
       
                                                   

Strain-controlled criticality governs the nonlinear
mechanics of fibre networks
A. Sharma1,2†, A. J. Licup1†, K. A. Jansen3†, R. Rens1, M. Sheinman1, G. H. Koenderink3*
and F. C. MacKintosh1*
Disordered fibrous networks are ubiquitous in nature as
major structural components of living cells and tissues. The
mechanical stability of networks generally depends on the
degree of connectivity: only when the average number of
connections between nodes exceeds the isostatic threshold are
networks stable1. On increasing the connectivity through this
point, such networks undergo a mechanical phase transition
from a floppy to a rigid phase. However, even sub-isostatic
networks become rigid when subjected to su�ciently large
deformations. To study this strain-controlled transition, we
perform a combination of computational modelling of fibre
networksandexperimentsonnetworksof type I collagenfibres,
which are crucial for the integrity of biological tissues. We
show theoretically that the development of rigidity is char-
acterized by a strain-controlled continuous phase transition
with signatures of criticality. Our experiments demonstrate
mechanical properties consistent with our model, including
the predicted critical exponents. We show that the nonlinear
mechanics of collagen networks can be quantitatively captured
by the predictions of scaling theory for the strain-controlled
critical behaviour over a wide range of network concentrations
and strains up to failure of the material.

As shown by Maxwell, networks with only central-force
interactions exhibit a transition from a floppy to rigid phase at the
isostatic point, where the local coordinationnumber, or connectivity
〈z〉 equals the threshold value of 〈z〉=2d in d dimensions1. At this
point, the number of degrees of freedom is just balanced by the
number of constraints, and the system is marginally stable to small
deformations. The jamming transition2–4 in granular materials and
rigidity percolation5–7 in disordered spring networks are examples of
such a transition. An important feature of these systems is the order
of the transition. Jamming exhibits signatures of both first- and
second-order transitions, with discontinuous behaviour of the bulk
modulus and continuous variation of the shear modulus4,8,9. For
networks of springs or fibres, the transition from floppy to rigid is a
continuous phase transition, in both bulk and shear moduli4,5,10–13.

Interestingly, the open fibrous meshworks that provide structure
and stability to cells and tissues usually have connectivity below
the central-force isostatic point. Extracellular matrices of collagen
are a good example of this: the local connectivity is between 3,
corresponding to one fibre branching to form two, and 4, for a binary
crosslink between distinct fibres. Typical collagen connectivity is
measured to be about 3.4, which places such networks below both
2D and 3D isostatic thresholds14,15. Such sub-isostatic networks
can, nevertheless, become rigid as a result of other mechanical
constraints, such as fibre bending12,16,17, or when subjected to
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Figure 1 | At zero strain, networks undergo a continuous transition from
floppy to rigid at the isostatic threshold z=zc. This connectivity threshold
shifts to lower values for networks subject to shear strain γ . This threshold
defines a line γc(z) of continuous transitions. We study here strain-induced
transitions indicated by the vertical dashed line for z well below zc. The
insets show SEM (scanning electron microscope) images of reconstituted
collagen networks indicating points of 3-fold and 4-fold connectivities. The
scale bars are 200 nm.

external strain18. The threshold strain, at which the transition
occurs, depends on the nature of the applied deformation (shear or
tensile) and on the average connectivity of the network, in particular,
and other properties of its structure13. However, the order of this
strain-induced transition remains unclear.

Here, we study the transition from floppy to rigid states of
disordered sub-isostatic networks under simple shear. We show
that these networks exhibit a line of second-order transitions (see
Fig. 1) at a strain threshold γc(z), for connectivities z well below
the isostatic threshold.Moreover, we demonstrate critical behaviour
along this line, specifically in the scaling properties of themechanics,
as well as finite-size effects that reflect the underlying divergent
correlation length. To test the relevance of these predictions for
real materials, we perform experiments on reconstituted networks
of collagen, the most prevalent protein in mammals and the
mechanical basis of most tissues19. Although collagen has been
widely studied formany years, themechanical properties of collagen
matrices remain poorly understood.We find that collagen networks
show evidence of critical behaviour in their mechanical response to
strain. Strikingly, the measured shear modulus of these networks is
in quantitative agreement with the critical behaviour of our model,
including the predicted non-mean-field critical exponents.

We study computationalmodels (seeMethods) of fibre networks,
based on both 2D and 3D lattice-based structures20,21 and Mikado
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Figure 2 | Computationally obtained sti�ness of sub-isostatic networks as a function of the applied strain. a, Sti�ness K in units of µ/l versus strain γ for
2D phantom triangular lattices with 〈z〉'3.2. The red dashed curve, starting from γ =γc, is a sketch of the sti�ness of a sub-isostatic network with κ̃=0,
whereas the red solid curve is the a�ne limit with κ̃=∞. The inset shows the κ̃-dependence of the linear modulus G0, with the dashed line indicating a unit
slope. b, Collapse of sti�ening curves for di�erent κ̃ . Black curve, the data set from a collapsed according to equation (1), f=0.75 and φ=2.1. Blue curve, 2D
Mikado network with 〈z〉'3.6, f=0.84 and φ=2.2. Red curve, 3D phantom fcc lattice with 〈z〉'3.2, f=0.8 and φ=2.2. In 3D, K is measured in units of
µ/l2. The solid line has unit slope and the dashed line has slope f/φ=0.36. The inset shows the data collapse according to equation (1) for a disordered
honeycomb lattice with 〈z〉'2.4 with critical exponents f=0.48 and φ=2.2.

networks in 2D (refs 16,17,22). All networks are, by construction,
sub-isostatic and floppy in the absence of bending interactions12.
The filaments have a stretching modulus, µ, and bending modulus,
κ . These parameters define a dimensionless rigidity κ̃ = κ/µl2,
where l is the lattice spacing (mesh size) in lattice-based (Mikado)
networks. For a network of elastic fibres, κ̃ is independent of
fibre diameter and is proportional to the network volume fraction,
and thus protein concentration (Supplementary Information). The
networks are subjected to simple shear strain γ and allowed to
relax by minimization of the total elastic energy per unit volume,
H, which is calculated using a discrete form of the extensible
wormlike chainHamiltonian (seeMethods). The stress and stiffness,
in units of µ/ld−1, are obtained from H by σ = dH/dγ and
K =d2H/dγ 2, respectively.

In Fig. 2, we show the network stiffness K versus strain γ of
a triangular network with 〈z〉 ' 3.2 for different values of κ̃ . As
sketched in Fig. 1, these networks are characterized by a continuous
transition at a strain threshold γc, which is indicated in Fig. 2a by
the vertical dashed red line, above which the stiffness K increases
continuously from zero for κ̃ = 0. This curve is approached for
systems with finite but decreasing κ̃ , as can be seen by the lower
sets of black data points. This second-order phase behaviour is
qualitatively analogous to the onset of ferromagnetism on lowering
the temperature below the Curie temperature, where the addition of
a magnetic field results in finite magnetization in the paramagnetic
phase. More precisely, an additional energy10 such as the elastic
bending stiffness of fibres12 with a finite coupling constant κ
can stabilize otherwise floppy networks. As we show below, the
stabilizing effect of κ can be used to reveal the critical behaviour
for sub-isostatic systems with z<zc at strains γ 'γc(z).

In the absence of the stabilizing effect of bending—that is, for
κ̃ = 0—the continuous nature of the transition in γ is apparent
(Supplementary Fig. 2) in the critical scaling of the network stiffness
K ∼ |1γ |f in the regime where 1γ = γ − γc> 0. For γ <γc, the
effect of stabilization by bending leads to K ∼ κ̃ . These regimes can
be summarized by the scaling form

K ∝|1γ |f G±
(
κ̃/|1γ |φ

)
(1)

where G± is a scaling function, with the positive and negative
branches corresponding to 1γ > 0 and 1γ < 0, respectively.
This scaling is analogous to that for the conductivity of random
resistor networks and fibre networks as a function of connectivity z

(refs 10,12,23), although the transition here occurs as a function of
γ rather than z , and 1γ represents the distance from the critical
line in Fig. 1. In Fig. 2b, we test this scaling relation by plotting
K |1γ |−f versus κ̃|1γ |−φ , according to equation (1). For x� 1,
G+(x) is approximately constant and G−(x)∝ x . Because K must
be finite at 1γ =0, we also expect K ∼κ f /φµ1−f /φ , as one observes
from the critical branch in Fig. 2b, consistent with equation (1).
To show the generality of this result, we also show in Fig. 2b
the corresponding data obtained from Mikado networks, as well
as fcc-based 3D lattices. Strikingly, the data collapse with similar
exponents f =0.8±0.05 and φ=2.1±0.1. The average connectivity
for the three different networks is chosen to be in the range '3.2–
3.6, comparable to typical biopolymer networks such as collagen14.

To test these predictions for a biologically relevant system, we
prepared homogeneous networks of collagen type I at 37 ◦C and a
range of concentrations (Supplementary Fig. 6). We also measured
the average coordination number of these networks, z= 3.3± 0.1,
consistent both with previous study14 and the values used above
in our model. Figure 3a shows a series of measurements of the
stiffness of these networks as a function of strain for concentrations
between 0.7 and 5.0mgml−1. Assuming that collagen fibres behave
as athermal, homogeneous elastic rods, our model accounts for
fibril thickness, mesh size and concentration through the parameter
κ̃ , which is predicted to increase with protein concentration c
(see Fig. 3a and Supplementary Information)24. By rescaling our
experimental K by the concentration we can compare with the
predicted collapse in Fig. 2b. In both experiment and simulation,
we obtained the critical strain γc as the inflection point of the
logK versus logγ curves (Supplementary Fig. 1a). This strain also
coincides with the strain at which the non-affine fluctuations in
the network diverge (Supplementary Fig. 1b). On the basis of these
considerations, ourmodel predicts that the experimental stiffnessK
should be governed by the scaling relation

K/c∝|1γ |f G±
(
c/|1γ |φ

)
(2)

In Fig. 3b, we test this prediction by plotting K |1γ |−f/c versus
c|1γ |−φ . We find an excellent collapse with our predictions for
3D networks shown in Fig. 2b, assuming exponents f = 0.8 and
φ=2.1. Moreover, experiments on collagen networks prepared
at T = 30 ◦C are also consistent with our model predictions
(Supplementary Fig. 4), implying the generality of our observations
of criticality.
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Figure 3 | Experimentally measured sti�ness of collagen networks prepared at di�erent concentrations as a function of the applied strain. a, Nonlinear
sti�ness versus strain measured up to the point of rupture for collagen networks prepared at di�erent concentrations (in mg ml−1) of 0.7 (star), 1.0
(triangledown), 2.0 (triangle), 3.0 (lozenge), 4.0 (circle) and 5.0 (square). Network rupture occurs at 30–50% strain. The critical strain γc is determined as
the inflection point, indicated by the enlarged red symbols. The dashed lines are the prediction of equation (3). The fit values of κ̃ based on equation (3) are
shown in the inset. The linear scaling of κ̃ with the concentration c, taking sample to sample variation into account (Supplementary Fig. 5), is consistent
with the predictions of our model (Supplementary Information). Also shown in the inset are all individual measurements (three per concentration) of the
linear modulus G0 scaling with concentration as c2.2. b, Collapse of experimental sti�ening curves for di�erent concentrations of collagen (see legend). For
each concentration, there are three data sets corresponding to three samples. Solid line has slope 1.2 and the dashed line f/φ=0.36. Inset shows the weak
dependence of critical strain on collagen concentration. The dashed line represents the model prediction of γc∼c−0.14.

In the limit of γ→0, using G−(x)∼x (equation (1)), we obtain
a scaling relation for the linear modulus and the concentration:
K/c∼cγ (f−φ)c . Because γc is expected to depend on the average con-
nectivity, which may vary with concentration, we expect γc to show
a possible concentration dependence. In fact, as seen in the inset of
Fig. 3b, the experimental γc does show aweak γc∼c−0.14 dependence
on the concentration. Moreover, this dependence is consistent with
the observed difference between the experimental and theoretical
G− branches of Figs 2b and 3b: K/c∼ c1.2 is consistent with K/c∼
cγ (f−φ)c and the exponents f and φ in Fig. 3b, as γc∼c0.2/(f−φ)∼c−0.14.

In contrast to previous empirical rescaling rheology by
characteristic, sample-dependent values of stress and strain25,26,
our observation of criticality allows us to determine an analytic
expression for the nonlinear mechanics of collagen networks over
the entire strain range in terms of the scaling function G±(x).
As for ferromagnetic systems, one can obtain an approximate
scaling function by numerical inversion of the equation of state27
(Supplementary Information), which in our case is given by

κ̃

|1γ |φ
∼

K
|1γ |f

±1+
K 1/f

|1γ |

(φ−f )

(3)

Here, ± corresponds to the two branches of the scaling function.
In Fig. 3a, we show the predicted K versus γ according to
equation (3), with κ̃ as a fit parameter (Supplementary Information).
As noted above, γc is not a free parameter, as it is determined
from the inflection point of the experimental stiffening curves. The
predictions are in excellent agreement with the experimental data
over the entire strain range and for all concentrations.

We further test the critical behaviour by performing
finite-size scaling, which is sensitive to the divergence of the
correlation length. The modulus should follow the scaling relation
(Supplementary Information)

K ∝W−f /νF±
(
|1γ |W 1/ν) (4)

where W is the system size and F± is a scaling function, with
the positive and negative branches corresponding to 1γ > 0 and
1γ <0, respectively. In Fig. 4, we plot KW f /ν versus |1γ |W 1/ν ,
showing consistencywith equation (4). These datawere obtained for

2D lattice-based networks with κ̃=10−7. We obtain a good collapse
of the data for f =0.75±0.05 and ν=2.0±0.1. The lower branch,
F−, does not vanish as W→∞, owing to the small, finite value of
κ̃ . We confirm, however, that F− for W & 1 decreases towards zero
as κ̃→0 (Supplementary Fig. 3).

In Table 1 we summarize the various values of f and f /φ for
different network structures in either 2D or 3D. Although the
theoretical results abovewere chosen to correspond to connectivities
〈z〉 close to the experimental values for collagen networks, we
also studied two very different networks—a disordered honeycomb
lattice in 2D with 〈z〉 close to 2 (see Fig. 2b inset) and a disordered
fcc lattice with 〈z〉 close to the isostatic point (Supplementary Fig. 6).
Importantly, the near-isostatic case of the fcc lattice at 〈z〉 ' 5
exhibits a value f /φ ' 1/2, consistent with the K ∼ κ0.5 scaling
reported in ref. 12 for an isostatic network. We note, however,
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Table 1 | Critical exponents obtained by simulations
of networks varying in connectivity, architecture and
dimensionality.

〈z〉 Network f f/φ

2.4 2D honeycomb 0.5 0.22
3.2 2D phantom 0.75 0.36
3.2 3D phantom 0.8 0.36
3.6 2D Mikado 0.84 0.4
5.0 3D fcc 1.45 0.5

that the individual exponents f and φ here are only defined for
sub-isostatic networks, and thus are not expected to coincide with
studies of isostatic systems10,12.

In contrast to most previous work on critical phenomena
for jamming4, rigidity percolation5 and near-isostatic fibre
networks10,12, as well as predictions of topological boundary modes
in isostatic lattices28, our focus here has been on networks well
below the isostatic point. This situation is particularly relevant to
biology, which abounds with structural networks of biopolymers
with connectivity between 3 and 4, well below isostaticity in 3D.
A central challenge in understanding such systems has been their
nonlinear mechanical response. Recently, a Landau-type theory for
the nonlinear elasticity of biopolymer gels was proposed using an
order parameter describing induced nematic order of fibres in the
gel29. Our findings show that the nonlinear mechanics of networks
of stiff fibres such as collagen can now be understood quantitatively
in terms of critical phenomena associated with a second-order
line of transitions below the isostatic point, as indicated in Fig. 1.
Both stress and strain can be used as control variables to study
the mechanics of fibre networks. In ref. 15, stress was used as
control variable to study mechanics of collagen networks. As
a floppy network below the point of marginal stability cannot
sustain finite stress, however, the criticality we observe here is most
naturally studied as a function of strain. Our observations of critical
phenomena in collagen networks may provide an explanation
for the size-dependent rheology reported in ref. 30. It is plausible
that the correlation length associated with criticality can become
comparable to the length scale in rheology, leading to finite-size
effects. Importantly, as we show, there is a line of critical points that
extends over a wide range of network connectivities, covering the
physiologically relevant range of 3< z < 4 in 3D (Supplementary
Fig. 8). Moreover, although the linear modulus of collagen networks
may be finite in this range owing to the stabilizing influence of
bending, the nonlinear response can be quantitatively captured by
the scaling functions in equations (1) and (2).
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Methods
Network generation.Wemodel lattice-based networks in 2D and 3D, as well
as off-lattice (Mikado) networks in 2D. In our lattice-based networks,
fibres are arranged on a triangular lattice (2D) or a face-centred cubic (fcc) lattice
(3D) of linear dimensionW . In 2D, we randomly select two of the three fibres
at each vertex, on which we form a binary crosslink—that is, enforcing local 4-fold
connectivity of the network in which the third fibre does not interact with the other
two. In 3D, where there are six fibres crossing at a point, we randomly connect three
separate pairs of fibres at each vertex with binary crosslinks to enforce local 4-fold
connectivity. In both 2D and 3D, the average connectivity is further reduced below 4
by random dilution of bonds with a probability (1−pbond). To generate 3D networks
with connectivity exceeding 4, we simply perform random dilution of bonds
on a full fcc lattice, with an initial connectivity of 12, until the desired connectivity
is reached. The stretching modulus µ and the lattice constant l0 are set to 1 in 2D
and 3D. Mikado networks are generated by random deposition of filaments in a 2D
box of sizeW . A freely hinged crosslink is inserted at every point of intersection.
The deposition continues until the desired average connectivity is obtained.

Fibre elasticity.When a network is subjected to deformation, every fibre
undergoes a fractional change in length dl/ds and local curvature dt̂/ds, where s
denotes the position along the undistorted fibre contour. The elastic energy stored
in the fibre is given by

Hf =
µ

2

∫
f

dl
ds

2

ds+
κ

2

∫
f

dt̂
ds

2

ds (5)

where the parameters µ and κ describe the 1D Young’s (stretch) modulus and
bending modulus. The integration is evaluated along the fibre contour. The energy
stored in a single fibre is calculated by discretizing the equation above31.The total
energyH=

∑
f Hf is a sum over all fibres, which is minimized under the

constraint of the globally applied strain to obtain the energy density in
the network.

Collagen rheology. For our experiments, rat-tail collagen type I (BD Biosciences)
was polymerized at T=30 ◦C and T=37 ◦C in a physiological buffer solution
composed of DMEM1x solution (diluted from 10×, Sigma) containing 50mM
HEPES, 1.5mgml−1 sodium bicarbonate, 1% FBS (Gibco) and 0.1% antibiotics
(pen/strep, Gibco) at pH 7.3. Rheology was performed on a stress-controlled
rheometer (Physica MCR 501; Anton Paar) with a 40mm cone-plate geometry
having an 1◦ cone angle. A solvent trap was added to maintain a humid
atmosphere. After 6 h polymerization, stiffness versus stress curves were obtained
using a differential protocol. Stiffness curves obtained using a cone-plate of 40mm
and 2◦ cone angle (not shown) are highly similar to those presented in the main
text. More details can be found in the Supplementary Information.
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