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Mean-field theory of inhomogeneous fluids
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The Barker-Henderson perturbation theory is a bedrock of liquid-state physics, providing quantitative pre-
dictions for the bulk thermodynamic properties of realistic model systems. However, this successful method
has not been exploited for the study of inhomogeneous systems. We develop and implement a first-principles
“Barker-Henderson density functional,” thus providing a robust and quantitatively accurate theory for classical
fluids in external fields. Numerical results are presented for the hard-core Yukawa model in three dimensions.
Our predictions for the density around a fixed test particle and between planar walls are in very good agreement
with simulation data. The density profiles for the free liquid vapor interface show the expected oscillatory decay
into the bulk liquid as the temperature is reduced toward the triple point, but with an amplitude much smaller
than that predicted by the standard mean-field density functional.
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I. INTRODUCTION

In 1873 van der Waals presented his celebrated equation of
state, which corrected the well-known ideal gas expression to
account for the influence of interparticle interactions [1]. The
key physical insight, nowadays fundamental to mean-field and
perturbation theories of classical fluids, is the separation of
the two effects of particles occupying a certain volume, due
to their mutual repulsion, and of them attracting each other.
The validity of this separation rests on the assumption that the
attractive component of the pair interaction is both weak and
long ranged, as was pointed out by Boltzmann in 1895 [2],
Ornstein in 1908 [3], and only much later proved rigorously
by Kac and coworkers in the 1960s [4]. If these conditions
are satisfied, then one arrives at a physically intuitive pic-
ture in which the average microstructural arrangement of the
particles in a liquid, as characterized by spatial correlation
functions, is largely determined by strongly repulsive short-
range interaction forces, with the long-range attractive forces
exerting only a perturbing influence. The system interacting
via the purely repulsive part of the pair potential provides a
reference or starting point for the description of realistic liquid
models, thus playing a role analogous to that of the harmonic
lattice for the development of theories of solids.

The first step in turning the approach of van der Waals
into a modern statistical mechanical theory of liquids was
taken by Zwanzig [5], In 1954 he showed how an attractive
component to the pair interaction potential (he considered
a square-well attraction) could be treated systematically us-
ing perturbation theory, an approach sometimes referred to
as the “high-temperature expansion” because the expansion
parameter is the attractive part of the potential scaled by
kBT . However, at that time there was no adequate theory of
the repulsive reference system, so the method found little
immediate application. A key step was the development of

an acceptably accurate and, importantly, analytically tractable
theory of the hard-sphere system, the Percus-Yevick theory
of 1958 [6]. The remarkable analytical solution of this ap-
proximate closure to the Ornstein-Zernike integral equation
provided closed form expressions for both thermodynamic
quantities and pair correlation functions [7–9].

In a seminal pair of papers from 1967, Barker and
Henderson combined the approach of Zwanzig with the
Percus-Yevick results for hard spheres to obtain the first true
microscopic theory of liquids, embedding the ideas of van der
Waals within the framework of statistical mechanics [10,11]
(reviewed in [12]). In addition to providing a correct pertur-
bative treatment of interparticle attractions, they also devised
the first prescription for mapping a softly repulsive refer-
ence system (required to treat, e.g., Lennard-Jones particles)
onto a system of hard spheres with an effective, temperature-
dependent diameter. The theory worked very well for a
variety of model systems, accurately reproducing data for the
thermodynamics and structure obtained from Monte Carlo
simulation. Although there nowadays exist more elaborate ap-
proaches to the thermodynamics, namely, the self-consistent
Ornstein-Zernike approximation of Høye and Stell [13,14]
and the heirarchical reference theory of Reatto and Parola
[15], these “beyond mean-field” approximations are not easy
to implement and only yield significant differences from the
Barker-Henderson theory in the vicinity of the critical point.

All of the aforementioned approaches have focused ex-
clusively on homogeneous bulk states, for which the density
is a constant. The treatment of fluids subject to external
fields is much more difficult. A formal generalization of the
bulk Barker-Henderson theory to inhomogeneous states is
quite straightforward and leads naturally to an elegant density
functional theory (see, e.g., [16–18]). However, the imple-
mentation of this generalization necessitates calculation of
inhomogeneous pair correlation functions and has thus never
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been seriously investigated. Although a number of simplified
theories have been proposed [19–24] they all rely on the
dubious assumption that the inhomogeneous pair correlations
of the reference system, which contain a great deal of sub-
tle structural information, can be approximated by bulk pair
correlation functions evaluated at an effective density. These
empirical approaches have generally been used to study the
free interface (a convenient test case for which the density
variation is smooth) but fail completely for strongly inho-
mogeneous systems. Consequently, a quantitatively reliable
theory for inhomogeneous fluids with attractive interactions
is still lacking.

The established workhorse of the density functional liter-
ature is a simplified mean-field approach in which the pair
correlations of the reference system are treated in a crude ap-
proximation [25]. This standard mean-field theory has proved
very useful for exploring the rich phenomenology of inho-
mogeneous fluids, is easy to implement, and does not require
any reference to bulk states. Nevertheless, the standard theory
remains unsatisfactory for two reasons: First, the predictions
are not quantitative, which makes difficult a detailed com-
parison of theoretical predictions with data from experiment
or simulation; effective parameters have to be chosen if data
fitting is to be attempted. Second, it is possible that some of
the phenomena predicted by the standard theory, such as lay-
ering transitions at substrates or other subtle packing effects at
interfaces, could change qualitatively by incorporating a more
correct treatment of internal correlations.

In this paper we develop an accurate density functional
approximation for nonuniform fluids with attractive interpar-
ticle interactions: the true inhomogeneous generalization of
the Barker-Henderson theory. The paper will be structured as
follows: In Sec. II we will develop the theory, starting with the
general equations for an arbitrary external field and then for
the special cases of spherical and planar symmetry. In Sec. III
we will focus on the hard-core Yukawa model and present
numerical results for the density about a fixed test particle,
between two confining walls and at the free interface. Finally,
in Sec. IV we will discuss the significance of our findings and
provide an outlook for future work.

II. THEORY

A. Classical density functional theory

The density functional theory (DFT) provides an exact
framework for the study of classical many-body systems un-
der the influence of external fields [17,18]. The central object
of this approach is the grand potential functional

�[ρ] = F id[ρ] + F exc[ρ] −
∫

dr(μ − Vext(r))ρ(r), (1)

where μ is the chemical potential, Vext(r) is the external
potential, ρ(r) is the one-body ensemble averaged density,
and the square brackets indicate a functional dependence. The
Helmholtz free energy of the ideal gas is given by

F id[ρ] = kBT
∫

dr ρ(r){ln[ρ(r)] − 1}, (2)

where kB is the Boltzmann constant, T is the temperature,
and we have set the thermal wavelength equal to unity. The

excess Helmholtz free energy F exc[ρ] encodes the interparti-
cle interactions and usually has to be approximated. The grand
potential satisfies the variational condition

δ�[ρ]

δρ(r)
= 0, (3)

which generates a Euler-Lagrange equation for the equilib-
rium one-body density.

B. Exact free energy

Although the excess free energy is not known in general,
approximations can be facilitated by reexpressing it in terms
of the two-body density ρ (2)(r1, r2). This can be achieved by
starting with the statistical mechanical result [16–18]

δF

δφ(r12)
= 1

2
ρ (2)(r1, r2), (4)

where φ(r12) ≡ φ(|r1 − r2|) is the full interaction potential
and F = F id + F exc, and then formally integrating along a
path in the function space of pair potentials. This opera-
tion, the inverse of functional differentiation, has been termed
“functional line integration” [26] (see Appendix A). Applica-
tion of this method to (4) yields

F [ρ] = Fref [ρ] + 1

2

∫ 1

0
dα

∫
dr1

∫
dr2 �φ(r12)ρ (2)

α (r1, r2),

(5)

where we have split the full interaction potential into a sum of
two terms φα = φref + α�φ, where α is a “charging” parame-
ter. If we define the difference �φ = φ − φref , then increasing
α from zero to unity enables us to go continuously from a
reference system, characterized by interaction potential φref ,
to the full system of interest. The first term on the right-hand
side of (5) is the Helmholtz free energy functional of the
reference system (including the ideal gas contribution) and
ρ (2)

α is the pair density of a system interacting via pair potential
φα .

C. Perturbation approximation

Equation (5) enables a clear mathematical expression of
van der Waals’ physical idea that liquid microstructure is dom-
inated by interparticle repulsion. If we choose the repulsive
part of the potential as a reference in (5) and assume that the
pair density does not change from that of the reference as α is
turned on, then we arrive at a perturbation theory for the free
energy of the fully interacting system. This is a mean-field
approximation because a pair density constructed using only
the repulsive part of the interaction does not contain informa-
tion about critical fluctuations. We will henceforth employ the
hard-sphere system as our reference and split the full inter-
action potential into hard-sphere and attractive contributions
φ = φhs + φatt. Making the mean-field approximation leads
directly to the Barker-Henderson (BH) functional

FBH[ρ] = Fhs[ρ] + 1

2

∫
dr1

∫
dr2ρ(r1)ρ(r2)φatt(r12)

× (1 + hhs(r1, r2; [ρ])), (6)

042140-2



MEAN-FIELD THEORY OF INHOMOGENEOUS FLUIDS PHYSICAL REVIEW E 102, 042140 (2020)

where the first term is the free energy functional of the hard-
sphere system (including the ideal gas contribution) and we
have introduced the total correlation function

hhs(r1, r2, [ρ]) = ρ
(2)
hs (r1, r2; [ρ])

ρ(r1)ρ(r2)
− 1. (7)

The notation here has been chosen to make clear that for an
inhomogeneous system the pair correlations are functionals
of the one-body density. The density field thus enters (6) both
explicitly, via the quadratic density product in the integral, and
implicitly, via the functional dependence of the reference free
energy and reference total correlation function.

The primary difficulty in implementing (6) is to find an
accurate and tractable way to calculate hhs(r1, r2; [ρ]). The
need to confront this issue, which is essentially the main point
of this work, can of course be avoided by simply setting
the total correlation function equal to zero. This leads to the
simplified expression

FSMF[ρ] = Fhs[ρ] + 1

2

∫
dr1

∫
dr2ρ(r1)ρ(r2)φatt(r12), (8)

the standard mean-field (SMF) functional [27]. This approx-
imation has been used to investigate a variety of interfacial
phenomena and, provided the reference hard-sphere func-
tional is sufficiently accurate, does capture essential physical
features [17,18]. However, given the simplicity of the approx-
imation, it is not surprising that the thermodynamic quantities
obtained from the bulk limit of the SMF functional are in poor
quantitative agreement with simulation data. There is also
ambiguity regarding the definition of the attractive potential
inside the region of hard-core repulsion φatt(r12 < 1), a fea-
ture which has been exploited, perhaps somewhat artificially,
to introduce additional optimizing variational parameters [28].

D. Bulk limit

The bulk limit of the BH functional (6) yields the following
free energy density [10–12]:

fBH = fhs + 1

2
ρ2

b

∫
drφatt(r)

(
1 + hb

hs(r)
)
, (9)

where ρb is the bulk density and hb
hs is the bulk total correlation

function. Equation (9) is the bulk free energy of the first-order
BH perturbation theory with a hard-sphere reference system.
In their original work, Barker and Henderson also addressed
softly repulsive reference systems by defining an effective
sphere diameter and, moreover, suggested approximate forms
for the second-order term in the expansion [12,16].

If the system phase separates, then the coexisting densities
can be determined by requiring equality of the pressure and
chemical potential in the two phases. The pressure is given by

PBH = Pid + Phs + ρ2
b

2

∫
drφatt(r)

×
(

1 + hb
hs(r) + ρb

∂hb
hs(r)

∂ρb

)
, (10)

where Pid = kBT ρb is the ideal contribution and Phs is the
excess pressure of the hard-sphere reference system. The van
der Waals form for the equation of state is recovered only

if the density dependence of hb
hs(r) is neglected, as would

be the case for the standard mean-field theory. The chemical
potential can be split into several terms μBH = μid + μhs +
μSMF + μcorr + μder, where the ideal gas contribution is given
by μid = kBT ln(ρb) and those involving the attractive part of
the interaction are given by

μSMF =
∫

drρbφ
att(r), (11)

μcorr =
∫

drρbφ
att(r)hb

hs(r), (12)

μder =
∫

dr
ρ2

bφatt(r)

2

∂hb
hs(r)

∂ρb
. (13)

Within the well-known Percus-Yevick (PY) approximation
[6,16] there exist analytic expressions for both hb

hs and its
density derivative [9,29] which facilitate accurate evaluation
of the integrals in (12) and (13). The same PY approxima-
tion yields (via the compressibility route [16]) the following
expressions for the hard-sphere excess pressure:

βPhs = ρb

(
1 + η2 + η3

(1 − η)3
− 1

)
(14)

and the hard-sphere excess chemical potential

βμhs = − ln(1 − η) + η

(1 − η)
+ 6η

(
1 − 3

4η
)

(1 − η)2

+ 6η2
(
1 − 1

2η
)

(1 − η)3
,

where β = (kBT )−1 and η = πρbd3/6 is the packing fraction
of hard spheres with diameter d .

E. Euler-Lagrange equation

We next consider implementation of the variational condi-
tion (3) specifically for the case of the BH functional. For the
reference free energy we choose to employ the geometrically
based Rosenfeld functional for hard spheres [30]. Although
several modified and improved variations of this functional
have been proposed [31], the original Rosenfeld formulation
is sufficient to treat the situations to be considered in this work
(see Appendix B for details). Substituting Eqs. (1), (2), and (6)
into Eq. (3) generates the following Euler-Lagrange equation:

ρ(r) = e−β(V ext (r)−μ−kBT c(1)(r)), (16)

where we have set the thermal wavelength equal to unity.
c(1) is the one-body direct correlation function, defined by the
functional derivative

c(1)(r) = −δβF exc
BH

δρ(r)
. (17)

The quantity −kBT c(1) can be interpreted as an effective
external field arising from interparticle interactions. Using
(6) to evaluate the derivative (16) generates four distinct
contributions

c(1) = c(1)
hs + c(1)

SMF + c(1)
corr + c(1)

der, (18)
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where c(1)
hs is the one-body direct correlation function of

hard spheres calculated from the Rosenfeld functional (see
Appendix B). The remaining terms are given by

c(1)
SMF(r1) = −

∫
dr2ρ(r2)βφatt(r12), (19)

c(1)
corr(r1) = −

∫
dr2ρ(r2)βφatt(r12)hhs(r1, r2), (20)

c(1)
der(r1) = −

∫
dr2

∫
dr3

ρ(r2)ρ(r3)βφatt(r23)

2

δhhs(r2, r3)

δρ(r1)
.

(21)

In order to solve the Euler-Lagrange equation (15) we thus re-
quire a method to calculate both the two-body total correlation
function appearing in (19) and the functional derivative ap-
pearing in (20), an intimidating three-body function. Although
obtaining the latter quantity as a functional of the density is
a difficult task, we will show that this is feasible in situa-
tions where the external field has either planar or spherical
symmetry.

F. Ornstein-Zernike equation

The Ornstein-Zernike (OZ) equation for inhomogeneous
fluids is an integral equation relating, for a given density
profile, the two-body direct correlation function chs to the total
correlation function

hhs(r1, r2) = chs(r1, r2) +
∫

dr3hhs(r1, r3)ρ(r3)chs(r3, r2).

(22)

Although this equation applies for arbitrary interaction poten-
tial, we will apply it only to the hard-sphere reference system,
hence the subscript. The external potential does not appear
explicitly in this equation, but implicitly via its influence on
the density. Equation (21) can be regarded as the two-body
analog of Eq. (15) and serves to define chs in terms of the
density and total correlation function. Alternatively, chs can
be identified as the (negative) second functional derivative of
the excess free energy

chs(r1, r2) = − δ2βF exc
hs

δρ(r1)δρ(r2)
. (23)

There are thus two distinct paths by which the OZ equation
can be used to obtain the total correlation function: (i) Given
an approximation to the excess free energy functional, eval-
uate the second derivative (22) for the density of interest,
substitute into (21), and then solve for hhs. (ii) Supplement
(21) by a second “closure” relation between chs and hhs, then
solve self-consistently the two coupled equations. In the un-
likely case that both the excess free energy and the closure
relation are known exactly, then the two paths are equivalent.

We are now faced with a choice of how best to calcu-
late the total correlation function of the reference system,
given that we are forced to use an approximate excess free
energy functional when treating three-dimensional systems.
The Rosenfeld functional is known to generate in most cases
an accurate one-body direct correlation, as well as reliable
bulk pair correlations when input to (22) followed by taking
the homogeneous limit (the so-called OZ route). However,

the accuracy of the inhomogeneous pair correlations obtained
from two functional derivatives of the Rosenfeld functional,
particularly in situations for which the density is strongly
varying, is less certain and remains to be systematically in-
vestigated. Taking path (i), described above, therefore risks
conflation of error in the pair correlations of the reference
system with the error inherent in a perturbative BH treatment
of the attractive interaction. To make a clean assessment of the
latter we are obliged to treat the reference system as accurately
as possible and for this reason we will follow path (ii) to the
pair correlations.

A closure of the OZ equation which is known to be ac-
curate for hard spheres is the inhomogeneous Percus-Yevick
approximation [32,33]

hhs(r1, r2) = −1 for |r1 − r2| < d,

chs(r1, r2) = 0 for |r1 − r2| > d. (24)

The first of these relations, the exact “core condition,” ex-
presses the impossibility of hard-sphere overlap, whereas the
condition on chs is an approximation. While the PY theory has
long been employed for studies of bulk fluids [16], its inhomo-
geneous generalization is more rarely encountered. Numerical
solution of Eq. (21) for hard spheres in the PY approximation
can be facilitated using the simple rearrangement of the OZ
equation outlined in Appendix C.

G. Three-body correlation function

The most demanding task when implementing the Euler-
Lagrange equation (15) is the evaluation of the one-body
direct correlation function contribution given by (20). This
requires the functional derivative of the total correlation func-
tion with respect to the density. The first step in evaluating this
quantity is to realize that the self-consistent solution of the
coupled equations (21) and (23) generates both the total and
the two-body direct correlations as (implicit) functionals of
the density. Given this observation, the most straightforward
way to calculate the functional derivative is to employ the
physicist’s definition

δhhs(r1, r2; [ρ])

δρ(r)
= lim

ε→0

hhs(r1, r2; [ρr]) − hhs(r1, r2; [ρ])

ε

≡ lim
ε→0

hεr
hs (r1, r2) − hhs(r1, r2)

ε
. (25)

In the first equality we make explicit the functional depen-
dence of the total correlation function on the density. If we
choose the label r3 as a dummy variable, then ρr(r3) =
ρ(r3) + εδ(r3 − r) is the density as a function of r3 subject
to a local perturbation of amplitude ε at the point r. The
functional hhs(r1, r2; [ρr]) will then in general depend upon
the three vector coordinates r1, r2, and r, where the latter can
be viewed as an external parameter. In the second equality of
(24) we modify notation for later convenience, hεr

hs (r1, r2) be-
ing the hard-sphere total correlation function corresponding to
the density perturbed at the point r. Using the definition (24)
conveniently allows us to rewrite the derivative contribution
to the one-body direct correlation function in the following
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simplified form:

c(1)
der(r1) = −

∫
dr2ρ(r2)K (r1, r2), (26)

where the kernel is given by

K (r1, r2)

= lim
ε→0

1

2ε

(
c(1)

corr(r2) +
∫

dr3ρ(r3)βφatt(r23)hεr1
hs (r2, r3)

)
.

(27)

The benefit of this rewriting is that the second term has the
same structure (up to a parametric dependence on the coordi-
nate r1) as Eq. (19) and so similar computer code can be used
to evaluate both c(1)

corr and c(1)
der. The final step is the determina-

tion of the perturbed total correlation function. Recalling that
Eqs. (21) and (23) provide a functional map from the density
to the pair correlations, we substitute the perturbed density ρr
into the OZ relation (21). This yields an integral equation for
the perturbed total and direct correlation functions

hεr
hs (r1, r2) = cεr

hs (r1, r2) + εhεr
hs (r1, r)cεr

hs (r, r2)

+
∫

dr3hεr
hs (r1, r3)ρ(r3)cεr

hs (r3, r2). (28)

This differs from the original OZ equation (21) due to the
second term. Equation (27) is closed by applying the PY
conditions (23) to hεr

hs and cεr
hs and iterating to convergence for

fixed ε and r.

H. Spherical geometry

Now that we have the relevant equations in their general
form, we will consider the special case where the density
has spherical symmetry. This enables the integrals occurring
in (21) and (27) to be reduced exactly to one dimension,
greatly facilitating their numerical evaluation. The appropriate
method is expansion in Legendre polynomials. A spherically
inhomogeneous two-body function requires as input three
independent variables: two radial distances and the angle be-
tween them. For example, the total correlation function

hhs(r1, r2) → hsp
hs(r1, r2, x12), (29)

where x12 = cos(θ12). The Legendre transform of a spheri-
cally inhomogeneous two-body function is given by

Hn(r1, r2) = 2n + 1

2

∫ +1

−1
dx12 hsp

hs(r1, r2, x12)Pn(x12), (30)

where Pn(x) is a Legendre polynomial. Numerical evaluation
of (29) requires a discretization scheme capable of handling
the highly oscillatory structure of the higher-order Legendre
polynomials. We thus use the Gauss-Legendre quadrature pro-
posed by Attard [33]. The back-transform is given by

hsp
hs(r1, r2, x12) =

∞∑
n=0

Hn(r1, r2)Pn(x12). (31)

In practice, the sum can be truncated at a finite number of
terms, depending on the level of accuracy required. Taking

the Legendre transform of the OZ equation (21) reduces the
three-dimensional integral to a radial integral

Hn(r1, r2) = Cn(r1, r2) + 4π

2n + 1

∫ ∞

0
dr3r2

3Hn(r1, r3)ρ(r3)

× Cn(r3, r2). (32)

Determination of the pair correlations hsp
hs and csp

hs proceeds
by iterating between (31) and the PY closure (23). For hard
spheres, special care has to be taken to accurately trans-
form the discontinuous pair correlations. An accurate method
to deal with this problem is described in the Appendix of
Ref. [33]. Once hsp

hs has been determined we can evaluate the
correlation contribution

c(1)
corr(r1) = −4π

∫ ∞

0
dr2r2

2ρ(r2)U (r1, r2), (33)

where U is the n = 0 Legendre transform of the product of
the reduced interaction potential with the total correlation
function

U (r1, r2) = 1

2

∫ +1

−1
dx12 βφatt(r12)hsp

hs(r1, r2, x12), (34)

and we recall that r2
12 = r2

1 + r2
2 − 2r1r2x12 .

Evaluation of the remaining contribution to the one-body
direct correlation function (20) requires careful handling of
functional derivatives in the spherical coordinate system. Con-
sideration of the dimensionality and radial scaling of the
functional derivative leads to

δhhs(r1, r2)

δρ(r)
= 1

4πr2

δhsp
hs(r1, r2, x12)

δρ(r)
. (35)

If we again employ the physicist’s finite difference definition
then we obtain

δhhs(r1, r2)

δρ(r)
= lim

ε→0

hsp,εr
hs (r1, r2, x12) − hsp

hs(r1, r2, x12)

4πr2ε
, (36)

where hsp,εr
hs is the total correlation function corresponding to

the perturbed density ρr (r3) = ρ(r3) + εδ(r3 − r). Equation
(25) thus becomes

c(1)
der(r1) = −

∫ ∞

0
dr2

( r2

r1

)2
ρ(r2)Ksp(r1, r2), (37)

where the kernel is given by

Ksp(r1, r2)

= lim
ε→0

1

2ε

(
c(1)

corr(r2) + 4π

∫ ∞

0
dr3r2

3ρ(r3)U εr1
sp (r2, r3)

)
,

(38)

and U εr1
sp is given by

U εr1
sp (r2, r3) = 1

2

∫ +1

−1
dx23 βφatt(r23)hsp,εr1

hs (r2, r3, x23).

(39)

It remains to find an equation to determine hsp,εr
hs . Substitution

of the perturbed density ρr into the transformed equation (31)
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yields

H εr
n (r1, r2) = Cεr

n (r1, r2) + 4πr2ε

2n + 1
H εr

n (r1, r)Cεr
n (r, r2)

+ 4π

2n + 1

∫ ∞

0
dr3r2

3H εr
n (r1, r3)ρ(r3)Cεr

n (r3, r2),

(40)

where the Legendre transformed pair correlation functions
have a parametric dependence on the amplitude and position
of the density perturbation. Equation (39) has to be solved
together with the PY closure (23) for all required values of
the coordinate r.

Some points are important for an efficient computational
implementation: (i) The fact that r enters here as an external
parameter allows the solution of the coupled equations (23)
and (39) to be performed in parallel for different values of
r. (ii) Once H εr

n (r1, r2) is known for a given value of the
external coordinate r we can use it to evaluate c(1)

der and then
discard H εr

n (r1, r2). The storage of a large array can thus be
avoided. (iii) The symmetry of the pair correlations can be
exploited, for example, the invariance of the total correlation
function with respect to exchange of arguments implies that
H εr

n (r1, r2) = H εr
n (r2, r1).

I. Planar geometry

The second special case of interest is that of planar sym-
metry, for which the density only varies as a function of a
single Cartesian coordinate (we choose the z axis). The inho-
mogeneous pair correlations exhibit cylindrical symmetry and
depend upon two coordinates and a cylindrical radial distance
separating them

hhs(r1, r2) → hpl
hs(z1, z2, r̄12). (41)

The direct separation r12 between two points in space, r1

and r2, is related to the cylindrical separation r̄12 according
to r2

12 = (z1 − z2)2 + r̄2
12. The appropriate method to apply in

this case is the Hankel transform

Hk (z1, z2) = 2π

∫ ∞

0
dr̄12r̄12J0(kr̄12)hpl

hs(z1, z2, r̄12), (42)

which is simply a two-dimensional Fourier transform in the
plane perpendicular to the z axis. J0 is the zeroth-order Bessel
function of the first kind. The inverse Hankel transformation
is given by

hpl
hs(z1, z2, r̄12) = 1

2π

∫ ∞

0
dkkJ0(kr̄12)Hk (z1, z2). (43)

For our numerical calculations we employ the efficient and
accurate discretization scheme of Lado [35]. Application of
the Hankel transform to the OZ equation (21) leads to the
simplified form

Hk (z1, z2) = Ck (z1, z2) +
∫ ∞

−∞
dz3Hk (z1, z3)ρ(z3)Ck (z3, z2),

(44)

where Ck is the Hankel transform of the direct correlation
function. Unlike the case of spherical geometry, the correct
way to treat the discontinuous pair correlation functions has

not previously been documented and we thus direct the reader
to Appendix C for details. The correlation contribution to the
one-body direct correlation function is given by

c(1)
corr(z1) = −

∫ ∞

−∞
dz2ρ(z2)W (z1, z2), (45)

where W is the zero wave vector Hankel transform of the
product of the reduced interaction potential with the total
correlation function

W (z1, z2) = 2π

∫ ∞

0
dr̄12r̄12βφatt(r12)hpl

hs(z1, z2, r̄12). (46)

The functional derivative required for evaluation of (20) can
be reexpressed in terms of a derivative with respect to the one-
dimensional density profile

δhhs(r1, r2)

δρ(r)
= 1

A

δhpl
hs(z1, z2, r̄12)

δρ(z)
, (47)

where A is an (arbitrary) area perpendicular to the z axis
which will cancel out in subsequent calculations. Using finite
differences the derivative becomes

δhhs(r1, r2)

δρ(r)
= lim

ε→0

hpl,εz
hs (z1, z2, r̄12) − hpl

hs(z1, z2, r̄12)

Aε
, (48)

where hpl,εz
hs is the total correlation function corresponding to

the perturbed density ρz(z3) = ρ(z3) + εδ(z3 − z). Equation
(25) thus becomes

c(1)
der(z1) = −

∫ ∞

−∞
dz2ρ(z2)Kpl(z1, z2), (49)

where the kernel is given by

Kpl(z1, z2) = lim
ε→0

1

2ε

(
c(1)

corr(z2) +
∫ ∞

−∞
dz3ρ(z3)U εz1

pl (z2, z3)

)
.

(50)

The first term in this expression is known already from
Eq. (44) and U εz1

pl is given by

U εz1
pl (z2, z3) = 2π

∫ ∞

0
dr̄23r̄23βφatt(r23)hpl,εz1

hs (z2, z3, r̄23).

(51)

The integral equation required to determine hpl,εz1
hs is obtained

by substituting the perturbed density ρz into the transformed
OZ equation (43). This yields the following expression:

Hεz
k (z1, z2) = Cεz

k (z1, z2) + εHεz
k (z1, z)Cεz

k (z, z2)

+
∫ ∞

−∞
dz3Hεz

k (z1, z3)ρ(z3)Cεz
k (z3, z2). (52)

Equation (51) is to be solved together with the PY closure (23)
for all required values of the parameter z.

J. Numerical strategy and simulation details

Our general numerical scheme for determining the density
profile proceeds in the following way:

(i) Select an initial guess for the density and evaluate all
contributions to the one-body direct correlation function [see
Eq. (17)]. Evaluation of c(1)

corr(r) and c(1)
der(r) requires solution
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of the relevant inhomogeneous integral equations [Eqs. (31)
and (39) in spherical geometry, Eqs. (43) and (51) in planar
geometry], which we perform using a simple Picard iteration
with Broyles mixing [16]. When possible, check the bulk
limits of the various contributions using (11)–(13).

(ii) Keeping the functions c(1)
corr(r) and c(1)

der(r) fixed we
iterate the Euler-Lagrange equation (15) to convergence to
obtain a new estimate for the density. Here we again employ
simple Picard iteration.

(iii) Update c(1)
corr(r) and go back to step (ii). Keep iterating

between steps (ii) and (iii) until both the density and c(1)
corr(r)

have converged. During this process, the function c(1)
der(r) is

not modified.
(iv) Update c(1)

der(r) and return to step (ii). As this is the
most computationally expensive step we aim to keep the num-
ber of these updates to a minimum (at most three to four
iterations were required for the situations considered in this
work). The process is terminated when both the direct corre-
lation function contributions and the density have converged.

This protocol provides reliable and stable convergence in
all cases studied and avoids unnecessary function evaluations.
However, we realize that this is only one of many possible
schemes and may not be the most efficient strategy. It is also
likely that computational time could be reduced using more
sophisticated methods to solve the integral equations (e.g.,
conjugate gradient), but we have chosen to prioritize accuracy
and stability over speed.

The simulation data were generated using standard meth-
ods [34]. To calculate the radial distribution function, we
employed canonical Monte Carlo (MC), with 432 particles
and periodic boundary conditions. The potential was truncated
at r = 3d (not shifted). To calculate the density profiles in slit
confinement, we used grand canonical Monte Carlo simula-
tions (GCMC) with periodic boundary conditions in the x and
y directions. The length of the box in these directions was 25d
and the potential was truncated at r = 5d (not shifted). We
have checked the robustness of our predictions with respect to
these choices of numerical parameters.

III. RESULTS

For our numerical calculations we will consider the hard-
core Yukawa (HCY) interaction potential

φatt(r12) =
{ ∞, r12 < 1

−κ e−α(r12−1)

r12
, r12 � 1

(53)

where κ and α are positive constants. Here and in the fol-
lowing, all lengths are measured in units of a hard-sphere
diameter. For the remainder of this work we will focus on the
well-studied special case α = 1.8, which is similar in range to
the standard Lennard-Jones potential.

A. Bulk phase diagram

In Fig. 1 we show the bulk phase boundary (binodal) from
the SMF and BH theories alongside accurate MC simulation
data taken from Ref. [14]. The simulation critical point is
estimated to be at κcrit ≈ 0.84 and ρcrit ≈ 0.3. The BH theory
improves significantly upon the predictions of the SMF theory
and accurately captures the values of the coexisting densities

0 0.2 0.4 0.6 0.8ρb

0.8

1

1.2

1.4

κ

FIG. 1. Phase diagram for α = 1.8. Standard mean-field theory
(broken red like), BH theory (full black line), and MC simulation
data taken from Ref. [14]. The triangle indicates the state point at
which we show the radial distribution in Fig. 2 and the arrow indi-
cates the path taken when calculating the density profiles in Fig. 5.

as κ is increased toward the triple point, which we estimate to
be at a density ρtr ≈ 0.9 [36]. This trend is consistent with pre-
vious studies for Lennard-Jones and square-well fluids [12]. In
the critical region we observe the expected discrepancies aris-
ing from the mean-field approximation; we can thus anticipate
that inhomogeneous BH calculations will be the least reliable
at state points close to the bulk critical point.

B. Test particle

As a first test of the BH functional we will focus on a
situation where the external field is a fluid particle fixed at
the origin:

Vext(r) =
{ ∞, r < 1

−κ e−α(r−1)

r , r � 1.
(54)

The significance of this choice is that the inhomogeneous
density about a test particle is related to the bulk radial
distribution function according to the Percus identity g(r) =
ρ(r)/ρb [18] and thus provides direct access to bulk ther-
modynamic quantities. Numerical minimization of the BH
functional was performed on a discrete spatial grid with spac-
ing �r = 0.05 and using 180 Legendre polynomials. We have
checked carefully the robustness of the converged density pro-
files to variations in the choice of these numerical parameters.

In Fig. 2 we compare g(r) calculated using the SMF and
the BH theories with MC data for the state point at κ = 1.111
and ρb = 0.8 (indicated by the triangle in Fig. 1). We find
that the SMF significantly overestimates the structure in g(r)
compared to the simulation. The first (contact) peak is around
16% too high and the amplitude of subsequent oscillations
is too large. These features are consistent with the findings
of Archer et al. [25], who assessed the performance of the
SMF in one-dimensional test particle calculations using an
exactly solvable model as a benchmark. The BH theory pro-
vides an accurate description of the simulation data, showing
only small errors in the contact value and depth of the first
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FIG. 2. Test particle. Comparison of the radial distribution func-
tion calculated using the test particle method with simulation data
at κ = 1.111 and ρb = 0.8 (marked with a triangle in Fig. 1). Green
circles: MC simulation. Full black line: BH functional. Broken red
line: SMF theory. Dashed blue line: The density of pure hard spheres
(κ = 0, ρb = 0.8) calculated using the Rosenfeld functional. Insets
(a) and (b) focus on the second peak and contact value, respectively.

minimum. It is interesting to note that, despite the large value
of κ , the BH g(r) is very similar to that of pure hard spheres
(also shown in Fig. 2). This observation validates a posteriori
the van der Waals picture that repulsive interactions dictate the
microstructure and is consistent with the perturbation approx-
imation at the heart of BH theory.

On the level of the Euler-Lagrange equation (15) the differ-
ence between the SMF and the BH theories is due to the direct
correlation contributions c(1)

corr and c(1)
der, which we show in

Fig. 3. Given the structural overestimation of the SMF theory,
these self-consistently determined functions apparently serve
to counteract the term c(1)

SMF and thus yield a radial distribu-
tion function very similar to that of hard spheres. Although
the oscillations in c(1)

corr and c(1)
der are not in phase with each

other, the peaks and troughs act to suppress the exaggerated
oscillations occurring in the SMF theory. We also observe that
both contributions are of comparable magnitude; neglecting
c(1)

der, which would be highly desirable from a computational
standpoint, is therefore not a viable option.

C. Planar slit

We next consider the density of the HCY fluid confined
between two hard walls separated by a distance L and oriented
perpendicular to the z axis. The external potential is given by

Vext(z) =
{

0, 1
2 < z < L − 1

2

∞, otherwise
(55)

where we recall that the unit of length is taken to be one
particle diameter. Numerical results will be presented for the
case L = 10. The BH functional was minimized on a grid
with spacing �z = 0.05. When employing the Lado discrete
Hankel transform (see Ref. [35] for details) it is necessary to
specify a cutoff length R in the plane parallel to the interface
and a maximum number of radial grid points located at the ze-
ros of the Bessel function J0. We found that using R = 14 and

0.8
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g(
r)
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(b)

(c)

SMF BH

FIG. 3. Test particle. The companion to Fig. 2 showing the in-
dividual contributions to the one-body direct correlation function
appearing in Eq. (15). Full black lines: BH functional. Broken red
line: SMF theory. The blue lines are a guide for the eye to show
how the maxima and minima of these functions match up with the
oscillations in the radial distribution function.

200 Bessel zeros provided very accurate results. We carefully
checked that the converged density profiles were robust with
respect to changes in the numerical parameters.

In Fig. 4 we show GCMC data together with the density
obtained from the SMF and BH theories, respectively. The
theoretical results indicated by broken lines and the simulation
data points were calculated at κ = 0.5 and chemical potential

0.3

0.35

0.4

0.45
ρ(z)

1 2 3 4 5 6 7 8 z
0.3

0.35

0.4
ρ(z)

SMF (a)

BH (b)

FIG. 4. Planar slit. The density between two hard walls located
at z = 0 and 10 for κ = 0.5. Green circles: GCMC data at μ = −1.
DFT profiles calculated at μ = −1 are given by the broken blue
line (BH functional) and the broken red line (SMF functional). DFT
profiles calculated by adjusting μ such that the average number of
particles in the system matches that of simulation are given by the
full black line (BH functional) and the full red line (SMF functional).
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ρ(z)

Increasing μ

FIG. 5. Planar slit. The density between two hard walls located
at z = 0 and 10 for κ = 0.75. Green circles: GCMC data at chemical
potentials μ = −2.50, −2.25, −2.00, −1.50, and −1.00 (moving
along the arrow marked in Fig. 1). Broken blue line: BH functional
at the same chemical potentials as used in the simulation. Full black
line: BH functional profiles calculated by adjusting μ such that the
average number of particles in the system matches that of simulation.

μ = −1. As we have a confined system, we now specify the
chemical potential rather than a bulk density, as the latter
is no longer well defined. The BH functional captures the
simulation data very well, only slightly underestimating the
density at the center of the gap. In contrast, the SMF func-
tional underestimates this value by around 26% and provides
a generally poor description of the simulation data.

The situation discussed above, for which calculations are
performed at the same chemical potential as the GCMC simu-
lations, is the correct way to test the quality of an approximate
DFT; first-principles predictions are made and then tested.
An important factor in determining the form of the density
profile is the proximity of the chosen state point to bulk phase
coexistence. However, if one wishes to use a given DFT ap-
proximation to fit existing simulation (or indeed experimental)
data, then better results can be obtained by treating μ as an
optimization parameter. The chemical potential can be tuned
such that the average number of particles in the system (i.e.,
the integral of the density profile) from theory matches that
from simulation. The full curves shown in Fig. 4 are the result
of such a fitting procedure. For the BH functional the chemical
potential need only be tuned away from the simulation value
(μ = −1) by around 1% to match the average particle number,
resulting in a very close fit. In contrast, the SMF theory re-
quires much more substantial adjustment of μ and, even then,
the resulting fit is not satisfactory. We see here, consistent with
Fig. 2, that the SMF theory tends to overestimate the structure
of the density profile, particularly in regions close to a strongly
repulsive boundary.

In Fig. 5 we show density profiles calculated at κ = 0.75
for five different values of the chemical potential. As a rule
of thumb, if we consider the density at the center of the gap
to determine an effective bulk density, then tuning μ would
correspond to following the path indicated in Fig. 1. For each
of the five state points we show both the density profiles

calculated at the same chemical potential as used in simulation
(broken lines) and those calculated using the fitting procedure
described above (full lines). We omit to show results from the
SMF functional because these lie so far from the simulation
data that they would only serve to confuse the figure. For
the states at μ = −1 and −1.5 the BH functional performs
very well. The density generated at the true chemical potential
already gives a good account of the simulation data and only
a very slight tuning of μ is required to create an excellent fit.
This provides further evidence, in addition to the data shown
in Fig. 2, that the fundamental assumption of the BH theory is
accurate for inhomogeneous fluids at high densities.

Deviations start to emerge as μ is reduced to lower values,
reflecting the increasing influence of bulk critical fluctuations.
The profile at μ = −2.25 is the most affected by proximity
to the critical point (located at μBH

crit = −2.47, κBH
crit = 0.79);

the BH theory underestimates the value of the density in the
center of the gap. Nevertheless, for all the considered state
points tuning μ still results in a very good fit to the simulation
data. This suggests that the structural “building blocks” of the
BH functional are sufficient to accurately describe inhomo-
geneous profiles at all thermodynamic state points and that
it is rather the bulk thermodynamics which is insufficiently
accurate in the critical region. It could be speculated that mod-
ifying and tuning the BH functional to have improved bulk
thermodynamics, without increasing the structural complexity
of the theory, could lead to very accurate results. Such an ap-
proach has been successfully applied to the original Rosenfeld
hard-sphere functional to “upgrade” the theory from Percus-
Yevick to Carnahan-Starling thermodynamics, while retaining
the same geometrical weight functions [31].

D. Free interface

As a final application of the BH functional in planar geom-
etry we consider the free interface between coexisting liquid
and gas phases (the densities of which we will denote by ρl

and ρg). The nature of the density profile at the free interface
has been the subject of much conjecture, primarily concerning
the question of whether the profile exhibits either a monotonic
or an oscillatory decay into the bulk. On the gas side of the
profile it is established that the decay is monotonic; it is the
decay into the bulk liquid which remains the subject of debate.

For model fluids with short-ranged interactions it can
be shown that an inhomogeneous density profile ultimately
decays into bulk in the same way as the radial distribu-
tion function of the bulk fluid (see Ref. [37] and references
therein). For the free interface this implies that if g(r) exhibits
damped oscillatory decay at the coexisting state point on the
liquid side of the binodal, then the corresponding liquid-vapor
density profile will decay into the bulk liquid with the same
frequency and decay length. The range of ρl values over which
this oscillatory behavior can occur is determined by the point
at which the binodal intersects the so-called Fisher-Widom
line [a line in the (ρb, κ) plane marking the crossover from
monotonic to asymptotic decay of g(r → ∞)] [38]. One thus
arrives at a picture in which a portion of the liquid side of
the binodal, between the triple point and the Fisher-Widom
intersection point, should in principle be associated with os-
cillatory liquid-vapor profiles.
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FIG. 6. Free interface. Density profiles at the liquid-vapor inter-
face from (a) the SMF functional and (b) the BH functional. As the
two theories have different binodals (see Fig. 1) we compare profiles
with equal values of the coexisting liquid density. (c) Focuses on the
decay of the density into the bulk liquid for the state point closest to
the triple point. The arrows are intended to help the reader better see
which of the oscillations in (a) and (b) are being shown in (c).

An important caveat to the above arguments is that the
theory of asymptotic decay makes no claim regarding the
amplitude of any oscillatory contribution to ρ(z). We can
certainly expect any oscillations at the free interface to have
smaller amplitude than for solid-fluid interfaces (e.g., the pro-
files shown in Fig. 5) due to the influence of lateral capillary
wave fluctuations. Previous DFT investigations have reported
oscillatory profiles for a variety of model interaction poten-
tials [39–41]. However, all of these studies employed the same
SMF functional, raising the obvious question of whether the
rather large amplitude of the observed oscillations is a generic
feature of DFT or an artifact of the SMF approximation. The
fact that this question has not really been addressed is a conse-
quence of both the simplicity with which the SMF functional
can be implemented and the lack of alternative approaches;
in a sense, the term “density functional study” has become
almost synonymous with “standard mean-field study.” For this
reason the BH functional is of special value, providing the
first opportunity to test in some kind of systematic way the
robustness of the SMF predictions.

In Fig. 6 we show liquid-vapor profiles obtained from both
the SMF and the BH functionals for values of κ approaching
the triple point. We refrain from presenting simulation data as
this would require extensive computation beyond the scope of

this work (Ref. [42] gives some insight into the difficulties of
simulating the free interface). As the two theories have quite
different binodals, care is required to ensure a fair comparison
between the SMF and the BH density profiles. If we restrict
our attention to states approaching the triple point (for which
ρl − ρg ≈ ρl), then a reasonable comparison can be achieved
by comparing profiles with equal values of ρl. The SMF
functional predicts the onset of an oscillatory profile as the
triple point is approached, consistent with previous reports
[39–41]. The state point with the highest value of ρl exhibits
well-developed oscillatory decay into the bulk with deviations
[ρ(z) − ρl]/ρl on around the 1% level. The amplitude of these
oscillations rapidly diminishes as the value of κ is reduced
toward the critical point. The corresponding profiles calcu-
lated using the BH functional also show oscillatory decay
as the triple point is approached, however, the amplitude is
strongly reduced with respect to the SMF predictions. This
is consistent with our preceding test particle and planar-
slit calculations, which revealed that the overestimation of
attraction-induced layering structure in the SMF is system-
atically corrected by the BH theory. In addition, at equality
of ρl the interfacial width predicted by the BH approxima-
tion is somewhat larger than that from the SMF functional.
This observation, taken together with the reduced oscillation
amplitude, suggests that the BH theory more accurately incor-
porates the influence of interfacial capillary wave fluctuations
than the SMF theory, as we shall discuss below. For a careful
discussion of the amplitudes and damping of oscillations at
the free interface, we direct the reader to Ref. [43].

The development of a microscopic theory for the free in-
terface has been a subject of renewed interest [44,45]. One
point of progress has been the clarification of the relation-
ship between the van der Waals DFT picture, based on the
density profile, and the capillary wave approach focused on
mesoscopic fluctuations of the liquid surface [46,47]. DFT
calculations for this problem generate one-dimensional den-
sity profiles that are completely independent of the interfacial
area Axy. However, computer simulation studies have shown
that the free interface profile clearly depends on the lateral
size of the simulation box, such that the profile should be con-
sidered as having a parametric dependence ρ(z) → ρ(z; Axy)
[42,47]. A possible resolution of this apparent contradiction
is that an approximate mean-field DFT only incorporates the
influence of capillary-wave fluctuations up to a certain effec-
tive cutoff distance λDFT within the plane of the interface.
This provides the appealing physical picture that mean-field
DFT theories are comparable to finite-size simulations, ex-
cept that within DFT the “box size” is hard wired by the
specific approximation employed. Unfortunately, a precise
statistical mechanical definition of λDFT seems to be lacking at
present.

In the absence of gravity it is well known that mean-
field theory predicts a divergent transverse correlation length
within the interface [18]. The fact that the derivative of the
density profile dρ(z)/dz remains nonvanishing indicates that
the mean-field approximation does not sufficiently incorpo-
rate the feedback of the long-ranged transverse correlations
into the density profile. Our interpretation of the difference
between the SMF and the BH profiles shown in Fig. 6 is thus
that the BH theory provides a better account of the coupling
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between the one- and two-body correlation functions and thus
captures this feedback in a more realistic fashion.

IV. DISCUSSION

In this paper we have developed and implemented a
first-principles DFT for inhomogeneous fluids with attractive
interactions. The theory generalizes the successful BH bulk
theory and generates density profiles in quantitative agree-
ment with simulation data, marking a significant improvement
over the commonly employed SMF functional. Unlike pre-
vious efforts, our approach avoids reference to any bulk
information and is valid for an arbitrary external field. The
lack of an accurate and tractable DFT for treating attractive
interactions has been a long-standing hinderance to theoretical
progress and we hope that our findings will go some way
toward alleviating these difficulties. We have already men-
tioned the alternative theories most directly related to the BH
functional, namely, the SMF and effective density approaches
[19–24]. In the following we would like to discuss some
additional approximation schemes which could be regarded
as rivals to the inhomogeneous BH theory.

A central feature of the DFT formalism is the dual
hierarchy of correlation functions, obtained by functional
differentiation of the free energy [18]. Differentiation with re-
spect to an external (or interaction) potential generates density
correlators, whereas differentiation with respect to the den-
sity generates direct correlation functions. The BH functional
stems from the former way of thinking and is essentially a
functional expansion of the excess free energy in powers of
the attractive contribution to the interaction potential. This
demands that we have a detailed understanding of a given
reference system for any ρ(r), which is indeed the case for
hard spheres. However, the problem can also be approached
using the second hierarchy, by performing a functional Taylor
expansion of the excess free energy in powers of ρ(r) about
a reference density [17,18,48,49]. This requires that for the
given reference density we have complete understanding of
the fully interacting system, which is generally not the case.
For this reason, a bulk density is usually chosen as a refer-
ence (implicitly assuming a weakly nonuniform fluid) and the
Taylor series is truncated at quadratic order, such that only
the bulk pair direct correlation functions are required as input.
Although respectable results can be obtained for systems of
repulsive particles (especially in the case of soft penetrable
particles) the theory is less successful when applied to systems
with an attractive component to the interaction potential. In
particular, an excess free energy with a quadratic dependence
on the density cannot describe two minima and is thus not
capable of describing phase transitions at interfaces [18].

The sum of all terms beyond quadratic order in the density
expansion is known as the “bridge functional” [16,32]. Rosen-
feld has shown that the quadratic functional can be much
improved by replacing the true bridge functional of the fully
interacting system with that of the hard-sphere system (often
referred to as either the “reference functional” or “universal
bridge functional” method) [50]. This approach is somewhat
similar in spirit to our inhomogeneous BH theory, for which
the total correlation function hhs(r1, r2; [ρ]) is assumed “uni-
versal” for any attractive interaction. On the positive side, the

universal bridge functional method can make very accurate
predictions in certain cases and has the convenient feature that
only one-body functions are required [50–53]. However, com-
pared with the BH functional we observe two fundamental
disadvantages of the Bridge functional approach: (i) Despite
resumming higher order terms, the theory is still a density
expansion and thus cannot escape the need to identify a bulk
reference state. This is problematic for confined fluids. (ii)
To yield accurate results, the hard-sphere reference functional
has to be evaluated at some effective hard-sphere diameter.
This introduces a free parameter for which an optimization
criterion must be specified. In our view, the assumption that
hhs(r1, r2; [ρ]) is “universal” constitutes a physically clear
generalization of van der Waals vision of the liquid state,
whereas the universal bridge functional seems to be a more
obscure formal object.

An alternative to the aforementioned DFT approxima-
tions is to attack the pair correlations directly by applying
an inhomogeneous closure to the OZ equation (e.g., hyper-
netted chain) for the full interaction potential [32]. While
integral equation theories can provide accurate results (see
Refs. [33,54,55] for example) they suffer from the following
well-known problems: (i) There exist “no-solution” regions
in thermodynamic parameter space where the theory fails to
converge. In the case of liquid-gas phase separation this region
typically envelopes the critical point and thus prevents both a
proper determination of the binodal and the investigation of
any associated interfacial phenomena. (ii) Thermodynamic in-
consistency. Making an approximation on the level of the pair
correlations, rather than on the level of the free energy, has the
consequence that the density profile is not unique. The three
formally exact routes from the pair correlations to the density
will yield inconsistent results [32]. These failings, which are
ultimately linked to the absence of a generating (free energy)
functional, make inhomogeneous integral equations theories
generally unsuitable for the investigation of interfacial phase
transitions.

Finally, we would like to outline some possibilities for
future work. On the technical side, now that we have estab-
lished the accuracy of the BH functional it would be worth
to invest effort into improving the numerical efficiency of our
algorithms. The bottleneck in our calculations is the iterative
solution of the OZ equation, which requires a constant back
and forth between real and transform (either Legendre or Han-
kel) space. We plan to investigate existing proposals to speed
up these transforms [56] as well as the possibility to generalize
methods developed for solving the OZ equation in bulk to
the inhomogeneous case (see [57] and references therein). An
alternative method to improve numerical efficiency would be
to exploit the analytic expression for chs(r1, r2) generated by
taking two functional derivatives of the Rosenfeld functional
[cf. Eq. (22)].

Regarding future physical investigations, the ability of the
BH functional to describe accurately systems with an attrac-
tive component to the interaction potential could be exploited
to address a variety of topics. Some possibilities are as fol-
lows: (i) To apply the BH functional to a system interacting via
a competing attractive and repulsive interaction [the so-called
short-range attractive and long-range repulsive (SALR) class
of potential] [58,59]. Standard liquid state theories are unable
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to account for the complex phase behavior presented by these
systems and it would therefore be of interest to investigate
the predictions of the BH functional. (ii) There have been
recent advances in obtaining canonical observables (i.e., the
density profile) from grand-canonical DFT; ensemble differ-
ences become important when considering small systems with
few particles [60,61]. Application of this method to realistic
systems with attractive interactions has so far been hindered
by the absence of an accurate grand canonical functional.
The BH functional could thus open up possibilities to study,
e.g., nucleation and clustering in small systems. (iii) Although
technically challenging, it would be interesting to investigate
in detail the inhomogeneous two-body correlations within the
liquid-vapor interface, with a view to shedding light on the
nature of the “intrinsic interface” predicted by mean-field
DFT.

APPENDIX A

Consider the functional derivative of an arbitrary func-
tional H with respect to a scalar function g(r):

δH[g]

δg(r)
. (A1)

The derivative can be reversed to recover H by the following
integration:

H[g] = H[gr] +
∫

dr
∫ g(r)

gr (r)
dg̃(r)

δH[g̃]

δg̃(r)
, (A2)

where gr(r) is a reference function and g̃(r) is a dummy inte-
gration variable. The integration in (A2) is a one-dimensional
integral over the value of g̃ at point r. Provided that the
functional H is unique, the result will be independent of the
chosen path in function space. The simplest choice is then a
linear parametric path

g̃(r) ≡ gα (r) = gr(r) + α[g(r) − gr(r)], (A3)

where the “charging parameter” α varies from zero to unity.
Equation (A2) thus becomes

H[g] = H[gr] +
∫ 1

0
dα

∫
dr�g(r)

δH[gα]

δgα (r)
, (A4)

where �g(r) ≡ g(r) − gr(r). Generalization to the case of
two vector arguments is straightforward:

G[ f ] = G[ fr] +
∫ 1

0
dα

∫
dr

∫
dr′� f (r, r′)

δG[ fα]

δ fα (r, r′)
,

(A5)

where � f (r, r′) ≡ f (r, r′) − fr(r, r′), and we have again as-
sumed a linear integration path.

APPENDIX B

Our perturbative approach employs the hard-sphere refer-
ence free energy functional Fhs = Fid + F exc

hs . Within Rosen-
feld’s original fundamental measures approach the excess
Helmholtz free energy is given by [30]

βF exc
hs [ρ] =

∫
dr1�({nα (r1)}), (B1)

where the reduced free energy density is a function of a set of
weighted densities

� = −n0 ln(1 − n3) + n1n2 − n1 · n2

1 − n3
+ n3

2 − 3n2n2 · n2

24π (1 − n3)2
.

(B2)

The four scalar weighted densities n0 . . . n3 and two vector
weighted densities n1 and n2 are given by

nα (r1) =
∫

dr2ρ(r2)ωα (r1 − r2), (B3)

where the weight functions, characteristic of the geometry of
the hard spheres with a radius R, are given by

ω3(r) = �(R − r),

ω2(r) = δ(R − r),

ω2(r) = r
r
δ(R − r),

(B4)

and ω1(r) = ω2(r)/(4πR), ω0(r) = ω2(r)/(4πR2), and
ω1(r) = ω2(r)/(4πR). The (negative) first functional
derivative of the excess free energy yields the one-body
direct correlation function

c(1)
hs (r1) = −

∑
α

∫
dr2

∂�

∂nα (r2)
ωα (r2 − r1). (B5)

Explicit expressions for c(1)
hs (r1) in both planar and spherical

geometry can be found in Secs. 8.2 and 8.3 of Ref. [31].

APPENDIX C

For the hard-sphere system both hhs(r1, r2) and chs(r1, r2)
are discontinuous when |r1 − r2| = d . If these functions are
directly transformed, then the precise location of the discon-
tinuity becomes uncertain on the order of the numerical grid
spacing. Using diagrammatic analysis it can be shown that the
function

γ (r1, r2) = h(r1, r2) − c(r1, r2) (C1)

is a continuous function for any interaction potential [32].
Using Eq. (C1) to eliminate hhs(r1, r2) from the OZ equation
(21) yields an alternative form

γhs(r1, r2) =
∫

dr3chs(r1, r3)ρ(r3)chs(r3, r2)

+
∫

dr3γhs(r1, r3)ρ(r3)chs(r3, r2), (C2)

for which we only have to deal with one discontinuous
function, namely chs. In spherical geometry a Legendre trans-
formation reduces Eq. (C2) to an equation for the transforms

Gn(r1, r2) = 4π

2n + 1

( ∫ ∞

0
dr3r2

3Cn(r1, r3)ρ(r3)Cn(r3, r2).

+
∫ ∞

0
dr3r2

3Gn(r1, r3)ρ(r3)Cn(r3, r2)

)
, (C3)

where Gn is the Legendre transform of γhs. In planar geom-
etry a Hankel transform of Eq. (C2) generates the following
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simplified form:

Gk (z1, z2) =
∫ ∞

−∞
dz3Ck (z1, z3)ρ(z3)Ck (z3, z2)

+
∫ ∞

−∞
dz3Gk (z1, z3)ρ(z3)Ck (z3, z2), (C4)

where Gk is the Hankel transform of γhs. The general equation
(27) for the perturbed pair correlations as well as the reduced
forms for spherical and planar geometry, Eqs. (39) and (51),
respectively, can also be rewritten in the alternative form by
trivial extension of the above expressions.

Equations (C3) and (C4) both require a discrete integral
transform of the discontinuous pair direct correlation function.
However, the analogous procedure for the Hankel transform
has not been documented. Defining a critical radius Rc =
[d2 − (z1 − z2)2]

1
2 we can at any time in the iterative cycle

use the continuous function γhs to evaluate both the direct
correlation function

chs(z1, z2, Rc) = −1 − γhs(z1, z2, Rc)

= cst(z1, z2), (C5)

and the derivative

∂chs(z1, z2, r̄12)

∂ r̄12

∣∣∣∣
Rc

= −∂γhs(z1, z2, r̄12)

∂ r̄12

∣∣∣∣
Rc

= csl(z1, z2). (C6)

We then use these quantities to define the following linear step
function:

f (z1, z2, r̄) =
{

cst + csl(r̄ − Rc), r̄ < Rc

0, r̄ > Rc
(C7)

which will allow us to remove the unwanted discontinuity.
The analytical Hankel transform of Eq. (C7) is given by

f (k) = cst
2πRc

k
J1(kRc)

− csl

(
π2Rc

k2
(J1(kRc)S0(kRc) − J0(kRc)S1(kRc))

)
,

(C8)

where S0 and S1 are the zeroth- and first-order Struve
functions, respectively. Thus, to numerically Hankel trans-
form chs we perform the following steps: (i) construct the
continuous and smooth function α = chs − f ; (ii) numeri-
cally transform to obtain ᾱ; (iii) add the analytic transform
c̄hs = ᾱ + f̄ . To perform the inverse transform we simply
reverse this procedure: (i) construct ᾱ = c̄hs − f̄ ; (ii) numer-
ically inverse transform to get α; (iii) add the linear step
chs = α + f . Using these techniques the numerical trans-
form is at no point confronted with a discontinuous function.
An analogous treatment of the Legendre transform for the
case of spherical symmetry is described in the Appendix
of Ref. [33].
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