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Lorentz forces induce inhomogeneity and flux in active systems

H. D. Vuijk,1 J. U. Sommer ,1,2 H. Merlitz ,1 J. M. Brader,3 and A. Sharma 1,2,*

1Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Deutschland
2Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Deutschland

3Department de Physique, Université de Fribourg, CH-1700 Fribourg, Suisse

(Received 8 August 2019; accepted 23 January 2020; published 16 March 2020)

We consider the dynamics of a charged active Brownian particle in three dimensions subjected to an external
magnetic field. We show that, in the presence of a field gradient, a macroscopic flux emerges from a flux-
free system and the density distribution becomes inhomogeneous. The flux is induced by the gradient of the
magnetic field only and does not require additional symmetry breaking such as density or potential gradients.
This stands in marked contrast to similar phenomena in condensed matter such as the classical Hall effect. We
further demonstrate that passive tracer particles can be used to measure the essential effects caused by the Lorentz
force on the active particle bath, and we discuss under which conditions this diffusive Hall-like effect might be
observed experimentally.
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I. INTRODUCTION

Lorentz force may appear irrelevant in soft-matter systems,
which are dominated by overdamped diffusive dynamics.
However, it is detectable in, for example, soft tissues where it
can be used for imaging applications [1]. In systems with over-
damped dynamics, the Lorentz force reduces the diffusivity in
the plane perpendicular to the magnetic field, which implies
that the Fokker-Planck equation (FPE) requires a tensor. This
may appear to be trivial, were it not for the recent finding
that the tensor has an antisymmetric part, which gives rise
to fluxes in the direction perpendicular to density gradients,
thereby precluding a diffusive description of the dynamics
[2,3]. Although some aspects of the nondiffusive dynamics
have been explored in passive systems, little is known about
its effect on active systems.

In contrast to externally driven systems, active matter has
the hallmark of being driven out of equilibrium without break-
ing a spatial symmetry. Besides the application to biological
systems, active matter serves as a paradigm to study the effect
of broken time-reversal symmetry and nonequilibrium steady
states in general [4,5]. Much progress has been made in the
understanding of the properties of active matter by using
active Brownian particles (ABPs) as a model system. ABPs
violate time-reversal symmetry by consuming fuel to generate
motion, often referred to as self-propulsion.

In this study we show that in the presence of a space-
dependent magnetic field, a macroscopic flux emerges from a
flux-free system of ABPs. This stands in marked contrast with
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similar phenomena in condensed matter such as the classical
Hall effect [6], which requires an explicitly broken symmetry:
a macroscopic velocity vector in addition to the symmetry
breaking due to the magnetic field vector. Figure 1 shows
an example of the effect of the Lorentz force on ABPs for a
Gaussian-shaped magnetic field that is radially symmetric in
the xy plane and points in the z direction. The two signatures
are clearly visible: high density where the magnetic field is
high and fluxes in the direction perpendicular to the gradient
of the magnetic field.

As a model we consider a single self-propelled, charged
Brownian particle in three dimensions subjected to a space-
dependent magnetic field B(r). The active motion of the
particle is modeled as a force in the direction of the orientation
of the particle specified by a unit vector p undergoing rota-
tional diffusion. The dynamics are described by the following
(Stratonovich) stochastic differential equations:

m
dv(t )

dt
= −γ�[r(t )] · v(t ) + f p(t ) +

√
2γ T ξ(t ), (1)

and

dr(t )

dt
= v(t ), and

d p(t )

dt
=

√
2Drη(t ) × p(t ), (2)

where m is the particle mass, γ is the friction coefficient,
f is the self-propulsion force, T is the temperature in units
such that the Boltzmann constant is unity and Dr is the
rotational diffusion constant. The matrix �(r) = 1 + κ (r)M,
with κ = qB(r)/γ where q is the charge of the particle and M
is a matrix such that B(r)M · v = B(r) × v, and B(r) ≡ |B(r)|.
The stochastic vectors ξ and η are Gaussian distributed with
zero mean and autocorrelation 〈ξ(t )ξT (t ′)〉 = 〈η(t )ηT (t ′)〉 =
δ(t − t ′)1. Note that there is no direct coupling between the
orientation and the magnetic field. The parameter κ , which
we refer to as the diffusive Hall constant, is a dimension-
less measure of the strength of the Lorentz force relative
to the frictional force. When this parameter is comparable
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FIG. 1. Nonequilibrium steady state of noninteracting ABPs sub-
jected to a Lorentz force. l denotes the persistence length of the
ABP, q its charge, γ its friction coefficient, v0 its self-propulsion
speed, and ρb is the bulk density. The Gaussian shaped magnetic
field is radially symmetric and points in the z direction. The steady
state is characterized by (i) an inhomogeneous density distribution
and (ii) flux (indicated by the arrows) perpendicular to the gradient
of the magnetic field. The flux is reminiscent of the Corbino effect
in electrical conductors [7] and can be reversed by reversing the
magnetic field. The data was obtained from Brownian dynamics
simulations with a magnetic field B(r) ∝ êze−5(x2+y2 ) and periodic
boundary conditions.

to unity, the Lorentz force significantly affects the motion
of the particle. As we show later, the Lorentz force may
become comparable to the frictional force for a highly charged
particle in strong magnetic fields. We start with Eq. (1) with
the inertia term because in presence of a Lorentz force the
overdamped equation of motion cannot be used to determine
observables depending on the velocity process (such as flux)
[2,3,8]. Equations (1) and (2) are also used for the Brownian
dynamics (BD) simulations to verify the analytical results (see
Appendix G).

To obtain the density, polarization and flux, we coarse
grain the FPE corresponding to Eqs. (1) and (2) in two steps.
First, we expand the probability density in powers of the mass
and integrate out the velocity degrees of freedom [2,9]. This
procedure is valid when the velocity autocorrelation time is
the smallest time scale in the system, so when m/γ � 1/2Dr ,
where m/γ is the velocity autocorrelation time, 1/2Dr is
autocorrelation time of the orientation vector. Second, the
orientational degrees of freedom are removed by a gradient
expansion [10,11]. The gradient expansion yields accurate
expressions if the gradients in the system are small compared
to the persistence length of the ABP. These steps are explained
in detail in Appendix C. This results in a FPE for the position
variable alone:

∂

∂t
ρ(r, t ) = −∇ · j(r, t ), (3)

where

j(r, t ) = �−1(r) ·
[

f

γ
p̄(r, t )ρ(r, t ) − T

γ
∇ρ(r, t )

]
, (4)
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FIG. 2. (a) Density, (b) flux, and (c) and (d) orientation for
f = 10, κ (x) = 4 sin(2πx/10), Dr = 20, γ = 1, and m = 0.002 in
a system with periodic boundaries. The self-propulsion speed is
v0 = f /γ , l is the persistence length, and ρb is the bulk density. The
red dashed lines correspond to Eqs. (6)–(9). The green solid lines are
the improved solutions, which use the linear-response calculations.
The symbols represent the results from BD simulations. (a) The
density is high where the magnitude of the magnetic field is large.
This corresponds to accumulation in regions where the diffusion is
hindered. (b) The flux in the system is proportional to the density and
the polarization in the y direction [see Eq. (9)]. The inset shows the
flux lanes in the xy plane. From (c) and (d) it is clear that the polar-
ization is nonzero in a narrow space interval and changes rapidly; for
example, from x ≈ 18l to x ≈ 22l the polarization rotates clockwise
from the negative to the positive x direction.

and

p̄(r, t ) = − l

3ρ(r, t )
∇ · [�−1(r)ρ(r, t )], (5)

where l = f /2Drγ is the persistence length of the ABP, and
p̄(r, t ) is the polarization, which is defined as the average
orientation per particle. Note that the matrix �−1 in Eq. (4) is
not symmetric, and therefore, T �−1/γ cannot be interpreted
as a diffusion tensor [3].

Here we focus on the steady-state bulk behavior of the
system and therefore use periodic boundary conditions in
all directions. Furthermore, the analysis is restricted to a
magnetic field pointing in the z direction, and a magnitude
that depends on x. Since the motion along the direction of
the magnetic field is not affected by the Lorentz force, there
is neither flux nor density variation along the z direction in
steady state. Because of the periodicity and equivalence of the
positive and negative x directions, in steady state there can be
no flux in the x direction either. The proof of the absence of
flux in the x direction is shown in Appendix C and has been
corroborated by simulations.

By setting the x component of the flux [Eq. (4)] to zero, we
obtain the following expression for density:

ρ(x) = N[1 + κ2(x)]δ/2, (6)

where N−1 = ∫ L
0 dx[1 + κ2(x)]δ/2 and δ = 	T/(T + 	T ),

with 	T = f 2/6Drγ , which is often called an effective tem-
perature in effective theories of active matter [12]. In Fig. 2
we show the analytical results together with results from
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Brownian dynamics simulations for a system with κ (x) =
4sin(2πx/10). We use a sinusoidal magnetic field because of
its simple shape. Experimentally realizable magnetic fields
are likely to have more complicated shapes; however, this
does not change the conclusions of this study. The density
is high where the magnitude of the magnetic field is large
[see Fig. 2(a)]. Qualitatively, the accumulation of particles in
the high magnetic field region can be understood as follows.
A magnetic field hinders the diffusive motion of Brownian
particles because there is a force perpendicular to the velocity,
which results in circular motion. For passive Brownian par-
ticles this means that on time scales longer than the velocity
autocorrelation time the effect of a uniform magnetic field is
a decrease of the diffusion constant in the plane perpendicular
to the magnetic field. For a spatially varying magnetic field,
the diffusion coefficient of particles is small in the region
where magnetic field is large. Whereas, for passive particles,
the steady-state density distribution is independent of the
diffusion coefficient, active particles accumulate in the region
of low swim speed, which correspond to regions of high
friction, or in this case high magnetic field [4,13]. Passive
Brownian particles in a space-dependent magnetic field have
a uniform steady-state density (a Boltzmann distribution with
a uniform potential). A system of ABPs with a homogeneous
activity also has a uniform steady-state density. However, the
combination of a space-dependent magnetic field and uniform
activity results in an inhomogeneous steady-state density. An
inhomogeneous density without a space-dependent potential
means that the density does not follow a Boltzmann distribu-
tion, a hallmark of nonequilibrium systems.

The polarization can be calculated by inserting Eq. (6) in
Eq. (5), which yields

p̄x(x) = (2 − δ)l

3

κ (x)κ ′(x)

[1 + κ2(x)]2
, (7)

for the x component, and

p̄y(x) = − l

3

κ ′(x)

[1 + κ2(x)]2
[1 − (1 − δ)κ2(x)] (8)

for the y component, where κ ′(x) = dκ (x)
dx . So there is polar-

ization in the plane perpendicular to the magnetic field; see
Eqs. (7) and (8) and Figs. 2(c) and 2(d).

In the y direction there can be no density gradients because
of the translation symmetry. This implies that the contribution
to the flux in the y direction coming from a density gradient
along this direction is zero; however, the contribution from the
polarization is not zero, resulting in a flux in the y direction
[see Fig. 2(b)]. This flux can be calculated by using the
solution for the density [Eq. (6)] as input to the y component
of Eq. (4), yielding

jy(x) = ρ(x)
f

γ
p̄y(x). (9)

A few remarks are in order: First, jy(x)/ρ(x) is the macro-
scopic velocity of the ABP and f /γ is the intrinsic micro-
scopic velocity. While the intrinsic velocity leads to random
motion on large time scales, the macroscopic, field-induced
motion persists on any time scale. Thus the polarization
[Eq. (8)] gives the fraction of the swim force that is converted

into macroscopic directed motion. Second, the orientation and
flux in the y direction are perpendicular to the gradient of the
magnetic field. Third, the expressions for the density, flux,
and polarization can be improved significantly by combining
the gradient expansion with linear-response calculations of the
polarization; see Appendix F.

There is no direct coupling between the magnetic field and
the polarization [see Eq. (1) and Eq. (2)], and the inhomo-
geneous density along the x direction is not a result of the
polarization. Both the polarization and the inhomogeneous
density result from a kinetic filtering mechanism. The swim
force increases the active particle’s velocity in the direction of
its orientation. The Lorentz force rotates the velocity vector.
The effect of this rotation is to make the velocity vector point
in a direction different from its orientation. This leads to a
decrease in the swim speed of the particle, that is, a decrease
of the average velocity in the direction of the orientation,
which is equivalent to reducing the effect of the active force.
From this it follows that one of the effects of a spatially
varying magnetic field on active particles is similar to sub-
jecting them to an inhomogeneous activity field, for which it
is well known that the steady-state density distribution scales
inversely with the active force. A particle with an orientation
antiparallel to the gradient of the magnetic field can move
more easily towards regions of lower magnetic field. These
effects result in a force imbalance between regions of small
and large magnetic fields. In steady state the force imbalance
is canceled by the gradient in the chemical potential due
to the increase of density in the high magnetic region [13].
However, the analogy with an inhomogeneously active ABP
only explains the inhomogeneous density, and it does not
explain the steady-state fluxes in the magnetic system.

The steady-state bulk fluxes are a key feature of this
nonequilibrium steady state of ABPs subjected to Lorentz
force. These fluxes are unique in the sense that the underlying
mechanism is independent of interparticle interactions [14],
aligning torques [15], sliding motion along asymmetric walls
[16–20], or a time- and space-dependent swim force [21,22].
Moreover, the direction of the flux is perpendicular to the
gradient of the applied magnetic field. This particular property
is what gives rise to the circulating steady-state flux shown in
Fig. 1. The direction of the fluxes can be reversed by simply
reversing the direction of the magnetic field.

In case of a finite system with walls, the bulk properties of
the system are similar to that of an infinite system; however,
there is also a flux parallel to the wall resulting in closed-loop
fluxes (see Appendix A). A flux along walls has recently been
investigated in the case of chiral active particle [23]. The
flux along the wall induced by Lorentz force can possibly be
explained by the same mechanism.

II. ACTIVE DIFFUSION UNDER LORENTZ FORCE.

Here we investigate the mean-squared displacement
(MSD) of an ABP subjected to a space-dependent Lorentz
force. Free ABPs have a swim speed of f /γ [24]; therefore,
on short time scales the motion of ABPs is ballistic and
is the same in the three directions: 〈	x(t )2〉 = 〈	y(t )2〉 =
〈	z(t )2〉 = ( f t/γ )2, where 	x(t ) is x(t ) − x(0), and sim-
ilarly for 	y(t ) and 	z(t ). The diffusion parallel to the
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magnetic field orientation is unaffected by the field. This
implies that the diffusion coefficient in the z direction is
Dz = (T + 	T )/γ . Since a magnetic field hinders the motion
in the plane perpendicular to its direction, the diffusion in the
x and y directions is reduced. For an inhomogeneous magnetic
field, the spatially varying diffusion coefficient in the x and y
directions can be obtained from the symmetric part of �−1

as Dx(x) = Dy(x) = Dz/[1 + κ (x)2]. On a length scale larger
than the period of the magnetic field, the space dependence
of the diffusion constant becomes irrelevant, and one can
approximate the effective diffusion constant for MSD in the x
direction by averaging over space: D(eff)

x = ∫ L
0 dxρ(x)Dx(x),

where L is the period of the magnetic field.
There are three time scales in the system. The shortest time

scale, τ1, is the transition from ballistic to diffusive motion
in the x direction, which can be obtained from ( f τ1/γ )2 =
2D(eff)

x τ1, and is τ1 = 2γ 2D(eff)
x / f 2. The second time scale,

τ2, is the transition from ballistic to diffusive motion in the
z direction, which can be calculated from ( f τ2/γ )2 = 2Dzτ2

as τ2 = 2γ 2Dz/ f 2. The largest time scale, τ3, is the transition
to diffusive motion in the y direction. Because the net flux
in the system is zero, the motion in the y direction becomes
diffusive on the same time scale as the time it takes to diffuse
from on lane to another. This time scale can be calculated from
2D(eff)

x τ3 = (L/2)2 as τ3 = L2/8D(eff)
x .

The MSD in the x and y directions become sub-ballistic
on the same time scale (τ1); however, in the y direction the
diffusive regime starts later at τ3, meaning that there is a super
diffusive regime that persists over several decades in time.
Even though the magnetic field hinders diffusion in both x and
y direction, on long time scales the MSD in the y direction is
larger than that of the x direction. Figure 3 shows that when
t > τ3 the MSD in the y direction has the same diffusion
coefficient as the z direction.

III. PASSIVE DIFFUSION OF TRACER PARTICLE.

Direct observation of active flux lanes might be difficult in
experiments because the Lorentz force on an ABP is small. To
overcome this limitation, we consider the cumulative effect of
these lanes on a passive tracer particle (see inset of Fig. 3). The
lane velocity is vy = jy/ρ = v0 p̄y ≈ v2

0q|∇B|/(2Drγ ), where
v0 = f /γ is the self-propulsion speed, |∇B| is the (maximum)
gradient of the magnetic field, and q the total charge on
the ABP. Although the lane velocity here is calculated for
the special case of sinusoidal magnetic field, the same could
be done for any other choice of magnetic field as long as
there are large gradients at the location of interest. To estimate
the charge of an ABP, we consider a Janus-shaped particle
with half of its surface grafted with polymer chains, and
the other half serving as the propulsion engine [25–29]. The
total charge on such an ABP is q = 2πR2σbλe, where R is
the radius of the ABP, σb is the grafting density, λ is the
number of charges per polymer chain, and e is the elementary
charge. Employing Stokes relations for the rotational diffusion
coefficient Dr and γ , together with the parameters kbT =
298 kgm2s−2, a high grafting density of σb = 1 nm−2 and
highly charged chains with λ = 100, |∇B| = 10T/cm, L ∼
1 cm, v0 ≈ 3 μm s−1 and R ≈ 2 μm, we obtain vy ≈ 2.5 ×
10−3 μm s−1. This would result in a drift of tracer particle

FIG. 3. The mean-square displacement of an ABP with f = 20,
κ (x) = 8 sin(2πx/10), γ = 1, and Dr = 20. l is the persistence
length of the ABP, and τ = 1/2Dr its orientational correlation time.
Symbols represent results from BD simulations. Diffusion parallel to
the magnetic field orientation is unaffected by the field. For t > τ2,
the motion in the z direction is diffusive (dashed line) with diffusion
constant Dz. The motion of an ABP along the x is also diffusive for
t > τ1 (dotted line), albeit with a smaller diffusion coefficient D(eff)

x .
For t < τ2, the motion along y is same as along x. The time scale of
the transition from ballistic to diffusive motion in the z direction is τ2.
However, at long times t > τ3, the rate of diffusion along y becomes
the same as that of a freely diffusing ABP. The time scale of the
transition to diffusive motion in the y direction is τ3. At intermediate
times τ2 < t < τ3, the motion along y is super diffusive. Inset shows
a schematic of a passive tracer particle diffusing in the xy plane. The
flux lanes are shown in blue and red. The particle diffuses from one
lane to the other shown as zigzag lines. Inside a lane, the particle
drifts along with the local velocity of the lane shown as white arrows.
This results in anisotropic diffusion of the particle.

along the flux lane of the order of millimeter per day. Note
that with these parameters the diffusive Hall constant κ =
0.1, implying that Lorentz force become comparable to the
frictional force on the particle.

It is assumed above that the tracer particle does not diffuse
out of the lane in a day. For a μm sized tracer particle,
with diffusion coefficient Dp ≈ 10−13 m2/s and lane width
d = L/(2π ) ≈ 0.1 cm, this is indeed the case. On longer
time scales, the diffusion of the tracer particle will become
anisotropic and can be characterized by the ratio of its MSDs
in the y and x directions, which is ra = 1 + (v2

y d4)/(D2
pL2) ≈

2 for the parameters above. Similar problems have been
studied in different contexts, such as the diffusion of a passive
particle in presence of random velocity fields [30] and the
motion of polymer chains in random layered flows [31].

Note that the total charge of the polyelectrolyte brush is
compensated by counter-ions arising from the dissociation
of the charged groups of polymers in water. At a high salt
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FIG. 4. Polarization and flux in a confined system. The results are obtained from Brownian dynamics simulations with f = 20, κ (x) =
8 sin(2πx/5), γ = 1, Dr = 20, and m = 0.002 in a system with walls at x = 0, y = 0, x = 10, and y = 10. The self-propulsion speed of the
ABPs is v0 = f /γ , l is their persistence length and ρb is the bulk density. The walls are modeled by a WCA potential.

level in the solution the counter-ions are quasifree [32,33].
Furthermore, their exchange dynamics is much faster than the
Lorentz-induced drift. A superior aspect of external magnetic
field is that it is not screened by electric charges. Moreover,
with large magnetic field gradients becoming accessible [34],
brush decorated ABPs may be a promising experimental
system.

IV. CONCLUSION

In this study we showed that the Lorentz force gives rise
to nontrivial behavior in a system of noninteracting ABPs.
More research is needed to investigate how the Lorentz force
affects other phenomena in active matter, such as the motility-
induced phase transition [35], and its behavior in complex
environments [36]. Due to the relation between the Coriolis
force in noninertial reference frames and the Lorentz force
[37], the results from this study could be of interest to the
study of ABPs in noninertial frames [38]. Furthermore, we
expect that similar macroscopic effects could be induced by
a magnetic field in a system with topological constraints such
as active particles confined to a non-Euclidean surface [39].

APPENDIX A: FLUX LOOPS IN NONEQUILIBRIUM
STEADY STATE WITH WALLS

The main text focused on bulk behavior, and periodic
boundary conditions were used everywhere. Here we briefly
explore a closed system with the same shape of the magnetic
field as in Fig. 2 in the main text and comment on the effect of
the boundaries; see Fig. 4.

In the bulk the density, polarization and flux in the system
are similar to those in a system without walls. The polarization
of ABPs near a wall is know to be directed towards the
wall [40]; in this system, however, the orientation near the
walls along the y direction is directed downwards. This is
in line with the prediction if one considers the gradient of
the magnetic field at those positions. With the walls there
are additional polarization effects: there is also polarization
parallel to the walls in the x direction. The polarization along

the walls is related to the flux along the walls. Polarization
and flux along the walls have also been observed in the case
of chiral particles [23]. One can induce multiple lanes of bulk
flux with opposing direction by decreasing the period of the
magnetic field.

APPENDIX B: SMALL-MASS LIMIT

In this section we show how to derive the small-mass limit
of the Fokker-Planck equation corresponding to the equation
of motion [Eqs. (1) and (2) in the main text]. This limit is
based on an expansion in powers of the mass of the particles,
and subsequantly integrating out the velocity degrees of free-
dom. The resulting Fokker-Planck equation only depends on
the spatial and orienational degrees of freedom and hold for
time scales larger than the velocity autocorrelation time.

The equations of motion are

m
dv(t )

dt
= −γ�[r(t )] · v(t ) + f p(t ) +

√
2γ T ξ(t ), (B1)

dr(t )

dt
= v(t ) (B2)

and

d p(t )

dt
=

√
2Drη(t ) × p(t ), (B3)

where �(r) = 1 + κ (r)M, with κ (r) = qB(r)/γ and

M =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦. (B4)

In order to obtain the small-mass limit of the FPE corre-
sponding to these stochastic differential equations one can use
the method described in Chap. 10 of Ref. [9]. This was done
for a single passive particle in a homogeneous magnetic field
in Ref. [2]. We start with the FPE corresponding to Eqs. (B2),
(1), and (B3) for the time evolution of the probability density
P(t ) ≡ P(r, v, p, t ) [41]

∂

∂t
P(t ) = (Lrev + Lirr + Lr + La)P(t ), (B5)
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where the time-evolution operator has been split up in a
reversible part

LrevP(t ) = −v · ∇rP(t ) + 1

m
B(r)∇v · [M · vP(t )], (B6)

an irreversible part without the part coming from Eq. (B3)

LirrP(t ) = γ

m
∇v ·

[
vP(t ) + T

m
∇vP(t )

]
, (B7)

the part representing the rotation of the orientation vector

LrP(t ) = DrR2P(t ), (B8)

with the rotation operator R = p × ∇p [42], and the active,
nonequilibrium operator coming from the self-propulsion

LaP(t ) = − f

m
p · ∇vP(t ). (B9)

Equation (B5) is equivalent to

∂

∂t
P̄(t ) = (L̄rev + L̄irr + L̄r + L̄a)P̄(t ), (B10)

where

P̄(t ) = P(t )R(v)−1/2 (B11)

and

L̄ = R(v)−1/2LR(v)1/2, (B12)

where L can be any of the operators in Eq. (B5), and

R(v) =
( m

2πT

)3/2
e− m

2T v2
(B13)

is the solution to LirrR(v) = 0, normalized such that the inte-
gral over v is one. The transformed operators are

L̄rev = −
√

T

m
∇r · (b† + b) + q

m
B(r) · (b† × b), (B14)

L̄irr = − γ

m
b† · b, (B15)

L̄r = Lr (B16)

and

L̄a = f√
T m

p · b†, (B17)

where b = √
T/m∇v + 1

2

√
m/T v and b† = −√

T/m∇v +
1
2

√
m/T v.
The eigenfunctions of the operator b†

αbα , where α is x, y,
or z, are

ψ0(vα ) =
( m

2πT

)1/4
e− m

4T v2
α , (B18)

and

ψn(vα ) = ψ0(vα )√
n!2n

Hn

(√
m

2T
vα

)
for n > 0, (B19)

where Hn are Hermite polynomials. The operators b†
α and bα

are the raising and lowering operators of the eigenfunctions:
b†

αψn(vα ) = √
n + 1ψn+1(vα ) and bαψn(vα ) = √

nψn−1(vα ).
Because the eigenfunctions are orthonormal,∫ ∞

−∞
dxψn(x)ψm(x) = δn,m, (B20)

they can be used to expand P̄(t ):

P̄(t ) =
∞∑

nx,ny,nz=0

cnx,ny,nzψnx (vx )ψny (vy)ψnz (vz ), (B21)

where cnx,ny,nz ≡ cnx,ny,nz (r, p, t ).
The probability density for the position and orientation,

Q(t ) ≡ Q(r, p, t ), is given by the first expansion coefficient:

Q(t ) =
∫

dvP(t ) (B22)

=
∫

dvP̄(t )ψ0(vx )ψ0(vy)ψ0(vz ) (B23)

= c0,0,0. (B24)

The translational flux,

J(r, p, t ) =
∫

dv vP(r, v, p, t ), (B25)

can be evaluated by using Eqs. (B11), (B21), and vαψ0(vα ) =√
T
m ψ1(vα ):

J(r, p, t ) =
√

T/mc1(r, t ). (B26)

Using this, together with the definition of the flux in orienta-
tion space

Jrot(r, p, t ) = −DrRQ(t ), (B27)

one obtains the following equation for the time evolution of
the probability density:

∂t Q(t ) = −∇r · J − R · Jrot. (B28)

Next, we need an expression for the c1 in terms of Q(t ).
We are interested in the case where the magnetic field is
oriented perpendicular to the gradient of the field, and take
this to be the z direction, so B(r) = B(r)ẑ. Equation (B10)
together with the orthonormality of the eigenfunctions yields
an hierarchy of equations for the functions cnx,ny,nz called a
Brinkman hierarchy [43]:

∂

∂t
cnx,ny,nz

= − γ

m
cnx,ny,nz (nx + ny + nz )

− D ·
⎡
⎣

√
nx + 1cnx+1,ny,nz√
ny + 1cnx,ny+1,nz√
nz + 1cnx,ny,nz+1

⎤
⎦−D̂ ·

⎡
⎣

√
nxcnx−1,ny,nz√
nycnx,ny−1,nz√
nzcnx,ny,nz−1

⎤
⎦

+ qB(r)

m

√
nx(ny + 1)cnx−1,ny+1,nz

− qB(r)

m

√
(nx + 1)nycnx+1,ny−1,nz + DrR2cnx,ny,nz ,

(B29)

where D =
√

T
m ∇r and D̂ =

√
T
m ∇r − 1√

T m
f p.

The equation governing the time evolution of the first
expansion coefficient is

∂

∂t
c0,0,0 = −D · c1 + DrR2c0,0,0, (B30)
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where c1 = (c1,0,0, c0,1,0, c0,0,1)T . This is of course the same
as Eq. (B28). The equation for c1(t ) is again a differen-
tial equation in t , which can be solved after a Laplace
transformation:

�̃(1)
m (s) · c̃1(s)

= m

γ
[c1(0) + DrR2c̃1(s) − D1,2 · c̃2(s) − D̂ · c̃0,0,0(s)],

(B31)

where the tilde indicates a Laplace transformation from the
variable t to s, D1,2 is a matrix of which the entries are linearly
proportional to Dx, Dy, or Dz, c2(t ) is a vector of which the
elements are all cnx,ny,nz such that nx + ny + nz = 2, and

�̃(1)
m (s) =

⎡
⎢⎣

1 + s m
γ

−κ (r) 0

κ (r) 1 + s m
γ

0

0 0 1 + s m
γ

⎤
⎥⎦. (B32)

Note that �̃(1)
m (s) = �(r) + O(m). The Laplace transformation

of the equation for c2(t ) is

�(2)
m (r, s) · c̃2(s)

= m

γ
[c2(0) + DrR2c̃2 − D2,3 · c̃3 − D̂2,1 · c̃1], (B33)

where �̃(2)
m is a matrix of which the entries are at least of order

m0, D2,3 is a matrix whose elements are proportional to Dx,
Dy or Dz, D̂2,1 is a matrix whose elements are proportional to
D̂x, D̂y, or D̂z, and c3(t ) is a vector of which the elements are
all cnx,ny,nz such that nx + ny + nz = 3.

By only retaining the zeroth-order contribution in m to
Eq. (B31), one obtains an equation that is independent of v

and holds for sm/γ � 1 (that is, for times longer than the
velocity autocorrelation time). The vector D is of order m−1/2,
so only the terms of order m1/2 of c1 are needed, which means
that one does not need the matrices D1,2, D2,3, and D̂2,1.
Equation (B34) can be used to replace the c2 in Eq. (B32),
which, after inverting the Laplace transformation and only
retaining terms of order m1/2 or lower, becomes

� · c1(t ) = −m

γ
D̂c0,0,0 + O(m), (B34)

which gives for the translational flux

J(r, p, t ) = − 1

γ
�−1 · (T ∇r − f p)Q(t ) + O(m1/2), (B35)

where

�−1(r) = 1 − κ (r)

1 + κ2(r)
M + κ2(r)

1 + κ2(r)
M2. (B36)

The result for the translational flux together with
Eqs. (B24) and (B31) gives following Fokker-Planck
equation:

∂t Q(t ) = 1

γ
∇ · [�−1 · (T ∇r − f p)Q(t )] + DrR2Q(t ).

(B37)

APPENDIX C: GRADIENT EXPANSION

The goal of the gradient expansion is to integrate out the
orientational degrees of freedom of the probability density

Q(r, p, t ) and obtain a drift-diffusion equation for the prob-
ability density ρ(r, t ) of the position variable [11,44]. This
expansion is based on a decomposition of the probability
density Q(r, p, t ) in spherical harmonics:

Q(r, p, t ) = ρ + σ · p + τ : (pp − 1/3) + �, (C1)

where the scalar ρ, the vector σ and the matrix τ are function
of r and t . These functions are linear combinations of the
projection of Q on, respectively, the zeroth, first, and second
spherical harmonic, and � is the projection onto the third- and
higher-order spherical harmonics. Using this decomposition
in Eqs. (B27), (B28), and (B36) and integrating over the
orientational degrees of freedom gives

∂

∂t
ρ = −∇r · j, (C2)

where

j(r, t ) = − 1

γ
�−1 ·

[
T ∇rρ − f

3
σ

]
(C3)

is the flux in position space. An equation for σ can be obtained
by multiplying Eq. (B28) by p and then integrating over the
orientational degrees of freedom. This gives

∂

∂t
σa = T

γ
∂b

(
�−1

bc ∂cσa
)

− f

γ
∂b

(
2

5
�−1

bc τca + �−1
ba ρ

)
− 2Drσa, (C4)

where a, b, and c are the indices of the vectors and matrices,
and �−1

ab denotes the a b component of the matrix �−1.
Similarly, an equation for τ can be obtained by multiplying
Eq. (B28) by pp − 1/3 and then integrating over the orienta-
tional degrees of freedom:

∂

∂t
τab = T

γ
∂c

(
�−1

cd ∂dτab
)

− f

2γ
∂c

(
�−1

ca σb + �−1
cb σa − 2

3
�−1

cd δab

)
− 6Drτab + ∂cϒabc, (C5)

where the ∂cϒcab comes from the projection on to the third-
and higher-order harmonics. Equations (C2), (C4), (C5) are
exact, but not closed since ϒ is not specified.

We now consider the limit in which the gradients in the
system are small in comparison to the persistence length of
the ABP [10,11]. The relaxation time of ρ is of order ∼(∇)−1,
whereas all the other harmonics relax in times of order ∼1.
This implies that in the limit of small gradients, ρ is the
slowest mode. We thus assume that the time derivative of σ

and terms with both a σ and a ∇ can be neglected. This yields

σ = − f

2Drγ
∇r · [�−1ρ], (C6)

which is related to the polarization by p̄ = 1
3σ/ρ. With this

expansion the flux becomes

j(r, t ) = − f 2

6Drγ 2
�−1 · ∇ · (�−1ρ) − T

γ
�−1 · ∇ρ. (C7)
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In a system with periodic boundary conditions and a mag-
netic field that depends on the x coordinate only, the flux in
the x direction must be a constant in steady state. The flux in
the x direction is

jx = − T + 	T

γ

1

1 + κ (x)2
∂xρ(x)

− 	T

γ

1

2

(
∂x

1

1 + κ (x)2

)
ρ, (C8)

where [�−1]xβ[�−1]xβ = [�−1]xx = 1/(1 + κ (x)2) was used,
and 	T = f 2/(6Drγ ). This equation can be solved for ρ(x):

ρ(x) = [1 + κ (x)2]δ/2

(
A(x0)

− jx
γ

T + 	T

∫ x

x0

dx′[1 + κ (x′)2]1−δ/2

)
, (C9)

where x0 is some reference position, A(x0) is a constant that
depends on x0 and δ = 	T/(T + 	T ). For system of size L
in the x direction, and κ (x) = κ (x + L), so the magnetic field
repeats itself L/n where n is an integer,

ρ(x) = ρ(x + L)

= [1 + κ (x)2]δ/2

{
A(x0)

− jx
γ

T + 	T

∫ x+L

x0

dx′[1 + κ (x′)2]1−δ/2

}

= ρ(x) − jx
γ

T + 	T

∫ L

x
dx′[1 + κ (x′)2]1−δ/2. (C10)

Therefore

jx
γ

T + 	T

∫ L

x
dx′[1 + κ (x)2]1−δ/2 = 0, (C11)

which is only satisfied for jx = 0. So in steady state there is
no flux in the x direction and the steady-state density is

ρ(x) ∝ [1 + κ (x)2]δ/2, (C12)

where the proportionality constant is determined by the nor-
malization of the density. Using this density to calculate the y
component of the steady-state flux gives

jy(x) = f

γ
p̄y(x)ρ(x). (C13)

The steady-state polarization in the x and y directions can be
determined from Eq. (C6) and the density:

p̄x = − (δ − 2)l

3

κ (x)κ ′(x)

[1 + κ (x)2]2
, (C14)

and

p̄y = − l

3

κ ′(x)

[1 + κ (x)2]2
[1 + (1 − δ)κ (x)2]. (C15)

APPENDIX D: LINEAR-RESPONSE THEORY

Here we develop the linear-response theory that is used in
the next section to calculate the orientation. The orientation
calculated in this way can be used to improve the solution

from the gradient expansion from the previous section; see
Appendix F.

Linear-response theory for ABPs has been developed in
Ref. [45] to study the average swim speed, and was later
applied to a system of interacting ABPs with inhomogeneous
activity to study the density profile [13] and flux [22]. Here
we adapt the linear-response theory for ABPs and apply it to
an charged ABP in a space-dependent magnetic field.

∂

∂t
Q(t ) = (Ld + Lr + La)Q(t ), (D1)

where

Ld Q(t ) = T

γ
∇r · [�−1 · ∇rQ(t )] (D2)

is the operator corresponding to the particle’s diffusive behav-
ior, Lr = Lr is the rotational time-evolution operator and

LaQ(t ) = − f

γ
∇r · [�−1 · pQ(t )] (D3)

is the nonequilibrium time-evolution operator. Next, we split
the probability density Q(t ) in an equilibrium (Qeq) and
a nonequilibrium [δQ(t )] part, where the equilibrium part
is the steady-state solution to Eq. (D1) with f = 0, which
is constant in space. The equation for the nonequilibrium
part is

∂

∂t
δQ(t ) = (Ld + Lr + La)δQ(t ) + LaQeq, (D4)

because ∂t Qeq = (Ld + Lr )Qeq = 0.
We are interested in nonequilibrium steady-state averages,

and therefore assume that the system started out at t = −∞
in the equilibrium state. The previous equation can be in-
tegrated from t = −∞ to t = 0 by treating LaQeq as an
inhomogeneity:

δQss = − f

γ

∫ ∞

0
dτeτ (Ld +Lr+La )Qeq[∇r · �−1(r)] · p, (D5)

where δQss = δQ(t = ∞) is the steady-state solution of the
nonequilibrium part of the probability density. This equation
is exact and can be used to calculate the steady-state nonequi-
librium average of a generic function g = g(r, p):

〈g〉r,p =
∫

dr
∫

d p Qss(r, p)g (D6)

= 〈g〉r,p
eq − f

γ

∫ ∞

0
dt〈[∇r · �−1(r)] · pet (L†

d +L†
r +L†

a )g〉r,p
eq ,

(D7)

where Qss(r, p) = Qeq + δQss(r, p) is the nonequilibrium
steady-state probability density, the super script r, p denotes
the variables that are averaged over, the subscript eq indicates
that the average is taken with respect to the equilibrium
distribution, and a † indicates the adjoint of an operator. The
adjoint operators acting on a function g are

L†
d g(r, p) = T

γ
∇r · (�−1,T · ∇rg), (D8)

L†
r g(r, p) = Dr∇p × {p · [∇p × (pg)]}, (D9)

013320-8



LORENTZ FORCES INDUCE INHOMOGENEITY AND FLUX … PHYSICAL REVIEW RESEARCH 2, 013320 (2020)

and

L†
ag(r, p) = f

γ
p · (�−1,T · ∇rg), (D10)

where the superscript T indicates a transpose.
The response of the system to the activity up to linear order

in f is obtained by removing from the full time-evolution
operator the nonequilibrium operator L†

a:

〈g〉r,p
lr = 〈 f 〉r,p

eq − f

γ

∫ ∞

0
dt〈[∇r · �−1(r)] · pet (L†

d +L†
r )g〉r,p

eq .

(D11)

This Green-Kubo relation defines the active transport co-
efficient α corresponding to an functions g by α =
lim f →0 (〈g〉lr − 〈g〉eq )/ f . Equation (D11) shows that only
quantities that are odd functions of p have a nonzero linear
response because the angular average in equilibrium any
function of an odd power of p yields zero by symmetry.

APPENDIX E: POLARIZATION FROM
LINEAR-RESPONSE THEORY

Here we calculate the polarization using the general linear-
response theory developed in the previous Appendix. The
steady-state polarization is defined as the average orientation
per particle:

p̄(r′) = 〈pδ(r′ − r)〉r,p

ρ(r′)
, (E1)

where ρ(r′) is the average steady-state density, which is the
same as the steady-state probability density of particles as a
function of the position alone. Because the density operator
ρ̂(r′) = δ(r′ − r) is independent of the orientation, the density
has no linear response to the activity; therefore, when one
only considers contributions up to linear order in the swim
force to the polarization, the position-dependent density can
be replaced by the bulk density ρb.

The orientation up to linear order in f can be calculated
using Eq. (D11) to evaluate the average in Eq. (E1):

p̄(1)(r′) = − f

ρbγ

∫ ∞

0
dt〈(∇r · �−1) · pet (L†

d +L†
r ) pδ(r′ − r)〉r,p

eq ,

(E2)

where the superscript (1) indicates that it is correct up to first
order in the self-propulsion force f . Because in equilibrium
the position is not correlated with the orientation, one can
integrate out the orientational degrees of freedom in the
average. The orientational integral in the equilibrium average
in Eq. (E2) is

〈petL†
r p〉p

eq = 〈p(0)p(t )〉, (E3)

where the p(t ) is the solution of the stochastic process result-
ing from Eq. (B3) with initial orientation p(0), and the angle
brackets indicate an average over realizations of the noise.
This is the autocorrelation function for Brownian motion
on a unit sphere and can be calculated by expanding the
corresponding FPE in spherical harmonics [12] as

〈p(t )p(t ′)〉 = 1
3 e−2Dr |t−t ′|1. (E4)

With the result for the autocorrelation of p(t ), Eq. (E2)
becomes

p̄(1)(r′) = − f
∫ ∞

0
dt

e−2Dr t

3ρbγ
〈(∇r · �−1)etL†

d δ(r′ − r)〉r
eq,

(E5)

where average is taken with respect to the equilibrium prob-
ability density for the position variable. By adding an other
integral, one can take the gradient of �−1 out of the average:

p̄(1)(r′) = − f
∫ ∞

0
dt

e−2Dr t

3ρbγ

∫
dr′′[∇r′′ · �−1(r′′)]

× 〈δ(r′′ − r)etL†
d δ(r′ − r)〉r

eq, (E6)

which can be written as

p̄(1)(r′) = f
∫ ∞

0
dt

∫
dr′′χ(r′, r′′, t ), (E7)

where the response function χ(r′, r′′, t ) is

χ(r′, r′′, t ) = − 1

3γ
e−2Dr t G(r′, r′′, t )∇r′′ · �−1(r′′), (E8)

and

G(r′, r′′, t ) = 1

ρb
〈δ(r′′ − r)etL†

d δ(r′ − r)〉r
eq (E9)

is similar to a Van Hove function, but with a space-dependent
diffusion constant [46,47]. In the case of a space-independent
diffusion tensor, Eq. (E9) would become a Van Hove function
after integrating out one of the coordinates.

By working out what ∇r · �−1(r) is, one finds that there
is no orientation along the direction of the magnetic field.
Working out the derivative gives

∇r · �−1(r) = − 1 − κ (r)2

[1 + κ (r)2]2
∇rκ (r) · M

+ 2κ (r)κ ′(r)

[1 + κ (r)2]2
∇rκ (r) · M2. (E10)

Without loss of generality one can consider the case where the
magnetic field is oriented along the z direction. In this case the
matrices M and M2 are

M =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ and M2 =

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦, (E11)

so clearly there is no orientation along the direction of the
magnetic field.

The operator L†
d acting on r in Eq. (E6) has the same effect

as acting with the adjoint on r′ (see, for example, Chap. 4.2 of
Ref. [9]); therefore

p̄(1)(r′) = − f
∫ ∞

0
dt

e−2Dr t

3ρbγ

∫
dr′′[∇r′′ · �−1(r′′)]

× 〈δ(r′′ − r)etLd (r′ )δ(r′ − r)〉r
eq. (E12)

where

Ld (r′) = T ∇r′ · �−1(r′) · ∇r′ , (E13)
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and

1

ρb
〈δ(r′′ − r)δ(r′ − r)〉r = δ(r′′ − r′)

ρ(r′)
ρb

, (E14)

was used. In the linear-response calculation of the orientation
ρ(r′) can be replaced with ρb.

Equation (E12) can be simplified to

p̄(1)(r′) = − f
∫ ∞

0
dt

1

3γ
e−2Dr t etLd (r′ )

×
∫

dr′′δ(r′′ − r′)∇r′′ · �−1(r′′), (E15)

and after the r′′ integral this becomes

p̄(1)(r) = − f
∫ ∞

0
dt

1

3γ
e−2Dr t etLd (r)∇r · �−1(r). (E16)

Multiplying both sides of this equation by 2Dr − Ld (r)
results in

[2Dr − Ld (r)]p̄(1)(r)

= f

3γ

∫ ∞

0
dt

∂

∂t
e−t[2Dr−Ld (r)]∇r · �−1(r), (E17)

which is equivalent to the following differential equation:

[2Dr − Ld (r)]p̄(1)(r) = − f

3γ
∇r · �−1(r). (E18)

This equation is the main result of this Appendix. Solutions
can be obtained numerically, or by further approximations.

For large Dr and a magnetic field with small gradients,
the contribution from the operator Ld to the left-hand side of
Eq. (E18) is negligible compared to the contribution coming
from the part with Dr ; therefore, one can approximate, in this
case, the solution to this equation by

p̄(1)(r) ≈ − 1
3 l∇r · �−1(r). (E19)

Note that this is the same Eqs. (C14) and (C15) without the
terms of cubic order in f .

Even though the density does not have a linear response
to the swim speed, the linear response calculations for the
orientation can be used to calculate the density and fluxes [13].
First, one integrates out the orientational degrees of freedom
from Eq. (B28):

∂

∂t
ρ(r, t ) = −∇r · j(r, t ), (E20)

with

j(r, t ) = − 1

γ
�−1 · [T ∇r − f p̄(r, t )]ρ(r, t ), (E21)

where p̄(r, t ) ≡ 1
ρ(r,t )

∫
d pQ(r, p, t ) is the polarization.

When the magnetic field is oriented in the z direction and
depends only on the x coordinate, equating the steady-state
flux in the x direction to zero gives the following density:

ρ (2)(x) ∝ exp

[
f

T

∫ x

dx′ p̄(1)
x (x′) + κ (x′) p̄(1)

y (x′)
]
, (E22)

where the proportionality constant is determined by normal-
ization, and the superscript (2) indicates that it is correct up

to second order in the swim force (there is no linear-order
response in the density). With this density the steady-state flux
in the y direction can be calculated from Eq. (E21):

j (2)
y (x) = ρb f

γ
p̄(1)

y (x), (E23)

where ρb is the bulk density.

APPENDIX F: IMPROVED SOLUTION

Only using the linear-order contributions in f to the orien-
tation gives poor agreement with simulations for the density;
see Fig. 5. The terms of cubic order in f contribute to the
diffusion in the system, and by ignoring them there has to be
a larger density gradient to compensate for the flux resulting
from the orientation. This problem can be overcome by com-
bining the first-order result from linear-response theory with
the cubic terms from the gradient expansion.

Using the gradient expansion (Appendix C) we found that
the flux is

j(r, t ) = −�−1 · [ f ρ p̄] − T

γ
�−1 · ∇ρ, (F1)

where p̄ = p̄(r, t ) is the average polarization at position r,
which is

p̄(r, t ) = − l

3ρ
∇ · (�−1ρ)

= − l

3
∇ · �−1 − l

3
�−1,T · ∇ ln ρ. (F2)

The second term on the right-hand side is higher order in
the swim force because a gradient in the density is at least
second order. The first term on the right-hand side of this
equation is proportional to the swim force and is equal to
the linear-response solution in the limit of small gradients.
However, Eq. (E18) gives the linear-order response of the
polarization without assuming that the gradients are small.
We therefore replace the linear-order term with the numerical
solution to the linear-response equation for the polarization
[Eq. (E18)] and rewrite the previous equation as

p̄(r, t ) = p̄(1) − l

3
�−1,T · ∇ ln ρ. (F3)

When the magnetic field is oriented in the z direction and
varies in the x direction, one can use this expression for
the polarization together with the expression for the flux
[Eq. (F1)] to obtain the steady-state density by equating the
flux in the x direction to zero:

ρ(x) = N exp

[
f

T + 	T

∫ x

0
dx′ p̄(1)

x (x′) + κ (x) p̄(1)
y (x′)

]
,

(F4)

where N is a normalization constant such that
∫ L

0 dxρ(x) = 1
and L the size of the periodic box. Note that this expression is
the same as the density calculated only using linear-response
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FIG. 5. (a) Density, (b) flux, and (c) and (d) orientation for f = 10, κ (x) = 4 sin(2πx/10), Dr = 20, γ = 1 and m = 0.002. The self-
propulsion speed is v0 = f /γ , l is the persistence length, and ρb is the bulk density. The blue solid lines correspond to the linear-response
results [Eqs. (E19), (E22), and (E23)]. The red, dashed lines correspond to Eqs. (C12) to (C13). The green, solid lines are the improved
solutions, which uses the linear-response calculations [Eqs. (F4)–(F7)]. The symbols represent the results from BD simulations. This is the
same figure as Fig. 2 in the main text, but with the linear-response calculations included.

theory [Eq. (E22)], but with T replaced by T + 	T . The flux
in the y direction can be calculated from Eq. (F1) together
with the result from the density as

jy(x) = f

γ
ρ p̄(1)

y + f δ

γ

κ

1 + κ2

(
p̄(1)

x − κ p̄(1)
y

)
. (F5)

And finally, the density can be used in Eq. (F3) to obtain the
polarization in the x and y directions in terms of the linear-
response polarization as

p̄x(x) = p̄(1)
x − δ

1 + κ2

(
p̄(1)

x + κ p̄(1)
y

)
, (F6)

and

p̄y(x) = p̄(1)
y − κδ

1 + κ2

(
p̄(1)

x + κ p̄(1)
y

)
. (F7)

APPENDIX G: SIMULATION DETAILS AND NUMERICS

The Brownian dynamics simulations were done by using
the Euler algorithm to discretize the equations of motion in
time [Eqs. (B2)–(B3)]. After each time increment of the ori-
entation vector [Eq. (B3)], the vector is rescaled such that the
length is always unity. For all simulations a time step of 	t =
0.5 × 10−6 was used. The flux in the system was obtained
by sampling the velocity of the ABP. The linear-response
equation for the orientation [Eq. (E18)] was integrated using
the boundary value problem solver from the Scipy PYTHON

library [48].
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