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Abstract
Charge carrier mobility in disordered organic materials depends on the chemical potential.
Chemical potential has an implicit functional dependence on the carrier concentration and the
density of states. However, for efficient calculation of mobility in simulation programs it is
highly useful to have an explicit and accurate approximation for the chemical potential. In this
study, we focus on analytical approximation for the chemical potential in organic materials
with Gaussian disorder and provide an accurate expression in both non-degenerate and
degenerate regimes.

                                                   

Charge transport in disordered organic materials is exploited
in a wide range of devices, including organic light-emitting
diodes (OLEDs) [1], organic field-effect transistors (OFETs)
[2] photoreceptors [3] and photovoltaic cells [4]. In disordered
organic materials, the carrier mobility is due to thermally
assisted tunnelling ‘hopping’ between localized molecular
states [5, 6]. It is known that the carrier mobility depends on
the temperature, energetic disorder, and carrier concentration
[7, 8]. For efficient device modelling it is useful to have
a compact analytical expression for mobility. Coehoorn
et al [6] provided an analytical expression for mobility in
organic materials with Gaussian energetic disorder. However,
the authors noted that the expression for mobility is not
suitable for practical numerical device modelling because no
analytical expression for the chemical potential as a function
of carrier concentration and energetic disorder is available
which is valid over a wide range of carrier concentrations.
The main purpose of this paper is to show that an analytical
expression for the chemical potential in organic materials
with Gaussian energetic disorder can be obtained from the
first principles, with no free parameters. We show that
the derived expression for the chemical potential is fairly
accurate and the error involved is well below the thermal
energy.

Within the Gaussian disorder model, it is assumed that the
density of states (DOS) is given by

g(E) = Nt√
2πσ

exp

(
− E2

2σ 2

)
, (1)

where σ is the standard deviation of the DOS and is a measure
of the energetic disorder whileNt is the total number of hopping
sites per unit volume. For a given charge carrier concentration,
p, the chemical potential, µ, is related to the density in the
following way:∫ ∞

−∞

g(E)

1 + exp
(

E−µ

kBT

) dE = pNt, (2)

where kB is Boltzmann’s constant and T is the temperature.
In general, for given p and σ , equation (2) is solved

iteratively to obtain the chemical potential. However, in
the limit of vanishing carrier concentration, an analytical
expression for the chemical potential can be easily obtained
because in the limit of small p carriers can be considered
essentially independent of each other. In this case equation (2)
can be solved for µ by replacing the Fermi–Dirac (FD)
statistics with the Boltzmann statistics [6]. In this limit,
referred to as the Boltzmann approximation (BA), the density
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of occupied states (the product of DOS and the FD distribution
function, DOOS) is to a very good approximation given by a
Gaussian, centred at the energy value E = −σ 2/(kBT ) [6].
The corresponding expression for µ is given by

µ = − σ 2

2kBT
+ kBT ln p. (3)

The BA limit is applicable to OLEDs, where under
typical operating conditions, the concentration is 10−4–
10−5 carriers per hopping site [9]. On the other hand in
OFETs [9] application of high gate voltage can lead to a
concentration of 0.01–0.1 carriers per hopping site. At these
carrier concentrations, interaction between carriers becomes
significant implying that Pauli’s exclusion principle must be
taken into account. In this high concentration regime, the BA
is no longer valid and FD distribution must be used. We show
that even in this regime, an analytical solution for µ can be
obtained in a simple and intuitive manner. In the following
text we identify three regimes referred to as the non-degenerate,
degenerate and saturated regime. In each regime we calculate
analytically the chemical potential as a function of the carrier
concentration.

Our objective is to solve equation (2) for the chemical
potential, µ, for given values of carrier concentration, p,
energetic disorder, σ , and temperature, T . We evaluate the
integral in equation (2) using a saddle point approximation. We
assume that the saddle point, E∗, of the integrand is known.
Assuming this one gets two coupled algebraic equations for
the chemical potential, µ, and the saddle point of the integrand
instead of one integral equation for the chemical potential
[10]. The first algebraic equation is obtained by imposing
the condition that E∗ is the saddle point of the integrand in
equation (2). On doing so we get the following equation for
the chemical potential

µ = E∗ + kBT ln

(
− σ 2

E∗kBT
− 1

)
. (4)

Saddle point approximation implies that the integrand
(equivalently the DOOS) is a Gaussian centred at E∗
with a standard deviation σ∗. Namely, equation (2) is
approximated by ∫ ∞

−∞
h(E) dE = pNt, (5)

where the expression for the DOOS is

h(E) = Nte
− E2∗

2σ2
(
E∗kBT + σ 2

)
√

2πσ 3
exp

[
− (E − E∗)2

2σ 2∗

]
, (6)

and

σ∗ =
√

kBT σ 4

σ 2(kBT − E∗) − E2∗kBT
. (7)

On evaluating equation (5) we obtain the second algebraic
equation:

e− E2∗
2σ2
(
E∗kBT + σ 2

)
σ

√
σ 2 − E2∗ − E∗σ 2

kBT

= p. (8)

The two coupled equations equations (4) and (8) can be
solved to obtain µ and E∗. We now solve equations (4) and

(8) self-consistently in three limiting cases:

(a) Non-degenerate regime. This regime corresponds to
the case of vanishing carrier concentration. equation (8)
implies that in this regime the saddle point occurs at

E∗ � −σ 2/kBT . (9)

The dependence of E∗ on the carrier concentration p is
obtained as

E∗ = − σ 2

kBT

(
1 − peσ 2/2(kBT )2

)
. (10)

Self-consistency in this regime requires that carrier
concentration is low enough such that the condition (9)
holds. This implies that in this regime p � p1, where

p1 = e
− 1

2

(
σ

kBT

)2

. (11)

The chemical potential in this regime is well known and
is given by

µ = − σ 2

2kBT
+ kBT ln p. (12)

The functional form of µ in the non-degenerate regime
is well known in the literature [6, 11, 12]. The non-
degenerate regime corresponds to the BA limit. In this
regime an increase in carrier concentration leads to an
increase in the maximum of DOOS with negligible shift
in E∗ [6].
(b) Degenerate regime. For p � p1 the saddle point,
E∗, shifts significantly from −σ 2/kBT and the BA limit
is no longer valid. In this regime the carrier concentration
is such that saddle point satisfies −σ 2/kBT � E∗ �
−kBT , so equation (8) implies

E∗ = − σ√
2

√
W

[
2

(σ/kBT )2p4

]
, (13)

where W is the Lambert W function [13]. Self-consistency
in this regime requires p1 � p � p2, where

p2 = e
− 1

2

(
kBT

σ

)2

. (14)

The chemical potential in this regime is given by

µ = − σ√
2

√√√√W

[
2

(σ/kBT )2

(
1

p

)4
]

+ kBT ln




√
2(σ/kBT )√

W

[
2

(σ/kBT )2

(
1
p

)4
] − 1




. (15)

This analytical expression for the chemical potential in the
degenerate regime is the main result of this paper. Since
our focus is on the systems with σ > kBT , the second
crossover value, p2, is of the order of one and degenerate
regime is valid until almost the full saturation of all the
available states. For the sake of completeness we discuss
below this saturated regime.
(c) Saturated regime. In this regime the carrier
concentration, p, approaches the limiting value of p2 � 1
where almost all the states are occupied and the DOOS is
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Figure 1. Chemical potential µ versus the normalized carrier
concentration p for different values of σ/kBT (numbers on the
plot). Full lines and dashed lines correspond to the non-degenerate,
equation (12), and degenerate, equation (15), regime, respectively.
Symbols correspond to the numerically calculated chemical
potential.

the same as the DOS. In this limit, the saddle point satisfies
0 > E∗ � −kBT , so equation (8) implies

E∗ = −σ

√
2 ln

1

p
. (16)

Self-consistency in this regime requires p > p2. The
chemical potential in this regime is given by

µ = −σ

√
2 ln

1

p
+ kBT ln


 σ

kBT
√

2 ln 1
p

− 1


 . (17)

This regime is irrelevant for organic devices because even
in OFETs, where carrier concentration can be tuned by
applying gate voltage, the concentration is typically much
smaller than 1 [9].

In figure 1, we plot the chemical potential as obtained
above for different values of σ . As predicted by equation (11),
with increasing σ , the crossover from the non-degenerate to
the degenerate regime occurs at lower concentrations. The
crossover from the degenerate to the saturated regime is
not shown in the figure. The saturated regime, irrelevant
for organic devices, is a narrow regime with divergence of
chemical potential atp = 1. Our results for the non-degenerate
regime are in complete agreement with those reported by
Oelrich et al [14] for σ = 4kBT . It is also clear from
the figure that in the regime of low carrier concentration,
the chemical potential is located in the tail of the DOS. The
chemical potential moves deeper into the tail of the DOS with
increasing width of the DOS. These findings are consistent with
those reported recently [15, 16] in which the authors showed
that in the non-degenerate regime, with increasing width of
the DOS, the carriers become more localized. When charge
carriers are highly localized, the mobility can be well described
by thermally assisted tunnelling ‘hopping’ between localized
molecular states [5, 6]. On the other hand when carrier density

Figure 2. Comparison of analytical result, equation (19) (lines), and
the numerical calculation (squares) for different values of σ/kBT
(numbers on the plot). Full lines correspond to the degenerate
regime. The horizontal dotted line corresponds to the limit of the
non-degenerate regime.

is high (�1%), the chemical potential is close to or above
the mobility edge [15]. For such carrier concentrations,
which can be obtained in single-crystal FETs, charge transport
acquires a band-like nature [15, 16]. It is clear from the
figure that the analytically obtained chemical potential and
the crossover density, equation (11), are in good agreement
with the numerical calculations in both non-degenerate and
degenerate regimes.

In addition to the mobility of carriers, to model charge
transport one needs to calculate the diffusion coefficient.
Assuming equilibrium conditions, the diffusion coefficient is
determined from the generalized Einstein relation [17] which
is given as

γ = p

q

∂µ

∂p
, (18)

where γ is ratio of diffusion coefficient to the mobility of
carriers and q is the elementary charge. Roichman and Tessler
[18] showed that in a Gaussian DOS, γ deviates significantly
from the low density limit value of kBT/q. They obtained
γ as an implicit function of the chemical potential, µ. Our
expression for the chemical potential allows us to obtain an
analytical expression for the generalized Einstein relation in
each of the regimes as a function of p, σ and T :

γ = kBT

q

×




1 p � p1
√

2σ
kBT

{
2−W

[
2

p4(σ/kBT )2

]
+

√
2σ

kBT

√
W

[
2

p4(σ/kBT )2

]}
{

√
2σ

kBT
−
√

W

[
2

p4(σ/kBT )2

]}{
1+W

[
2

p4(σ/kBT )2

]} p2 � p � p1

1 +
√

2σ
kBT

√
ln 1

p
− 2 ln 1

p

2 ln 1
p

− 2
√

2 kBT
σ

ln3/2 1
p

p > p2.

(19)

In figure 2 we compare our analytical expression for γ ,
equation (19), with the numerical results (notice that the inverse
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Figure 3. Relative error δ. For the range of σ considered the error does not exceed 20%.

of γ is shown). As expected, fairly good agreement is obtained
far from the crossover concentration, p1.

The results above indicate that the analytical expressions
for the chemical potential are fairly accurate. Nevertheless, it is
useful to estimate analytically the error in the derived formulae.
The main source of the error is the saddle point approximation,
equation (6), in evaluating the integral in equation (2). Under
the saddle point approximation, the integrand (or equivalently
the DOOS) of the integral in equation (2) is a Gaussian centred
at E∗. The integrand is well approximated by a Gaussian only
in the neighbourhood of E∗ (within few standard deviations,
σ∗). Away from E∗, the deviation of the integrand from the
Gaussian gives rise to the error in evaluation of equation (2).
The relative error in saddle point approximation of the integral
can be written as

δ =

∣∣∣∣∣∣∣1 −
∫∞
−∞ h (E) dE∫∞
−∞

g(E)

1+exp
(

E−µ

kBT

)

∣∣∣∣∣∣∣ . (20)

For energies well below the saddle point, E � E∗ − 3σ∗, the
FD distribution can be approximated as unity whereas well
above the saddle point, E � E∗ + 3σ∗, it can be approximated
by the Boltzmann distribution. Therefore, the error can be
estimated as

δ �
∣∣∣∣1 −

[ ∫ ∞

−∞
h(E) dE

][ ∫ E∗−3σ∗

−∞
g(E) dE

+
∫ E∗+3σ∗

E∗−3σ∗
h(E) dE +

∫ ∞

E∗+3σ∗
g(E)e− E−µ

kBT dE

]−1∣∣∣∣. (21)

The integrals appearing in the above expression can be
simplified using an error function. For given values of
carrier concentration, p, and energetic disorder, σ , the other

parameters E∗, σ∗ and µ can be calculated as shown above.
In figure 3 we show that for relevant range of σ and p values,
the value of δ does not exceed 20%. This implies that the
error in the chemical potential is well below than the thermal
energy, kBT .

Although we derived the expressions for the chemical
potential only in the respective regimes, the algebraic equations
equations (4) and (8) can be easily solved numerically to any
desired degree of accuracy for any given values of p and σ .

To conclude, in this paper we derive analytical expression
for the chemical potential in organic materials with Gaussian
disorder. In the most relevant, degenerate regime our result,
equation (15), is new and, as we demonstrate, is fairly accurate.
We show that over the relevant range of carrier concentration
and energetic disorder, the error in calculation is well below
the thermal energy. In addition, the existing iterative numerical
techniques to calculate chemical potential can use our derived
expressions as fairly accurate starting point. This can lead to
much more efficient algorithms to calculate chemical potential
and therefore the mobility in organic materials with Gaussian
disorder.
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