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Elastic response of filamentous networks with compliant crosslinks
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Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very
different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection
of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as wormlike
chains. For relatively large extensions we allow for enthalpic stretching of crosslink backbones. We show that
for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments’
length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic
modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the
differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be
seen in a transition from entropic to enthalpic regimes. We discuss our results in light of recent experiments.
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The mechanical response of animal cells is largely deter-
mined by a viscoelastic matrix known as the cytoskeleton,
which is a network consisting of many different biopolymers
together with various binding proteins that govern the organi-
zation and stability of these networks. One of the ways in which
these networks differ from synthetic crosslinked polymer
systems is the fact that many of the crosslinks are themselves
highly compliant proteins, which can strongly affect the
macroscopic network compliance. There have been many
in vitro studies of reconstituted networks with rigid crosslinks
[1–12]. By comparison, relatively few recent experimental or
theoretical studies have focused on networks with compliant
crosslinks [13–19].

A model experimental system of filamentous networks with
compliant crosslinks is that of F-actin networks with the highly
compliant and physiological crosslink filamin. Experimental
studies on such networks have demonstrated several striking
elastic properties. These networks can have a linear modulus as
low as 1 Pa, while able to withstand stresses as large as 100 Pa
or more at strains of order 1 or less. They do so by stiffening
dramatically by up to a factor of 1000 under applied shear
stress. Moreover, in contrast to networks with noncompliant
crosslinks, such networks can be subjected to relatively high
strains �50% without rupturing [11,15]. Both the linear and
nonlinear elastic properties of actin-filamin gels appear to be
dramatically affected by the flexible nature of the crosslinks,
resulting in novel behavior as compared to actin networks
with noncompliant crosslinks, and to synthetic polymer gels.
Similar composites of rigid filaments and compliant crosslinks
can be found in other systems, such as stiff DNA nanotubes
crosslinked by flexible DNA linkers [20], although much less is
known about the nonlinear elastic properties of such systems.

Recently, a model for the elastic behavior of such networks
has been proposed [17,21]. The model is based on the
assumption that the soft stretching modes of the crosslinks
govern the elasticity of a dense network of stiff polymers.
Specifically, the filaments are assumed to be rodlike and
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much more rigid than the crosslinks. Moreover, these rods are
assumed to be much longer than the contour length of the fully
stretched crosslinks. Both of these assumptions are reasonable
for actin-filamin networks. In this model the nature of the
deformation field in the network in response to an externally
imposed strain is determined in the following way. If the
network response to an externally imposed strain is to produce
a uniform deformation field, that would imply stretching of
the rods, which in the limit of infinite rigidity of the rods, is
energetically prohibited. It follows that the deformation field
should be nonuniform on scales below the rod length. On the
macroscopic scale the network deforms affinely and stretches
the crosslinks on length scales smaller than the length of the
rod.

In the linear elastic regime the crosslinks behave as
Hookean springs. However, since the deformation field is
nonuniform on the length scale smaller than the full rod
contour length, crosslinks at the outermost ends of the rod
experience more stretching than those near the center of the
rod. At a critical strain the outermost crosslinks reach their full
extension and, consequently, stiffen dramatically. This model
predicted an onset of stiffening that depends only on the rod
length L and the fully stretched crosslink contour length l0.
Also, the linear modulus was predicted to be proportional to
the mean number of crosslinks and L. This model accounts
for many important features of the measured elastic response
of such networks in the linear elastic regime, including the
dependence on length L [22]. The model also predicted a
linear scaling of nonlinear elastic stiffness on applied stress, in
agreement with numerous observations from experiments on
actin-filamin gels [13,14,23].

Here we analyze numerically and analytically filamentous
networks with compliant crosslinks. Our simulations allow us
to test both our analytic results, as well as the predictions
and assumptions of the previous studies in Refs. [17,21].
Importantly, certain key assumptions made in the earlier
mean-field model were not tested. Among the important
aspects of this model was the puzzling prediction of a weaker
divergence of the stress with strain than would be expected for
the crosslinks alone, in spite of the assumption that the rods
connecting the crosslinks are noncompliant. More precisely,
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the model predicted that the stress and elastic modulus only
diverge at infinite strain, despite a finite-strain divergence of a
crosslinks’ spring constant.

Our networks are composed of randomly oriented rods of
length L in two dimensions (2D), which are linked together
by highly flexible crosslinks. Each crosslink is modeled as a
wormlike chain (WLC) [24,25]. The crosslinks consist of two
binding domains interconnected by a thermally fluctuating
flexible polymer chain of length l0, assumed to be larger
than the chain persistence length �p. The compliance of
such a crosslink is entropic in nature. Indeed, atomic force
microscope (AFM) measurements show that a compliant actin
crosslink filamin can be accurately described as a WLC
[26,27]. In our simulations, we do not take into account
domain unfolding of the crosslink proteins [14–16]. It has
been recently shown that the macroscopic stress required for
domain unfolding exceeds the typical limit of shear stress at
which network failure occurs [22,23]. In fact, unbinding of
filamin occurs at forces much smaller than that needed for
unfolding [28]. Therefore we consider only the stiffening of
the crosslinks originating from the WLC model. Additionally,
since the forces become unphysically high as the crosslink
stretches to its contour length, we perform simulations where
we allow for enthalpic stretching of the crosslink backbone. We
also consider the scenario where rods can undergo enthalpic
stretching as well.

As in Refs. [17,21], we also study this model analytically,
assuming that the network deforms affinely on a scale larger
than the length of the rods. Under this assumption the
deformation field on scales below the rod length is obtained for
a given orientation of the filament. We then calculate the free
energy stored in the crosslinks for an externally imposed strain,
from which we obtain elastic modulus and shear stress of the
network. We refer to this approach as the affine approximation.

Our simulation results are in excellent agreement with the
predictions of Refs. [17,21] for the linear elastic regime. How-
ever, in the nonlinear stiffening regime, there are significant
differences. In particular, we do not find the regime predicted
by the model proposed in Refs. [17,21] in which the differential
modulus scales linearly with stress. We suggest that the linear
dependence of nonlinear elastic stiffness on the applied stress
observed in experiments is not a power-law regime. Instead,
it corresponds to a crossover from the stiffening to enthalpic
regime. We show that in networks with crosslinks that cannot
undergo enthalpic stretching, independent of the crosslink
density, there is a unique power-law stiffening regime where
the differential modulus scales with an exponent 3/2 with
the shear stress. The transition from the linear elastic regime
to the 3/2 power-law scaling of modulus with stress is a
crossover of which the width depends on the crosslink density.
Moreover, there is a maximal strain that can be applied to
a network of stiff filaments with WLC crosslink. We show
that the linear elastic regime of dense networks can be fully
understood by invoking affine deformation on the length scale
of filaments. In the nonlinear regime, the assumption of affine
deformation on scale of the filament’s length breaks down. This
is particularly true of sparse networks, which we also study.
For all strains, the displacement field in a sparse network is
nonaffine on the length scale of the filament. We show that by a
simple empirical correction to the crosslink density, the linear

modulus of sparse as well as dense networks can be expressed
by a single expression.

The remainder of the article is organized as follows. First,
in Sec. I we briefly describe the simulation model and study
the linear elastic regime of a densely crosslinked network. In
Sec. II an expression for the linear modulus is derived and
compared with the simulation results. In Sec. III the model is
analyzed in the nonlinear regime, with and without enthalpic
stretching of crosslinks and filaments. Finally, in Sec. IV we
focus on the sparse networks. We also consider the scenario
with a torsional rigidity of a crosslink. We show that near
the rigidity percolation, the linear modulus of the network is
determined by both the torsion constant and the spring constant
of the crosslinks in an anomalous coupled manner.

I. SIMULATION MODEL

We perform two-dimensional numerical simulations of
disordered filamentous networks. The networks are modeled
as collections of N filaments/rods each of length L distributed
randomly within an area A = W × W . Unless otherwise
specified, the system size is fixed to W = 10. The initial
orientation as well as the initial location of center of mass of
the filaments is uniformly randomly distributed. A schematic
of the filamentous network is shown in Fig. 1. Unless
otherwise specified, wherever two filaments intersect we insert
a crosslink with rest length 0. The force-extension curve of a
flexible crosslink, assuming that the contour length is larger
than the persistence length, is described by the interpolation
formula [25,28]

fcl(u) = kBT

lp

⎛
⎝ 1

4
(
1 − u

l0

)2 − 1

4
+ u

l0

⎞
⎠ , (1)

where kBT is the thermal energy, lp is the persistence length,
u is the extension, and l0 is the contour length of the crosslink.
The force-extension curve shown in Fig. 2 demonstrates
the rapid stiffening of the crosslink with diverging force

FIG. 1. (Color online) Schematic of a Mikado filamentous
network. A crosslink is inserted at every intersection of any two
filaments. A crosslink connecting two filaments is shown as a wiggly
red line in the zoomed-up intersection of two filaments.
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FIG. 2. (Color online) Force-extension curve of a wormlike
chain crosslink, including enthalpic stretching. Crosslink becomes a
Hookean spring when u � lee, with stiffness equal to the differential
stiffness of the WLC curve at u = lee. Different curves correspond
to different values of lee/l0. The lowermost curve corresponds to
lee/l0 = 0.90, and successive curves lying above this one correspond
to increasing values of lee/l0, with the diverging one corresponding to
the WLC curve. The dashed line marks the divergence of force when
a crosslink is stretched to its contour length. Inset: In the rest frame
of the filament, the deformation appears as pure rotation indicated by
the dashed arc. The crosslink is shown as a filled red circle at distance
x from the center of the filament stretches by xγ sin(2θ )/2.

as the extension approaches its contour length. We include
enthalpic stretching of the crosslink by treating the crosslink
as a Hookean spring beyond a certain extension lee < l0.
For extension u � lee, the spring constant is fixed to the
differential stiffness of the WLC curve at u = lee. In Fig. 2
we show the force-extension curves for different values of
lee/l0. For u � l0, fcl(u) = 3

2
kBT
lp l0

u, implying that the crosslink
is a Hookean spring in the small extension limit with spring
constant kcl given by 3

2
kBT
lp l0

. This defines an effective potential
that we shall call the free energy.

For sparse networks, we also include the energy associated
with change in the relative orientation of two filaments at a
crosslink. We assume that this change in energy corresponds
to torsion of the crosslink. The corresponding free energy is
assumed to be quadratic as Fτ = 0.5kτ (θ − θ0)2, where kτ is
the torsion constant of the crosslink and (θ − θ0) is the change
in the relative angle between the two filaments connected by
the crosslink. The average number of crosslinks per filament
is determined by the the line density ρ = NL/A. If ρ is
sufficiently high, the average number of crosslinks per filament
is given by n = 2ρL/π [29]. In the case of infinite stiffness
of the filaments, three degrees of freedom are associated
with each filament. If the filaments can undergo enthalpic
stretching, two additional degrees of freedom are associated
at the location of each crosslink on the filament. The shear
strain γ is applied using Lees-Edwards periodic boundary
conditions. The network response to any externally imposed
strain is calculated by first applying an affine deformation to

the filaments’ centers of mass and then letting the network
relax to its mechanical equilibrium state using a conjugate
gradient algorithm [30]. The free energy of the network in this
state, F , is then used to extract the modulus as K = 1

A
∂2F
∂γ 2 and

shear stress as σ = 1
A

∂F
∂γ

.

II. LINEAR REGIME

In the linear elastic regime, the strain is low enough such
that no crosslink reaches its full extension. We derive here
an expression for the linear modulus G0, assuming that the
network deforms affinely on length scale of the filament.
By imposing affine deformation on the length scale of the
filament, the deformation field u on the subfilament level is
fully determined. Since a crosslink is connected to a pair of
filaments, one can obtain an exact expression for the amount
of stretching in a crosslink for a pair of filaments. In the
small strain approximation, the contribution to the change in
the stretching energy in a crosslink due to the change in the
relative orientation of the two filaments averages out to zero. In
the following derivation we ignore this contribution. Consider
the response of crosslinks on a single filament to a small strain
γ . In the rest frame of the filament a crosslink at at distance
x from the center is stretched by u(x,γ ) ∝ xγ . The total free
energy of the network can be obtained by summing over all
crosslinks as

F = Nkcl

∫ L/2

0

n

L
u2(x,γ )dx. (2)

In 2D, for a filament oriented at an angle θ , u(x,γ ) =
xγ sin(2θ )/2 in the small strain approximation, as shown in
the inset of Fig. 2. By averaging free energy over the uniformly
distributed orientation of the filament, we extract the linear
modulus as G0 = 2F

Aγ 2 , which yields

G0 = 1
96ρkclnL. (3)

The numerical prefactor depends on the dimensionality. In
1D it is 1/8 and in three dimensions (3D) it is 1/192 [17,21].
In Fig. 3 we plot the linear modulus obtained from simulations
versus the number of crosslinks per filament. It is clear from
the figure that G0 from Eq. (3) is in agreement with the
simulation results for n � 10. For n � 10 the linear modulus
obtained in simulations differs substantially from the analytical
prediction. This is expected because for low densities, the
assumption of uniformly distributed crosslinks is no longer
valid. Moreover, n � 10 corresponds to line densities for
which the deformation of the network is not expected to be
affine on the length scale of the filaments. In fact, the network
is not even rigid for n � nc where nc ≈ 4.93. nc is the critical
number of crosslinks per filament at the rigidity percolation
transition [29]. If n in Eq. (3) is replaced by (n − nc), we
obtain a very good agreement with the analytical prediction
over the whole range of n, as shown in Fig. 3. Although we
have introduced this correction as purely empirical, it can be
justified by analogy with the mean-field theory of rigidity
percolation. In the mean-field description of the rigidity near
the percolation point, all macroscopic quantities of interest,
such as modulus and stress, scale linearly with the distance
from the rigidity percolation point [31]. The numerical and
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FIG. 3. Linear modulus as a function of the number of crosslinks
per filament (symbols). Dotted line corresponds to the analytical
prediction of Eq. (3). The curve connecting the symbols corresponds
to the empirical correction to Eq. (3) in which n is replaced by
n − nc, where nc = 4.93. Inset shows G0/(ρkclL/96) obtained from
simulations (symbols) and the empirical fit (line) plotted with respect
to the reduced crosslink density.

analytical results in the linear elastic regime, presented so far,
agree with the previous analytical modeling [17,21]. However,
as we show in the next section, in the nonlinear regime this is
not the case.

III. NONLINEAR REGIME

We now consider strain-induced stiffening of filamentous
networks with compliant crosslinks. In these networks the
onset of stiffening corresponds to the strain at which crosslinks,
lying at the edge of a filament, approach their contour length.
Under the assumption that network deformation is affine on
the length scale of the filament, a crosslink at the edge of a
filament stretches by an amount dl � γL/2. When dl � l0,
the crosslink will stiffen dramatically. It follows that the
strain γc � 2l0/L marks the onset of nonlinear stiffening of
the network [17,21]. In Fig. 4 we plot the differential shear
modulus K in units of the linear modulus G0 as a function of
strain for different values of l0. In simulations we define γc

as the strain at which K/G0 ∼ 3. We plot γc in the inset of
Fig. 4(b). Each point in the curve corresponds to five different
values of n, ranging from n = 30 to n = 80. These points
are indistinguishable because γc is determined solely by the
ratio l0/L. It is clear from the figure that γc obtained from
simulations scales linearly with l0/L and is independent of the
crosslink density.

An important feature of the nonlinear stiffening is that the
differential modulus diverges at a particular strain γd ∼ πl0/L.
In other words, there is a maximal strain that can be applied to
networks with crosslinks with an unstretchable backbone. The
fact that the strain is bounded is in contrast with the predictions
of the previous work Refs. [17,21]. There, the differential
modulus is finite for any strain. This result follows from the
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FIG. 4. (Color online) (a) Differential modulus in units of linear
modulus G0 for n = 70 versus γ . The small vertical lines mark the
critical strain γc. (b) Same as (a) but now strain is expressed in units
of γc. Different curves correspond to different values of n. The inset
shows the critical strain γc for different values of l0.

assumption that beyond the critical strain the crosslinks that
have already stretched to their full extension become infinitely
rigid and any strain beyond critical strain leads to stretching of
the medium. In other words, beyond critical strain the medium
starts stretching and the medium’s elastic response, although
highly nonlinear, is not divergent for any finite strain. This
assumption about the medium would be valid, provided the
medium existed independent of the constituting filaments, such
that each filament is connected to the medium rather than to
each other. Our simulations show that the weak divergence of
modulus and strain is a nonphysical prediction of the model.
If the filaments are infinitely rigid and crosslinks have finite
compliance, both modulus and stress will diverge at a finite
strain.

In the previous work, the linear scaling of the differential
modulus with the stress was a consequence of the stretching
of the medium beyond the critical strain. It is clear that such
a regime is not observed in our simulations of networks with
WLC crosslinks. However, experiments have shown that the
differential modulus depends linearly on the applied shear over
a significant range of stress. Moreover, such networks can
be subjected to strains much larger than the critical strains.
We will show below that these experimental observations
can be understood by allowing for enthalpic stretching of the
crosslinks beyond their contour length.

A. Deviation from the affine approximation

Under the affine approximation the exact form of diver-
gence of differential modulus with strain can be determined
in a straightforward manner. Here we consider the case of
an extremely high but finite crosslink density. In 2D the
magnitude of the displacement field depends on the orientation
of the filament and can be written as

u(x,γ ) = x(
√

1 + γ 2 sin2 θ + γ sin 2θ − 1), (4)
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FIG. 5. (Color online) Affine calculation. Differential modulus in
units of linear modulus G0 versus σ/σc for l0/L = 0.1 for one- and
two-dimensional filamentous networks with compliant crosslinks.

where x is the distance of the crosslink from the center of
the filament. We use the expression of Eq. (1) to calculate the
energy of crosslinks on a single filament as

F (γ ) = 2n

L

∫ L/2

0

∫ u(x,γ )

0
fcl(u)dudx. (5)

We obtain energy by numerically integrating Eq. (5) and
averaging over all orientations of the filament. The results
for differential modulus vs stress are plotted in Fig. 5. As
can be seen there, the nonlinear stiffening is characterized
by a broad crossover followed by power-law scaling of the
differential modulus with shear stress with an exponent of 3/2.
However, the transition to the 3/2 regime occurs at very high
modulus and, therefore, may not be relevant for experiments.
Also, in Fig. 5 the results for the 1D case are shown. The
differential modulus scales quadratically with the shear stress
before rolling onto the 3/2 power-law regime. The quadratic
scaling of K with σ follows directly from a 1D displacement
field u(x,γ ) ∼ xγ . By using this 1D displacement field in
Eq. (5), we obtain that near the strain γd , F ∼ − ln(1 − γ /γd ).
It follows that in the vicinity of γd , stress σ ∼ (1 − γ /γd )−1

and differential modulus K ∼ σ 2. However, the width of the
quadratic regime depends on the crosslink density and only
for the unphysical limiting case of infinite crosslink density,
this regime persists over the entire stress range. For any
finite crosslink density the differential modulus will scale as
K ∼ σ 3/2 for high stresses, as shown in Fig. 5.

It is clear from Fig. 5 that the affine elastic response of a 2D
network exhibits an initially steeper than quadratic dependence
on the shear stress in the crossover. In Fig. 6 we plot the
differential shear modulus K obtained from simulations, in
units of linear modulus G0, as a function of shear stress for
different values of l0. We define critical stress σc = σ (γc).
Stiffness curves of K/G0 vs σ/σc, corresponding to different
values of crosslink density n, collapse, as shown in Fig. 6(b).
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FIG. 6. (Color online) (a) Differential modulus in units of linear
modulus G0 for n = 70 versus σ . (b) Same as (a) but now stress is
in units of σc. Different curves correspond to different values of n.
The modulus scales approximately as K ∼ σ 2 before it enters the
power-law regime K ∼ σ 3/2.

As can be seen in the figure, for relatively high σ values
K ∼ σ 3/2. However, the elastic response of the network in
the crossover is softer than that expected from the 2D affine
approximation but stiffer than that from the 1D approximation.
The quadratic dependence, as shown in Fig. 6(b), is an
approximate dependence and corresponds to a crossover.
In fact, with increasing crosslink density, the crossover is
characterized by a steeper than quadratic dependence of
modulus on stress. Clearly the affine approximation is invalid
in the nonlinear regime. The degree of nonaffine deformations
in the network can be quantified as

δΓ (γ ) = 〈draff − dr〉2

Ndγ 2
, (6)

where δΓ is referred to as the differential nonaffinity, draff

is the affine displacement of center of mass of the filament
to an incremental strain dγ , dr is the actual displacement
of the center of mass of the filament, and N is the total
number of filaments in the network. δΓ is a measure of
the nonaffine displacement of the filaments to an incremental
strain. Affine approximation predicts that δΓ = 0. In Fig. 7
we plot δΓ in the network as a function of the applied
strain. In the linear elastic regime δΓ is small, consistent
with the assumption of affine displacements. An intriguing
feature of δΓ is the appearance of a minimum close to the
critical strain independent of the crosslink density. As can
be seen in the figure, the depth of the minimum depends
on the crosslink density. With increasing crosslink density,
the minimum becomes deeper. The appearance of dip in the
δΓ indicates that close to the critical strain γc, the network
deformation becomes differentially more affine. However,
similar simulations on 3D filamentous networks (results not
shown in this work) exhibit no such minimum in δΓ . At
present, we do not have an understanding of this minimum in
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FIG. 7. Differential nonaffinity as a function of strain for different
crosslink densities. Strain is expressed in units of the critical strain.
The maximum in the differential nonaffinity shifts towards the left
with increasing crosslink density.

differential nonaffinity. With further increase in strain beyond
the critical strain, as γ approaches γd , differential nonaffinity
increases rapidly, implying that the affine approximation on
the scale of filament length is no longer valid.

As mentioned above, the elastic response of the network is
softer than the one expected from the 2D affine approximation.
In Fig. 8 we plot the stress per filament as a function of
the orientation of the filament obtained from simulations
and the affine approximation. It is clear from the figure that
filaments oriented along and against the direction of the
applied strain bear most of the stress in the network. For
low strains, corresponding to the linear elastic regime, the
contribution coming from paths along and against the direction
of strain are practically equal. With increasing strain, the
relative contribution of filaments oriented against the direction
of the strain decreases, as evident by the decreasing height of
the secondary peak in Fig. 8. We also show in Fig. 8 the
angular distribution of the filaments for different strains. That
the distribution of filaments is practically uniform implies that
there is insignificant geometrical alignment of filaments along
the direction of strain. It is clear from the figure that for a
given strain the affine approximation overestimates the stress.
The relative contribution to the total shear stress from the
filaments oriented against the direction of strain decreases
with increasing strain but remains substantially higher than
those obtained from simulations. It follows that with increasing
strain, paths oriented along the direction of strain determine
the elastic response of the network.

B. Enthalpic stretching

Experimentally it has been shown that filamentous net-
works with compliant crosslinks can be subjected to very high
strains �50% [11,15]. In our simulations the network can be
subjected to any strain by allowing for enthalpic stretching of
the crosslinks. In that case we expect that the large strain limit
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FIG. 8. (Color online) Average stress per filament as a function
of the orientation angle of the filaments. The orientation angle is
expressed in units of the angle θγ = tan−1[1/(1 + γ )] corresponding
to the strain. The peak corresponds to the filaments oriented along
the direction of the applied strain. The secondary smaller peak
corresponds to the filaments oriented against the direction of the
applied strain. Black lines correspond to the affine approximation.
The inset shows the angular distribution of filaments. Besides a small
increase in the number of filaments along the direction of strain, the
distribution is practically uniform.

of the differential modulus will correspond to the enthalpic
stiffness of the crosslinks. In Fig. 9 we plot the differential
shear modulus K in units of linear modulus G0 as a function
of strain in (a) and with shear stress in (b) for different
values of lee/l0. As can be seen in Fig. 9(a), upon adding
enthalpic stretching of the crosslinks, the differential modulus
does not show any divergence. Instead, the modulus converges
to a constant for higher strains. The high-strain limit of the
differential modulus is governed by the crosslink density and
the enthalpic stiffness of the crosslinks. An interesting feature
is evident in the K vs σ plot in Fig. 9(b). In the initial stiffening
regime, the modulus increases steeply with the stress. For
higher stresses, there is a crossover in which the modulus
approaches a constant determined by the enthalpic stretching
modulus of the crosslink backbone. In this crossover one could
interpret the dependence of modulus as linear in stress, as
shown in the figure. In simulations the stress can increase
without bounds, but in experiments the network fails beyond a
certain stress. We think that it is this crossover in experiments
where an approximate linear dependence of modulus on stress
has been inferred.

We also performed simulations by considering that, in
addition to the crosslinks, filaments can undergo stretching
as well, characterized by stretching modulus μ. As long
as kcl � μ/l̃c, where kcl is the differential stiffness of the
crosslink and l̃c is the average crosslink distance, the stiffness
of the network is determined entirely by the crosslinks. At high
strains crosslinks become stiff, such that further deformation
of the network leads to stretching of filaments. As expected, the
differential modulus converges to a value governed by μ/l̃c,
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FIG. 9. (a) Differential modulus in units of linear modulus G0

for n = 70 versus γ /γc for different values of lee/l0. The modulus
converges to a constant at high values of strain. The inset shows the
differential modulus when filaments are compliant. (b) Differential
modulus plotted with respect to stress in units of critical stress. Black
solid line indicates the approximate K ∼ σ 2. The dashed line with
unit slope is a guide to the eye to show that the crossover regime
approximately follows K ∼ σ .

as shown in the inset of Fig. 9(a). Whether this regime, where
filaments undergo stretching in a network, is accessible or not
depends on the crosslink density and the binding strength of
the crosslinks. If the crosslink density is very high or multiple
crosslinks are attached in very close proximity to each other,
the local stiffness of filaments could fall below that of the
crosslinks. We emphasize that our simulations and calculations
establish that there is no unique regime with linear scaling of
modulus with stress.

IV. SPARSE NETWORKS

In networks with low crosslink density, the affine approx-
imation is invalid for any applied strain. The linear shear
modulus G0 is smaller than that obtained under the affine
approximation, as shown in Fig. 3. In Fig. 10 we plot the
differential modulus as a function of strain and stress. Similar
to the high crosslink density networks, the differential shear
modulus diverges at a certain strain γd as K ∼ (1 − γ /γd )−3.
This results in a stiffening regime of the form K ∼ σ 3/2,
which extends to infinity. The same scaling of differential
modulus with stress is observed in networks of semiflexible
filaments with fixed crosslinks. Interestingly, in networks of
semiflexible filaments, it is the affine deformation on length
scales above the distance between the crosslinks that results in
this nonlinear scaling. We also plot results for the differential
modulus as a function of stress, allowing for enthalpic
stretching of the crosslink, as shown in Fig. 10(b). Similar
to the densely crosslinked networks, enthalpic stretching of
the crosslink backbone results in a crossover in which the
differential modulus depends approximately linearly on the
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FIG. 10. (a) Differential modulus in units of linear modulus G0

for n = 10 versus γ /γc. The inset shows the linear modulus G0

at the rigidity percolation point. If the rotation of filaments around
the crosslink costs energy, G0 depends anomalously on the torsion
constant kτ and kcl . (b) Differential modulus plotted with respect
to stress. Black solid line depicts K ∼ σ 3/2, whereas the dashed
line indicates the approximate K ∼ σ . Filled circles (lee/l0 = 0.92)
and stars (lee/l0 = 0.96) correspond to enthalpic stretching of the
crosslinks.

stress. Moreover, as shown in Fig. 10(b), consistent with the
experimental observations, the modulus shows a stiffening by
a factor of ∼1000.

We suggest that sparse networks may be more relevant
to the experiments, as one does not expect the 3D filamen-
tous networks to be densely crosslinked. In contrast to 2D
networks, where an intersection between two filaments is
unambiguously defined, in 3D random networks one needs
a maximum distance criterion to consider two filaments as
intersecting. Two filaments such that the shortest distance
between them is smaller than or equal to the distance set by
the intersection criterion are considered intersecting. However,
such a procedure may result in initially prestressed networks.
High crosslink density can be achieved in 3D networks by
considering the filaments to bend on long length scales.

In networks with fixed crosslinks the modulus is determined
by the stretching μ and bending κ rigidity of the filaments.
In lattice-based models of the network, the linear modulus
scales as G0 ∼ √

μκ at the central force isostatic point [32].
In the random filamentous networks we study in this work, the
modulus scales linearly with the stiffness of the crosslinks in
the linear elastic regime. In networks with compliant crosslinks
relative rotation of filaments around a crosslink will induce
torsion in the crosslink. Considering that the torsion constant
is given by kτ , we expect that the linear modulus G0, at the
rigidity percolation point, is determined by kcl and kτ together
in an anomalous fashion. Indeed, we obtain that near the
rigidity percolation point G0 ∼ k

ατ

cl k1−ατ
τ , where the critical

exponent ατ = 0.72 ± 0.05, as shown in the inset of Fig. 10.
For low and high values of kτ , G0 is independent of the
torsion. In the intermediate range of kτ network deformation
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FIG. 11. (Color online) Network configuration at γ = 2.5γc for
n = 10 and l0/L = 0.1. Red symbols indicate the set of stretched
crosslinks that sustain 90% of the total stress in the network.

couples to both torsion and stretching of crosslinks, giving
rise to the anomalous regime. A recent theoretical study on
networks of soft filaments crosslinked with flexible angle-
constraining crosslinks also reported a similar critical anoma-
lous regime [33]. Due to the angle-constraining crosslinks,
changing the relative orientation of the two bonds connected
at the crosslink costs energy. The bond-bending scenario
in the composite angle-constraining networks is analogous
to the torsion in the crosslink in our filamentous networks
connected with compliant crosslinks. However, unlike our
sparse networks, the critical exponent obtained in the com-
posite angle-constraining networks is 0.5, consistent with the
mean-field predictions [33].

Deep into the stiffening regime, most of the stress in the
network is carried by a small fraction of filaments. In Fig. 11
we show the network configuration highlighting the set of
crosslinks which carry about 90% of the stress in the network.
In this configuration only 10% of the filaments are carrying
90% of the stress in the network. As was shown above,
filaments that are oriented along the direction of strain sustain
most of the stress.

V. DISCUSSION AND CONCLUSION

In this article we studied random filamentous networks,
linked together with compliant crosslinks. We modeled the
crosslinks as wormlike chains. We studied such networks, both
analytically and numerically, by performing two-dimensional
simulations. Our simulations show that for sufficiently high
crosslinking density, network deformation in the linear elastic
regime can be well approximated as affine on the scale
of the filament’s length. As a consequence, we find good
agreement with Refs. [17,21], e.g., in the fact that the linear
shear modulus scales linearly with the length of the filament.
Moreover, the onset of stiffening with increasing strain is
independent of the crosslink density and is determined solely
by the ratio of the contour length of the crosslink to the
length of the filament. We derived an expression for the linear
modulus of two-dimensional filamentous networks. Numerical
simulations in the linear elastic regime are in an excellent

agreement with this analytical calculation, as well as with
Refs. [17,21].

We also tested the predictions of Refs. [17,21] in the
nonlinear regime. In the effective medium model proposed
in Refs. [17,21], the network can be subjected to any strain.
This is because of the assumption that, beyond the critical
strain, it is the medium that undergoes stretching, whereas
the crosslinks, already stretched to their contour length,
become infinitely rigid. We showed that this assumption of
the medium undergoing stretching beyond the critical strain is
not valid in filamentous networks with WLC crosslinks. In fact,
independent of the crosslink density, the stress and modulus
of a filamentous network with WLC crosslinks diverges at a
finite strain. Moreover, unlike the predictions of the effective
medium model of linear scaling of differential modulus with
the shear stress, no such regime is observed in the simulations
in the appropriate parameter range. We conclude that the
effective medium model is not valid in the stiffening regime
of such networks.

We suggest that the effective medium model proposed in
Refs. [17,21] could account for the stiffening behavior of
composite networks composed of rigid filaments, crosslinks,
and an embedding medium. Such composite networks can be
described as random filaments connected to the underlying
medium by crosslinks. In this scenario, the medium exists
independent of the constituting filaments, which may make
the mean-field approximation in Refs. [17,21] a good one. For
the networks we study in our simulations, however, it appears
that the mean-field approximation is not valid, at least for the
nonlinear response, for which our results differ substantially
from the predictions of the mean-field or effective medium
approach.

In the stiffening regime the assumption of affine defor-
mation on the scale beyond the filament length is no longer
valid. Therefore, the elastic response of the network is softer
than that expected from the affine approximation. For high
crosslink densities, the initial part of the stiffening regime is
characterized by a steep increase in the differential modulus
with the shear stress. For high stresses the modulus exhibits 3/2
power-law scaling with the shear stress. This 3/2 power-law
regime extends to infinity. On the other hand, for low crosslink
densities, the entire stiffening regime is characterized by
the 3/2 power-law regime. In fact, for any finite crosslink
density, the only persistent regime is that corresponding to
the 3/2 scaling of the differential modulus with the shear
stress. This particular form of scaling is well known in
networks of semiflexible chains with fixed crosslinks under
affine deformations. Interestingly, in networks with compliant
crosslinks, this scaling corresponds to nonaffine deformations
on the length scale of filaments and not to stiffening of
individual fibers. The network response is governed by a
relatively small set of filaments oriented along the direction
of the strain. Such sparse networks develop highly stressed
pathways in the network with increasing strain. Independently
of the crosslink density, the differential modulus diverges at
finite strain.

Enthalpic stretching of crosslinks beyond a certain length
implies that networks can be subjected to large strains. The
same can be achieved by considering the filaments to be com-
pliant. We considered both scenarios in our simulations. When
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crosslinks can undergo enthalpic stretching, the differential
modulus of the network with high crosslink density exhibits
an approximately quadratic dependence on the applied shear in
the initial stiffening regime before rolling on to a regime where
the modulus converges to a constant at high stresses. In sparse
networks, in the stiffening regime, the differential modulus
exhibits the 3/2 power-law regime followed by crossover
to a regime where the modulus converges to a constant
at high stresses. Experimentally one might not observe the
saturation of the modulus, as network failure may occur by
unbinding of the crosslinks. Over a relatively significant range
of the crossover region, although not a power-law regime, the
differential modulus appears to depend linearly on stress. It
is likely that this crossover region has been interpreted as a
regime with linear scaling of modulus with stress.

The specific choice of the WLC approximation for the
force-extension curve of compliant actin crosslinks is moti-
vated by the AFM measurements on filamin [26,27]. However,

the presented approach can be generalized to other systems
with rigid filaments connected by compliant crosslinks, for
instance, networks of stiff DNA nanotubes crosslinked by
single-stranded, flexible DNA [20]. In this case the WLC
approximation has to be replaced by a freely jointed chain
approximation [34]. Under the freely jointed chain approxi-
mation the high stress dependence of the elastic modulus is
quadratic in stress, in contrast to the 3/2 power-law scaling for
the WLC considered here.
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