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Driven diffusive systems with mutually interactive Langmuir kinetics
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We investigate the simple one-dimensional driven model, the totally asymmetric exclusion process, coupled to
mutually interactive Langmuir kinetics. This model is motivated by recent studies on clustering of motor proteins
on microtubules. In the proposed model, the attachment and detachment rates of a particle are modified depending
upon the occupancy of neighboring sites. We first obtain continuum mean-field equations and in certain limiting
cases obtain analytic solutions. We show how mutual interactions increase (decrease) the effects of boundaries
on the phase behavior of the model. We perform Monte Carlo simulations and demonstrate that our analytical
approximations are in good agreement with the numerics over a wide range of model parameters. We present
phase diagrams over a selective range of parameters.
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I. INTRODUCTION

Driven diffusive systems show a very rich behavior. Even
one-dimensional (1D) systems exhibit boundary induced
phase transitions [1–6] with a complex phase behavior. One
such model is that of a totally asymmetric exclusion process
(TASEP) [7–10] coupled to the Langmuir kinetics (LK) [6]. In
that model a single species of particles performs unidirectional
hopping on a 1D lattice. The particles are assumed to have
hard-core repulsion, which prevents more than one particle
from occupying the same lattice site. Such a system is coupled
to Langmuir kinetics by allowing for adsorption (desorption)
of particles at an empty (filled) lattice site with fixed respective
kinetic rates. It was shown in Refs. [5,6] that the combination of
TASEP and LK results in nonconserved dynamics with unusual
features such as the appearance of a high-low coexistence
phase separated by stable discontinuities in the density profile.
The novel phase behavior has its origin in the competing
kinetics of TASEP and LK. However, in the thermodynamic
limit, it is expected that the bulk effects are predominant with
boundaries becoming insignificant. In fact, the competition
between bulk and boundary dynamics can occur only if one
rescales the attachment (detachment) kinetic rates [5,6] such
that they decrease with increasing system size in a particular
fashion.

Besides being fundamentally interesting, understanding
nonequilibrium physics of driven systems is of particular
interest in biological systems [6,11]. One such particular
system is that of molecular motors performing directed motion
along one-dimensional molecular tracks. Typically kinetic
rates are such that the fraction of track over which the motor
moves before detaching is finite [12]. This allows for the bulk
dynamics to compete with the boundary, potentially giving
rise to unusual nonequilibrium stationary states. Recently,
exclusion process on networks have been used to model
cytoskeletal transport [13]. It was shown that active transport
processes spontaneously develop density heterogeneities at
various scales. An important aspect that needs to be included in
a study of motor transport is that of mutual interactions (MIs)
between motors. Seitz et al. [14] observed that in the presence
of an obstacle, a molecular motor walking on a microtubule
tends to stay attached for a longer time. Muto et al. [15]

reported on long-range cooperative binding of kinesin to a
microtubule. The detachment could depend on the biochemical
state of the motor [16,17], which might itself be determined
by the presence or absence of neighboring motors.

In a recent study on kinesin-1 motors moving on micro-
tubules [18], the authors performed numerical simulations
of binding or unbinding dynamics incorporating mutually
attractive interaction between the motor proteins. Their re-
sults were in agreement with the experimental observation,
in particular clustering of motors on microtubules. Mutual
interactions in addition to the hard-core repulsion introduce
additional correlations as in the Katz-Lebowitz-Spohn (KLS)
model, which is a generic model of interacting driven diffusive
systems [19]. By modifying the hopping rate of particles
depending upon the occupancy of next nearest neighbor, the
model gives rise to exotic features such as localized downwards
shocks and phase separation into three distinct regimes [20].
Interactions that modify the hopping rate also change the
particle flux, and there is an optimal interaction strength that
maximizes this flux [21]. However, in the case of molecular
motors, due to the mutual interactions, the attachment and
detachment rates of a motor molecule are modified depending
upon the state of the neighboring sites [18]. Assuming that
the hopping rate is unaltered, this corresponds to the ordinary
TASEP (with no correlations besides the hard-core repulsion)
with density (local) dependent LK.

In this paper we focus on the TASEP coupled to mutually
interactive Langmuir kinetics. We investigate how mutual
interactions can tilt the balance in favor of predominantly bulk
effects by enhancing LK. We show that that this is indeed
the case when both the attachment and detachment rates are
enhanced significantly due to the mutual interactions. In the
case of the kinetic rates being significantly reduced due to
the interactions, one suppresses the bulk effects giving rise to
rich and complex phase behavior. We also explore the more
interesting scenario in which the kinetic rates are modified in
an asymmetric fashion. The paper is organized in the following
way. In Sec. II we present the model composed of TASEP
coupled to the modified Langmuir kinetics. We first present the
modification to the LK due to the mutual interactions. We then
obtain continuum mean field equation describing the steady
state density profile of particles on the lattice. In Sec. III we
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study three different cases of modified LK. We first consider
the case in which the unmodified LK rates are assumed to
be equal and mutual interaction enhances (suppresses) the
attachment and detachment rates by the same factor. The
second case corresponds to the unmodified LK rates being
equal, but the mutual interaction enhances one and suppresses
the other by the same factor. The last case is the most general
one in which all the model parameters are freely chosen. We
do not explore this case in detail. In Sec. IV we summarize our
findings.

II. THE MODEL

The model consists of a 1D lattice with sites i = 1,2, . . . ,N ;
see Fig. 1.

Each site on the lattice can either be occupied by one
particle or no particle. There are three different subprocesses
that govern the dynamics of the system:

(a) Particles are injected at site 1 with rate α and extracted
at site N with rate β.

(b) Particles at site i = 1, . . . ,N − 1 can hop to site i + 1
if site i + 1 is unoccupied.

(c) Particles at site i = 2, . . . ,N − 1 can detach from the
lattice with rate ωD and attach to site i = 2, . . . ,N − 1 with
rate ωA.

All the rates are defined such that the hopping rate is unitary.
Processes a and b are the dynamics of the TASEP model,
and process c is the interaction with the background. The
interaction with the background is called Langmuir kinetics
(LK). We note that the only interaction between the particles
is assumed to be the hard-core repulsion.

For the sake of completion we show the equations for the
ensemble average of the site occupancy below. These equations
are the same as reported in Ref. [5]. The equation for the
average occupancy of each site is given by

d

dt
〈ni(t)〉 = 〈ni−1(t)[1 − ni(t)]〉 − 〈ni(t)[1 − ni+1(t)]〉

+〈ωA [1 − ni(t)]〉 − 〈ωD ni(t)〉, (1)

FIG. 1. A graphic representation of the TASEP model with
Langmuir dynamics. Particles are injected at the first site with
rate α and extracted at the last site with rate β. The particles
move exclusively to the right, with unitary rate, if the next site is
empty. In this model the only interaction between the particles is the
hard-core repulsion, which means that hopping over particles and
multiple occupation are not allowed. The injection, extraction, and
hopping to the next site constitute the TASEP model. The Langmuir
dynamics consists of the detachment and attachment from and to the
background. The attachment and detachment rates are ωA and ωD ,
respectively. For analysis of this model see, for example, Refs. [5,6].
Mutual interactions are incorporated by modifying the attachment
and detachment rates; see Fig. 2.

FIG. 2. The mutual interaction are incorporated in the TASEP
model with LK dynamics by modifying the attachment and detach-
ment rates if neighboring sites are occupied. For each occupied
neighboring site the attachment rate is multiplied by δ and the
detachment rate is multiplied by γ .

with ni the occupancy at site i, which can be either one or
zero. The equations for the boundary sites are

d

dt
〈n1(t)〉 = 〈α [1 − n1(t)]〉 − 〈n1(t)[1 − n2(t)]〉, (2)

d

dt
〈nN (t)〉 = 〈nN−1(t)[1 − nN (t)]〉 − 〈β nN (t)〉. (3)

The mutual interactions of the particles are included in the
equation by modifying the attachment and detachment rates ωA

and ωD , respectively. The attachment (detachment) rate if both
neighboring sites are unoccupied is ωA (ωD). If either the left or
right neighboring site is occupied the attachment (detachment)
rate becomes δωA (γωD), and if both neighboring sites are
occupied δ2ωA (γ 2ωD); see Fig. 2. In our model, the hopping
rate of particles on the lattice is unaltered in presence of mutual
interactions. This is in contrast with the KLS model where
the hopping rates are modified according to the occupancy of
nearest and next-nearest neighbors [19], whereas the binding
or unbinding kinetics remain unaltered.

In order to include the mutual interactions of the particles
the following substitutions are needed:

ωA → ωA[1 + (ni+1 + ni−1)(δ − 1)

+ ni+1ni−1(δ2 − 2δ + 1)], (4)

ωD → ωD[1 + (ni+1 + ni−1)(γ − 1)

+ ni+1ni−1(γ 2 − 2γ+1)]. (5)

At present it is not clear how already bound motors
modify the binding kinetics of motors. It has been suggested
that presence of a bound motor could change the lattice
locally somehow leading to a modified binding or unbinding
kinetics [22]. However, the underlying mechanism remains
unknown.

In order to obtain useful solutions for the distribution of
particles on the lattice, the following two steps are required.
First, one goes from the equation for the occupation of the
sites, where each site can have either value one or zero, to
an equation of the average occupation of the sites. Second,
in the limit of large system sizes a semicontinuous variable
x instead of the discrete parameter i is used for the position
on the lattice. This method is the same as used in Ref. [6].
The average density at a site is defined as 〈ni(t)〉 ≡ ρi(t). In
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a stationary state the average 〈ni〉 can be either a time or a
sample average. In order to take the averages of Eqs. (1)–(3)
with substitutions (4) and (5) the higher order correlations are
needed. Instead of solving these equations exactly a mean field
approach is used which consists of the approximation

〈ni(t)ni+1(t)〉 ≈ 〈ni(t)〉〈ni+1(t)〉. (6)

The lattice constant ε is defined as ε ≡ L/N . For simplicity
the length of the lattice is fixed to one L = 1. For large system
sizes, N � 1 the quasicontinuous position variable x = i/N

is introduced. This means that the average density at site i is
now defined as 〈ni(t)〉 ≡ ρ(x,t). The equation for the average
density profile in stationary state to leading order in ε becomes

0 = ε

2
∂2
xρ + (2ρ − 1)∂xρ + 
A[1 + ρ(δ − 1)]2

× (1 − ρ) − 
D[1 + ρ(γ − 1)]2ρ. (7)

The [1 + ρ(δ − 1)]2 and [1 + ρ(γ − 1)]2 parts of the equation
are due to the mutual interactions. In Eq. (7) the total
detachment and attachment rates are used, defined as 
A =
ωAN and 
D = ωDN . The equations for the boundary sites
[Eqs. (2) and (3)] become the boundary conditions

ρ(0) = α, ρ(1) = 1 − β. (8)

One can now take the continuous limit ε → 0; for a
normalized lattice this means N → ∞. In order to ensure that
the attachment and detachment rates per unit length do not
become infinite, the total rates 
A and 
D are kept constant.
In the continuous limit, ε → 0, the second order differential
equation (7) becomes a first order differential equation, but the
two boundary conditions remain. This means that the problem
is overdetermined. However, one can find solutions to the
equation in the continuum limit that satisfy one of the two
boundary conditions. The full density profile is is constructed
from the possible solutions. The crossover position from one
solution to an other is obtained by matching the currents
j (x) [6]:

j (x) = ρ(x)[1 − ρ(x)]. (9)

For a normalized lattice in the continuous limit the crossover
region is localized, and a discontinuity in the density profile
appears. Though the crossover region in this case is localized it
does span a finite number of sites, implying that in the case of
a finite-sized lattice the crossover region spans a finite fraction
of the normalized lattice.

The model without MIs exhibits a particle-hole symmetry,
in the sense that a particle attaching to the lattice means that
a vacancy detaches from the lattice and vice versa. The same
holds for a particle entering (leaving) the system on the first
(last) site, which can be seen as a vacancy leaving (entering)
the system. And a particle hooping to a neighboring site on
the right equals a vacancy hopping to the left. Due to this
symmetry the transformations

ni(t) ↔ 1 − nN−i(t), (10a)

α ↔ β, (10b)

ωA ↔ ωD (10c)

leave Eqs. (1)–(3) invariant [6]. However this particle-hole
symmetry is no longer apparent if MIs are included.

III. MODIFIED LANGMUIR KINETICS

In this section the solutions of Eq. (7) in the continuum
limit are presented for three different cases. The first case
corresponds to where LK rates are both enhanced or reduced
simultaneously by the same amount, and second case to where

A is enhanced while 
D is reduced by the same amount.
The third case is the most general one in which the attachment
and detachment rates are independently modified. This case
is explored in least detail. With these solutions the density
profiles are constructed and compared with Monte Carlo
simulations of the model. In addition to the density profiles,
phase diagrams are made which show the characteristics of the
solutions for different values of α and β.

A. Case 1: Mutual interaction with enhanced LK rates

The model simplifies significantly in the case that 
A =

D ≡ 
 and δ = γ ≡ 1 + η. This particular case is probably
not very relevant in a biological context as the experiments
suggest that the kinetic rates are modified in an asymmetric
fashion [18]. However, it is highly instructive to reveal the
impact of attractive mutual interactions on the phase behavior.
This means that the attachment and detachment rates are both
multiplied by 1 + η for each occupied neighboring site. Values
of η < −1 result in negative rates; therefore η is restricted to
values larger than −1. Positive η increases and negative η

decreases the LK dynamics if neighboring sites are occupied.
In this case Eq. (7) in the continuous limit becomes

0 = (2ρ − 1)(∂xρ − 
[1 + ρη]2). (11)

The special case where η = 0, the case without mutual
interactions, corresponds to the symmetric case analyzed in
Ref. [6]. Equation (11) has three solutions. A constant solution
ρl = 1/2 is the Langmuir isotherm. The other solutions are ρα

and ρβ , which obey the left and right boundary condition,
respectively:

ρα = α + (1 + ηα)
x

1 − (1 + ηα)η
x
, (12)

ρβ = 1 − β + [η(1 − β) + 1]
(x − 1)

1 − [η(1 − β) + 1]η
(x − 1)
. (13)

The full density profile ρ(x) is a combination of these
solutions:

ρ(x) =
⎧⎨
⎩

ρα for 0 � x � xα

ρl for xα � x � xβ

ρβ for xβ � x � 1
, (14)

where xα and xβ are obtained by equating the currents of the
solutions, jα(xα) = jl and jβ(xβ) = jl [6]. The domain of the
solutions can be explained as an attraction of the density to
the Langmuir isotherm as one moves away from the boundary,
when the influence of the bulk dynamics, i.e., the Langmuir
kinetics, becomes more dominant, and therefore the density
tries to reach the Langmuir isotherm ρl .
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In the case that xα � xβ the constant solution ρl is not part
of the density profile, and the profile becomes

ρ(x) =
{
ρα for 0 � x � xw

ρβ for xw � x � 1 , (15)

where xw is obtained by matching the currents of the two
solutions, jα(xw) = jβ(xw) [6]. In this case a discontinuity
appears at xw.

1. Phase diagrams

There are seven characteristic density profiles, called
phases. Depending on 
 and η all or some can be present
in the phase diagram. We follow the same terminology as in
Ref. [6]. The simplest three are the high-density (HD), the
low-density (LD), and the maximum current (MC) phase. In
the HD (LD) phase the density is higher (lower) than 1/2,
and the density profile is given by the ρβ (ρα) solution. In the
MC phase the density profile is equal to 1/2 over the whole
domain. This is called the maximum current phase because the
current is maximal for ρ = 1/2. The density profile in the MC
phase does not depend on the boundary conditions α and β.

In the TASEP model with LK it is possible for two or all
three different solutions to coexist in a density profile. The
phases consisting of two or three solutions are the LD-HD,
LD-MC, MC-HD, and the LD-MC-HD phases. The LD-HD
phase, for example, consists of the ρα solution on the left side
and the ρβ on the right side of the lattice. The phase diagrams
are constructed using the information of the domain of each of
the solutions. The detailed construction of the phase diagram
with η = 0 is reported in Ref. [6].

The phase diagrams for nonzero η are shown in Fig. 3. The
behavior of the phase diagrams for changes in η is similar
to changing 
. For increasing 
 the area occupied by the
LD, LD-HD, and HD phase in the phase diagram decrease and
eventually disappear [6]. The key difference between changing

 and η is that the influence of η is stronger in the phases
containing the HD phase. As seen in Figs. 3(b) and 3(d),
for increasing η the HD phase disappears quickly from the
phase diagram, while the LD phases decreases slowly. This
is due to the high probability of occupied neighboring sites
in HD regions. Changes in 
 and η do not effect the area
of the MC phase, which is always confined to the upper
right quarter of the phase diagram. If one keeps increasing
η eventually only the LD-MC, MC, MC-HD, and LD-MC-HD
phases remain in the phase diagram. Further increasing η

does not change the phase diagram anymore; however, the
density profiles do change. For η → ∞ the LD and HD parts
of the density profile occupy an infinitely small domain on the
boundaries of the profile. This means that due to the increase
in Langmuir dynamics the density on the whole lattice is equal
to the Langmuir density ρl .

2. Density profiles

With equations for ρα , ρβ , and ρl the density profiles
are constructed. In Fig. 4 the density profiles for the five
different phases with 
 = 0.3 and η = 2.0 are shown; these
correspond to the phase diagram in Fig. 3(d). The first thing to
notice is that the ρα and ρβ solutions are not straight lines, in
contrast to the solutions for η = 0, which are straight lines. For

FIG. 3. Five different phase diagrams for 
 = 0.3 and different
values of η: (a) η = 0, (b) η = 0.5, (c) η = −0.5, (d) η = 2.0, and
(e) η = −0.9. (a) Corresponds to the case without mutual interaction.
The influence of 
 is analyzed in Ref. [6]. From (b) and (d) it becomes
clear that due to the increase in η the HD region disappears more
quickly from the phase diagram than the LD phase. This is explained
by the fact that the mutual interactions are most apparent in HD
regions. In cases (c) and (e) η is decreased. Again it becomes clear
from these figures that a change in η has more influence on the phases
containing HD regions than on phases containing LD regions.

η > 0 the ρα and ρβ solutions are concave up with a positive
slope. This can be explained by an increase in attraction to
the Langmuir isotherm as the density increases. For example,
in Fig. 4(a), if one moves away from the left boundary the
density increases. This increase in density leads to an increase
in mutual interactions. In the case of positive η this results in an
increase in LK dynamics and therefore an increase in attraction
to the Langmuir isotherm. This increase in attraction causes
the slope to increase. The ρα and ρβ solutions with η < 0 are
concave down with positive slope; this can be explained with
the same arguments as in the case of η > 0.

The analytical solutions of the density profiles in the
continuum limit are compared with Monte Carlo simulations
of the model; see Fig. 4. Due to the finite size of the lattice
used in the simulations one can expect certain discrepancies
between the analytical results and the simulations. If the ρα

or the ρβ solutions are not part of the density profile, one or
both of the boundary conditions are not met. This happens
in the LD, LD-MC, MC, and the MC-HD phase. In these
phases a so-called boundary layer forms where the boundary
condition is not met [6]. A boundary layer is a discrepancy
between the analytical result of the equation in the continuum
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FIG. 4. Density profiles for 
 = 0.3 and η = 2; this corresponds
to the phase diagram in Fig. 3(d). The boundary conditions are
(a) α = 0.01 β = 0.01, (b) α = 0.2 β = 0.2, (c) α = 0.8 β = 0.1,
(d) α = 0.8 β = 0.8, and (e) α = 0.1 β = 0.8. The solid lines are
the analytical solutions for the density profiles [Eqs. (14) and (15)],
the constant solution ρl is included as a dash-dot line. The solid
lines with noise are the result of the Monte Carlo simulations with a
lattice of 1000 sites, averaged over 2000 simulations. The analytical
solutions for 
 = 0.3 and the same boundary conditions but without
MIs (η = 0) are included as a dotted line to emphasize the effect of
the mutual interactions. (a) The MIs do change the density profile
significantly, but do not change the phase. (b) Due to the MIs the LK
dynamics increases, and the profile changes from a LD-HD phase for
η = 0 to a LD-MC-HD phase. (c) The MIs cause a phase change from
the HD phase to the MC-HD phase, due to the increased LK dynamics.
(d) There is no difference between the solution with or without MIs.
(e) The MIs induce a phase change from the LD phase to the LD-MC
phase, due to the increased LK dynamics. There are two types of
discrepancies between the analytical results and the Monte Carlo
simulations. Boundary layers are formed at the left boundary (c), at
the right boundary (e), and at both boundaries (d). Other discrepancies
between the analytical result and the simulations occur where there is
a transition between the ρα , the ρβ , and/or the ρl solution. Both types
of discrepancies can be explained by the finite size of the lattice used
in the simulations.

limit [Eq. (11)] and the simulation results of the model with a
finite-sized lattice. This discrepancy occurs at the boundary
where the boundary condition is not met and will occupy
an increasingly small domain for an increasing number of
lattice sites used in the simulations. One can also expect a
discrepancy between the analytical density profile and the
simulation results where there is a crossover from one solution
to the other. In the analytical density profile the crossover is

localized on the scale of the rescaled variable x. However, if
the lattice has a finite number of sites, the crossover will span
a finite fraction of the normalized lattice.

B. Case 2: Mutual interactions with antisymmetric
modified LK rates

In the previous case the MIs increased the LK dynamics,
which is not the attractive interaction as reported in Ref. [18].
In this case the model is analyzed for attractive interactions.
Again 
A and 
D are set equal, 
A = 
D ≡ 
. But in this
case the mutual attraction is incorporated in an antisymmetric
manner, δ is increased, and γ is decreased by a factor ψ ,
δ = 1 + ψ and γ = 1 − ψ , with −1 < ψ < 1. Depending on
whether ψ is positive or negative the interactions between the
particles are, respectively, attractive or repulsive. In this case
Eq. (7) in the continuous limit becomes

0 = (2ρ − 1)∂xρ + 
[1 + ρψ]2(1 − ρ) − 
[1 − ρψ]2ρ.

(16)

In order to find solutions for the density profile, the equation
is simplified by neglecting the terms of order ψ2. In the next
section the limit of this approximation is discussed. With this
approximation Eq. (16) simplifies to

0 = (2ρ − 1)∂xρ + 
 − 2
(1 − ψ)ρ. (17)

This equation has the same form as the one for the model
without MIs but with unequal 
A and 
D [Eq. (18)] [6]:

0 = (2ρ − 1)∂xρ + 
A − (
D + 
A)ρ. (18)

Equation (18) exhibits a particle-hole symmetry [Eq. (10)];
therefore this symmetry is also apparent in Eq. (17). However,
this is not a property of the model and is apparent only if the
ψ2 terms in Eq. (16) are neglected. The transformation

ρ(x) → 1 − ρ(1 − x), (19a)

α → β, (19b)

β → α, (19c)


 → 
(1 − 2ψ), (19d)

ψ → −ψ

1 − 2ψ
(19e)

leaves Eq. (17) invariant. Using this transformation density
profiles for −1 < ψ < 0 can be obtained from solutions to
Eq. (17) with 0 < ψ . Therefore the analysis is restricted to
positive values of ψ . Solutions to Eq. (18), obtained by Ref. [6],
are Lambert W functions. Using these solutions one finds that
the solutions to Eq. (17) for ψ > 0 are

ρα = ψ

2(1 − ψ)
{W−1 [−y(x)] + 1} + 1

2
for α < 1/2,

(20)

ρβ =
{

ψ

2(1−ψ) {W0 [y(x)] + 1} + 1
2 for 1 − β � ρl

ψ

2(1−ψ) {W0 [−y(x)] + 1} + 1
2 for 1

2 � 1 − β � ρl

,

(21)
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where ρα obeys the left and ρβ the right boundary condition.
y(x) is given by

y(x) =
∣∣∣∣1 − ψ

ψ
(2ρ0 − 1) − 1

∣∣∣∣ exp

[
2


(1 − ψ)2

ψ
(x − x0)

+1 − ψ

ψ
(2ρ0 − 1) − 1

]
, (22)

with ρ0 = α, x0 = 0 for ρα and ρ0 = 1 − β, x0 = 1 for ρβ .
The constant solution ρl = 1

2(1−ψ) is the equivalent of the
Langmuir isotherm in the case without MIs. The density profile
is “attracted” to this constant solution, as explained in the
previous section. The solution ρα is stable only for α < 1/2
and ρβ for β � 1/2 [6].

The full density profile is constructed from the solutions
obeying the left and right boundary conditions, and calculating
xw, the position of the transition from ρα to ρβ , by matching
the currents of these solutions.

1. Phase diagrams

Using the same method as in the previous case the phase
diagrams are constructed from the information about the
domain of the solutions. There are four possible phases; these
have the same characteristics as the phases of the model
without MIs but with 
A 
= 
D [6]. Due to the similarity
only a short explanation is given here; for a more elaborate
discussion of the phases one can consult [6]. In the LD (HD)
phase the full density profile is governed by ρα (ρβ); boundary
layers appear at the right (left) end of the lattice. The condition
for the LD phase is xw > 1 and α < 1/2, and for the HD phase
the condition is xw < 0 and β < 1/2. The M phase occurs for
β > 1/2 and xw < 0. This phase is called the “Meissner” phase
due to similarities with the Meissner phase in superconducting
materials [6]. In the M phase the density profile is independent
of both boundary conditions; therefore boundary layers occur
at both ends of the lattice. Because the solution is not stable
for these values of β the profile is given by ρβ(1/2) [6].
This phase can be seen as the equivalent of the MC phase
in case without MIs [6] or case 1, because a profile in the
MC phase is also independent of the boundary conditions.
The LD-HD phase, where phase coexistence occurs, is split in
two regions. In the region β < 1/2 the profile obeys both the
left and right boundary conditions. In the region β > 1/2 only
the left boundary condition is obeyed. The right part of the
density profile is independent of the right boundary condition
and is given by ρβ(1/2); this phase is indicated as LD-HD(M).
Profiles in the LD-HD(M) phase have a boundary layer at the
right end of the lattice. The conditions for the LD-HD phase are
0 < xw < 1, α < 1/2, and β < 1/2. For the LD-HD(M) phase
the conditions are 0 < xw < 1, α < 1/2, and β > 1/2. In
Fig. 5 three phase diagrams are shown for different values of ψ .

Because Eqs. (20) and (21) are derived using the approxi-
mation ψ2 = 0, the phase diagrams are also an approximation,
which hold in the limit of small ψ . For example, the density
profile in Fig. 7(b), with ψ = 0.8, α = 0.1 and β = 0.9, is
according to the mean field equations in the M phase; however,
the result of the simulation is in the LD-HD(M) phase. on the
phase diagram, this value of ψ corresponds to [see Fig. 5(c)
with α = 0.1 and β = 0.9] a point just to the right of the line

FIG. 5. Three phase diagrams obtained with Eqs. (20) and (21).
With 
 = 0.3 and (a) ψ = 0.001, (b) ψ = 0.4, (c) ψ = 0.8. The
phases which contain the ρα solution disappear from the phase
diagram for increasing MIs, until only the M and HD phases are left.
The area of the M phase in the phase diagram occupies an increasingly
large part of the upper half of the phase diagram for increasing ψ .
This stands in contrast with the MC phase in case 1, where the MC
phase is confined to the upper right quarter of the phase diagram and
the area is independent of any parameter; see Fig. 3.

separating the LD-HD(M) and the M phases. This shows that
due to the approximation the line separating these two phases
is shifted to the left.

2. Density profiles

Using Eqs. (20) and (21) the density profiles can be
constructed. The domain of each of the solutions is determined
by matching the currents of the solutions [Eq. (9)]. In Fig. 6
five density profiles are depicted, one each for a phase in
phase diagram 5(b) (
 = 0.3,ψ = 0.4). It is clear from the
Fig. 6 that there is good agreement between the simulations
and the analytical solutions [Eqs. (20) and (21)]. The apparent
discrepancies between the analytical and numerical results are
caused by the finite size of the lattice used in the simulations.
In addition to this there is also a small discrepancy between
the analytical solution and the simulations caused by the
approximation ψ2 = 0. This can cause a discrepancy in the
domain wall position, as can be seen in Figs. 6(b) and 6(d).

3. Approximation limits

In deriving Eqs. (20) and (21) terms of the order ψ2

were neglected. The neglected part of Eq. (16) is 
ψ2ρ2 −
2
ψ2ρ3, which shows that every ψ2 is coupled to either a ρ2

or a ρ3. This means that the breakdown of the approximation is
governed by both ρ and ψ and the approximation hold for low
densities regardless of the value of ψ , because MIs do not play
a significant role in low densities due to the low probability of
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FIG. 6. Density profiles for 
 = 0.3 and ψ = 0.4; this corre-
sponds to the phase diagram in Fig. 5(b). The injection and extraction
rates are (a) α =0.01, β = 0.7 (LD phase), (b) α = 0.1, β = 0.7
[LD-HD(M) phase], (c) α = 0.8, β = 0.8 (M phase), (d) α = 0.05,
β = 0.1 (LD-HD phase), and (e) α = 0.3, β = 0.2 (HD phase). The
dashed lines are the Lambert W function solutions to Eq. (17) obeying
the left and right boundary conditions. The parts of these solutions
that make up the density profile are represented as solid black lines.
The dash-dot line is the constant solution. The analytical solutions
for the same values but without MIs are included as dotted lines to
emphasize the influence of the MIs on the density profiles. Solid
lines with noise are the results of the Monte Carlo simulations with
a lattice of 1000 sites, averaged over 2000 simulations. Overall there
is good agreement between the simulations and the analytical result.
There are two causes for the discrepancies: the finite size of the lattice
and the approximation ψ2 ≈ 0. Due to the finite size of the lattice
boundary layers are formed at the right end of (a), (b), and (d) and
at the left end of (c) and (d); and the domain walls in (b) and (d)
are not localized. The discrepancies caused by the approximation are
visible in two ways: the density profile does not fully coincide with
the analytical result, and due to this the position of the domain wall
is shifted. This is visible in (b) and (d).

having occupied neighboring sites. Figure 7 illustrates some of
the limits of the approximation. From Figs. 6(b), 6(d), and 7(b)
it becomes clear that the domain of the LD and HD solution
can differ significantly even if the ρα and ρβ differ only a little
from the simulation result.

C. Case 3: Mutual interactions with
arbitrarily modified LK rates

Until now, we have considered enhancement or suppression
of LK rates in a symmetric or antisymmetric fashion. The most

FIG. 7. The same legend as in Fig. 6 is used. In order to illustrate
the limits of the approximation ψ2 ≈ 0 used in deriving the equations
for the density profiles, four extreme cases are shown. For all figures

 = 0.3 was used for (a) ψ = −0.99, α = 0.1, β = 0.1, (b) ψ =
0.8, α = 0.1, β = 0.9, (c) ψ = 0.5, α = 0.9, β = 0.1, and (d) ψ =
0.9, α = 0.9, β = 0.1. From (a) it is clear that the approximation
holds for low densities, regardless of the values of ψ . The analytical
solution in (b) does not fully coincide with the simulations. There
are two causes for the discrepancies. First, there is a boundary layer
on the right side caused by the finite size of the lattice. Second, the
ρβ solution is higher than the results from the simulation; this is
caused by neglecting the ψ2 terms. Overall the simulations are in
good agreement with the analytical solutions; however, the domain
of the solutions differs significantly. The analytical profile is in the
HD phase, xw < 0. The simulation result, on the other hand, is in the
LD-HD phase, 0 < xw < 1. (c) For this value of ψ there is agreement
between the analytical solution and the simulations, even though
density is high. (d) The analytical result does not coincide with the
simulations due to the combination of high density and a ψ close to
1. In this case the density of the analytical result exceeds 1, which is
physically impossible.

general case in which all the relevant parameters (
A, 
D , δ,
γ , α, β) are assigned randomly chosen values is extremely
difficult to treat analytically. Due to the large parameter
space (six-dimensional), one cannot gain much insight by
performing numerical simulations. Therefore, we have not
explored the most general case in any details. However, we
consider few representative cases in which the choice of
model parameters is based on the observation that the resulting
density profiles have interesting features when contrasted with
the case with no mutual interactions. In Fig. 8 we show profiles
corresponding to four different sets of parameters. As can
be seen the profiles look very different from those with no
mutual interaction. However, as mentioned above, at present
our analysis of the most general case is very qualitative and
highly superficial. It is obvious that it requires much further
investigation. We leave detailed analysis of the general case to
a future study.
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FIG. 8. The density profiles for (a) 
A = 0.5, 
D = 1, δ = 2,
γ = 0.1, α = 1, and β = 1, (b) 
A = 0.5, 
D = 0.5, δ = 2, γ = 0.5,
α = 0, and β = 1, (c) 
A = 0.5, 
D = 0.5, δ = 2, γ = 0.5, α = 0,
and β = 0, (d) 
A = 0.5, 
D = 1, δ = 3, γ = 0.1, α = 0, and β = 0.
Solid line with noise is the result from the simulation, the dashed line
is the solution without MIs. In all cases the attachment or detachment
is increased or decreased, which results in a higher density. In (b) and
(c) the density overlaps with a small part of the analytical solution
without MIs. This can be explained by the in low-density regions the
effect of the MIs is small. Though in (d) the solution without MIs
the density is low, the lattice is almost completely filled due to the
increase or decrease in attachment or detachment. All parameters in
(a) and (d) are the same except for the boundary conditions, which
prevents the lattice in (a) from filling up completely.

IV. CONCLUSION

In this work we investigate the simple one-dimensional
driven model: the totally asymmetric exclusion process,
coupled to a modified form of Langmuir kinetics. This model is
motivated by recent studies on clustering of motor proteins on
microtubules. Without addressing the underlying mechanism,

it is assumed that the attachment and detachment rates of a
particle depend on the occupancy of the nearest neighbors
of any given site. Ignoring density correlations, we obtain a
continuum mean-field equation describing the density profile
on the lattice. The presence of mutual interactions breaks
the particle-hole symmetry. Imposing certain conditions, we
obtain an analytical solution to the equation and demonstrate
using Monte Carlo simulations that our analytical solutions
are accurate over a wide range of parameters. We show that
when both attachment and detachment rates are enhanced
due to mutual interactions, bulk effects start dominating the
phase behavior of the model. Attractive mutual interactions
change the phase behavior predominantly via the appearance
of the maximum current phase. For instance, the two-phase
coexistence (low and high density) observed in absence of
mutual interactions can become three-phase coexistence (low
and high density with maximum current phase) when mutual
interactions are attractive. Similarly, a high density phase
(in absence of mutual interactions) can become two-phase
coexistence (high density and maximum current phase). When
the kinetic rates are modified in an asymmetric fashion,
we do not provide a general analytical solution to the
mean-field equation. However, under the assumption that
one can ignore higher order terms in the modified kinetic
rates, we demonstrate that by performing a special set of
transformations, the system with antisymmetric kinetic rates
can be mapped to a system with no mutual interactions. We
then use the general analytical solutions known for a system
with no mutual interaction to describe the phase behavior of a
system with antisymmetric kinetic rates. In sum, varying the
mutual interaction between particles (attractive or repulsive),
we obtain a very rich phase diagram describing the behavior
of driven diffusive system with mutually interactive Langmuir
kinetics.
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