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Equilibrium properties of a system of passive diffusing particles in an external magnetic field are unaffected by

Lorentz force. In contrast, active Brownian particles exhibit steady-state phenomena that depend on both the

strength and the polarity of the applied magnetic field. The intriguing effects of the Lorentz force, however,

can only be observed when out-of-equilibrium density gradients are maintained in the system. To this end,

we use the method of stochastic resetting on active Brownian particles in two dimensions by resetting them

to the line x = 0 at a constant rate and periodicity in the y direction. Under stochastic resetting, an active

system settles into a nontrivial stationary state which is characterized by an inhomogeneous density

distribution, polarization and bulk fluxes perpendicular to the density gradients. We show that whereas for a

uniform magnetic field the properties of the stationary state of the active system can be obtained from its

passive counterpart, novel features emerge in the case of an inhomogeneous magnetic field which have no

counterpart in passive systems. In particular, there exists an activity-dependent threshold rate such that for

smaller resetting rates, the density distribution of active particles becomes non-monotonic. We also study the

mean first-passage time to the x axis and find a surprising result: it takes an active particle more time to

reach the target from any given point for the case when the magnetic field increases away from the axis. The

theoretical predictions are validated using Brownian dynamics simulations.

1 Introduction

A fundamental feature of active Brownian particles (ABPs) is
self-propulsion which requires a continual consumption of
energy from the local environment.1–7 Since ABPs are internally
driven, they do not require breaking the spatial symmetry to exist
in an out-of-equilibrium state. An ABP is generally modelled as a
particle which propels itself along a direction which randomizes
via rotational diffusion. Given the simplicity of the model, it is
not surprising that ABPs serve as a minimalistic model to study
the effect of broken time-reversal symmetry and nonequilibrium
steady states in general.8–14 The interest in ABPs is not purely
theoretical as evident in the vast body of research in pharma-
ceutical and medical applications.15–22 Since an ABP adjusts its
propulsion speed in response to the local fuel concentration,19,23

it is also used as a simple model to understand the emergence of
chemotaxis in proto-forms of life.24–27

Recently, the behaviour of diffusion systems subjected to an
external magnetic field has attracted considerable interest.28–39 It
has been shown that Lorentz force due to an external magnetic
field induces additional Lorentz fluxes in diffusion systems

which are perpendicular to the typical diffusive fluxes.33,35 The
Lorentz force generates dynamics which are different from those
of a purely diffusive system. Interestingly, the unusual properties
due to the Lorentz force persist in the small-mass limit in which
the dynamics are overdamped. However, the equilibrium proper-
ties, as expected from the Bohr–van Leeuwen theorem,40 are
unaffected by the applied magnetic field due to no performance
of work on the particle. Since the Lorentz force only influences
the dynamics, there are essentially two conditions to observe its
unusual effects: (i) the system is out of equilibrium and (ii) there
are density gradients in the system. This has been recently
demonstrated in a system of ABPs with a uniform activity
subjected to an inhomogeneous magnetic field,36 which satisfies
the aforementioned conditions even in the stationary state. The
nonequilibrium steady state in such a system is characterized by
density inhomogeneity and bulk fluxes.

In order to ensure that there exists a nontrivial stationary
state in a system of ABPs, one requires either a confining
potential or periodic boundary conditions.36 In recent years,
stochastic resetting has emerged as a powerful framework which
gives rise to nontrivial stationary states in diffusive systems
characterized by a non-Gaussian probability distribution and
steady-state fluxes.41–53 Stochastic resetting is unique in the
sense that it renews the underlying process and therefore, in
some sense, preserves the dynamics of the underlying process in the
steady state. With the recent experimental demonstrations,54,55
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stochastic resetting is now no longer a pure theoretical pursuit but
rather an alternative and practical method to drive and maintain a
system out of equilibrium. We have recently shown that stochastically
resetting a passive particle to the origin in the presence of Lorentz
force gives rise to a novel stationary state which bears the unusual
dynamical properties owing to the magnetic field.37 While the
stochastic resetting of passive particles has been thoroughly studied,
much less is done about active particles.46,56,57 In a very recent work,
the motion of an ABP under different resetting protocols has been
studied58 with a focus on the steady-state density distribution.

In the present work, we investigate the motion of a charged
ABP under resetting and the effect of Lorentz force. The particle
is stochastically reset to the line x = 0 at a constant rate. In
addition, the system is periodic in the y direction. We start with a
generalized coarse-grained Fokker–Planck equation and analyti-
cally determine the density, flux, and polarization, first for a
uniform magnetic field and then for a spatially inhomogeneous
magnetic field. We show that whereas for a uniform magnetic
field the properties of the stationary state of the active system
can be obtained from its passive counterpart, novel features
emerge in the case of an inhomogeneous magnetic field which
have no counterpart in passive systems. In particular, there exists
an activity-dependent threshold rate such that for smaller reset-
ting rates, the density distribution of active particles becomes
non-monotonic. We also study the Mean First-Passage Time
(MFPT) to the x axis and find a surprising result: it takes an
active particle more time to reach the target from any given point
for the case when the magnetic field increases away from
the axis.

The paper continues as follows. In Section 2, we define the
model and provide a description of the methods used to
analyze the system. In Section 3, we study the system in the
presence of a constant magnetic field. We then consider a
space-dependent magnetic field and derive expressions for the
density, flux, and polarization in the system in Section 4. In
Section 5, we obtain the MFPT for the active and passive
systems. The conclusion of the paper is presented in Section 6.

2 Model and theory

We consider a single self-propelled, charged Brownian particle
of mass m and charge q subjected to an external magnetic field
-

B(-r ) of strength B(-r ), whose direction is along the z axis where
the Lorentz force does not influence the motion of the particle.
As a consequence, we study the dynamics of the particle in the
xy plane with -

r = (x, y). The particle is stochastically reset to the
line x = 0 at a constant rate m. The generalized Fokker–Planck
equation for the probability density of finding the particle at
position -

r with orientation -
u = (ux,uy) at time t given that the

particle started its motion at the origin, P(-r, -
u;t) is given as

@

@t
Pð~r;~u; tÞ ¼ r � G�1ð~rÞ � Dtr� v0~uð ÞPð~r;~u; tÞ

� �

þ Dr
~R2Pð~r;~u; tÞ þ Fl þ Fg;

(1)

where r = (qx,qy) and

Fl = �mP(-r, -
u;t), (2)

is the loss of the probability from the position -
r due to

resetting while

Fg ¼ mdðxÞ
ð
Pðx0; y; ux; uy; tÞdx0; (3)

is the gain of the probability at the point (0,y) on the x-axis.
Although eqn (1) is not of the form of a continuity equation, the
total probability is conserved. Here v0 = f/g is the self-propulsion
speed where g is the friction coefficient and f is the magnitude of
the self-propulsion force that drives the particle into the direc-
tion of its (unit) orientation vector -

u. In addition, R
!¼ ~u�r~u is

the rotation operator, Dt = kBT/g with kB being the Boltzmann
constant that is the translational diffusion coefficient and Dr is
the rotational diffusion coefficient. The matrix G is defined as
Iþ kð~rÞM where I is the identity matrix, the dimensionless
parameter k(-r ) = qB(-r )/g quantifies the strength of the Lorentz
force relative to the frictional force and M is the matrix with
elements Mij = �eijknk where eijk is the antisymmetric Levi–Civita
symbol in two dimensions and nk is the k component of the unit
vector n along which the magnetic field is pointed. The inverse of
G reads

G�1ð~rÞ ¼ I� kð~r Þ
1þ k2ð~r ÞMþ

kð~r Þ2
1þ k2ð~r ÞM

2: (4)

Note that the orientation of the particle remains unchanged under
resetting; the particle restarts its motion with the orientation that
it had at the time of resetting.

We also perform Brownian dynamics simulations to validate
our theoretical predictions. The dynamics of the particle can be
described by the following Langevin equations

m

g
_~vðtÞ ¼ Gð~r Þ �~vþ v0~uðtÞ þ~xðtÞ; (5)

_~rðtÞ ¼~vðtÞ; and _~uðtÞ ¼~ZðtÞ �~uðtÞ; (6)

where the dot over the vectors denotes the time derivative and the

stochastic forces ~x(t) and ~Z(t) satisfy the properties of Gaussian
white noise with a zero mean value and correlation functions

~xðtÞ~xT ðt 0Þ
D E

¼ 2DtIdðt� t 0Þ and ~ZðtÞ~ZT ðt 0Þ
� �

¼ 2DrIdðt� t 0Þ. As

the resetting mechanism we consider Poisson distribution for the
resetting time which gives the probability of the number of resets
to the line x = 0 in a small interval of time with a constant rate m
(see Fig. 1). The Fokker–Planck equation in (1) is the small-mass
limit of the Langevin equations in (5) and (6) which corresponds to
overdamped dynamics of the system. We numerically integrate the
set of equations in (5) and (6) with a small mass m = 0.002 and the
integration time step dt = 10�6t where t = g/kBT is the time the
particle takes to diffuse over a unit distance. We also fix kB = g = 1.0,
the self-propulsion force f = 10.0, and Dr = 20.0. The particle starts
its motion at the origin with the initial velocity (v0x, v0y) = (1.0, 1.0)
and initial orientation (u0x, u0y) = (1.0, 0.0). The choice of the
parameters holds throughout the paper.

The Fokker–Planck equation in (1) provides a full statistical
description of the position and orientation of an ABP under

               

                   



          

stochastic resetting. However, it is a formidable task to obtain
an exact solution of this equation. To theoretically analyze the
system we make the following assumptions: (1) Dr c m and (2)
the gradients in the system are small on the length scale of
persistence length of the ABP. Under these assumptions, one can
integrate out the orientational degrees of freedom by a gradient
expansion (see Appendix A for details) to yield an equation for
the (marginal) probability density as a function of time and
position degrees of freedom alone.36 The final equation for the
coarse-grained density reads as

@rð~r; tÞ
@t

¼ r � G�1ð~r Þ � Dtrþ v0pð~r; tÞð Þrð~r; tÞ
� �

þ fl þ fg; (7)

where

fl = �mr(-r;t), (8)

fg ¼ mdðxÞ
ð
rðx0; y; tÞdx0; (9)

are the loss and gain of probabilities and r(-r,t) is the (marginal)
probability density of finding the particle at position -r at time t
given that the particle started its motion at the origin. The first
and second terms in the square brackets are the (negative)
probability fluxes stemming from the thermal fluctuations and
activity, respectively. The polarization, pð~r; tÞ, defined as the
average orientation per particle, is given as

pð~r; tÞ ¼ � lp

2rð~r; tÞr � ½G
�1ð~r Þrð~r; tÞ�; (10)

where lp = v0/(Dr + m) denotes the modified persistence length of
the ABP. An alternative approach to the above derivation is to treat
activity as a perturbation and use the linear response theory for
ABPs as outlined in ref. 59 and 60. The gradient expansion
approach, in contrast, does not require the activity to be small
but only that the gradients be small compared to the persistence
length of the ABP. It therefore allows one to consider an active
system in which the activity dominates over thermal fluctuations.

By resetting the particles to the x axis we confine the motion
of the particles in the x direction. Now we impose periodicity in
the y direction over a length scale of L which results in the

normalisation condition
Ð1
�1dx

Ð L
0
dyrðx; y; tÞ ¼ 1. Since the

motion is translationally invariant in the y direction the above
normalisation condition can be written as L

Ð1
�1gðx; tÞ ¼ 1

where g(x;t) is the probability density of finding the particle
at position x at time t given that its initial position was at x = 0.
The Fokker–Planck equation for g(x;t) reads

@gðx; tÞ
@t

¼ �r � ~jðx; tÞ þ~j aðx; tÞ
� �

� mgðx; tÞ þ m
L
dðxÞ; (11)

where the flux due to thermal fluctuations is

~jðx; tÞ ¼ �DtG�1ðxÞrgðx; tÞ; (12a)

and

~j aðx; tÞ ¼ �v0G�1ðxÞ~pðx; tÞgðx; tÞ: (12b)

is the flux due to activity where rg(x;t) = (qxg(x;t),0)T, and

~pðx; tÞ ¼ � lp

2gðx; tÞr � ½G
�1ðxÞgðx; tÞ�; (13)

is the polarization. Note that since there is no variation in the y
direction all the derivatives with respect to y are zero resulting
in the reduction of r in eqn (11) and (13) to simply the
derivative with respect to x.

To highlight the new features which emerge in the system of
ABPs we make a comparison between the active system and its
passive counterpart. As the active system we consider the
motion of the particle purely due to the activity by ignoring
the thermal term (i.e., Dt = 0) in eqn (5), (6) and (12a). We
compare the active system with the passive one wherein the
motion of the particle is due to the thermal fluctuations. The
governing Langevin equations and the corresponding Fokker–
Planck equation of the passive system can be obtained by setting
the self-propulsion velocity, v0 to zero in eqn (5), (6) and (12b).

3 Uniform magnetic field

We first consider the system subjected to a uniform magnetic
field k(x) � k. For the active system, the stationary probability
density, denoted by ga(x), can be easily obtained by plugging
eqn (12b) into eqn (11) and setting qtg(x;t) = 0. The solution can
be written as

gaðxÞ ¼ a
2L

exp �ajxjð Þ; (14)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
p

aa with aa ¼
ffiffiffiffiffiffiffiffiffiffiffi
m=Da

p
and Da = v0

2/2(Dr + m)
being the modified active diffusivity. The stationary solution in
(14) is the same as that of the passive system wherein Da is
replaced by Dt.

37

The polarization can be obtained by plugging eqn (14) in
eqn (13), which in the x direction can be written as

pxðxÞ ¼
lpaa

2ð1þ k2ÞsignðxÞ; (15a)

Fig. 1 Schematic of a charged active Brownian particle which is stochastically
reset to the line x = 0 at a constant rate m. The self-propulsion velocity is shown
by an arrow inside the disc. Between any two consecutive resetting events the
particle undergoes Brownian motion and self-propulsion. Immediately after a
resetting event, the orientation of the ABP remains unchanged. The system is
subjected to an external magnetic field, B(r

-
) in the z direction.

               

                   



                                                      

and in spite of the translational invariance in the y direction
there exists polarization which is given as

py(x) = kpx(x), (15b)

However, the substitution of the polarization into eqn (12b)
gives zero fluxes in the y direction and

jaxðxÞ ¼
m
2L

signðxÞ exp �ajxjð Þ; (16)

in the x direction where sign(�) denotes the sign function. Note
that the stationary polarization and fluxes in the y direction are
zero in the absence of the magnetic field.

In Fig. 2(a–d) we show the density, stationary flux and the x
and y components of the orientation, respectively. Note that
despite the translational invariant motion in the y direction
there exists polarization in this direction. However, the y
component of the stationary flux is zero due to the cancellation
of fluxes arising from the polarization in the x and y directions.

4 Inhomogeneous magnetic field

In this section, we show that novel features emerge in the case
of an inhomogeneous magnetic field which have no counter-
part in passive systems. We consider a system subjected to an

exponentially varying magnetic field such that kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

where l is a constant. With this choice of the magnetic field,
the Fokker–Planck equation in (11) can be solved exactly. The
stationary probability density is given as

gaðxÞ ¼ aa
2L

exp
ljxj
2
� 2aa

l
exp

ljxj
2

� �
� 1

� �	 

: (17)

Using eqn (14), the polarization in the x direction is given as

pxðxÞ ¼
lpsignðxÞ

2

l
2
exp �ljxjð Þ þ aa exp

�ljxj
2

� �	 

; (18a)

and similarly

pyðxÞ ¼
lplsignðxÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðljxjÞ � 1

p 4aa
l

sinh
ljxj
2

� �
� expð�ljxjÞ

	 

;

(18b)

is the polarization in the y direction. The x and y components of
the stationary flux can be obtained using eqn (12b), which read

jaxðxÞ ¼ aaDasignðxÞ exp �
ljxj
2

� �
gaðxÞ; (19a)

jayðxÞ ¼ �
lDa exp �ljxjð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðljxjÞ � 1

p signðxÞgaðxÞ: (19b)

Note that the stationary polarization and stationary flux in
the y direction cease to exist in the absence of the
magnetic field.

We also consider a passive system under resetting and
subjected to the same magnetic field as in the active system.
The governing Fokker–Planck equation for the system can be
easily written by setting v0 = 0 in eqn (12b) and substituting
eqn (12a) into eqn (11). The stationary solution, gp(x), of the
resulting equation is

gpðxÞ ¼ ap

2LK0
2ap
l

� � exp
ljxj
2

� �
K1

2ap
l

exp
ljxj
2

� �� �
; (20)

where ap ¼
ffiffiffiffiffiffiffiffiffiffiffi
m=Dt

p
and K0 and K1 are the modified Bessel

functions of the second kind of order 0 and 1, respectively.
The x component of the stationary flux can be written as

jpxðxÞ ¼
Dap2

2LK0
2ap
l

� �signðxÞK0
2ap
l

exp
ljxj
2

� �� �
; (21)

and similarly

jpyðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1

p
jpxðxÞ: (22)

is the flux in the y direction.
Fig. 3(a) and (b) show the dynamical density distribution in

the active and passive systems without resetting, respectively.
The density distribution in the active system evolves from a
delta function at time t = 0 to a non-monotonic distribution at
later times. In contrast, the density distribution in the passive
system decays monotonically at all times. The non-monotonic
behaviour can be qualitatively understood as follows: It has
been shown that one of the effects of a spatially varying
magnetic field on active particles is similar to subjecting them
to an inhomogeneous activity field, for which it is well known
that (i) ABPs exhibit a net polarization anti-parallel to the
activity gradient and (ii) the steady-state density distribution scales
inversely with the active force.36 For an increasing magnetic field
away from the origin, the polarization flux takes ABPs away from
the x axis where due to the large magnetic field, they accumulate.
This gives rise to non-monotonic density distribution, shown
in Fig. 3(a). Since there are no polarization effects in passive
particles, the density distribution is always monotonically

Fig. 2 Density, flux in the x direction, and orientations in the x and y
directions are shown in (a) to (d), respectively. An ABP is subjected to a
constant magnetic field such that k = 3.0 and is stochastically reset to the
line x = 0 at the rate m = 1.0 with L = 10.0. Despite the translational invariant
motion in the y direction the magnetic field induces polarization in the y
direction. However, the y component of the stationary flux is zero due to
the cancellation of fluxes arising from the polarization in the x and y
directions. The solid lines show the analytical solutions from eqn (14)–(16)
and the circles depict the results from Brownian dynamics simulations.

               

                   



                                                      

decaying. By stochastically resetting the particles one renews
these dynamics on the time scale of resetting for which we show the
probability density in Fig. 3(c) for the active system and in Fig. 3(d)
for the passive system. Clearly the steady-state distributions carry
the signature of the underlying dynamics. For the active system there
exists an activity-dependent threshold rate such that for smaller
resetting rates, the density distribution of the particles becomes
non-monotonic. Below this threshold rate, mo l2v0

2/(8Dr), the ABPs
accumulate in a vicinity of positions given by x = �(2/l)ln(l/2aa).

In Fig. 4 we use eqn (18a) to eqn (19b) to plot the fluxes and
the polarization in the active system. While in the case of a
constant magnetic field there is no flux in the y direction,
inhomogeneity in the magnetic field gives rise to orientation
which results in fluxes in the x and y directions. Note that the
polarization and flux in the y direction cease to exist in the
absence of the magnetic field. Fig. 5 shows the x and y
components of the stationary flux in the passive system. As
can be seen from eqn (21) and (22), the theoretical results are in
good agreement with the simulation results.

Transport properties of Brownian particles have been usually
studied by considering systems which are restricted within the
confines of structured and inhomogeneous environments. While
in many cases, such structured environments can be viewed as
confined channels with different boundaries and properties,61–65

directed transport can be obtained via spatial control of
activity.66,67 Here we show that the Lorentz force can result in
directed transport with no need for structured geometries. We
consider an ABP under resetting, subjected to the magnetic field

kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�lx � 1
p

if x o 0 and kðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
elx � 1
p

otherwise. The
system is invariant to translation in the y direction. However, for a
better visualisation of the directed transport, we show the flux and
density in the system in two dimensions. Fig. 6(a) depicts a vector
plot of the stationary flux in the system which clearly shows the
particle transport along the y axis. In Fig. 6(b) we show a surface
plot of the stationary probability density in which the arrows show
the direction of the particle transport.

5 Mean first-passage time

We now study the first-passage properties of the system in the
case of a fixed target at the origin. The searching particle is

subjected to the magnetic field kðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with l = 2.0
and is stochastically reset to its initial position x0 to be fixed.
The backward Fokker–Planck equation for the survival prob-
ability, G(x;t) – the probability that the searching particle

Fig. 3 Density distributions in (a) the active system and (b) the passive system
without resetting are shown at different times. The systems are subjected to a
spatially inhomogeneous magnetic field such that kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with
l = 2.0 and L = 10.0. For the passive system, the translational diffusivity,
Dt has the same value as the active diffusivity, Da. The density distribution in the
active system evolves, according to eqn (11) by setting Dt = 0, from a delta
function at time t = 0 to a non-monotonic distribution at later times. For the
passive system the distribution evolves according to eqn (11) by setting v0 = 0.
In contrast to the active system the density distribution decays monotonically
at all times. By stochastically resetting the particles one renews these dynamics
on the time scale of resetting for which we show density distribution in (c) the
active system and (d) the passive system for different values of m. While for the
passive system the accumulation of particles is in a vicinity of x = 0, in the
active system it is non-monotonic with local maxima at x = �(2/l)ln(l/2aa) for
m o l2v0

2/(8Dr). The lines show the theoretical results from eqn (17) and (20)
and the symbols depict simulation results.

Fig. 4 The x and y components of the flux and orientation are shown in
(a) to (d), respectively. An active particle is stochastically reset to the line
x = 0 at the rate m = 2.0 with L = 10.0. The particle is subjected to the magnetic
field kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with l = 2.0. The solid lines show the analytical solutions
from eqn (18a) to eqn (19b) and the circles depict the results from Brownian
dynamics simulations. Note that the polarization and flux in the y direction
cease to exist in the absence of the magnetic field.

Fig. 5 Flux in the x and y directions is shown in (a) and (b), respectively. A
passive particle is stochastically reset to the line x = 0 at the rate m = 2.0
with L = 10.0. The particle is subjected to the magnetic field kðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with l = 2.0. The translational diffusivity, Dt, has the same value
as the active diffusivity, Da. The solid lines show the analytical solutions
from eqn (21) and (22) and the circles depict the results from Brownian
dynamics simulations.

               

                   



                                                      

starting at x at t = 0 has not reached the target in time t – can be
written as

@Gðx; tÞ
@t

¼ AðxÞ@
2Gðx; tÞ
@x2

þ BðxÞ@Gðx; tÞ
@x

� mGðx; tÞ þ mGðx0; tÞ;
(23)

where the initial and boundary conditions are G(x;0) = 1 and
G(0;t) = 0, respectively. While the coefficients A(x) and B(x) for
the active system are Dae�lx and �Dale�lx/2, those for the
passive one are De�lx and �Dle�lx, respectively. We first solve
eqn (23) and then set x to x0 to find the MFPT (see Appendix B
for details). The Laplace transform of the backward Fokker–
Planck equation in (23) reads

BðxÞ@
2 ~Gðx; sÞ
@x2

þ AðxÞ@
~Gðx; sÞ
@x

� ðmþ sÞ ~Gðx; sÞ
¼ �1� m ~Gðx0; sÞ; (24)

where ~Gðx; sÞ ¼
Ð1
0 dte�stGðx; sÞ is the Laplace transform of the

survival probability. Solving eqn (24) and setting x = x0 we
obtain the expressions for the survival probability for the active
and passive systems in the Laplace space, which when evalu-
ated at s = 0 gives the MFPT as

Taðx0Þ ¼
1

m
exp

2aa
l

exp
lx0
2

� �
� 1

� �� �
� 1

	 

; (25)

for the active system, and

Tpðx0Þ ¼
1

m

K1
2ap
l

� �
exp �lx0

2

� �

K1
2ap
l

exp
lx0
2

� �� � � 1

2
664

3
775; (26)

for the passive system. Note that the MFPTs of the systems

diverge as m - 0 or m - N. This implies that there exists an
optimal rate at which the MFPT becomes minimum.

In Fig. 7 we show the MFPT with respect to the stochastic rate
for the active and passive systems. We compare the results from
the theory, given by eqn (25) and (26) and those from Brownian
dynamics simulations. It is clear that there exists an optimal
resetting rate, m* that minimizes the time for the searcher to
reach the target. The optimal resetting rate decreases exponen-
tially with increasing starting point x0 due to inhomogeneity in the
magnetic field. The inset shows how the optimal resetting rate
varies with increasing initial position of the particle in the active
system. The optimal resetting rate is obtained by numerically
solving eqn (25) and verified by the simulation results.

Fig. 6 A spatial control of Lorentz force (or self-propulsion speed) can direct transport with no need for structured geometries. (a) A vector plot of the
stationary flux whose direction is shown by the arrows and the magnitude is color coded and (b) a surface plot of the stationary probability density to
which the flux is attached. An ABP under resetting to the line x = 0 at the rate m = 1.0 is subjected to the magnetic field such that kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�lx � 1
p

if x o 0

and kðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
elx � 1
p

otherwise with l = 2.0. The system is invariant to translation in the y direction. However, for a better visualisation of the directed
transport, we show the figures in two dimensions.

Fig. 7 Mean first-passage time in the active and passive systems is shown
in red and blue, respectively. The systems are subjected to the magnetic
field such that kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with l = 2.0. The initial position of the
particles is located at x0 = 2. For the passive system, the translational
diffusivity, Dt has the same value as the active diffusivity, Da. The solid lines
show the theoretical predictions from eqn (25) and (26) and the symbols
depict the results from Brownian dynamics simulations. The inset shows
the optimal resetting rate with respect to the initial position x0. The
numerical solution of eqn (25) is compared with the simulation results.

               

                   



                                                      

Fig. 8 shows the ratio of the MFPT of the active system to its
passive counterpart. Interestingly, the active particle is slower
than its passive counterpart to reach the target. The relative
slowness increases as x0 - 0 or x0 - N. It implies that there
exists a position, x�0 where if the particles start from, they reach the
target with a minimum time difference. In the limit of large x0 the
MFPT for the active system to find the target is exponentially
longer than the passive one and scales as Belx0/4, which is shown
by dashed lines. The inset depicts the simulation results of the
ratio of the MFPTs for the searcher starting at the origin and the
target is set at x0. In this case, either an active or passive searcher
can be faster. There is also a point at which if the particles started
from, they would have the same MFPT which occurs in the case of
a constant magnetic field (e.g. l = 0) as well.

6 Discussion and conclusion

In this paper, we studied the motion of a charged ABP under
resetting and the effect of Lorentz force. We showed that
whereas for a uniform magnetic field the properties of the
stationary state of the active system can be obtained from its
passive counterpart, novel features emerge in the case of an
inhomogeneous magnetic field which have no counterpart in
passive systems. In particular, there exists an activity-dependent
threshold rate such that for smaller resetting rates, the density
distribution of active particles becomes non-monotonic. Moreover,
somewhat counter intuitively, it may take an active particle much
longer to reach a fixed target than its passive counterpart in an

inhomogeneous magnetic field. We also showed that the Lorentz
force can result in directed transport with no need for structured
geometries.

The regime in which the rotational relaxation occurs slowly
in comparison to the resetting time scale can be a problem of
interest. In this regime, where Dr o m, the effects of the
persistent motion of ABPs would be more pronounced. How-
ever, as long as one only resets the position of the particle
without changing the orientation, we do not expect any new
features to emerge in addition to those already reported in the
paper. For instance, even in this new regime, the density
distribution will show a peak away from the x axis for suffi-
ciently small resetting rates. This would occur simply due to the
persistence of the ABPs which takes them away from the x axis
following a resetting event. More drastic signatures of activity
would be seen if the orientation of the ABP is also reset together
with its position. This has been recently investigated in ref. 58
in the regime of Dr o m where the density distribution can be
highly anisotropic depending on the chosen protocol.

We would like to emphasize that the choice of the magnetic
field is motivated by the mathematical convenience, which
allows us to theoretically analyse the system. The qualitative
behaviour of the system will remain unaffected by other choices
of the magnetic field. We note that an ABP in an inhomoge-
neous activity field and subjected to a constant magnetic field
will give rise to the same phenomenology as presented in this
study. A possible experimental realization is to reset the particle
in a rotating frame of reference using optical tweezers. By
rotating the reference frame one can induce a Coriolis force
which acts similarly as the Lorentz force arising from an
external magnetic field.68 From a future perspective, it would
be interesting to investigate the effect of stochastic resetting on
inertial ABPs.12,69
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A Elimination of orientational degrees
of freedom

We use a gradient-expansion approach to integrate the orienta-
tional degrees of freedom from the probability density. To do
this, we recall the Fokker–Planck equation for the probability
density, P(-r,-u;t) as

@

@t
Pð~r;~u; tÞ ¼ r � G�1ð~r Þ � Dtr� v0~uð ÞPð~r;~u; tÞ

� �

þ DrR
!2Pð~r;~u; tÞ þ Fl þ Fg;

(27)

where

Fl = �mP(-r,-u;t), (28)

Fig. 8 The ratio of the MFPT of the active particle to the passive passive
one for different values of m. The systems are subjected to the magnetic
field such that kðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eljxj � 1
p

with l = 2.0. For the passive system, the
translational diffusivity, Dt has the same value as the active diffusivity, Da.
The solid lines show the theoretical predictions from eqn (25) and (26) and
the symbols depict the results from Brownian dynamics simulations. For a
fixed target at the origin, the active particle is slower than the passive one.
The relative slowness increases as x0 - 0 or x0 - N. It implies that there
exists a position, x�0 where if the particles start from, they reach the target

with a minimum time difference. In the limit of large x0 the MFPT for the
active system to find the target is exponentially longer than the passive one
and scales as Belx0/4, which is shown by dashed lines. The inset depicts
the simulation results of the ratio of the MFPTs for a searcher whose initial
position is the origin and the target is fixed at x0. In this case, either an
active or passive searcher can be faster. There is also a point at which if the
particles started from, they would have the same MFPT which occurs in the
case of a constant magnetic field (e.g. l = 0) as well.

               

                   



                                                      

is the loss of the probability from the position -
r due to

resetting while

Fg ¼ mdðxÞ
ð
Pðx0; y; ux; uy; tÞdx0; (29)

is the gain of the probability at the point (0,y) on the x-axis.
The probability density, P(-r,-u;t), can be projected on spherical

harmonics and consequently written as an expansion. By projecting
the probability density on the zeroth and first spherical harmonics
we find

P(-r,-u;t) = r(-r;t) + ~s(-r;t)�-u + X (30)

where r(-r;t) is the positional probability density and the vector
~s(-r;t) is the polar order parameter. Note that X denotes higher-
order contributions which are ignored in this study. Plugging this
expansion in eqn (27) and then integrating the orientational
degrees of freedom, we find

@rð~r; tÞ
@t

¼ �r � ~Jð~r; tÞ þ ~Jað~r; tÞ
h i

þ fl þ fg; (31)

where

fl = �mr(-r;t), (32)

fg ¼ mdðxÞ
ð
rðx0; y; tÞdx0; (33)

and

~Jð~r; tÞ ¼ �DtG�1ð~r Þrrð~r; tÞ; (34a)

~Jað~r; tÞ ¼ �v0
2
G�1ð~r Þ~sð~r; tÞ: (34b)

To calculate the polar order parameter, ~s(-r;t) we multiply
eqn (27) by -

p and integrate over the orientational degrees of
freedom. This gives rise to an equation for ~s(-r;t) as

@

@t
~sð~r; tÞ ¼ r � G�1ð~r Þ Dtr~sð~r; tÞ � v0rð~r; tÞð Þ

� �

� ðDr þ mÞ~sð~r; tÞ þ mdðxÞ
ð
~sðx0; y; tÞdx0;

(35)

This is the point where we make an assumption in which the
density is the slowest mode in the system. In this limit, the
gradients in the system are small in comparison to the modified
persistence length of the active particle, lp = v0/(Dr + m) with Dr c m.
With this approximation the time derivative of ~s(-r;t) and the first
term on the right hand side of eqn (35), sitting in the bracket, is
negligible. In addition, due to the symmetry in the system the
integral over the polar order, given as the last term in eqn (35), is
zero. In this limit, eqn (35) gives

~sð~r; tÞ ¼ � v0

ðDr þ mÞr � G�1ð~rÞrð~r; tÞ
� �

: (36)

The substitution of eqn (36) into eqn (34b) and then the
resulting equation together with eqn (34a) into eqn (31) gives

@rð~r; tÞ
@t

¼ r � G�1ð~r Þ � Dtrþ v0pð~r; tÞð Þrð~r; tÞ
� �

þ fl

þ fg; (37)

where (in two dimensions) the polarization, pð~r; tÞ is related to
the polar parameter, ~s(-r;t) through

pð~r; tÞ ¼ ~sð~r; tÞ
2rð~r; tÞ: (38)

B Derivation of the MFPT

Here we present the derivation of the MFPT of the active system.
A similar approach can be used to derive the MFPT of the passive
system. Using eqn (23) in the main text, the backward Fokker–
Planck equation for the active system can be written as

@tGðx; tÞ ¼ Dae
�lx @

@x2
Gðx; tÞ � l

2

@

@x
Gðx; tÞ

	 


� mGðx; tÞ þ mGðx0; tÞ;
(39)

where G(x0;t) is the probability that the particle, started at x0, is
not absorbed by the target. The initial and boundary conditions
are given as

Gðx; tÞ ¼ 0; at t ¼ 0;
Gðx; tÞ ¼ 1; at x ¼ 0:

�
(40)

Using the Laplace transform of G(x;t), which is defined as

~Gðx; sÞ ¼
ð1
0

e�stGðx; sÞdt; (41)

the transformed backward equation can be written as

Dae
�lx @

@x2
~Gðx; sÞ � l

2

@

@x
~Gðx; sÞ

	 

� ðmþ sÞ ~Gðx; sÞ

¼ �1� m ~Gðx0; sÞ
(42)

To solve eqn (42), we first obtain the solution to the equa-
tion without the reinjection flux (the RHS terms), denoted by
G̃0(x;s), i.e.

e�lx
@

@x2
~G0ðx; sÞ � l

2

@

@x
~G0ðx; sÞ

	 

� aa2ðsÞ ~G0ðx; sÞ ¼ 0; (43)

where aaðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ sÞ=Da

p
. The solution to eqn (43) is

~G0ðx; sÞ ¼ A exp
2aaðsÞ

l
exp

lx
2

� �	 

þ B exp �2aaðsÞ

l
exp

lx
2

� �	 

;

(44)

where A and B are constants. The condition that the probability
density is finite as x -N implies that A = 0. Thus, the solution
to eqn (42) can be written as

~Gðx; sÞ ¼ B exp �2aaðsÞ
l

exp
lx
2

� �	 

þ 1þ m ~Gðx0; sÞ

mþ s
; (45)

where the constant B can be calculated using the boundary
condition in eqn (40), which reads

B ¼ �1þ m ~Gðx0; sÞ
mþ s

exp
2aaðsÞ

l

� �
: (46)

               

                   



                                                      

Plugging eqn (46) into eqn (45) gives

~Gðx; sÞ ¼ � 1þ m ~Gðx0; sÞ
mþ s

exp �2aaðsÞ
l

exp
lx
2
� 1

� �� �	 


þ 1þ m ~Gðx0; sÞ
mþ s

:

(47)

Finally, by setting x = x0 we obtain the survival probability,
which can be written as

~Gðx0; sÞ ¼
1� exp � 2aaðsÞ

l
exp

lx0
2
� 1

� �� �	 


sþ exp � 2aaðsÞ
l

exp
lx0
2
� 1

� �� �	 
; (48)

which when evaluated at s = 0 gives the MFPT. This yields

Taðx0Þ ¼
1

m
exp

2aa
l

exp
lx0
2

� �
� 1

� �� �
� 1

	 

; (49)

where aa � aa(0). Note that we obtained the MFPT for the active
system. However, a similar method can be used to derive the
MFPT for the passive system, as well.
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and A. Piel, Phys. Rev. Lett., 2012, 109, 155003.
69 L. Caprini and U. M. B. Marconi, 2020, arXiv preprint

arXiv:2009.14032.

               

                   

                      




