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On-site residence time in a driven diffusive system: Violation and recovery of
a mean-field description
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We investigate simple one-dimensional driven diffusive systems with open boundaries. We are interested in the
average on-site residence time defined as the time a particle spends on a given site before moving on to the next
site. Using mean-field theory, we obtain an analytical expression for the on-site residence times. By comparing
the analytic predictions with numerics, we demonstrate that the mean-field significantly underestimates the
residence time due to the neglect of time correlations in the local density of particles. The temporal correlations
are particularly long-lived near the average shock position, where the density changes abruptly from low to high.
By using domain wall theory, we obtain highly accurate estimates of the residence time for different boundary
conditions. We apply our analytical approach to residence times in a totally asymmetric exclusion process
(TASEP), TASEP coupled to Langmuir kinetics (TASEP + LK), and TASEP coupled to mutually interactive LK
(TASEP + MILK). The high accuracy of our predictions is verified by comparing these with detailed Monte
Carlo simulations.
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I. INTRODUCTION

Driven diffusive systems have been intensively studied
in the past three decades. These systems, being inherently
nonequilibrium, exhibit very rich dynamical as well as steady-
state behavior [1–11]. A considerable theoretical effort has
been put into modeling such systems. One particular model that
has similar appeal to the Ising model for equilibrium physics
is the totally asymmetric simple exclusion process (TASEP)
in one dimension (1D) [1–3,5,12]. As shown in Fig. 1, in this
model a single species of particles performs unidirectional
hopping on a 1D lattice. Due to hard-core repulsions an empty
site can be occupied by a single particle only.

The totally asymmetric simple exclusion process and its
variants have been used to model intracellular transport [13],
motion of ribonucleic polymerase (RNA polymerase) on
deoxyribonucleic acid (DNA) during transcription and of
ribosomes on the RNA during translation [14–19]. Advances
in experimental methods to track macromolecules moving on
1D tracks inside a cell [20–27] have enabled a potentially
direct link between theoretical work on the TASEP model and
experiments.

In this study we focus on the on-site residence time of
system particles, defined as the average amount of time a
particle spends at a particular site. Our study is directly
relevant to the residence time of motor proteins moving on
biofilaments inside a cell, as one can experimentally measure
the time that an attached motor spends on the filament by
labeling motor proteins with fluorophores. The study of on-site
residence times is closely related to the studies on dynamics
of a tagged particle in an exclusion process [28–30]. In
these studies the focus is on the distribution of a tagged
particle’s position performing an exclusion process on a
1D infinite lattice. The position of the tagged particle in
time is directly related to the on-site residence time of the
tagged particle. In this article we especially focus on the
on-site residence times of a TASEP system that exhibits a
first-order-like phase transition. This transition, which occurs
for a certain set of boundary conditions, comprises two phases,

low and high density (LD and HD), which coexist on a
lattice separated by a shock interface [1,3,5,12]. The interface
can be delocalized over the entire lattice [31–33]. However,
in a modified version of TASEP, in which the number of
particles is not conserved on the lattice due to adsorption
(desorption) from (to) an infinite reservoir, the shock interface
is localized [9,10]. This model is known as the TASEP
coupled to Langmuir kinetics (LK), which we refer to as
the TASEP + LK model (see Fig. 1). A further modification
in which TASEP is coupled to the mutually interactive LK
(TASEP + MILK) can lead to even stronger localization than
the TASEP + LK model [34,35]. Despite the interaction with
the bulk, the 1D system exhibits phase transition behavior
under the mesoscopic scaling of kinetic rates (attachment and
detachment rates from the lattice). By making the cumulative
kinetic rates independent of the lattice size, boundaries can
compete with the bulk even in the thermodynamic limit [9,10].
This mesoscopic scaling of the kinetic rates is potentially
applicable to molecular motors performing directed motion
along 1D molecular tracks inside cells. Typically, kinetic rates
are such that the motors move on a significant fraction of
the track before undergoing detachment [36]. This allows for
the bulk dynamics to compete with the boundary, potentially
giving rise to unusual nonequilibrium stationary states.

The on-site residence time of a particle performing TASEP,
when summed up over the entire lattice of a given size yields
the total residence time of a typical particle between the
injection event at one boundary to the extraction event at the
other boundary. By relating the residence time to the size of
the lattice, one can obtain transport coefficients analogous to
mobility and diffusion constant. In the presence of LK, the
total residence time will not be equal to the sum of the on-site
residence times as the possibility of a particle detaching before
reaching the other end of the lattice also needs to be taken
into account. In this study we focus on the on-site residence
time of TASEP as well as TASEP + LK systems. We first
present a mean-field description of the on-site residence time.
Mean-field theory predicts that the residence time depends
only on the steady-state density of particles. However, we
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FIG. 1. Schematic of the TASEP model with LK. Particles are
injected at the first site with rate α and extracted at the last site
with rate β. The motion of particles is totally asymmetric as they
move exclusively to the right with a unitary rate given that the site
is empty. Hopping over an occupied site is not allowed. Pure TASEP
is composed of injection, extraction, and asymmetric hopping of
particles interacting via hard-core repulsion. In the TASEP + LK
model, LK are additionally included by allowing particles to detach
from an occupied site with rate ωD and attach to an unoccupied site
with rate ωA.

show that the mean-field estimate significantly underestimates
the residence time of systems in LD-HD phase (the two-phase
coexistence state mentioned previously) due to neglect of time
correlations in the density. The time correlations, irrelevant
in calculation of the steady-state density profile, become
important in calculation of the residence time. We show that
the time correlations are especially significant near the average
location of the shock interface. We present a non-mean-field
theory of calculating the on-site residence time. As an input
to our theory, we need the spatial distribution of the shock
interface in the steady state which we obtain using the domain
wall theory [31,32]. We present analytical estimates of the
residence time and demonstrate, comparing with numerics,
the high accuracy of our theory.

The article is organized as follows. In Sec. II, we present
the model considered in this study. We briefly summarize the
findings of previous studies on TASEP as well as TASEP +
LK, which are relevant to our study. In Sec. III, we present
mean-field theory for calculation of the on-site residence time.
We neglect any time correlations and demonstrate that the
on-site residence time is only dependent on the steady-state
density profile. In Sec. IV, we present non-mean-field theory
for calculating residence time. The derivation of the non-mean-
field theory makes use of two assumptions on the movement
of the shock interface in LD-HD phase. These assumptions are
supported by investigating the flag model for the movement of
the shock in Sec. V and extending this model to TASEP + LK.
In Sec. VI we present our theoretical estimates for the
residence time and compare them with numerics. We apply
our theoretical analysis to TASEP (with and without LK). In
Sec. VII, we present a general approach to residence time
by introducing a probe particle and apply our findings to the
TASEP + MILK case. In Sec. VIII, we present a transition
from our prediction of residence times to the mean-field
theory prediction by breaking one of the assumptions on the
movement of the shock interface. Finally, in Sec. IX, we
summarize our findings and present a brief outlook.

II. THE MODEL

The TASEP model is described as follows. The system
comprises a 1D lattice of length L and N sites. Particles are
injected into the lattice from the leftmost site with a rate of α

and detach from the rightmost site with a rate of β. The totally
asymmetric motion of a particle corresponds to its motion
exclusively to the right. The conventional parameter p for the

hopping rate on the lattice is set to one here. Every particle
is subjected to hard-core repulsion. Each site is thus either
unoccupied or occupied by a single particle.

The TASEP model coupled to LK is an extension of this
model, in which each particle has a probability of ωD of
detaching during a single time step and each empty site has
a probability of ωA of a particle attaching to it from the bulk
reservoir during a single time step (see Fig. 1). We assume that
the bulk reservoir has an infinite capacity to act as both source
and sink of particles. We see that the original TASEP model is
recovered if we set ωA = ωD = 0.

The sites are indexed from i = 0 at the injecting boundary to
i = N at the extracting boundary. The total length of the lattice
is L and thus each site has a spatial extent of ε = L/N . Under
the assumption that in steady state spatial correlations can be
ignored, one can derive the following mean-field equation for
the average density ρ(x) of particles [9,10]:

ε

2
∂2
xρ + (2ρ − 1)∂xρ + �A(1 − ρ) − �Dρ = 0. (1)

In the equation above, the continuous spatial parameter x runs
from 0 to L and corresponds to the location of site i through
x = iε. The parameters �A and �D are referred to as the
total attachment and detachment rates, respectively, and are
defined as �A = ωAN and �D = ωDN . Mesoscopic scaling
of the total kinetic rates corresponds to fixing �A and �D

for a given L. Such scaling ensures that N can be varied
without modifying the total kinetic rates from the lattice. It is
only under this scaling that one obtains boundary driven phase
transition [9] by letting N → ∞ such that ε → 0, reducing
Eq. (1) to a first-order differential equation. In the thermody-
namic limit of N → ∞, the first-order differential equation is
overdetermined as there are two boundary conditions given by
ρ(0) = α and ρ(L) = 1 − β. Setting �A = �D = �, we have
three solutions to the resulting differential equation:

ρLD = α + �x, (2)

ρHD = 1 − β − �L + �x, (3)

ρMC = 1
2 . (4)

The solution ρLD is referred to as the LD phase, the solution
ρHD as the HD phase, and ρMC as the maximum current (MC)
phase. In this study we focus on shock-type profiles, which
one obtains when � < 1 − β − α and α,β < 1

2 . An example
of a shock-type density profile is shown in Figs. 2(a) and 2(b).
The shock-type profile is a two-phase coexistence scenario in
which the density makes an abrupt transition between ρLD and
ρHD. The mean location of the shock is determined by finding
the point on the lattice where the current ρ(x)[1 − ρ(x)] of the
low-density phase matches that of the HD phase [9].

The original TASEP model, described in Ref. [37], is
recovered by setting � = 0. An interesting modification to
the original TASEP + LK model has been recently proposed
in Ref. [34]. The authors considered modified LK such that the
local attachment and detachment rates of a particle depend on
the state of the neighboring sites. This model is referred to as
the TASEP + MILK model and exhibits qualitatively different
phase behavior from the TASEP + LK model. However, one
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FIG. 2. Left panels correspond to pure TASEP and the right
panels to TASEP + LK. (a),(b) Steady-state density profile. (c),(d)
On-site residence times from simulations (dashed lines) together with
the mean-field prediction (solid lines). (e),(f) Time correlation of local
density at different time steps (see legend). Model parameters for
TASEP + LK: α = β = 0.1, � = 0.1, and N = 100. TASEP model
parameters: α = β = 0.1 and N = 100.

also obtains two-phase coexistence, as in TASEP + LK. We
defer the discussion of TASEP + MILK model to Sec. VII.

The two phase coexistence in TASEP + LK is strictly
present only in the thermodynamic limit of N → ∞ along
with the mesoscopic scaling of the kinetic rates. In pure
TASEP, however, the shock interface can exist for a finite
N for appropriately chosen boundary conditions. For any
finite N , the shock interface is delocalized around its mean
location [38]. Such delocalization, in steady state, results in
a smoothing of the density profile from low density to HD
phase. For finite N , it is interesting to pose the following
questions. If a particle is injected from the leftmost site of
the lattice, how long does this particle typically stay on the
lattice? And what length of time will it typically spend on
each site? In particular, would the dynamics of a delocalized
shock interface have important implications for the residence
times? Or can one ignore the dynamics entirely and obtain
the residence times in a mean-field fashion? To address these
questions, we first consider the mean-field approach below.

III. MEAN-FIELD APPROACH TO RESIDENCE TIME

The residence time on a lattice with N sites, as defined
in Ref. [39] is the average time a particle entering the lattice
spends on the lattice before detaching from the lattice. In this
article we additionally make use of the on-site residence time:
The average length of time a particle attaching on a particular
site spends on that site before making a hop or detaching. For
the TASEP + LK model, we only consider the residence times
of particles attaching at the α boundary.

We first consider a unidirectional random walker on a 1D
lattice, located on a site with discrete index i. This index runs

from i = 0 to i = N . At each time step it has a probability
of pi+1 to detach from site i (which could either be due to
hopping to the next site, or due to a detachment event), and a
probability of 1 − pi+1 to stay at site i. One can calculate the
total time that a particle spends on site i before detaching from
that site as follows:

∞∑
n=1

n(1 − pi+1)n−1(pi+1) = 1

pi+1
. (5)

In this summation, each waiting time n is weighted by the
probability of the particle to detach after exactly n time steps.

Equation (5) assumes that the detachment probability is a
Poisson distribution. An explicit expression for the average
on-site residence time ri of a particle on site i that takes the
system dynamics into account can be written as

ri = 〈(1 − ωD)[1 − Ni+1(t)] + ωD + 2Ni+1(t)(1 − ωD)

×{[1 − Ni+1(t + 1)](1 − ωD) + ωD}
+ 3Ni+1(t)Ni+1(t + 1)(1 − ωD)2{[1 − Ni+1(t + 2)]

× (1 − ωD) + ωD} + ...〉

=
〈

1 − Ni+1(t)(1 − ωD) +
∞∑

j=1

(j + 1)

× [1−Ni+1(t + j )(1−ωD)](1−ωD)j
j−1∏
k=0

Ni+1(t + k)

〉
.

(6)

Here Ni(t) denotes the occupation of the site i at time t and
can be either 0 or 1. The symbol t , used throughout the article,
denotes discrete time and advances in units of 1. The average
is to be understood as an average over several realizations of
the same system in steady state. In the rest of this article we
refer to the quantity between the brackets in Eq. (6) as τi(t);
i.e., we write

ri = 〈τi(t)〉. (7)

In order to obtain a closed-form expression for the
on-site residence time, the time correlations of the form
〈∏n

k=0 Nj (t + k)〉 are needed for all n ∈ N. Under the assump-
tion that the time correlations can be neglected, i.e.,〈

n∏
k=0

Nj (t + k)

〉
=

n∏
k=0

〈Nj (t + k)〉 = 〈Nj 〉n+1,

the above expression simplifies considerably and can be
expressed explicitly in terms of the steady-state density ρi+1 as

ri = 1 − ρi+1(1 − ωD) + 2ρi+1(1 − ωD)[1 − ρi+1(1 − ωD)]

+3[ρi+1(1 − ωD)]2[1 − ρi+1(1 − ωD)] + · · ·

=
∞∑

n=1

n[ρi+1(1 − ωD)]n−1[1 − ρi+1(1 − ωD)]

= 1

1 − ρi+1(1 − ωD)
. (8)

The on-site residence time in Eq. (8) is the same as in Eq. (5)
under the identification of pi+1 ↔ 1 − ρi+1(1 − ωD). This
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reduces to pi+1 ↔ 1 − ρi+1 for the pure TASEP model, which
is expected in the mean-field description [39]. Similarly,
the boundary condition on the rightmost site N is given
by

rN = 1

(1 − ωD)β + ωD

. (9)

For the pure TASEP model, the total residence time RTASEP

can simply be written as

RTASEP =
N∑

i=1

ri . (10)

For the TASEP + LK model, however, the possibility of a
particle detaching before reaching the other end also needs to
be taken into account. The modified equation for R takes the
following form:

RTASEP = r1 +
N∑

i=2

ri

i∏
k=2

fk−1,k. (11)

For this modification, we consider the ensemble of steady-state
configurations that have a particle occupying the site (i − 1).
The factor fi−1,i in Eq. (11), defined for 2 � i � N , denotes
the probability that a particle in this ensemble hops from site
(i − 1) to the next site i (does not undergo detachment). This
probability is given by

fi−1,i = 〈(1 − ωD)[1 − Ni(t)]

+ (1 − ωD)2Ni(t)[1 − Ni(t + 1)]

+ (1 − ωD)3Ni(t)Ni(t + 1)[1 − Ni(t + 2)] + · · · 〉

=
〈

(1 − ωD)[1 − Ni(t)] +
∞∑

j=1

(1 − ωD)j−1

× [1 − Ni(t + j )]
j−1∏
k=0

Ni(t + k)

〉
. (12)

Applying the same mean-field approximation as in the deriva-
tion of Eq. (8), the equation for fi−1,i can be written as

fi−1,i =
∞∑

n=1

ρn−1
i (1 − ωD)n(1 − ρi) (13)

= 1 − ωD

1 − ρi(1 − ωD)
. (14)

To calculate the total residence time for the TASEP + LK
model, we multiply the residence time of each site by the
probability that a particle starting at the α boundary reaches
this site (and thus does not detach before that). We thus
write

RTASEP+LK = r1 +
[

1 − ωD

1 − ρ2(1 − ωD)

]
r2

+
[

1 − ωD

1 − ρ2(1 − ωD)

]

×
[

1 − ωD

1 − ρ3(1 − ωD)

]
r3 + · · ·

= r1 +
N∑

n=2

rn

n∏
k=2

[
1 − ωD

1 − ρk(1 − ωD)

]

= r1 +
N∑

n=2

rn

n∏
k=2

(1 − ωDrk). (15)

We see that Eq. (15) reduces to Eq. (10) if we set ωD = 0.

Breakdown of mean-field in LD-HD phase

Equations (8), (10), and (15) are valid if the time corre-
lations in local density are negligible. If, however, there are
time correlations present in the local density, the mean-field
expression underestimates the on-site residence times. Monte
Carlo simulations revealed significant time correlations for
systems in LD-HD phase; see Figs. 2(e) and 2(f). The time
correlations Ci(
t) are calculated by

Ci(
t) = 〈[Ni(t) − ρi][Ni(t + 
t) − ρi]〉
〈[Ni(t) − ρi]2〉 , (16)

where each Monte Carlo time step in the random sequential
update (for a description of this update procedure, see,
e.g., [40]) corresponds to a time interval of 
t = 1. The time
correlations are rather long-lived in comparison to the mean-
field estimate of residence time, especially in the neighborhood
of the average shock location. We therefore expect Eq. (8) to
give incorrect values for the on-site residence times for these
profiles. In order to obtain accurate on-site residence time,
a non-mean-field expression for ri for these profiles is thus
needed.

IV. NON-MEAN-FIELD APPROACH TO RESIDENCE TIME

A shock-type profile is characterized by the existence of a
LD phase at the α boundary and a HD phase at the β boundary.
The sharp transition from one density phase to the other is
considered as the shock interface. Two plots of the density
profiles of such LD-HD phases are shown in Fig. 2. In the
TASEP model, the shock is completely delocalized. In the
TASEP + LK model, the interface is localized only in the limit
of N → ∞. For finite N , the interface performs a random walk
in a confining potential [38]. As shown above, time correlations
in the local density are particularly significant near the average
shock location persisting on time scales longer than the mean-
field estimate. In order to derive an expression for the on-site
residence times in presence of temporal correlations, we make
the following assumptions about our system.

(1) Each system site can at each time step be determined
to be either in the LD phase or in the HD phase.

(2) A particle waiting to hop on site i stays in the same
density phase until it has hopped.

In the following section, Sec. V A, we investigate the
validity of these assumptions.

We start by rewriting Eq. (6) as

τi(t) = {�i(t) + [1 − �i(t)]}τi(t), (17)

where we define �i(t) as a time-dependent phase constant.
�i(t) takes on value of 1 if site i belongs to the LD phase and
0 if site i belongs to the HD phase.
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We now take the average of both sides of this equation in
the following way:

〈τi(t)〉 = 〈�i(t)τi(t)〉 + 〈[1 − �i(t)]τi(t)〉. (18)

Each of the two terms on the right-hand side corresponds to an
ensemble average. Using assumption 1, the fraction of systems
in the ensemble that are in the LD phase on site i is given by
〈�i(t)〉. Similarly, the fraction of systems in the ensemble
that are in the HD phase on site i is given by 〈1 − �i(t)〉.
However, since �i(t) is 1 in the LD phase and 0 in the HD
phase, the term 〈�i(t)τi(t)〉 in Eq. (18) gets a contribution only
from those systems in the ensemble which are in LD phase.
Similarly, 〈[1 − �i(t)]τi(t)〉 gets finite contribution only from
the systems in HD phase in the ensemble. We can thus write

〈τi(t)〉 = 〈τi(t)〉LD
i,t 〈�i(t)〉 + 〈τi(t)〉HD

i,t 〈1 − �i(t)〉, (19)

where 〈· · · 〉LD
i,t and 〈· · · 〉HD

i,t denote an average over the systems
in LD phase and the systems in HD phase at site i at time t ,
respectively.

We now have a weighted sum of the average residence
time in the LD phase and the average residence time in the
HD phase. In a recent study [39] it has been shown that the
mean-field prediction for the residence times is accurate for
a purely HD system as well as a purely LD system. We now
make use of assumption 2 above, which allows us to identify
〈τi(t)〉LD

i,t with the on-site residence time on site i of a pure LD
system and 〈τi(t)〉HD

i,t with the on-site residence time on site i of
a pure HD system. We thus arrive at the following expression
for the on-site residence time for an LD-HD system:

ri = λi

1 − ρLD,i(1 − ωD)
+ 1 − λi

1 − ρHD,i(1 − ωD)
. (20)

Here we have identified 〈�i〉 = λi .
As our parameter λi is equal to the fraction of time that site

i is part of the LD phase, and 1 − λi is equal to the fraction
of time site i is in the HD phase, we can write the following
expression for the average density profile:

ρi = λiρLD,i + (1 − λi)ρHD,i . (21)

From this, we can obtain an expression for λi :

λi = ρi − ρHD,i

ρLD,i − ρHD,i

. (22)

This equation, together with Eq. (20), gives us a completely
analytical result for the on-site residence times in terms of
ρLD,i , ρHD,i , and ρi .

Equation (10) for the total residence time R still holds for
pure TASEP in LD-HD phase. For TASEP + LK, however,
Eq. (15) is no longer valid as Eq. (13) ignores time correlations.
A non-mean-field expression for fi−1,i for systems in LD-
HD phase can be derived using the same approach as in the
derivation of Eq. (20). The result is

fi−1,i =1 − ωDλi

1 − ρLD,i(1 − ωD)

− ωD(1 − λi)

1 − ρHD,i(1 − ωD)
. (23)

The total residence time R on the lattice is then given by

RTASEP+LK = r1 +
N∑

n=2

rn

n∏
k=2

[
1 − ωDλk

1 − ρLD,k(1 − ωD)

− ωD(1 − λk)

1 − ρHD,k(1 − ωD)

]

= r1 +
N∑

n=2

rn

n∏
k=2

(1 − ωDrk). (24)

This equation is identical to Eq. (15), but with ri now given by
Eq. (20).

V. DOMAIN WALL DYNAMICS

A. Flag theory for TASEP + LK with random sequential update

In the previous section, we saw that there are two conditions
that need to be satisfied in order for Eq. (20) to hold: (1) a
location can be assigned to the shock at each time step and
(2) the shock moves in such a way that a particle crosses
the shock only when it makes a hop. In order to investigate if
these conditions are indeed satisfied, a description of the shock
between the LD phase and the HD phase is thus needed.

For the pure TASEP model, a microscopic description of
the shock location has been derived in Ref. [41]. This was
done by introducing a second-class particle. This is a particle
that hops like the system particles if it has a hole to its right,
but if a system particle to its left tries to hop, the particles
switch places. In Ref. [41], it was proven that this second-class
particle indeed tracks the location of the shock. This implies
that for the pure TASEP model, our two conditions are indeed
satisfied: All sites can be determined to be either in the HD
or the LD phase, and a particle makes the transition between
phases only when it hops onto the site where the second-class
particle is located.

We would like to extend the idea of this shock marker to
a TASEP + LK system. A problem for doing this is that this
second-class particle would have to be subject to LK, allowing
it to detach, and thus removing the shock marker from the
system.

A solution to this is to consider a flag as described in
Ref. [42] instead of the second-class particle. This flag was
introduced in Ref. [42] to track the location of the shock in
pure TASEP with parallel update and obeys the following
motion rules.

(1) The flag is first placed at the leftmost particle of the
leftmost cluster.

(2) If the particle with the flag on it moves, the flag moves
with it.

(3) If a particle is blocked by the particle carrying the flag,
the flag is transferred to this blocked particle.

If we apply these motion rules to a TASEP system with
random sequential update, we see that the motion of the flag
is identical to the motion of the second-class particle.

A note on the application of rule 1 in our model: Due to
clusters spontaneously forming in the LD region, the flag is
not necessarily placed close to the shock interface using this
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(a)

(b) (c)

FIG. 3. A graphic representation of flag theory. (a) A flag is
placed on a system particle to keep track of the shock location.
Its movement rules are such that the flag is always located on the
leftmost particle of a cluster. (b),(c) TASEP + LK: If two clusters
merge forming a single cluster due to an attachment event, the flag
which was previously on the right cluster moves to the leftmost
particle of the new merged cluster. In the event of detachment of
the particle carrying the flag, the flag is transferred to the leftmost
particle of the cluster immediately to the right of the detaching
particle.

rule. However, it ensures that the flag is placed on particle such
that the flag has no particle to the left of it. After a few time
steps, the flag will move close to the shock interface due to
rules 2 and 3 above and will be a good indicator of the shock
position.

For the TASEP + LK and TASEP + MILK cases, we have
additional movement rules for the flag due to attachment and
detachment events. We propose the following additions (shown
graphically in Fig. 3).

(4) If the flag is located at site i, a particle attaches at site
i − 1, and sites i − 2 − n through i − 2 are occupied, the flag
moves to site i − 2 − n. If site i − 2 is unoccupied, the flag
moves to site i − 1.

(5) If the flag is located at site i, the particle at site i

detaches and sites i + 1 through i + 1 + m are unoccupied,
the flag moves to site i + 1 + m + 1. If site i + 1 is occupied,
the flag moves to site i + 1.

These rules are natural if an attachment event between the
flag and a cluster ending two places to the left of it is viewed
as several particles coming in at the same time step. Similarly,
a detachment event of the particle which carries the flag and
has several holes to its right is viewed as several holes coming
in at the same time step.

To test the validity of this description of the flag location,
we performed simulations keeping track of the flag locations
together with the average density profile. The distribution of
flag locations was used together with the LD and HD average
density solutions Eqs. (2) and (3) to predict the average density
at each site. Density profiles obtained this way matched very
well with the actual average density, for short as well as
for longer run times, as shown in Fig. 4. With the above
modifications, flag theory can thus be applied to TASEP + LK
as well.

With these additions, it is now possible for a particle to
switch phases while waiting to hop. The derivation in the
previous section is thus no longer strictly valid. It is, however,
still a good approximation if such a switch is a rare event. We
therefore consider the fraction χ of flag movements due to
attachment and detachment events. For a flag located at site i,
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FIG. 4. Average density profiles for TASEP + LK obtained by
keeping track of the shock location using our rules for the flag
movement. The solid red line corresponds to the profile predicted
from the flag locations; the blue dashed line corresponds to the actual
density profile obtained in the same simulation. The density profiles
of panels (a), (b), and (c) are taken over a relatively short time scale
(600 time steps in the Monte Carlo simulation); the profile of panel
(d) is taken over a long time scale (50 000 time steps). The excellent
agreement between the predicted and numerically obtained profiles
in (d) is a clear indication of the accurate recovery of shock position
distribution in the steady state. Model parameters: α = β = � = 0.1,
N = 100.

this fraction is given by

χ = 〈Ni−2(1 − Ni−1)ωA + NiωD(1 − Ni+1)〉
= ωA〈Ni−2(1 − Ni−1)〉 + ωD〈Ni−2(1 − Ni−1)〉. (25)

We see that this fraction is much smaller than 1 in the case
that ωA,ωD � 1. This is indeed the case for LD-HD systems as
long as the number of sites N is not of order 1. To see this, we
note that for the TASEP + LK model, we have a shock in the
case that � < 1 − β − α. This implies that ωA,ωD <

1−β−α

N
,

so ωA,ωD can only be of order 1 if N is of order 1.
We conclude that the two assumptions for the derivation of

the previous section are indeed valid. It is possible to assign a
location to the shock at each time step; thus, it is possible to
determine each system site to be either in the LD phase or in
the HD phase at each time step. As long as the number of sites
N is not of order 1, a particle, to a good approximation only
switches phases while performing a hop. Thus, it is indeed
justified to write Eq. (20) for the on-site residence times for
LD-HD systems.

B. Density profiles in LD-HD phase

In Sec. IV, Eq. (20) for the on-site residence times for an
LD-HD system was derived in terms of ρLD(x), ρHD(x), and
ρ(x). In order to calculate on-site residence times from this
equation, an equation for ρ(x) is thus needed. A derivation
for this has been done in Ref. [38] using domain wall theory
(DWT). We briefly summarize their results below.
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The average density profile in this system (written in the
continuum limit) is described by

ρ(x) = ρHD(x)
∫ x

0
p(x ′)dx ′ + ρLD(x)

∫ 1

x

p(x ′)dx ′. (26)

In this equation, p(x) describes the distribution of the locations
of the shock. The system length L has been set to 1. The
solution for p(x) found by [38] is given by

p(x) = 1

Nωl(x)
e
−N

∫ x

x0
[1− ωr (x′ )

ωl (x′ ) ]dx ′
. (27)

Here N is the number of sites on the lattice, and ωr and ωl are
the hopping rates of the shock location to the right and left,
respectively, as shown in Ref. [38]:

ωr = ρHD

ρHD − ρLD
,

ωl = ρLD

ρHD − ρLD
.

The normalization constant N is chosen such that∫ 1
0 p(x)dx = 1. The term x0 can be chosen arbitrarily as it

will be absorbed in the normalization constant N .
In the following sections, we make use of these results

together with our Eqs. (20) and (22) to obtain residence time
predictions in specific conditions.

VI. RESULTS

A. Shock-type profiles in the TASEP model

For the pure TASEP case, we have a completely delocalized
shock in the case that α = β < 1

2 . Our two solutions for the
differential equation (1) that meet a boundary condition are
given by Eqs. (2) and (3) with � = 0.

We use Eq. (27) to calculate p(x). Since ωr = ωl for the
pure TASEP model, this expression reduces to

pTASEP(x) = 1. (28)

We see here that our distribution function is no longer a
function of the number of sites N . This means that the shape
of our profile is now size-independent.

Using Eq. (26) in the continuum limit, the expression for
the average density profile ρ(x) becomes

ρ(x) = α + x(1 − 2α), (29)

which agrees with the result in Ref. [2].
Using Eq. (20) to obtain the on-site residence time, we

obtain

r(x) = α + x(1 − 2α)

α(1 − α)
. (30)

The results from Monte Carlo simulation together with the
prediction by Eq. (30) are shown in Fig. 5. The total residence
time on the lattice is now given by

R = N

∫ 1

0
r(x)dx = N

1

2α(1 − α)
. (31)

We thus recover the linear dependence of the residence time on
the system length, in accordance with the results of Ref. [39].
The results for our numerical simulation compared to the
results predicted by Eq. (31) are presented in Fig. 6.
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FIG. 5. On-site residence times for different system lengths. The
left panels correspond to pure TASEP with α = β = 0.1; the right
panels correspond to TASEP + LK with α = β = � = 0.1. Panels
(a) and (b) correspond to N = 50, (c) and (d) to N = 100, (e) and
(f) to N = 200. Green dashed lines, on-site residence times obtained
from simulations; black solid lines, analytical on-site residence times
from Eq. (20); red dash-dotted lines, mean-field result for residence
times.

B. Shock-type profiles in the TASEP + LK model

The derivation of the analytical profile for a shock-type
profile in the TASEP + LK model has been done explicitly in
Ref. [38] for the case that �A = �D = �. The result is

ρ(x) = 


2

{
1 + erf

[
2

√
N�


(1 + 
)(1 − 
)
(x − xs)

]}

+�x + α, (32)

where 
 is the height of the shock, given by 
 = ρHD − ρLD,
and xs is the average shock position. The on-site residence
time can now be calculated using Eq. (20) in the continuum
limit,

r(x) = λ(x)

1 − (�x + α)(1 − ωD)

+ 1 − λ(x)

1 − [�(x − 1) + 1 − β](1 − ωD)
, (33)

where λ(x) is given by

λ(x) =


2

{
1 + erf

[
2
√

N�

(1+
)(1−
) (x − xs)

]}
1 + α − � − β

+ 1. (34)

The results for our numerical simulation compared to the
results predicted by Eq. (33) are presented in Fig. 5.

The total residence time R can be obtained numerically
using Eq. (24) with Eq. (33) as arguments. The mean-field
result would be given by evaluating Eq. (15) with Eq. (8) as
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FIG. 6. Total residence times R for TASEP in LD-HD phase
(a), for TASEP + LK in LD-HD phase (b) and for TASEP + LK
in MC phase (c). Blue dash-dotted line, results from Monte Carlo
simulation; black line, non-mean-field prediction; green longitudi-
nally dashed line, mean-field prediction; red transversally dashed
line, prediction by Eq. (B7). (a) Non-mean-field result calculated
with Eq. (10); model parameters α = β = 0.1. (b) Non-mean-field
result calculated with Eq. (24); model parameters α = β = � = 0.1.
(c) Analytical result calculated with Eq. (36); model parameters
α = β = 0.5, � = 0.1.

arguments. The results of Monte Carlo simulations are shown
in Fig. 6. For large N , the N -dependence of R is very close
to linear as can be seen in Fig. 6. An explicit expression for R

in the large N limit is given in Appendix B, Eq. (B7). Since
R ∼ N , it follows that one can define a transport coefficient
analogous to mobility (a material property independent of
system size) in the limit of large N for TASEP as well as
TASEP + LK.

Until now, we have focused on systems with boundary
conditions chosen such that the steady-state density profile
is described as the LD-HD phase. In the following section,
we consider systems in MC phase and demonstrate that our
theoretical approach is equally applicable to these systems as
well.

C. Residence time for TASEP + LK in maximum current phase

The residence time of a particle when the system is in MC
phase has been studied in Ref. [39]. It was shown that the total
residence time scales linearly with the system size. However,
the study focused only on pure TASEP. We now show that this
linear scaling remains present for a TASEP + LK system as
well.

In a MC phase, characterized by a constant density in
the bulk, depending on the mismatch between the boundary
conditions and the Langmuir isotherm, boundary layers can
exist. The width of the boundary layers relative to the system
size approaches zero in the limit of N → ∞. Below we assume
that the boundary layers can be neglected in calculating the
total residence time.

An exact expression for the total residence time for a
constant density can be obtained by inserting ρi = ρ̄ in

Eq. (24), which yields

R =
{
(N − �)(1 − ρ̄)

(
1 − [

1 − �
�ρ−ρN+N

]N)}
�
[
1 − ρ̄

(
1 − �

N

)] . (35)

It can be easily shown that for N � 1, Eq. (35) reduces to

R = (
1 − e

− �
1−ρ̄

)
N/�. (36)

It follows that for a constant bulk density, the total residence
time scales linearly with the system size. The factor e

− �
1−ρ̄

is the fraction of particles, which, starting on the first site of
the lattice, hop all the way to the β boundary. This factor
is 1 in the limit of �/(1 − ρ̄) � 1, in which case the total
residence time scales as R ≈ N/(1 − ρ̄). On the other hand,
when �/(1 − ρ̄) � 1, almost every particle detaches from
the lattice before reaching the β boundary. In that case, the
total residence time, consistent with the assumed mesoscopic
scaling, is R ≈ 1/ωD = N/�.

VII. RESIDENCE TIME OF A PROBE PARTICLE

Including mutual interactions between particles in addition
to the hard-core repulsion gives rise to several interesting fea-
tures. In the Katz-Lebowitz-Spohn (KLS) model, the hopping
rates are modified depending on the occupancy of the next-
nearest neighbor resulting in additional correlations [43]. This
model gives rise to exotic features such as localized downwards
shocks and phase separation into three distinct regimes [44].
In the model TASEP + MILK shown schematically in Fig. 7,
the attachment and detachment rates are modified depending
on the occupancy of the adjacent sites [34]. These additional
interactions increase (decrease) the effects of boundaries on the
phase behavior of the model. For such models with additional
interactions, it is, in principle, possible to calculate the on-site
residence times. However, a more general and considerably
simple description of residence time is possible by introducing
a probe particle. The probe particle interacts via hard-core
repulsion and does not undergo detachment. We consider a
system consisting of of a single probe particle and all the other
particles following TASEP (with or without LK). It is interest-
ing to study the residence time of a single such probe particle.

D D 2
D 

δ A A δ2
A 

FIG. 7. A graphic representation of the TASEP + MILK model.
Every particle performs ordinary TASEP in addition to LK, which
depend on the occupation states of neighboring sites. The detachment
rate of a particle is scaled by a factor γ if one of its neighboring sites
is occupied. If both neighboring sites are occupied, then the rate is
scaled by a factor of γ 2. Similarly, the attachment rate is scaled by δ

when only one of the neighboring sites is occupied and by δ2 when
both are occupied.
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A. Probe particle dynamics

The residence time of the probe particle can be calculated
using the same approach as in the derivation of Eq. (6) for ri

in the TASEP + LK case. The difference is now that the probe
particle cannot detach. As the ωD factors take the detachment
of the particle considered into account, the on-site residence
time of the probe particle is obtained by setting ωD = 0 in
Eq. (6).

Note that the resulting expression is a general one, valid for
a probe particle in the TASEP model with any type of further
modified interactions. The modifications of the interactions
will all be captured in the average occupations and the time
correlation functions. If time correlations can be ignored, this
expression reduces to

ri = 1

1 − ρi

. (37)

For any system in LD-HD phase subject to the two
assumptions stated in Sec. IV, the on-site residence time is
given by

ri = λi

1 − ρLD
+ 1 − λi

1 − ρHD
. (38)

The derivation of this equation is completely analogous to the
derivation in Sec. IV.

We now apply the description of the residence times of a
probe particle to a model with modified interactions recently
proposed in [34]: the totally asymmetric exclusion process
together with mutually interactive LK.

B. Results for a probe particle in a TASEP + MILK system

A schematic of TASEP + MILK system is shown in
Fig. 7. Every particle is subjected to the same rules as in
TASEP. In addition, every particle can undergo attachment and
detachment as in LK with the modification that the kinetic rates
are dependent on the state of neighboring sites. If a particle
has one neighboring particle, its detachment rate becomes
γωD . If it has two neighboring particles, its detachment rate
becomes γ 2ωD . If there are no neighboring particles, its
detachment rate remains ωD . Similarly, the attachment rate
becomes δωA or δ2ωA if one or both neighboring sites are
occupied, respectively. If there are no neighboring particles,
its attachment rate will remain equal to ωA.

The differential equation describing the steady-state solu-
tions density profile to first order in ε is given by [34]

ε∂2
xρ + (2ρ − 1)∂xρ + �A[1 + ρ(δ − 1)]2(1 − ρ)

− �D[1 + ρ(γ − 1)]2ρ = 0. (39)

This equation has not been solved, in general, but solutions
are known for certain parameter regimes [34].

In the TASEP + MILK model, shock-type profiles have
been found to occur as well [34]. At the end of this section
we apply our method to determine the residence time for these
profiles and compare with simulations.

First we investigate if it is justified to use the assumptions
stated in Sec. IV to the TASEP + MILK model. For this model,
we can still use the rules for flag movement in a TASEP + LK
stated in Sec. V A. This is because there are no new ways
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FIG. 8. Average density profiles for TASEP + MILK obtained
by keeping track of the shock location using our rules for the flag
movement. The solid red line corresponds to the profile predicted
from the flag locations; the blue dashed line corresponds to the actual
density profile obtained in the same simulation. The density profiles
of panels (a) and (c) are taken over a relatively short time scale (600
time steps in the Monte Carlo simulation); the profiles of panels
(b) and (d) are taken over a long time scale (50 000 time steps).
Model parameters for (a) and (b): δ = γ = 0, α = β = 0.15, � =
0.1, N = 100. Model parameters for (c) and (d): δ = 1 + ψ and
γ = 1 − ψ , with ψ = 0.2, α = 0.05, β = 0.15, � = 0.3, N = 100.
As in Fig. 4, the excellent agreement between the predicted and
numerically obtained profiles in (b) and (d) is again a clear indication
of the accurate recovery of shock position distribution in the steady
state.

for particles to hop or attach to sites in the TASEP + MILK
model; the only modification is in the probability of these
events. We can calculate the fraction of flag movements due
to attachment and detachment events using the same approach
as in Sec. V A; the result is

χ = γ 2ωA〈Ni−2(1 − Ni−1)〉 + δωD〈Ni−2(1 − Ni−1)〉. (40)

We see that this fraction is much smaller than 1 as long as
γ 2ωA � 1 and δωD � 1. To test the validity of this description
of the flag location in TASEP + MILK, we again performed
simulations keeping track of the flag locations together with
the average density profile. The approach is the same as for
the plots in Fig. 8. Density profiles obtained this way matched
very well with the actual average densities, for short as well
as for longer run times, as shown in Fig. 8.

The solutions for the density profile are only known in
specific regimes. We therefore compute the residence times
in each of these regimes separately. We first consider the the
parameter regime δ = γ . In this case both attachment and
detachment rates are symmetrically modified such that both
the attachment and the detachment rates are either scaled up or
scaled down. The solution to the Eq. (39) derived in Ref. [34]
is reproduced in the Appendix. Using Eqs. (A1) and (A2)
together with Eqs. (27) and (26) we obtain the density profile
for a given system size N . We use numerical integration to
obtain the on-site residence time from Eqs. (20) and (22),
which is shown in Fig. 9.
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FIG. 9. Residence time of a probe particle in presence of system
particles undergoing TASEP + MILK. (a) Symmetrically modified
kinetic rates δ = γ = 0, α = β = 0.15, � = 0.1, N = 100. (b)
Asymmetrically modified kinetic rates δ = 1 + ψ and γ = 1 − ψ ,
with ψ = 0.2, α = 0.05, β = 0.15, � = 0.3, N = 100. Green dashed
lines, residence time of the probe particle from simulations; thick solid
lines, our theoretical prediction; red dash-dotted lines, mean-field
prediction of the on-site residence time.

Another interesting parameter regime is δ = 1 + ψ, γ =
1 − ψ . In this case mutual interactions modify the kinetic rates
in an asymmetric fashion such that one is scaled up and the
other is scaled down. Assuming that ψ � 1, one can obtain
closed-form expression for the solution to Eq. (39), as shown
in Ref. [34]. The expressions are reproduced in the Appendix
[Eqs. (A3) and (A4)]. Performing similar calculations as in the
case of symmetrically modified kinetic rates, we obtain on-site
residence time as shown in Fig. 9.

As can be seen in Fig. 9, our theoretical predictions are
in excellent agreement with the numerically obtained on-site
residence time. We believe that using the concept of probe
particle, our theoretical approach can describe the residence
time in the presence of interactions other than the MILK.

VIII. TRANSITION TO MEAN-FIELD THEORY IN
LD-HD PHASE

The approach for calculating on-site residence times pre-
sented in this article is valid for any two-phase system that
obeys the two conditions described in Sec. IV. To explore a
system for which this approach does not work, we introduce
a ghost particle to our system which we give the following
properties (see Fig. 10).

(i) The particle is first placed on the first site.
(ii) The particle moves to the next site if this site is

unoccupied.

f f

FIG. 10. A graphic representation of the ghost particle dynamics.
The ghost particle is first placed on the first site. When in active state,
the ghost particle moves exclusively to the right only if the next site
is unoccupied. In the inactive state, the ghost particle always remains
at the same site. The probability of being in active state is denoted by
f . On reaching site N , the ghost particle detaches with a rate of β.
Effectively, the ghost particle follows TASEP in active state. Other
system particles do not interact with the ghost particle. A site can be
occupied by a system particle together with the ghost particle.
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FIG. 11. Plot of the on-site residence time of the ghost particle
for different values of ghost frequencies f . The dashed line and the
dotted line indicate the on-site residence times predicted by Eq. (20)
and by mean-field theory, respectively. The dashed line coincides
with the residence time of the ghost particle for f = 1.

(iii) Other system particles are not influenced by this
particle. The system particles can thus hop onto a site if it
is occupied by the ghost particle, as long as it is not occupied
by another system particle.

(iv) When the ghost particle reaches site N , it has a
probability of β of detaching.

Furthermore, we will give this particle a probability to
pause, a concept introduced in Ref. [45]. When a particle
is paused, it will not be able to hop. As long as the particle
is not paused, it will move according to the rules above. We
give the particle a probability of f to be in the active state on
a single time step and thus a probability of 1 − f to be in the
paused state. We keep track of the on-site residence times of
this particle over all time steps that it is in the active phase.

Due to these movement rules for our ghost particle, it
is now possible for the flag described in Sec. V A to pass
under the second-class particle while it is waiting to hop.
The second assumption of our approach, that a particle only
switches between phases while making a hop, will thus not be
satisfied if f < 1. We thus expect the prediction of our theory
for the crossing time of the ghost particle to be inaccurate
in this case. If the probability to be in the active state f is
low enough, the average time intervals between active states
of the paused particle will be larger than the time interval
over which we observe time correlations. We then expect for
approximation (8) to be valid again and thus for the mean-field
expression for the on-site residence times to be accurate.
In the intermediate regime, we expect both approaches to
be inaccurate, and we expect the on-site residence times to
be somewhere between the mean-field value and the value
predicted by Eq. (20).

We ran simulations for the on-site residence times of this
ghost particle for various values of f , for two LD-HD profiles.
The results are shown in Fig. 11. As can be seen in this figure,
the on-site residence times for the ghost particle indeed make
a gradual transition from the prediction of Eq. (20) to the
mean-field prediction for decreasing f .

IX. DISCUSSION AND CONCLUSION

In this paper, we study the average residence time of a
particle on a given site in a 1D driven diffusive system with
open boundaries. The particle performs totally asymmetric
motion with hard-core repulsion. In a mean-field scenario,
ignoring spatial and temporal correlations, we obtain the

012119-10



On-SITE RESIDENCE TIME IN A DRIVEN DIFFUSIVE . . . PHYSICAL REVIEW E 93, 012119 (2016)

on-site residence time as inverse of the average hopping rate
[1 − ρi(1 − ωD)], where ρi is the steady-state density of par-
ticles at site i and ωD is the single-site detachment probability.
Using Monte Carlo simulations we show that the mean-field
prediction significantly underestimates the residence time in
the neighborhood of shock interface. The shock interface is
characterized by a steep transition in the density profile of
particles in the steady state. In the thermodynamic limit, the
transition is infinitely steep, reminiscent of a first-order phase
transition with two-phase coexistence. The underlying reason
for failure of the mean-field estimate for residence time is the
neglect of time correlations in the local density of particles.
The temporal correlations in the density are especially long
lived near the shock interface with the local correlation time
much larger than the mean-field on-site residence time.

The shock interface separating the LD and HD phases is
not localized on a given site. In pure TASEP, the interface
is delocalized over the entire lattice for any system size. On
adding LK, the interface becomes localized within a region that
scales with

√
N where N is the system size. For any finite size

lattice, the interface can be considered as performing random
walk in a confined potential. The mean-field residence time
does not take into account the fact that the density at a local site
fluctuates on a time scale longer than the mean-field estimate.
One can obtain the steady-state density profile at a given site
by averaging over time scales longer than the correlation time.
However, the presence of long-lived correlations leads to an
underestimation of the residence time using mean field. We
provide a non-mean-field expression for the on-site residence
time, which takes the movement of the shock interface into
account. Our description requires calculation of a single
parameter, referred to as the site-dependent, average phase
constant. Our derivation of a non-mean-field equation for the
on-site residence time relies on two assumptions: (1) that
each site can at each time step be determined to be either
in the LD or the HD phase and (2) that a particle crossing the
lattice switches phases only while making a hop. These two
assumptions are validated by considering flag theory for the
movement of the shock. In previous studies, flag theory has
been successfully applied to pure TASEP to track the shock
location. Here we extend the flag theory to TASEP + LK and
determine the flag movement rules. These flag movement rules
validate the assumptions of our non-mean-field derivation of
on-site residence times.

We obtain the average phase constant making use of
previous results for the average density profile from domain
wall dynamics and compare the analytical residence time
with the numerical simulations. We show that our analytical
predictions are highly accurate in describing the residence time
in TASEP as well as TASEP + LK.

The total residence time on a pure TASEP lattice can be
obtained as the sum of the on-site residence times. In TASEP +
LK, the possibility of a particle detaching before reaching the
β boundary also needs to be taken into account. Doing this
yields a weighted sum of the on-site residence times as an
expression for the total residence time. We demonstrate that
the total residence time asymptotically scales linearly with the
system size.

Our approach to calculating residence time can be ex-
tended to TASEP systems with further modified dynamics by

considering a test particle. This is a particle that does not detach
and will thus cross the entire lattice. The on-site residence time
for this particle is obtainable provided ρHD, ρLD, and ρ(x) are
known. We run simulations for the on-site residence time of
a test particle in the TASEP + MILK system and find good
agreement with our predictions.

In order to demonstrate how mean-field theory can be
recovered by violating the second assumption of our approach,
we consider a ghost particle on the lattice which performs pure
TASEP. The ghost particle has a hopping rate that is lower
than that of the system particles. The ghost particle, somewhat
similar to a second-class particle, is invisible to other particles
but is itself subjected to hard-core repulsion. We demonstrate
that when the hopping rate of the ghost particle is sufficiently
low, it can experience phase change without performing a
hop. The phase change occurs due to the shock interface
moving past the ghost particle while it is paused. In the case
of vanishing hopping rate, we find that the residence time
of the ghost particle is accurately captured by the mean-field
estimate.

Our focus in this study is the residence time on a lattice of
given size with given boundary conditions. It will be interesting
to explore the same in a network setting, viewed as collection of
such 1D systems. The boundary conditions in a network will be
specified only on the outermost boundary with all the internal
nodes exhibiting fluctuations in the injection and extraction
rates. Such a study could be linked to existing work considering
TASEP on networks [46] and TASEP + LK on networks [47].
Another interesting study would be to apply the concept of
probe particle to systems with modified interactions. Finally, it
is a challenging and interesting problem to accurately describe
the residence time of ghost particle for any given hopping rate.

APPENDIX A: SOLUTIONS FOR ρHD AND ρLD FOR
TASEP + MILK

1. The case δ = γ

In the case we set δ = γ = 1 + η, the two solutions to (39)
that meet the boundary conditions as derived in Ref. [34] are

ρLD = α + (1 + ηα)�x

1 − (1 + ηα)η�x
, (A1)

ρHD = 1 − β + [η(1 − β) + 1]�(x − 1)

1 − [η(1 − β) + 1]η�(x − 1)
. (A2)

A shock forms in the case that xI
− > xI

+, where xI
− is the

value for x at which ρLD crosses the isotherm of ρI = 1
2 , and

xI
+ is the value for x at which ρHD crosses the isotherm.

2. The case δ = 1 + ψ,γ = 1 − ψ

The two solutions to (39) that meet the boundary conditions
as derived in Ref. [34] are

ρLD = ψ

2(1 − ψ)
{W−1[−y(x)] + 1} + 1

2
for α < 1/2,

(A3)

012119-11



MESSELINK, RENS, VAHABI, MACKINTOSH, AND SHARMA PHYSICAL REVIEW E 93, 012119 (2016)

ρHD =
{

ψ

2(1−ψ) {W0[y(x)] + 1} + 1
2 for 1 − β � ρI ,

ψ

2(1−ψ) {W0[−y(x)] + 1} + 1
2 for 1

2 � 1 − β � ρI ,
(A4)

where ρLD obeys the left and ρHD the right boundary condition. W [y] is the Lambert W function. y(x) is given by

y(x) =
∣∣∣∣1 − ψ

ψ
(2ρ0 − 1) − 1

∣∣∣∣exp

[
2�

(1 − ψ)2

ψ
(x − x0) + 1 − ψ

ψ
(2ρ0 − 1) − 1

]
, (A5)

with ρ0 = α, x0 = 0 for ρLD and ρ0 = 1 − β, x0 = 1 for ρHD. The constant solution ρMC = 1
2(1−ψ) is the equivalent of the

Langmuir isotherm in the case without MI. The solution ρLD is stable only for α < 1/2 and ρHD for β � 1/2.
A shock will again form in the case that xI

LD > xI
HD, where xI

LD is the value for x at which ρLD crosses the isotherm and xI
HD

is the value for x at which ρHD crosses the isotherm.

APPENDIX B: LINEARITY OF R FOR THE LD-HD PHASE IN THE LARGE N LIMIT

In the large N limit, we can approximate the shock to be completely localized at xs . The average density will then be equal to
ρLD from 0 to xs and equal to ρHD from xs to 1. We can thus approximate R as

R =r1 +
ns∑

n=2

rLD
n

n∏
m=2

(
1 − ωDrLD

m

)+
N∑

n=ns+1

rHD
n

[
ns∏

m=2

(
1 − ωDrLD

m

)]⎡⎣ n∏
m=ns+1

(
1 − ωDrHD

m

)⎤⎦. (B1)

Here rLD
n is the on-site residence time corresponding to ρLD,n+1 and rHD

n the on-site residence time corresponding to ρHD,n+1. In
order to evaluate this expression, we make a few approximations. The product terms we rewrite as follows:

n∏
m=2

(
1 − ωDrLD

m

) = 1 − ωD

n∑
m=2

rLD
m + ω2

D

⎡
⎣1

2

(
n∑

m=2

rLD
m

)2

−
n∑

m=2

(
rLD
m

)2

⎤
⎦

− ω3
D

⎡
⎣ 1

3!

(
n∑

m=2

rLD
m

)3

−
n∑

m=2

(
rLD
m

)2

(
n∑

m=2

(
rLD
m

))⎤⎦+ · · ·

=
n∑

j=0

(−1)jωj

D

1

j !

(
n∑

m=2

(
rLD
m

))j

︸ ︷︷ ︸
1©

−
n∑

j=2

(−1)jωj

D

1

(j − 2)!

n∑
m=2

[(
rLD
m

)2]( n∑
m=2

(
rLD
m

))j−2

︸ ︷︷ ︸
2©

. (B2)

We do similarly for the product over 1 − ωDrHD
m . The second term in each of the square brackets ensures that the quantity in

square brackets contains only products of terms for which m �= m′. The factors 1
j ! and 1

(j−2)! ensure there is no double counting.
We now investigate the components of Eq. (B2) separately. The sum over m in 1© we can approximate as

n∑
m=2

(
rLD
m

) =
n∑

m=2

1

1 − (
m
N

� + α
) ≈

∫ n

0

1

1 − (
m
N

� + α
)dm = −N

�
ln

[
1 − (

� n
N

+ α
)

1 − α

]
. (B3)

Furthermore, the first sum over m in 2© can be approximated as
n∑

m=2

[(
rLD
m

)2] ≈
∫ n

0

1[
1 − (

m
N

� + α
)]2 dm = N

�

1[
1 − (

m
N

� + α
)] . (B4)

We now look at how the different terms in Eq. (B2) scale with N . As ωD = �
N

in the mesoscopic scaling, we see that ω
j

D × 1©
scales as N0, while ω

j

D × 2© scales as N−1. Thus, in the large N limit we can discard 2© in Eq. (B2).
We are then left with the following expression for Eq. (B2):

n∏
m=2

(
1 − ωDrLD

m

) ≈
n∑

j=1

(−1)j
1

j !

{
− ln

[
1 − (

� n
N

+ α
)

1 − α

]}j

≈ 1 − (
� n

N
+ α

)
1 − α

. (B5)

In the second step we used the identity limn→∞
∑n

j=1
1
j !x

j = ex .

A similar approximation can be made for
∏n

m=2(1 − ωDrHD
m ); the result is

n∏
m=ns+1

(
1 − ωDrHD

m

) ≈ �
(
1 − n

N

)+ β

�
(
1 − ns

N

)+ β
. (B6)
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We now insert the approximations for the product terms into Eq. (B1) and convert the sum over n to an integral. Evaluating
this integral yields the final result

R = ns

1 − α
+
(

1 − � ns

N

1 − α

)
(N − ns)

�
(
1 − ns

N

)+ β
, (B7)

which is indeed predominantly linear in the number of sites N (note that in the mesoscopic scaling, ns is a constant fraction of
N ). An evaluation of Eq. (B7) for explicit choices for the model parameters is plotted together with the results from Monte Carlo
simulation in Fig. 6.
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