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Abstract – Thermally activated escape of a Brownian particle over a potential barrier is well
understood within Kramers theory. When subjected to an external magnetic field, the Lorentz
force slows down the escape dynamics via a rescaling of the diffusion coefficient without affecting
the exponential dependence on the barrier height. Here, we study the escape dynamics of a charged
Brownian particle from a two-dimensional truncated harmonic potential under the influence of
Lorentz force due to an external magnetic field. The particle is driven anisotropically by subjecting
it to noises with different strengths along different spatial directions. We show that the escape time
can largely be tuned by the anisotropic driving. While the escape process becomes anisotropic due
to the two different noises, the spatial symmetry is restored in the limit of large magnetic fields.
This is attributed to the Lorentz-force–induced coupling between the spatial degrees of freedom
which makes the difference between two noises irrelevant at high magnetic fields. The theoretical
predictions are verified by Brownian dynamics simulations. In principle, our predictions can be
tested by experiments with a Brownian gyrator in the presence of a magnetic field.
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Introduction. – Escape of a particle from a
metastable potential well is one of the most celebrated
problems in statistical physics [1]. The escape problem
was first conceived and studied by Kramers to model the
rate of chemical reactions [2]. In the classical escape prob-
lem, which includes only thermal fluctuations, the escape
rate decreases exponentially with the barrier height.

The classical trap model has been generalized to include
fluctuations other than thermal fluctuations [3–7]. Such a
scenario arises naturally in active gels [8,9], in which em-
bedded tracer particles are subjected to both thermal fluc-
tuations and motor-induced, athermal fluctuations [10],
and for active particles [11–17]. While one models the
thermal fluctuations in the usual fashion as white Gaus-
sian noise, the other noise is often described as a colored
noise to model the effect of active, athermal fluctuations.
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The presence of an additional noise can dramatically mod-
ify the escape dynamics of a particle [10,18–20].

Here we explore the escape dynamics of a single Brow-
nian particle from a potential well subjected to two noises
with different strengths along different spatial directions,
i.e., acting on the different Cartesian components of the
momentum vector. Such a system constitutes a primi-
tive Brownian engine composed of a gyrating Brownian
particle [21]. This kind of anisotropic driving can be
experimentally realized by applying a strongly fluctuat-
ing electric field to a charged Brownian particle in one
direction mimicking the role of an additional tempera-
ture [22]. We show that breaking the spatial symmetry
via two different noises results in anisotropic escape dy-
namics; more particles escape the potential well along the
axis with larger noise strength which we refer to as the hot
axis. This gives rise to a large tunability of the escape time
by the difference between noise strengths. However, when
the particle is further subjected to Lorentz force due to an
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external magnetic field, we show that the spatial sym-
metry is restored in the limit of large magnetic fields;
the escape is driven by an effective noise with the av-
erage strength of the two noises. This is attributed to
the Lorentz-force–induced coupling between the spatial
degrees of freedom which makes the difference between
noise strengths irrelevant at high magnetic fields.
In a spatially isotropic Brownian magneto-system,

the Lorentz force slows down the escape dynamics
via a trivial rescaling of the diffusion coefficient (see
[23,24] and the data in the Supplementary Material
Supplementarymaterial.pdf (SM)1) without affecting
the exponential dependence on the barrier height. In con-
trast, in an anisotropically driven system, a magnetic field
affects the dynamics in a qualitatively different way [25].
While curving the trajectory of a particle, there also oc-
curs energy transfer in form of heat from the hot source
to the cold source, which is mediated by the magnetic
field [26]. As a consequence, at large magnetic fields, the
two spatial degrees of freedom become identical regardless
of the difference between noise strengths. In general, it
is difficult to study the escape problem in a multidimen-
sional potential well. Here we use an asymptotic method
to compute the mean escape time for a large barrier height,
obtaining an explicit analytical prediction.

Anisotropically driven Brownian magneto-
system. – We consider a Brownian magneto-system,
which is made of a single diffusing particle of the charge
q and mass m in the presence of a constant magnetic
field B in the z-direction. The x and y positions of
the particle, which we indicate in the vectorial form
r = (x, y)�, are coupled to noises with different strengths
proportional to Tx and Ty, respectively (see fig. 1). The
transpose is indicated by �. Since the Lorentz force does
not affect the motion of the particle in the direction of
the applied magnetic field, we effectively investigate a
two-dimensional system in the xy plane.

The dynamics of the particle with velocity v = (vx, vy)
�

which is trapped in a potential in the form of V (r) =
1
2r

� · Û ·r can be described by the following underdamped
Langevin equation:

mq̇(t) = −F̂q(t) + ξ(t), (1)

where q(t) = (x(t), y(t), vx(t), vy(t))
� and ξ(t) =

(0, 0, ξx(t), ξy(t))
� is Gaussian white noise with zero mean

and time correlation 〈ξ(t)ξ�(t′)〉 = 2γT̂ δ(t− t′), where γ
is the friction coefficient. Throughout the paper we set
the Boltzmann constant kB to unity. For an isotropic po-
tential Û = kÎ with k being the stiffness of the potential.
Length and time are measured in units of

√
T̄ /k and γ/k,

respectively. Here T̄ = (Tx + Ty)/2 where γT̄ is the aver-

age strength of the noises. Here T̂ = diag(0, 0, Tx, Ty) is a

1In the SM we show that the large-barrier approximation for a
system with temperature T̄ gives 〈tesc〉eq ≈ (1 + κ2)γeδE/2kδE
where the temperature difference is zero and the escape occurs due
to the equilibrium fluctuations.

Fig. 1: A single charged Brownian particle, subjected to an ex-
ternal magnetic field B and trapped in an isotropic harmonic
potential V (x, y) = k(x2 + y2)/2 with the parameter k. The
particle is simultaneously subjected to two noises with different
strengths along its x and y degrees of freedom. The particle
escapes more along the y-axis due to the broken spatial sym-
metry by the two noises, which is shown in reddish color. We
show that escape distribution can be tuned and symmetrized
by varying the magnitude of the applied magnetic field.

diagonal matrix and the matrix F̂ is defined as

F̂ =

(
0̂ −mÎ

Û Ĝ

)
, where Ĝ = γ

(
1 −κ
κ 1

)
. (2)

Here Î is the identity matrix and κ = qB/γ is the diffu-
sive Hall parameter which quantifies the strength of the
Lorentz force relative to the frictional force. Note that
the hat over the symbols indicates the matrices and the
vectors are shown by bold symbols.
We are interested in the overdamped dynamics of the

particle. Usually this is done by setting the inertia term
in eq. (1) to zero. However, in the presence of a mag-
netic field, this yields an incorrect description of the over-
damped dynamics [27,28]. A careful small-mass limit of
the Langevin equation reveals that the overdamped dy-
namics, though diffusive in nature, are described an un-
usual odd-diffusion tensor that has both even (diagonal)
and odd (off-diagonal) elements. We note that the vari-
ance of the particle position is determined only by the even
part of the diffusion tensor [24,25]. The odd part of the
tensor, which has its origin in the broken time reversal
symmetry due to the magnetic field, gives rise to addi-
tional Lorentz (rotational) fluxes which are missed if one
takes the route of setting the inertial term to zero. The
Lorentz fluxes can play a crucial role in the dynamical
properties of Brownian systems [24,25].

Escape from an isotropic trap. – We consider a
trapped particle in an isotropic potential V (r) and pos-
tulate that the particle escapes the trap when it reaches
the boundary, truncated at r = a, where r = |r| is the
distance from the origin, as shown in fig. 1. An exact cal-
culation of the mean escape time is possible in a single
temperature magneto-system, as derived in details in the
SM, taking advantage of the spatial isotropy. However,
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in an anisotropically driven magneto-system, the broken
spatial symmetry prevents such an approach. We there-
fore use an asymptotic method to investigate the escape
dynamics in our Brownian magneto-system. We assume
that the barrier height ΔE = 1

2ka
2, is sufficiently large

that the particle leaks out slowly across the trap and set-
tles into a quasistationary state: the escape is a Pois-
son process with the inverse rate of mean escape time
〈tesc〉. The quasistationary probability density is given
by P (r, t) ∼ ρss(r)e

−t/〈tesc〉 where ρss(r) is the steady-
state probability density obtained in the limit of a → ∞
which we have obtained in previous works [25,26] and in
the SM.
The total outgoing flux at r = a is given by J(t) =

− d
dt

∫ 2π

0

∫ a

0
P (r, θ, t)rdrdθ where P (r, θ, t) is the quasista-

tionary probability distribution in the polar coordinates.
The outgoing flux can be alternatively defined as the prob-

ability a
∫ 2π

0
ρss(a, θ)e

−t/〈tesc〉dθ to be on the boundary at
time t, times the velocity of the fluctuation path leading
to the boundary [10,29]. Using the two equivalent defini-
tions of the outgoing flux the mean escape time is equal to
the inverse of the stationary-state probability density on
the boundary besides a prefactor. The prefactor can be
determined from the exact analytical result for a spatially
isotropic magneto-system, as shown in the SM. By doing
so, we obtain the mean escape time (see the SM), which
can be written as

〈tesc〉−1 ≈ 2

1 + κ2

√
δ2E

1− δ2κ
e
− δE

1−δ2κ I0

(
− δκδE
1− δ2κ

)
, (3)

where I0(x) is the modified Bessel function of the first kind
of the order zero, δE = ΔE/T̄ is the scaled barrier height,
and

δκ =
ΔT

2T̄
√
1 + κ2

(4)

is a dimensionless parameter quantifying the difference
between the noise strengths, γΔT relative to the aver-
age noise strength, γT̄ scaled by 2

√
1 + κ2 where ΔT =

Ty − Tx.
In a spatially isotropic system the mean escape time

in eq. (3) reduces to the familiar expression from Kramers
theory 〈tesc〉−1 ≈ (1+κ2)−12δE exp(−δE), as shown in the
SM. In the general case of two different noises, the escape
time also depends on the difference between the strengths
of noises via the parameter δκ. For a fixed κ, increas-
ing the noise strength difference accentuates the spatial
anisotropy of the escape dynamics. However, in the limit
of large magnetic fields δκ → 0, independent of the dif-
ference between the two noises, in which case one again
obtains the Kramers escape rate for a spatially isotropic
system with temperature T̄ . The κ-governed crossover
from anisotropic to isotropic escape can be qualitatively
understood as follows. The Lorentz force curves the trajec-
tory of a moving particle. However, since the two spatial
degrees of freedom are subjected to noises with different
strengths, the curving of the trajectory also results in

Fig. 2: The mean escape time as a function κ for different
barrier heights δE with ΔT = 2.0 and T̄ = 3.0. Solid lines show
the theoretical prediction from eq. (3) and the symbols depict
the simulation results. The black, dashed line is a plot of the
prefactor 1+κ2. In the limit of large magnetic fields, the overall
trend of the mean escape time is determined by this prefactor.
The inset shows the distribution of the escape time for κ = 4.0
and δE = 9.0. The solid line is the Poisson distribution P (t) =
〈tesc〉−1 exp(−t/〈tesc〉) and the symbols depict the simulation
results. The theoretical predictions overestimate the escape
time for small barrier heights.

energy transfer in the form of heat from the hot source to
the cold one. Consequently, in the limit of large magnetic
fields, the two spatial degrees of freedom become identical
regardless of the difference between noise strengths.
To validate our theoretical predictions we perform

Brownian dynamics simulations using the Langevin equa-
tions of motion. It has been shown that the overdamped
Langevin equation for Brownian motion in the presence
of a magnetic field can give rise to unphysical values for
velocity-dependent variables such as fluxes [28]. There-
fore, we use the underdamped Langevin equation, given
in eq. (1), with a sufficiently small mass. In the simula-
tion, we use dt = 5×10−7γ/k. The choice of dt is based on
the following consideration. In a single integration step,
the change in velocity due to the noise is of the order√
dtγTi/m2 where i = x, y. This should be much smaller

than the typical velocity that scales as
√

Ti/m. This yields
dt 
 m/γ. For the choice of mass m = 10−3γ2/k, this
yields dt 
 10−3γ/k. We consider a total number of par-
ticles of 1000.
Figure 2 shows the mean escape time as a function of the

diffusive Hall parameter κ for different values of the scaled
barrier height δE . The data are obtained from simulations
of a system with T̄ = 3.0 and ΔT = 2.0. Our theoreti-
cal predictions are in good agreement with the simulation
results. In the SM we show that the large barrier ap-
proximation of the exact expression for escape time in a
single temperature system is highly accurate compared to
the known Kramers results when the expression is scaled
by an empirical factor 1.2. We use the same factor in
our asymptotic approach and observe that our theoreti-
cal predictions are in good agreement with the simulation
results.
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Fig. 3: The mean escape time as function of the scaled dif-
ference between the two noise strengths δκ for different bar-
rier heights. Solid lines show the results from the theoretical
prediction in eq. (3) and the symbols depict the simulation re-
sults. While a small δκ corresponds to either large magnetic
fields or noises with the same strength, δκ → 1 corresponds
to either small magnetic fields or large difference between the
strengths of the two noises. Simulation data is obtained for
ΔT = 1.0, 2.0, 3.0, 4.0, 5.0 with T̄ = 3.0. The diffusive Hall
parameter varies from 0.0 to 10.0. The dashed lines show the
saturation to the system with temperature T̄ corresponding to
either two noises with the same strength or large-magnetic-field
limit. The inset shows the angular distribution for ΔT = 2.0
and T̄ = 3.0 and different values of the diffusive Hall parame-
ter, κ = 0.0, 0.5, 2.0, 10.0 from left to right, respectively. In the
absence of a magnetic field the particle mostly escapes along
the y-axis due to the broken spatial symmetry via the two
noises with different strengths.

While in the limit of large magnetic fields the overall
trends of the curves are determined by the prefactor 1+κ2,
as shown in fig. 2 by dashed lines, it deviates from this
prefactor for small magnetic fields. In other words, while
the anisotropic driving of the system affects the escape
dynamics for small magnetic fields, the spatial symmetry
is restored in the limit of large magnetic fields.
Figure 3 shows the scaled mean escape time as a func-

tion of the parameter δκ. The Brownian dynamics simu-
lation has been done for systems with ΔT varying from
1.0 to 5.0 and the same noise strength average such that
T̄ = 3.0. The diffusive Hall parameter is varying from
κ = 0.0 to 10.0. In the limit of large magnetic fields or
small temperatures, the noise strength difference parame-
ter δκ → 0. Small magnetic fields or large noise strength
difference correspond to δκ → 1. The scaled mean escape
time decreases with increasing parameter δκ. The dashed
lines show the saturation to a system with temperature
T̄ corresponding to two noises with the same strength or
alternatively to large–magnetic-field limit. In the inset,
we show the angular distribution from simulations for dif-
ferent values of the diffusive Hall parameter. As can be
seen, in the absence of a magnetic field the particle mostly
escapes along the y-axis due to the broken spatial sym-
metry via the two different noises. The escape becomes
symmetric in the limit of a large magnetic field, namely
the difference between the two noise strengths becomes
irrelevant.

Conclusions. – We studied the escape dynamics in
an anisotropically driven Brownian magneto-system. We
derived an approximate expression for the mean escape
time taking into account two noises with different strength
along different spatial directions. We showed that Lorentz
force induces a coupling between the spatial degrees of
freedom which, in the limit of large magnetic fields, re-
stores the spatial symmetry; the two spatial degrees of
freedom become identical regardless of the difference be-
tween the two noise strengths.

While experimental realisation of the proposed
magneto-system might be particularly difficult in colloidal
systems, it is more realistic in a complex plasma where
extremely large magnetic fields can be generated [30]. In
such a set up, not only can one study the escape dynam-
ics, one can also measure the momenta governed energy
flow between the hot source and the cold bath. Such heat
currents have been predicted theoretically, however, the
studies employed toy models in which a particle is cou-
pled to multiple thermostats [31,32]. A complex plasma,
with anisotropic driving, thus presents a potentially real-
izable system to study momenta governed heat currents.
The anisotropic noise strength can also be realized by
putting the charged object in contact with active parti-
cles that provide the noise. If the latter are propelling
in an anisotropic way, as for instance on an anisotropic
patterned substrate [33] or in a nematic liquid crystalline
cell [34], their effect on the charged particle would re-
alize an anisotropic noise strength. Other possible real-
izations in which a confined particle experiences random
kicks in an anisotropic environment under the additional
action of a Lorentz, Coriolis or Magnus force are also
conceivable.

In future work we aim to extend our model to the es-
cape through a narrow hole [35–37]. An interesting gener-
alization would be to replace the isotropic potential by an
anisotropic potential where the stationary state of the sys-
tem is characterized by not only a non-Boltzmann proba-
bility distribution, but also additional Lorentz fluxes [26].
Also, it could be interesting to study the escape in an
anisotropically driven Brownian magneto-system from a
bistable state, which might be realized by trapping the
particle using two optical tweezers [38]. Another study of
interest would be a system in the presence of a fluctuat-
ing magnetic field where a new turnover is observed as a
generic signature of the system [39,40]. Finally, our anal-
ysis might be applicable to other systems such as chiral
colloidal microswimmers in parabolic potentials [41], ac-
tive Janus particles in a complex plasma [42], and even
rotating skyrmions [43,44].
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48005.
[17] Zanovello L., Faccioli P., Franosch T. and

Caraglio M., J. Chem. Phys., 155 (2021) 084901.
[18] Militaru A., Innerbichler M., Frimmer M.,

Tebbenjohanns F., Novotny L. andDellago C., Nat.
Commun., 12 (2021) 2446.

[19] Caprini L., Cecconi F. and Marini Bettolo Mar-

coni U., J. Chem. Phys., 155 (2021) 234902.
[20] Gera T. and Sebastian K., J. Chem. Phys., 155 (2021)

014902.
[21] Filliger R. andReimann P., Phys. Rev. Lett., 99 (2007)

230602.
[22] Argun A., Soni J., Dabelow L., Bo S., Pesce G.,

Eichhorn R. and Volpe G., Phys. Rev. E, 96 (2017)
052106.

[23] Filliger R. and Reimann P., EPL, 77 (2007)
30008.

[24] Abdoli I., Vuijk H. D., Sommer J.-U., Brader

J. M. and Sharma A., Phys. Rev. E, 101 (2020)
012120.

[25] Abdoli I., Kalz E., Vuijk H. D., Wittmann R., Som-

mer J.-U., Brader J. M. and Sharma A., New J. Phys.,
22 (2020) 093057.

[26] Abdoli I., Wittmann R., Brader J. M., Sommer
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