent with previous
theoretical work showing an evolution of exponents from α �
1/2 through 1 and higher values with decreasing κ̃ [41]. Such
an evolution of the stiffening exponent with fiber rigidity is also
consistent with recent experiments on collagen networks [26].
In contrast to what has been proposed in [60,61], however, our
results show that there is no unique exponent α = 3/2 in the
initial stiffening regime.

A. Onset of strain stiffening

As mentioned above, the strain γ0 at the onset of stiffening
is characterized by the points of stiffness K0 scaling linearly
with shear stress σ0. This feature can be understood as follows.
At low stresses, the elastic energy density is dominated
by soft bending modes and therefore G ∼ κ̃ (Fig. 1, inset)
[62,63]. Moreover, these networks stiffen at an onset stress
σ0 proportional to κ̃ [Fig. 3(a), inset], which coincides with
the onset of fiber buckling [24,38]. From these observations,
together with the fact that K and σ have the same units,
it follows that K0 ≈ G and σ0 should depend in the same
way on network parameters. Thus, the points (σ0,K0) should
exhibit a linear relationship, as seen in networks for κ̃ �
10−2, which means that in these bend-dominated networks
the onset strain γ0 ∼ σ0/K0 is independent of κ̃ [inset,
Fig. 3(b)]. The independence of γ0 on material parameters
such as fiber rigidity or concentration suggests that there is
no intrinsic length scale besides lc that governs the response
in the stiffening regime. This κ̃-independent regime is fully
describable by a network of floppy ropelike fibers, and can
be captured by our κ̃ = 0 limit. In what follows, we will first
derive the onset of nonlinear stiffening in this limit using pure
geometric relaxation arguments to obtain γ0 → γg. We then
build up from this result to obtain a generalized γ0 for networks
of finite κ̃ .

Stiffening should therefore be understood in purely geo-
metric terms as follows. In a network with bend-dominated
linear elastic response, any fiber can relax its stored stretching
energy by inducing bend amplitudes to the fiber strands
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FIG. 3. (a) Shear stress σ (i) and negative normal stress −τ (ii) as a function of γ and κ̃ in a 2D lattice with L/lc = 3, z = 3.2. In the linear
regime, |σ | ∼ γ and |τ | ∼ γ 2. The stresses at the onset strain γ0 of stiffening are indicated by green symbols interpolated by the green dashed
schematic curve. The blue arrow marks the critical strain γc. Red data are from the Mikado simulation with L/lc = 11, z = 3.6. Inset: At the
onset of stiffening, −τ0 ≈ σ0, where both scale linearly with κ̃ . (b) Stiffness K as a function of shear stress σ for different κ̃ in the 2D lattice.
The lines connecting the data points only serve as visual guides. The green points correspond to (σ0,K0) at γ0 and are replotted in the inset
(upper panel) for all κ̃ . Networks first undergo K ∼ σ α stiffening (green dashed lines) followed by K ∼ σ 1/2 (blue dashed line). The lower
panel of the inset shows the evolution of the stiffening exponent α with fiber rigidity.

directly connected to it (Fig. 4). When a strand fi undergoes a
backbone relaxation γL, it induces on strand fj a transverse
displacement δ′L ∼ γL and a longitudinal displacement (i.e.,
end-to-end contraction) δ′′�, both related as δ′′� ≈ δ′L2/lc

FIG. 4. (a) Schematic showing two interacting fiber strands fi

and fj before (green) and after (red) relaxation. Circles denote points
of mechanical constraints also shown before (blue) and after (yellow)
relaxation. The backbone relaxation δ′L of fi (green arrows) induces
bending angles θ and longitudinal displacements δ′′� (red arrows) on
fj , and vice versa. (b) A simplified diagram of the interacting strands
before (dashed lines) and after (solid curves) relaxation shows the
geometric relation between the coupled displacements δ′L and δ′′�
(gray triangle).

for small relaxations. These displacements are coupled since
the longitudinal contraction of fj relaxes the stretching
energy which it would have acquired from the transverse
bending displacement. Similarly, the backbone relaxation of
fj induces the same coupled displacements on fi . To a first
approximation, the total contraction of a fiber is given by the
sum δ′′L = ∑L

lc
δ′′� ≈ (L

lc
)δ′′� ∼ γ 2L3/l2

c . For an isotropic
network, the maximum strain γg at which the displacements
are purely governed by these geometric relaxations is when
δ′′L ≈ δ′L. This maximum strain sets the onset of stiffening
for floppy networks:

γ0 −→
κ̃→0+

A

(
lc

L

)2

≡ γg, (8)

where A ≈ 1. This result shows that the onset of stiffening
in floppy networks is determined by the crosslinking density
L/lc. Indeed, if there are on average few mechanical con-
straints attached to a fiber, the network can be deformed over
a greater range where geometric relaxations can be explored.

In the linear regime where fiber relaxations mainly induce
bending displacements θ ∼ δ′L/lc, the elastic energy of the
network should be dominated by fiber bendingH(b)

0 ∼ κ
lc

( δ′L
lc

)2.
However, we have seen from the above geometric picture
that longitudinal displacements δ′′L couple to the transverse
displacements. This higher order contribution to the bending
displacement is taken into account as θ ∼ δ′L

lc
+ δ′′L

lc
such that

H(b)
0 ∼ κ

lc

(
γL

lc
+ γ 2L3

l3
c

)2

. (9)

One recovers Eq. (8) when higher order contributions to θ

become significant. This suggests that the onset of stiffening
γ0 is not characterized by the dominance of stretching modes
in the total energy. This is in contrast to earlier studies in
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FIG. 5. (a) Average fiber excess length normalized by γ 2 vs
strain. The linear regime and two stiffening regimes are indicated
as I, II, and III, respectively. (b) Relative contributions of bending
energy to the total elastic energy of the network vs strain and fiber
rigidity. In regimes I and II, the total energy is dominated by bending
contributions. (c) Stretching contributions become important only at
strains γ > γc (III). Inset: In the linear regime, H(b)

0 ∼ κ̃ in networks
with bend-dominated linear elasticity while H(s)

0 shows a quadratic κ̃

dependence.

which the onset of nonlinearity was attributed to a transition
from bending- to stretching-dominated behavior [38].

The contribution of higher order bending amplitudes should
correspond to a rapid increase in excess lengths, so called
because it is a length over which one can pull an undulated
fiber without stretching its backbone. For a fiber strand with
contour length lc and local end-to-end length l (i.e., distance
between adjacent crosslinks), we define the excess length as

δŁ =
{

δ′′� ∼ δ′L2/lc, l < lc

0, l � lc
. (10)

As bending amplitudes develop on the strands with increasing
γ , excess lengths build up as γ 2 in the linear regime. We
have verified this from our simulations [Fig. 5(a)]. Indeed, the
linear regime (I) shows 〈δŁ〉/γ 2 ∼ const., followed by a rapid
buildup near γ0 (II) which peaks at γc. For γ � γc, the average
excess length saturates to a constant (III), as one might expect
for a network of stretched fibers.

The relative contributions of bending and stretching energy
to the total elastic energy are shown in Figs. 5(b) and 5(c). As
can be seen in both the linear (I) and the first stiffening (II)
regimes, the total energy is dominated by fiber bending. We
assume that any remaining stretching energy in a fiber strand

should scale as H(s)
0 ∼ μlcε

2
r in the linear regime, where εr

is some small residual strain which we shall now determine
self-consistently. The bending energy in the linear regime

scales accordingly asH(b)
0 ∼ κ

lc
( (γ−εr )L

lc
)
2
. Minimizing the total

energy, we obtain εr = L2

1+L2 γ ≈ γL2, whereL ≡ (lbL)/l2
c �

1 for floppy networks. The stretching and bending energies
stored in the fiber strand can now be obtained in the linear
regime to leading order as

H(s)
0 ∼ μlcε

2
r ≈ κ2L4

μl7
c

γ 2, (11)

H(b)
0 ∼ κ

lc

(
(γ − εr )L

lc
+ (γ − εr )2L3

l3
c

)2

≈ κL2

l3
c

γ 2. (12)

Both energy contributions scale quadratically with strain
in the linear regime and are confirmed by our simulations
[Figs. 5(b) and 5(c)]. Furthermore, the stretching contribution
in floppy networks is highly suppressed because of the strong
κ2 dependence [inset, Fig. 5(c)]. This is in contrast to what
has been pointed out in a previous study [42] that H(s)

0 ∼
μγ 4L4/l3

c . In the case of networks with finite fiber rigidity,
then Eq. (12) dictates that at the onset of stiffening γ = γ0,
when the higher order bending term becomes comparable to
the linear term, we have

γ0 � γg + Bκ̃, (13)

where B ≈ 28. In the asymptotic floppy network limit where
κ̃ → 0, the onset of stiffening γ0 is determined purely by γg

[Eq. (8)] as shown in Fig. 6(a). This floppy limit is indicated
by the finite range in κ̃ over which γ0 is constant [Fig. 6(b)].
Indeed, the data from networks with different L/lc show a
good collapse of Eq. (13) [Fig. 6(c)]. We note here that for
large values of κ̃ the onset of nonlinearity should be dictated
by the affine limit at which such rigid fibers are aligned with
a 45◦ angle corresponding to 100% strain. Indeed, Figs. 6(b)
and 6(c) show that the onsets of stiffening in networks of rigid
rods saturate to γ0 → 1.

B. Stress-controlled stiffening

Three key points that characterize network stiffening in
regime II of Fig. 5 are (i) bending modes still dominating
fiber stretching since the onset of nonlinearity is not a bend-
stretch transition, (ii) nonlinear buildup of excess lengths,
and (iii) normal stress being negative and comparable in
magnitude to the shear stress. To understand the latter, consider
the mean-field representation of the network in Fig. 7. Treating
the fibers as bendable rods, every rod exerts a force of mag-
nitude F ∝ μεr on an arbitrary xz plane parallel to the shear
boundary. In the floppy network limit, the forces parallel and
normal to the plane are F‖ ∼ κL

l4
c

(δ′L + δ′′L + . . .)‖ and F⊥ ∼
κL
l4
c

(δ′L + δ′′L + . . .)⊥, where other higher order relaxations
can be taken into account. The contribution from the connected
fiber segments a and b to the shear and normal stresses are,
respectively, σ ≈ (Fa + Fb)‖/ld−1

c and τ ≈ (Fa + Fb)⊥/ld−1
c

(see Appendices). Using the expressions for the force com-
ponents including higher order corrections (see Appendices)
and taking into account the appropriate signs relative to the
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FIG. 6. (a) The onset of nonlinear stiffening of a floppy network
with lb/lc � lc/L shifts to lower strains with increasing L/lc as
predicted by Eq. (8). (b) Fiber rigidity dependence of (i) γ0 for
different L/lc in a 2D lattice: L/lc = 3 (◦), L/lc = 6 (�), L/lc = 9
(♦), L/lc = 15 (�). Also shown for comparison are results from a
3D lattice (×) with L/lc ≈ 3 and 2D Mikado (+) with L/lc ≈ 11.
The dashed curves are a fit of Eq. (13). The constant level in the limit
of κ̃ → 0 shows the value of γg predicted by Eq. (8). The onset strain
γ0 subsequently increases linearly with increasing κ̃ according to
Eq. (13). (c) Collapse of the data from the upper panel using Eq. (13).

coordinate system shown in Fig. 7, we have

σ ≈ κL2

ld+3
c

γ +
(

L

lc

)2
κL4

ld+5
c

γ 3, (14)

τ ≈ −κL4

ld+5
c

γ 2 −
(

L

lc

)2
κL6

ld+7
c

γ 4. (15)

Thus, for floppy networks at the onset of nonlinearity (i.e.,
γ = γ0 � γg) we obtain the result that σ ≈ |τ | ∼ κ/ld+1

c .
Furthermore, taking K = ∂σ

∂γ
in combination with |τ |, we

obtain the stiffening relation [26]:

K � G + χ |τ |, (16)

with linear modulus G = κL2/ld+3
c and the susceptibility

χ = (L/lc)2 ∼ γ −1
0 . (17)

This indicates that the stiffness is dominated by G ∼ κ in
the linear regime while the normal stresses provide additional
stabilization in the nonlinear regime. Figure 8 shows the
susceptibility to the normal stress as a function of the
crosslinking density and fiber rigidity. The floppy network
limit clearly shows the relation χ ∼ γ −1

0 .

FIG. 7. On the left is a schematic of the sample with the shear σ

and normal τ stresses acting on the xz plane. Bold arrows indicate
the stresses. The coordinates are chosen such that the internal shear
stress in response to the applied external shear stress σext is positive.
On the cutaway view shown at the right, the dashed lines represent
fibers before relaxation while solid curves represent the fibers after
they have undergone the coupled relaxations δ′L (green arrows) and
δ′′L (red arrows). The lateral sample dimensions �x and �z can be
expressed in terms of the periodicity Nx and Nz of fiber segments
with typical spacing lc.

To test the stiffening relation in Eq. (16), we compare
K with G + χ |τ | and plot them with σ shown in Fig. 9(a).
Indeed, the linear regime is characterized by G ∼ κ̃ where
the magnitudes of the normal stresses are not significant
compared to the shear stresses. In the stiffening regime, there
is excellent agreement between K and G + χ |τ |. As can be
seen in Fig. 9(a) data from the mikado network also follows the
stiffening relation in Eq. (16). As in the case of lattice-based
networks, the susceptibility of off-lattice networks to normal
stress is the inverse of the stiffening strain. Since the stiffening
strain depends on the network architecture, it appears that
the stiffening relation in Eq. (16) together with a network
architecture-dependent susceptibility comprises a general re-
lation to describe the nonlinear stiffening of disordered elastic
networks. As a final confirmation, we perform an additional
relaxation of the networks by releasing the normal stresses.
Indeed, when we relax the normal stresses, the stiffness drops
to the level indicated by the linear modulus [Fig. 9(b)]. This is
a clear indication that the normal stresses control the nonlinear
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FIG. 8. Susceptibility to the normal stress in the nonlinear regime.
As the fiber rigidity decreases, Eq. (17) is valid for increasingly larger
range of L/lc.
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FIG. 9. (a) Stiffness vs shear stress (filled symbols) for a network with L/lc = 3 (blue) and L/lc = 9 (red) compared with the the stiffening
hypothesis in Eq. (16) (empty symbols) show that normal stresses stabilize the bend-dominated nonlinear regime. Results from 2D Mikado
simulations with L/lc = 11 are shown in black. (b) Stiffness vs shear stress (filled symbols) for a network with L/lc = 3. When the shear
boundaries are relaxed, the stiffness drops to the level indicated by the linear regime (open symbols).

stiffening of these networks. Moreover, the onset of stiffening
with free normal boundaries occurs near γc at the beginning of
regime III in Fig. 5, which is also the regime where stretching
dominates, as shown in that figure. Importantly, throughout
the stiffening in regime II, the bending energy still dominates
the stretching energy.

V. DISCUSSION

Here, we have studied the elastic behavior of subisostatic
athermal fiber networks. Athermal fiber networks can be
used to model the mechanics of biological networks such as
collagen. It is a priori not clear whether one needs to take into
account the detailed microstructure of a biological network
in a computational model to capture the mechanics. Most of
the computational studies are based on lattice-based [29,41–
44] or off-lattice based network structures [24,34–36,38,39].
The primary advantage of a lattice-based approach is the
computational efficiency. By contrast, off-lattice networks,
though computationally intensive, would appear to be more
realistic, in the sense that the network structure has built in
spatial disorder that is a key feature of biologically relevant
networks. Here we show that despite the structural differences
these two approaches can be unified and are equally suited to
describe most aspects of the mechanical response of athermal
fiber networks. We show that the elastic modulus in the linear
regime, for both lattice- and off-lattice-based networks, can
be fully characterized in terms of a nonaffinity length scale
λNA [35,36,42], which depends on the underlying network
structure. The scaling relation in Eq. (6) with the network-
dependent exponent ζ captures the crossover behavior of the
linear modulus of a network. The nonaffinity length scale can
be derived for a given filamentous network using mean-field
arguments [35,36]. However, we show that with an empirical
correction, replacing the filament length L by L − Lr, the
scaling relation Eq. (6) can even capture the linear mechanics
of networks close to the rigidity percolation where non-mean-
field behavior is expected. Our computational approach is

based on networks which are composed of discrete filaments
allowing for an unambiguous and intuitive definition of the
nonaffinity length scale λNA. However, the concept of the
nonaffinity length scale can be extended to branched networks
by considering the average branching distance.

Previous computational studies on both lattice and off-
lattice-based networks have reported that the transition from
the linear to nonlinear regime under strain is marked by an
initial softening of the modulus [24,38,64]. The softening
occurs due to buckling of the filaments under compression.
However, to our knowledge, experimental demonstration of the
softening has remained elusive. We suggest that the buckling-
induced softening is an artifact of simulations. We show that
on introducing undulations in the discrete filaments no such
softening is seen in the simulations (Fig. 10). Under compres-
sion, the undulating filaments undergo increased bending but
do not buckle. It is expected that in any biological network the
filaments exhibit undulations, either from defects or prestress,
and hence would not demonstrate buckling-induced softening
under strain.

The onset of the nonlinear regime is marked by a stiffening
strain γ0 at which the normal stress becomes comparable to the
shear stress. We derive γ0 using only geometric arguments and
demonstrate that for bend-dominated networks our expression
is in excellent agreement with the simulations. In a bend
dominated network, with increasing strain, the bend amplitude
increases. The increase in bend amplitude is coupled to the
longitudinal contraction of the filament along its backbone.
When these two displacements, namely, the contraction along
the backbone and the bend amplitude, become comparable,
nonlinear stiffening sets in such that any further strain induces
stretching of filaments in addition to bending. We also
demonstrate that the above geometric argument immediately
leads to normal stress becoming comparable to the shear stress
at γ0. Obtaining γ0 as the strain at which normal and shear
stresses become equal provides an unambiguous definition
of the onset of stiffening. Our derivation of γ0 is purely
geometrical and can be considered to hold only in the limit
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FIG. 10. For networks with high connectivity and crosslinking
density such as in a 2D lattice with z = 3.8 and L/lc = 9 [filled
symbols are the red data set from Fig. 1(a)], an apparent “softening”
of the network is observed as K dips slightly relative to G. This
artifact is not present for lower z and L/lc [black data set in Fig. 1(a)]
or when undulations are introduced to the fibers (open symbols) by
applying a small uniform macroscopic compressive strain (ε < 1%)
normal to the network boundaries.

of vanishing bending rigidity. We derive an expression for
the stiffening strain for finite bending rigidity and show that
it can accurately describe the onset of stiffening for even
those networks which are not bend dominated in the linear
regime. The onset of stiffening strain, as expected, reduces
to γ0 in the limit of vanishing bending rigidity. Experimental
determination of γ0 is based on an arbitrary criterion such as the
strain at which the differential modulus becomes three times
the linear modulus [26]. However, the advantage of defining
γ0 based on stress could be nullified in experiments due to the
ambiguity in determining the normal stress. Any prestress in
the network would offset the normal stresses generated in the
network under strain.

In the nonlinear regime, for γ > γ0 both bending and
stretching energies increase faster than a quadratic dependence
on the strain which manifests itself in a rapid increase in
the modulus with strain. At a certain strain γc > γ0, the two
energies become comparable to each other. The nonlinear
mechanics in the range γ0 � γ � γc are controlled by normal
stress in the network. We show that the elastic modulus
increases in proportion to the normal stress. The observation
that the modulus scales linearly with the normal stress is
reminiscent of the stabilization of floppy networks under
normal stress. Fiber networks, in the absence of bending
interactions, are floppy and can be stabilized by several fields
[27–33] including normal stress. The normal stress can be
generated internally by molecular motors [31,32] or externally
by subjecting the network to a global deformation [65,66].
Independent of the origin of the normal stress, the linear
modulus of an initially unstable network (in the absence of
normal stress) scales linearly with the normal stress. Here,
we generalize the idea of stabilization by normal stress to
an initially stable network (finite bending interactions) in
the nonlinear regime, where the normal stress becomes the
dominant stress in the network and controls the stiffening.
We present a scaling argument which yields a linear relation

between the nonlinear modulus and the normal stress in the
stiffening regime. The modulus and the normal stress are
related via the network susceptibility to the latter. We show that
the susceptibility is fully governed by the underlying geometry
of the network. In fact, the susceptibility scales as the inverse
γ0. To further test the role of normal stress in the stiffening
regime, we consider a scenario in which normal stress is always
relaxed to zero for any imposed shear strain by allowing the
shear boundaries to retract along the normal direction. We
observe that there is no stiffening in the absence of normal
stress. The modulus remains clamped to the linear modulus in
the regime γ0 � γ < γc. Experiments on collagen networks
have shown that over a wide range of collagen concentration
K scales linearly with the shear stress σ [26,67]. We show that
such dependence of K on the shear stress follows naturally
from our hypothesis of normal stress-induced stiffening. Over
a significant range of bending rigidity which is directly related
to protein concentration [26], we find that the shear stress
scales approximately linearly with the normal stress. It follows
that stiffening can be understood in terms of normal stresses.

In summary, we study the mechanics of athermal fiber
networks. The linear mechanics can be captured in terms
of nonaffinity length scale. The nonlinear mechanics can be
considered as composed of two regimes. From the onset of
stiffening to a critical strain, the first regime, the stiffening
is governed by strain-induced normal stresses. Beyond the
critical strain, the stiffening is governed by stretching of
filaments. Our study provides a general framework to capture
linear and nonlinear mechanics of fiber networks for both
lattice- and off-lattice-based network structures.
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APPENDIX A: LINE DENSITY CALCULATION OF
LATTICE-BASED NETWORKS

On any lattice with uniform bond lengths lc, the line density
can be calculated as the total length of bonds per unit volume,
i.e., ρ = nblc/v0 where ns is the number of bonds in a unit cell
of volume v0. In a two-dimensional diluted triangular lattice,
a unit cell has each bond shared by two triangles, so that
ns = 3

2p, where p is the probability that a bond exists. With

v0 =
√

3
4 l2

c , we obtain

ρ2D =
3
2plc√

3
4 l2

c

= ρ̃2D

lc
, ρ̃2D = 6p√

3
.

In the case of a 3D diluted fcc lattice, we can imagine six
lines intersecting each vertex. Enclosing a vertex by a sphere
of radius lc/2, the total length of the enclosed bonds is 6plc.
Dividing by the volume of the sphere and multiplying by the
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packing fraction of the fcc lattice which is π/
√

18, we have

ρ3D = 6plc

4
3π

(
lc
2

)3

(
π√
18

)
= ρ̃3D

l2
c

, ρ̃3D = 12p√
2

.

APPENDIX B: SHEAR AND NORMAL STRESSES ON A
BOUNDARY DUE TO CONNECTED ELASTIC RODS

We use a mean-field scaling argument to derive the shear
and normal stresses on the boundary of a sample under simple
shear strain. Referring to Fig. 7, we assume that the fiber
crossings are spaced at lc and have a periodicity along the
lateral boundaries Nx and Nz. Every fiber is an elastic rod with
stretch modulus μ and bending rigidity κ . Each rod exerts a
force of magnitude F ∝ μεr ≈ κL2

l4
c

γ . The last approximation
is when we take the floppy limit for the residual stretch εr . As
derived in Sec. IV A, the lowest order backbone relaxations
are δ′L ∼ γL and δ′′L ∼ γ 2L3/l2

c , so we can express F to
first order as F ∼ κL

l4
c
δ′L. In general if we include higher order

fiber relaxations, we should be able to write

F ∼ κL

l4
c

(δ′L + δ′′L + δ′′′L + . . .).

We can calculate stresses by summing up the components
parallel and perpendicular to the shear boundary of the forces
due to the relaxations of the crossed fibers a and b. We take the
lateral dimensions �x = Nx lc and �z = Nzlc. In a 3D system,
the shear and normal stresses are calculated by summing up
the parallel and perpendicular components, respectively, of F

along the shear boundary:

σ =
∑

i∈x,z

∑Ni

j (Fa + Fb)‖j∏
i∈x,z �i

∼ NxNz(Fa + Fb)‖
�x�z

≈ (Fa + Fb)‖
/
l2
c ,

τ =
∑

i∈x,z

∑Ni

j (Fa + Fb)⊥j∏
i∈x,z �i

∼ NxNz(Fa + Fb)⊥
�x�z

≈ (Fa + Fb)⊥
/
l2
c .

In a 2D system, these should easily translate to σ ≈ (Fa +
Fb)‖/lc and τ ≈ (Fa + Fb)⊥/lc. We proceed to calculate the
stresses in either d = 2 or 3 systems by substituting the force
components:

σ ≈ κL

ld+3
c

[(δ′La +���δ′′La) + (δ′Lb −���δ′′Lb)]‖,

τ ≈ κL

ld+3
c

[(−���δ′La − δ′′La) + (���δ′Lb − δ′′Lb)]⊥,

where the cancellation of terms come from the mean-field
assumption on the relaxations leading to the result one obtains
in the linear regime:

σ ∼ κL

ld+3
c

δ′L ≈ κL2

ld+3
c

γ,

τ ∼ − κL

ld+3
c

δ′′L ≈ −κL4

ld+5
c

γ 2.

FIG. 11. Schematic of a fiber (dashed horizontal line) undergoing
relaxation (solid curve). Other fibers are also shown with connections
indicated by circles. The relaxed length is defined as λ in terms of the
relaxed segment length λ0.

Invoking symmetry properties of σ and τ , we generalize the
above as

σ ∼ κL

ld+3
c

(δ′L + δ′′′L + . . .),

τ ∼ − κL

ld+3
c

(δ′′L + δ(iv)L + . . .).

We now obtain the higher order relaxation terms δ′′′L and
δ(iv)L. From the diagram shown in Fig. 11, we define the
generalized bending amplitude �L ≈ δ′L + δ′′L and obtain
the relaxed fiber length:

λ = L

[
1 −

(
�L

lc

)2
] 1

2

≈ L − γ 2L3

l2
c

− γ 3L5

l4
c

− γ 4L7

l6
c

− . . . .

The resulting length change of the fiber can now be written as

�L = δ′L + δ′′L + δ′′′L + δ(iv)L + . . .

= γL + γ 2L3

l2
c

+ γ 3L5

l4
c

+ γ 4L7

l6
c

+ . . .

such that

δ′′′L ∼ γ 3L5

l4
c

, δ(iv)L ∼ γ 4L7

l6
c

.

Finally, we substitute these higher order relaxation terms into
the generalized shear and normal stresses leading to

σ ≈ κL2

ld+3
c

γ +
(

L

lc

)2
κL4

ld+5
c

γ 3,

τ ≈ −κL4

ld+5
c

γ 2 −
(

L

lc

)2
κL6

ld+7
c

γ 4.
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