
        
                                                  

Molecular motors robustly drive active gels to a
critically connected state
José Alvarado1, Michael Sheinman2, Abhinav Sharma2, Fred C. MacKintosh2*
and Gijsje H. Koenderink1*

Living systems naturally exhibit internal driving: active, molecular processes drive non-equilibrium phenomena such as
metabolism or migration. Active gels constitute a fascinating class of internally driven matter, in which molecular motors exert
localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce
macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here
we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size
distribution. This critical behaviour occurs over an unexpectedly broad range of crosslink concentrations. To understand this
robustness, we developed a quantitative model of contractile networks that takes into account network restructuring: motors
reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be
low.Otherwise,motors drive initially well-connected networks to a critical statewhere ruptures form across the entire network.

One of the defining qualities of soft matter is that it is
readily driven far from thermodynamic equilibrium by
external stress. Driving forces such as those due to an

electric field or shear drive colloidal suspensions and polymer
networks into fascinating non-equilibrium patterns, including
banded1,2, jammed3, and randomized steady states4. Much progress
has been made in understanding such externally driven systems5.
By contrast, living soft-matter systems such as cells and tissues
naturally exhibit a unique form of internal driving in the form
of mechanochemical activity6,7. A prominent example is the
cytoskeleton, ameshwork of protein polymers and force-generating
motor proteins that constitutes the scaffold of cells. In solutions
of purified cytoskeletal filaments and motors, remarkable self-
organized patterns have been observed8,9, inspiring theoretical work
on these so-called active gels10–13.

More recently, attention has shifted to the important role of
network connectivity in active gels, which can be controlled by
the number of crosslinks between filaments. In weakly connected
systems, motors slide filaments to form static or dynamic
clusters14–17. In the opposite limit of a well-connected, elastic
network, motors generate contractile stresses as they pull against
crosslinks and stiffen the network10,11 or cause contraction18,19.
The existence of a threshold connectivity that separates these two
behaviours has been proposed, because macroscopic contractions
are known to occur above certain minimum values of crosslink or
actin concentration13,17,18,20. We should expect remarkable critical
behaviour at the threshold of contraction. Recent theoretical
models predict diverging correlation length scales and a strong
response to external fields21–24 at the threshold of rigidity. In
suspensions of self-propelled patches, critical slowing was predicted
at the threshold of alignment25. Yet the threshold of contraction still
remains poorly understood, and experimental evidence of criticality
in active gels remains lacking.

Here, we experimentally study model cytoskeletal systems
composed of actin filaments and myosin motors. We vary network
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connectivity over a broad range by adding controlled amounts
of crosslink protein. We show that the motors actively contract
the networks into disjoint clusters that exhibit a power-law size
distribution. This behaviour is reminiscent of classical conductivity
percolation26, for which a power-law size distribution of clusters
occurs close to a critical point. However, in sharp contrast to this
equilibrium phenomenon, we observe critical behaviour over a
wide range of initial network connectivities. To understand this
robustness, we develop a general theoretical model of contractile
gels that quantitatively accounts for our observations. In this
model, motors not only contract the network, but also reduce
the connectivity of initially stable networks down to a marginal
structure by promoting crosslink unbinding. Below this marginal
connectivity, the network no longer supports stress and the system
rapidly devolves to disjoint clusters which reflect the critical
behaviour of themarginal structure. Ourmodel predicts cluster size
distributions that agree well with experiment. Moreover, it predicts
an inverse relationship between cluster size and motor activity,
which we also confirm experimentally.

Experiment: motors rupture networks into clusters
To resolve the interplay between motor activity and network
connectivity in active cytoskeletal networks, we developed a
customized assay to view entiremotor-driven contraction events for
up to two hours (Fig. 1a; see Methods). We control motor activity
and network connectivity by varying the density of myosin motors
and fascin crosslinks, respectively. These are given by the molar
ratios RM and RC (see Methods).

To resolve the influence of network connectivity, we first prepare
a series of networks with constant myosin activity (RM= 0.01)
and gradually increasing RC. Even at low RC, motors contract actin
networks, albeit on small length scales (Fig. 1b and Supplementary
Movie S1). However, when we increase RC, contraction occurs on
a larger length scale (Fig. 1c and Supplementary Movie S2). The
motors break the network up into multiple disjoint clusters. At
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Figure 1 | Experiments with motor-driven networks show that initial connectivity controls the length scale of contraction. a, Schematic of the
experiment. Actin filaments (black lines) are connected by crosslinks (purple circles), and myosin motors (green dumbbells) exert force dipoles (orange
arrows) on actin filaments. b–d, Temporal evolution of three networks with varying amounts of fascin crosslinks RC=0.01 (b); RC=0.05 (c); RC=0.1 (d).
Actin concentration and motor molar ratio are constant: (actin)= 12 µM; RM=0.01. Colour corresponds to time according to the calibration bar (b, left).
Times (tstart, tend) in minutes after initiation of actin polymerization: b (2, 20); c (2,120); d (1,5). Scale bar, 1 mm. See Supplementary Movies S1–S3.
e–g, Decomposition into clusters, delimited by black lines. Colour indicates the largest (blue) and the second-largest (pink) cluster, whose sizes
correspond to ξ1 and ξ2 respectively. Note that g does not have a second-largest cluster because we exclude long edge domains from our analysis
(Supplementary Fig. S6). h, Dependence of ξ1 (blue circles) and ξ2 (pink triangles) on RC. Error bars denote standard errors of the mean for repeat
experiments: 1, 6, 13, 14, 9, and 5 experiments for RC=0.002, 0.005, 0.01, 0.02, 0.05, and 0.1, respectively. Inset: Predicted dependence of ξ1 (blue) and ξ2

(pink) on connection probability p according to percolation theory, given the experimental parameters (Supplementary Information).

still higher RC, motor activity contracts the entire network into a
single dense cluster, which often retains the square shape of the assay
chamber (Fig. 1d and SupplementaryMovie S3).

To quantify the effect of connectivity on the length scale of
network contraction, we developed an image processing algorithm
(Supplementary Movie S4) which identifies the clusters in the final
image and traces their origin back in time. As shown in Fig. 1,
the initial areas of each cluster are small in weakly crosslinked
networks (Fig. 1e). The smallest clusters are ∼30 µm in size, which
corresponds to the typical distance between myosin motor clusters
in the absence of crosslinks (Supplementary Fig. S1). However,
the clusters increase in size when the molar ratio of crosslinks
is increased (Fig. 1f). In strongly crosslinked networks, the entire
network forms one cluster (Fig. 1g).

Qualitatively, the transition from local to macroscopic contrac-
tion is reminiscent of a classical conductivity percolation transition.
Below this transition, a system is only locally correlated and cannot
establish connections over long distances. Only above a certain
critical connectivity can the system establish global correlations. To
determine the extent of agreement between our experimental results
and percolation theory, we investigate three key predictions26.

First, conductivity percolation theory predicts how connectivity
determines the size of the largest and second-largest connected
clusters. Connectivity is quantified by the probability p of creating
a connection. The largest cluster (of size ξ1) is predicted to increase
monotonically with p, whereas the second-largest cluster (of size
ξ2) should exhibit a peak right at the conductivity percolation
threshold, where ξ1 and ξ2 both approach the system size, L (Fig. 1h,
inset). Our experiments agree with this prediction: the measured
cluster sizes, ξ1 and ξ2, are both small at low Rc and increase
monotonically with increasing Rc until they approach the system
size, L≈ 2.5mm, around RC∼ 0.01 (Fig. 1h). Above this threshold

connectivity, ξ1 remains close to L, whereas ξ2 decreases towards
zero as the entire network contracts to one large cluster.

Second, percolation theory predicts how cluster sizes are
distributed: around the critical point, we should find a power law
with an exponent of−2. To test this prediction, we begin by looking
for networks which satisfy ξ1∼ ξ2∼ L. We replot all measurements
separately in ξ1–ξ2-space (Fig. 2a). Because ξ2 < ξ1 by definition,
all samples are located within a triangle in ξ1–ξ2-space. We clearly
identify the samples at the triangle’s peak, where ξ1 ∼ ξ2 ∼ L. We
denote this peak as the critically connected regime. To the left of
the peak are samples with low RC, which we denote as the local
contraction regime. To the right are samples with high RC, which
we denote as the global contraction regime.

Do the samples in the critically connected regime really exhibit
critical behaviour? To test this more rigorously, we plot the
entire distribution of cluster sizes (Fig. 2b). Our experiments are
again consistent with percolation theory: the critically-connected
regime indeed exhibits a cluster-size distribution that is statistically
consistent with a power-law across more than two orders of
magnitude in measured area27. The power-law exponent is −1.9,
close to the predicted exponent of −2. The distributions of the
other two regimes furthermore agree with percolation theory. The
local contraction regime exhibits a short-tail distribution with a
sharp cut-off. The global contraction regime exhibits a bimodal
distribution with two well-separated length scales: the percolating
cluster with size ξ1 ∼ L and other small disjointed clusters with a
typical size of ξ2� L.

Third, percolation theory predicts that only systems that are
close to the critical point should exhibit a power law. But this
prediction is difficult to reconcile with our data: the critically
connected regime in ξ1–ξ2-space (Fig. 2a) is populated by samples
which span a wide range of crosslink densities (from RC = 0.01 to
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Figure 2 | Cluster size distributions depend on network connectivity,
exhibiting power-law distributions when ξ1∼ ξ2∼ L. a, Scatter plot of 48
samples with different RC in ξ1–ξ2-space (see legend, top left). Boxes
delimit different regimes: local contraction (ξ1 < 300 µm), critically
connected (ξ1 ≥ 300 µm and ξ2 ≥ 300 µm), and global contraction
(ξ1 ≥ 1,500 µm and ξ2 < 300 µm). Two data points with ξ2=0 are depicted
here with ξ2= 30 µm. b, Histogram (circles) and complementary
cumulative probability distribution (solid lines) of cluster areas, A, for the
three regimes. For the critically connected regime, data across more than
two orders of magnitude (red circles) are statistically consistent with a
power-law distribution (solid red lines) with an exponent of
−1.91±0.06, p=0.52, where p>0.1 indicates plausible agreement with a
power law (Supplementary Information). Power-law distributions appear as
straight lines on a log–log plot. The visual form of the complementary
cumulative probability distribution does not depend on bin size. The slope
of the complementary cumulative probability distribution is equal to one
plus the slope of the histogram because the histogram is the absolute value
of the derivative of the complementary cumulative probability distribution.

RC = 0.1). This is also reflected in Fig. 1h, which shows a broad
ξ2-peak that is over half an order of magnitude wide in RC, in sharp
contrast with the narrow ξ2-peak expected from percolation theory
(Fig. 1h, inset). We therefore conclude that classical conductivity
percolation theory cannot provide a complete description of the
physics of active, contractile networks.

Simulation: network restructuring
Percolation theory describes a network with a fixed connectivity.
This is appropriate for equilibrium fibre networks without internal
driving. However, in motor-driven networks, the total connectivity
can change significantly28–30. High-resolution imaging reveals
that motors actively pull on network strands and disconnect
them, thereby reducing connectivity (Supplementary Movie S5).
Crosslinks bind only transiently (∼10 s in case of fascin31), and their
binding kinetics are stress-dependent32. There is strong evidence
that unbinding of fascin crosslinks is promoted under stress33.
We hypothesize that such stress-dependent binding kinetics allow
motor activity to drive initially well-connected networks down
towards a critically connected state.

To test this hypothesis, we develop a computational model of
contractile actin-myosin networks using molecular dynamics. We
model actin filaments with a planar triangular lattice of nodes
connected by line segments of length l0 (Fig. 3a), which possess
stretching modulus k and strain-stiffen34 and buckle35. We set the
average number z of line segments connected to a node (that is, the
coordination number) to 4.0. Point-like crosslinks are randomly
placed on nodes with probability p, which depends on crosslink
concentration c . We assume first-order kinetics of crosslink
(un)binding, which yields p= c/(1+ c). We model the crosslinks
by freely-hinged constraints. We model motor-induced contractile
stress by pairs of forces f between nodes10,16,36–38. Every node has
mobility µ and experiences an effective, free-draining viscosity,
η. The network evolves over time to achieve force balance at the
nodes (Fig. 3b). For fixed crosslinks, network connectivity remains
unchanged and ξ1 and ξ2 remain constant. We now introduce
the important ingredient of network restructuring: connectivity
changes via crosslink unbinding and rebinding. The unbinding
rate of a crosslink koff increases exponentially with the tension in
the crosslink T according to Bell’s law32: koff = koff,0exp(T/T0),
where koff,0 denotes the off-rate in the absence of tension, and
T0 a characteristic tension (Fig. 3c). To account for rebinding, we
consider the probability that an unbinding event is followed by a
rebinding event at the same location before filaments are separated,
which is given by exp(−ckond/Tµ), where d is an effective distance
on the order of the mesh size over which filaments move with
velocity equal to Tµ and kon is the binding rate of a crosslink. The
effective unbinding rate is thus given by

koff= koff,0exp(T/T0)exp(−ckond/Tµ)

By varying c across many simulations (keeping f constant), we
recover the three regimes found in experiment: the local contraction
(Fig. 3d,e and Supplementary Movie S6), critically connected
(Fig. 3f,g and Supplementary Movie S7), and global contraction
regimes (Fig. 3h,i and Supplementary Movie S8). The crosslink-
dependence of ξ1 and ξ2 versus c (Fig. 3j) as well as the cluster
size distributions (Supplementary Fig. S2) are consistent with
experiment. Motor activity clearly broadens the ξ2-peak: without
active network restructuring (Fig. 3j, open symbols), only a narrow
region (yellow stripes) around the critical point exhibits critical
behaviour. With network restructuring (Fig. 3j, closed symbols),
this region broadens (solid yellow box). Motor-driven network
restructuring can therefore account for the surprising robustness of
critical behaviour observed experimentally.
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Figure 3 | Simulations show that motors can drive initially well-connected networks to a critical state. a, Schematic of the simulation. A triangular lattice
of nodes, connected by line segments (black lines), contains an average of N crosslinks per node (purple circles). During the course of the simulation, pairs
of nodes experience contractile forces (orange arrows) and move in response to these forces. b, Temporal evolution of a representative network in the
absence of remodelling. c, Motors cause network restructuring by generating tension T on crosslinks that increases the off-rate koff. d–j, Simulated
networks exhibit behaviour consistent with experiment. See Supplementary Movies S4–S6. d,f,h, Temporal evolution of three networks differing in initial
connectivity: c=0.025 (d); c= 3 (f); c= 10,000 (h). Force is constant: f/k= 50. Colour corresponds to simulation time according to calibration bar (d,
left). The box size L is 100 times longer than the initial lattice size l0. e,g,i, Decomposition into clusters, shaded by pastel colours. Bold colour indicates the
largest (blue) and the second-largest (pink) clusters, whose sizes correspond to ξ1 and ξ2 respectively. j, Dependence of ξ1 (blue circles) and ξ2 (pink
triangles) on crosslink concentration c across repeat simulations. Open symbols indicate values at t=0, which corresponds to passive networks described
by classical percolation theory. Closed symbols indicate values at the end of the simulation, after the network has broken up into clusters. Yellow regions
correspond to values of c for which ξ2 > L/10 and the cluster size distribution exhibits a power law. Note that this region is narrow for classical percolation
theory (diagonal yellow stripes) but broadens substantially in response to active internal driving (solid yellow box).

Motors promote network restructuring
So far we have investigated the effect of connectivity in experiment
and simulation (RC and N ), but kept motor activity constant
(RM and f ). Network restructuring breaks networks into clusters
because motor stresses unbind crosslinks. We thus predict that
increased motor activity should lead to smaller clusters. To test this
hypothesis, we simulate well-connected networks with constant c
but varying motor force f . Increased force indeed leads to smaller
clusters and therefore lower values of ξ1 (Fig. 4a). The cluster size
distributions reflect this tendency to smaller clusters (Fig. 4b). For
low force, cluster sizes exhibit two well-separated length scales,
indicating global contraction. For high force, the distribution cuts
off at a finite length scale.

To validate these predictions, we perform experiments in
well-connected networks (RC = 0.02) and vary the myosin-to-
actin molar ratio RM. In agreement with the model, the length
scale of contraction depends on RM. For low RM up to 0.002,
the networks appear stationary for the entire duration of the
experiment. Large-scale collective breathing fluctuations are visible,
indicative of a strongly connected network, but the motors
exert insufficient force to contract the network (Supplementary
Movie S9). Increasing RM to 0.005 results in a drastic change:
the entire network uniformly contracts into one large cluster
(Supplementary Movie S10). However, a further increase of RM
results in smaller clusters (Supplementary Movie S11). At high
motor densities, ξ1 also decreases (Fig. 4c) and we recover cluster

size distributions consistent with the model’s prediction (Fig. 4d
and Supplementary Fig. S3). The consequence of these findings
is counterintuitive: coordinated macroscopic contractions require
low levels of motor activity.

Motors nucleate many concurrent ruptures
The simulation results allow us to draw a schematic phase space
of active contractile gels (Fig. 5). The global contraction regime
is located at the bottom-right corner, where motor forces are
low and network connectivity is high. In this limit, networks are
rigid, filaments remain straight, and the network deforms affinely22.
On the opposite corner, where connectivity is low and force is
high, we find the local contraction regime where networks deform
non-affinely and filaments are significantly bent.

We interpret these limits by considering two relevant timescales,
τoff and τrelax. The first timescale is the characteristic crosslink
unbinding time τoff= k−1off . The tension T experienced by a crosslink
depends on both the motor force f and the network configuration,
which can change over time. Although the full dependence of
crosslink tension on motor force is complex, the qualitative
behaviour is clear: when filaments are straight, motor stress does
not greatly induce crosslink tension; when filaments are bent,
crosslinks experience tension (Supplementary Fig. S4).We estimate
τoff,0∼1–10 s based on previous work31. The second timescale, τrelax,
is the time it takes for individual filaments to thermally equilibrate
in response to a crosslink unbinding event. On the basis of previous
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Figure 4 | Simulation and experiment both show that increased motor force reduces cluster size. a, Dependence of ξ1 (blue circles) and ξ2 (pink
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experiments for RM=0.005, 0.01, and 0.02, respectively. Dashed line depicts R−1

M . d, Histogram (circles) and complementary cumulative probability
distribution (solid lines) of cluster areas, A, for networks with varying RM in the global and local contraction regimes. For the ξ1–ξ2 plot and cluster size
distributions of the critically connected regime, see Supplementary Fig. S3.

work39, we estimate τrelax ∼ 0.1–1 s, which acts as an upper bound:
forces can cause faster relaxation. Therefore in the absence of
crosslink tension, τoff>τrelax.

We now consider how these timescales respond to the two
limits of local and global contraction. In the global contraction
limit, f and T are small, and τoff > τrelax holds: once a crosslink
unbinds, the network fully relaxes before the next crosslink unbinds.
This well-known limit corresponds to a quasistatic process40.
Boundary conditions determine how the network evolves in this
limit: networks fixed at rigid boundaries build up stress and rupture
via the nucleation of a large crack at amicroscopic flaw, reminiscent
of Griffith’s criterion41. Unanchored networks contract affinely, or
drive shape changeswhen coupled to deformable boundaries42.

In the opposite limit of local contraction, f and T are large,
and the network satisfies τoff <τrelax: strong internal driving causes
crosslinks to unbind quickly. Many cracks that rupture the network
into clusters form across the whole network, rather than nucleating
at a single flaw. The presence of a finite viscosity in our model is
essential for this behaviour (see Supplementary Information).

In between the two limits of global and local contractions, we
find critically connected networks with a scale-free distribution of
clusters. For zero force, this regime is narrow and centred around

the critical point. As forces increase, this regime broadens and shifts
to higher connectivities. This rightward shift reflects an asymmetry
wheremotor activity reduces connectivity, rather than increasing it.
The broadening can be understood by themotor-induced reduction
of connectivity to a lower connectivity state at which the network
can no longer bear stress and crosslink unbinding stops. Strikingly,
the myosin-driven bond dilution process is different from random
dilution: network restructuring leads to a state of connectivity above
that of the connectivity critical point (Supplementary Fig. S5).

Intriguingly, robust critical behaviour has been demonstrated
in many biological systems43–47. Internal driving could underlie
robust criticality48, but so could other mechanisms, including
natural selection49,50. Disentangling these mechanisms cannot be
addressed by studying living systems alone. Here we report robust
criticality in aminimalmodel system and show that internal driving
is directly responsible. These results may help explain criticality
in other biological contexts and may prove useful in designing
the physical properties of synthetic active materials, which have
recently become available51.

Our framework offers a minimal microscopic mechanism of
actomyosin contraction, which is ubiquitous in biology. Myosin-
driven cytoskeletal ruptures contribute to normal cell division52,
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but also to developmental defects in fly embryos53. Consistent with
our findings, decreased connectivity caused dramatic rupture of the
ventral furrow into clusters of cells in developing fly embryos. We
anticipate that our framework applies more generally to epithelial
tissues54,55, where a supracellular actomyosin network transmits
forces over tissue length scales.

Methods
Protein preparation. Actin and myosin were prepared from rabbit psoas skeletal
muscle (Supplementary Information). Myosin II was labelled with Alexa Fluor
488 NHS ester (Invitrogen); actin was labelled with Alexa Fluor 594 carboxylic
acid, succinimidyl ester16. Recombinant mouse fascin was prepared from T7
pGEX Escherichia coli56.

Sample preparation. Samples were mixed to yield a final buffer composition of
20mM imidazole pH 7.4, 50mM potassium chloride, 2mM magnesium chloride,
1mM dithiothreitol, and 0.1mM adenosine triphosphate (ATP). Furthermore,
1mM Trolox, 2mM protocatechuic acid, and 0.1 µM protocatechuate

3,4-dioxygenase were added to minimize photobleaching. The ATP level
was held constant by the addition of 10mM creatine phosphate disodium
and 0.1mgml−1 creatine kinase. The actin concentration was held constant
at 12 µM (0.5mgml−1). Freshly mixed actoymyosin solutions were loaded into
polyethylene-glycol-passivated flowcells with a geometry of 2.5×2.5×0.1mm3 (see
Supplementary Information) and sealedwith either Baysilone silicone grease (Bayer,
Leverkusen) or uncured PDMS (Dow Chemicals, Midland). The time evolution of
the network structure was observed with a Nikon PlanFluor 4x objective (NA 0.13),
which allows the network to fit entirely within the objective’s field of view.

Contraction assay. Networks are formed by initiating actin filament
polymerization, which results in a semiflexible polymer meshwork with a
pore size of ∼0.4 µm. We control the motor activity by adding different
amounts of myosin motors, expressed in terms of the myosin-to-actin molar
ratio, RM = [myosin] / [actin]. We control the network connectivity by adding
different amounts of the crosslink fascin, which can simultaneously bind to two
neighbouring actin filaments. We express the crosslink density in terms of the
fascin-to-actin molar ratio, RC = [fascin] / [actin]. To ensure that we can observe
motor-driven contraction on all scales, from microscopic to macroscopic, we
prepare networks in customized flow-cells, which fit entirely in the field-of-view
of the 4× objective of a confocal microscope (see Supplementary Information).
To track the temporal evolution of the networks, we acquire time-lapse movies
starting from 1min after the initiation of actin polymerization, where the solution
is still homogeneous, until 2 h afterwards.

Image analysis. Cluster sizes were determined by a customized algorithm,
implemented in MATLAB. Time-lapse images of contracting actomyosin networks
were analysed, starting from the final acquired frame. Cluster evolution, determined
from Voronoi diagrams of myosin foci, was tracked by looping the algorithm
backwards in time (Supplementary Information).

Definition of ξ1 and ξ2. For experimental results, we measure the areas ai of
the initial network that contract together, which we define as clusters. We define
ξ1 as the weighted mean of cluster sizes li (square root of area), in analogy to the
definition of the correlation length from percolation theory26:

ξ1 :=
∑
i

lia2i /
∑
i

a2i

This length scale is dominated by the largest cluster. We furthermore define ξ2 in
analogy to percolation theory:

ξ2 :=

′∑
i

lia2i /
′∑
i

a2i

where
∑
′

i denotes summation over all clusters except for the largest cluster, as well
as long edge clusters (Supplementary Information). This length scale is dominated
by the second-largest cluster.

For simulation results, ξ1 is given by the square root of the harmonic average
of the largest cluster of each disorder realization, and ξ2 is given by the square root
of the harmonic-averaged areas of all clusters. In the case of a probability density
with two length scales (cf. Supplementary Fig. S2, bottom panel), the definitions
of ξ1 and ξ2 coincide with the large and the small scale, respectively. Simulations
were performed over 10–100 disorder realizations for each set of parameters
(Supplementary Information).
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