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Normal stress anisotropy and marginal stability
in athermal elastic networks†

Jordan L. Shivers, ab Jingchen Feng, b Abhinav Sharma c and
F. C. MacKintosh *abd

Hydrogels of semiflexible biopolymers such as collagen have been shown to contract axially under shear

strain, in contrast to the axial dilation observed for most elastic materials. Recent work has shown that

this behavior can be understood in terms of the porous, two-component nature and consequent time-

dependent compressibility of hydrogels. The apparent normal stress measured by a torsional rheometer

reflects only the tensile contribution of the axial component szz on long (compressible) timescales,

crossing over to the first normal stress difference, N1 = sxx � szz at short (incompressible) times. While

the behavior of N1 is well understood for isotropic viscoelastic materials undergoing affine shear

deformation, biopolymer networks are often anisotropic and deform nonaffinely. Here, we numerically

study the normal stresses that arise under shear in subisostatic, athermal semiflexible polymer networks.

We show that such systems exhibit strong deviations from affine behavior and that these anomalies are

controlled by a rigidity transition as a function of strain.

Normal solids and liquids exhibit shear stress under imposed
shear deformation. With the exception of simple Newtonian
liquids, most materials also develop so-called normal stresses
in response to shear. Unlike shear stress, however, these stresses
are directed perpendicular to surface on which they act and
appear as diagonal terms in the stress tensor. In the case of
elastic solids, a common manifestation of normal stress is the
Poynting effect, in which a solid tends to elongate in response to
torsional strain. In a classic series of experiments, Poynting
observed such elongation for a variety of systems, ranging from
simple metal wires to rubber.1,2 By symmetry, this elongation
should not depend on the sign or direction of the applied torsion,
leading to lowest-order response that is expected to be quadratic
in the the strain. This makes the Poynting effect a fundamentally
nonlinear phenomenon. This is one reason why normal stresses
are typically less apparent than the shear stress, which varies
linearly with strain. Nevertheless, normal stresses have very
dramatic consequences, including both rod climbing and tube-
less siphoning, as well as die swell.3 These phenomena, as well as
the Poynting effect, correspond to positive normal stress.

In a cone-plate rheometer, shown schematically in Fig. 1a,
the measured axial force F in torsion depends not only on the

tensile axial stress component szz, but also on the azimuthal
component sxx, which acts as a hoop stress. For incompressible
materials, this hoop stress generates a radial pressure gradient
that contributes vertical thrust that counteracts szz. In this case,
the sign of the first normal stress difference, N1 = sxx � szz

determines the sign of the measured axial force for sheared
incompressible materials, according to F = N1pR2/2. The first
normal stress difference, N1, is fundamental to the nonlinear
viscoelastic response of materials and is almost universally
positive, particularly for solids. For typical polymer networks,

Fig. 1 (a) Schematic of a hydrogel sample in a cone-plate rheometer of
radius R, with coordinates defined such that the x-axis and z-axis are
oriented along the azimuthal (shear) and axial (gradient) directions, respectively.
Positive axial force F corresponds to the sample pushing up against the
cone. (b) Applying sufficient shear strain g to a subisostatic (z o zc) network
invokes a transition from a bending-dominated regime (floppy in the
absence of bending interactions) below gc to a stretching-dominated
regime above gc. The details of the phase boundary gc(z) (blue line) depend
on the network structure.
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positive N1 results from the fact that polymer extension in the
azimuthal direction tends to be greater than in the axial
direction.4 It was thus surprising when biopolymer gels, such
as fibrin and collagen, were recently identified as apparent
exceptions to this, with an inverted or negative Poynting
effect.5,6 Theory and simulation studies5–12 have shown that
this observed negative normal stress is a generic feature of
semiflexible networks, playing a significant role in the onset of the
nonlinear strain-stiffening response characteristic of biopolymer
networks.10,12,13 However, as recently demonstrated,14,15 this
anomaly for gels can be understood to arise from their porous,
two-component nature. This porosity renders the gels effectively
compressible on long enough time scales, over which the radial
pressure gradient relaxes as the solvent flows from the sample
boundaries, such that only the negative contribution from szz is
measured, with F =�szzpR2.14,15 Consistent with this interpretation,
these networks showed a normal (positive) Poynting effect on
short enough time scales, in which the gels become effectively
incompressible, indicating that the normal stress difference N1

remains positive.
For isotropic viscoelastic materials undergoing affine (homo-

geneous) simple shear deformation, the Lodge–Meissner relation
relates N1 to the shear stress sxz as N1 = sxzg.4 This relation, first
identified by Rivlin for elastic solids,16 holds for any material in
which the principal strain axes and principal stress axes remain
parallel throughout the applied deformation, which is satisfied as
long as the material is initially isotropic and deforms affinely.17

Prior work has shown that networks of athermal fibers, of
which collagen is a prime example, undergo highly nonaffine
deformation under imposed shear strain. In such networks, it
was recently shown that the degree of nonaffinity depends on
the system’s proximity to a strain-controlled transition that
occurs along a critical line in the g–z plane, where g is the
applied shear strain and z is the connectivity, or average number
of connections to each network junction.18 Strictly speaking,
this transition occurs at finite strain for central-force networks
below their isostatic point of (linear) marginal stability, as
sketched in Fig. 1b. For fibers with finite bending rigidity, this
line of marginal stability is manifest in a crossover from a soft,
bending-dominated regime to a stiff, stretching-dominated
regime. This nonlinear stiffening transition coincides with the
development of a highly heterogeneous and anisotropic network
of tensile force chains aligned primarily along the tension axis,
similar to the marginally stable networks of compressive force
chains that develop at the jamming transition in sheared
granular packings19,20 and frictional force chains in shear-
thickening suspensions,21,22 both of which align instead along
the compression axis. While force chains have been observed in
fibrous networks,23–26 the properties of force chain networks
that develop during macroscopic strain stiffening, and their
effects on the normal stresses, have not been extensively studied.
In shear-thickening suspensions, the formation of such force
networks are typically associated with anomalous, and some-
times negative, values of N1.27–29 Given the similarity of the force
chains in sheared semiflexible fiber networks to those observed
in packings/suspensions, as well as the significant nonaffinity

observed near the strain-stiffening transition, it is not obvious
that the Lodge–Meissner relation should apply, or even that N1

should be positive for these networks. While some prior theory
and simulation9,24 studies have suggested that semiflexible
networks may generally satisfy the Lodge–Meissner relation, a
systematic study of the effects of network structure and non-
affinity on N1 has been lacking.

Here, we investigate the behavior of the various normal
stress components in athermal subisostatic fiber networks near
the strain-stiffening transition, using numerical models of dis-
ordered semiflexible fiber networks in two and three dimensions.
We show that the general scaling of the normal stresses with shear
strain below, near, and above the rigidity transition remains con-
sistent irrespective of the underlying network structure. However, we
demonstrate that such networks can exhibit anomalous behavior in
N1 that is highly sensitive to the network structure, and that this
anomaly is most pronounced near the point of marginal stability as
a function of strain, i.e., along the phase boundary in Fig. 1b that
corresponds to nonlinear strain-stiffening. This anomaly at the
stiffening transition results from the formation of a highly
heterogeneous, anisotropic, system-spanning network of strong
tensile force chains, whose spatial structure and force distribution
determines the relative values of each normal stress component
and thus N1. Our results suggest that any underlying anisotropy in
the network structure can result in anomalous behavior in N1 that
is maximized at the critical strain, suggesting that the sign and
magnitude of N1 can, in principle, be tuned by selectively modify-
ing the network structure. Interestingly, our results suggest that in
the limit of very large and nearly isotropic systems, such as large
off-lattice network models or experimental gels, the Lodge–
Meissner relation should be satisfied at any strain, in spite of
the significant nonaffine deformations and heterogeneous force
network associated with the critical strain.

Numerical models

We consider discrete models of semiflexible polymer networks
in 2 and 3 dimensions, including both lattice-based and off-lattice
network structures, with filament-bending (i.e. freely hinging
crosslinks between fibers) and bond-bending interactions. For
lattice-based models, we consider two-dimensional (triangular)
and three-dimensional (face-centered cubic) lattice-based net-
works, and for off-lattice networks we consider two-dimensional
Mikado and bidisperse disk packing-derived networks as well as
three-dimensional bidisperse sphere packing-derived networks.
Examples of these are shown in Fig. 2.

We construct disordered lattice-based networks in 2D begin-
ning with fibers arranged on a periodic triangular lattice with
lattice spacing l0 = 1 and sides of W lattice units,30,31 which we
then phantomize by disconnecting one of three intersecting fibers
at each node, in order to reduce the average network connectivity
hzi to 4.32 Prior work has shown that, in 2D networks, the buckling
of long, straight fibers leads to unrealistic mechanical effects
including a dip in the differential shear modulus K = qsxz/qg.

12

We avoid this by introducing geometric distortion to the
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unstrained lattice network by moving each node a random
distance in the range [0,dmax] in a random direction, with
dmax r 0.5 in order to avoid overlapping nodes,33–35 and
subsequently redefining the rest lengths lij,0 between pairs of
nodes and rest angles yijk,0 between connected triplets of nodes
so that the geometrically disordered network exhibits zero
stress in the unstrained state. In order to avoid system-spanning
(or nearly system-spanning) fibers, which introduce unrealistic
contributions to the macroscopic mechanics,10,36 we remove every
qth bond along each fiber, beginning with a randomly chosen
bond, prior to dilution. For phantomized triangular networks, we
use W = 120 and q = 20. Similarly, the process for generating 3D
face-centered cubic (FCC) lattice-based networks (as shown in
Fig. 2c) begins with fibers arranged on a periodic FCC lattice37

with sides of W lattice units with lattice spacing l0 = 1. We
phantomize these as well,38 yielding an average z = 4, and cut a
single randomly chosen bond on each fiber prior to dilution. We
use 3D FCC networks with W = 25.

Mikado networks are constructed by placing straight segments
of length L with random positions and orientations into a 2D
periodic box of side length W, adding crosslinks at the inter-
sections between segments.39,40 Fibers are deposited randomly
until the desired average crosslink density L/lc is reached, where
lc is the average bond length. Even in the infinite crosslink
density limit, Mikado networks yield z o 4. We generate networks
with W = 10L and L/lc E 12, yielding an initial connectivity of
z E 3.6 prior to dilution.

We prepare 2D packing-derived (PD) networks by first randomly
placing N = W2 radially bidisperse disks with harmonic repulsive
interactions within a periodic square unit cell of side length W,
where half of the disks are assigned a radius r = r0 and half r = fr0,
with f = 1.4 chosen to avoid long-range order.41 We incrementally
increase r0 from 0 until the system jams, exhibiting a finite bulk
modulus. From this disordered packing, we generate a contact
network by connecting the centers of the overlapping disks

(excluding rattlers) with springs at their rest lengths.42–44 The
same procedure is followed in 3D, using N = W3 radially
bidisperse harmonic repulsive spheres, also with f = 1.4, in a
periodic cubic unit cell of side length W. With sufficiently large
systems, this procedure generates contact networks with z E 2d,
where d is the dimensionality. Unless otherwise stated, we study
2D packing-derived networks with W = 100 (N = 10 000 nodes)
and 3D packing-derived networks with W = 20 (N = 8000 nodes).

After generating the underlying network structure, we
repeatedly remove randomly chosen bonds and any consequent
dangling ends until the network reaches the desired average
network connectivity z. We model the lattice-based and Mikado
networks as filamentous networks with freely-hinging cross-
links, in which bending interactions are accounted for only
along each fiber,18,40 whereas the packing-derived networks are
modeled instead as bond-bending networks45 with bending
interactions between all pairs of nearest-neighbor bonds. Given that
the precise mechanics of the connections between fibers in real
collagen and fibrin networks, which can include both branching
points and crosslinks, are not well characterized, using two different
crosslink models enables us to study whether the behavior of the
normal stresses is independent of the detailed form of the bending
interactions. Prior work has shown that these models exhibit similar
linear mechanics36,46 and strain-driven critical behavior.18,35,47

Energetically, we treat individual bonds as Hookean springs with
stretching modulus m and pairs of bending-associated bonds with
bending modulus k. The Hamiltonian H of the full network is

H ¼ 1

V

m
2

X
hiji

lij � lij;0
� �2

lij;0
þ k

2

X
hijki

yijk � yijk;0
� �2

lijk;0

2
4

3
5; (1)

in which the sums are taken over pairs hiji and triplets hijki of
connected nodes, and lijk,0 = (lij + ljk)/2. For networks with freely
hinging crosslinks, the second sum is taken only for adjacent

pairs of bonds along fibers. Here, V = v0W d, where v0 ¼
ffiffiffi
3
p �

2 for

triangular lattice-based networks, v0 ¼
ffiffiffi
2
p �

2 for FCC lattice-
based networks, v0 = 1 otherwise, and d is the dimensionality.
As in prior work, we set m = 1 and define a dimensionless bending
rigidity ~k ¼ k

�
mlc2. Bond-diluted network models such as these

have been shown to quite effectively describe the shear elasticity
of reconstituted collagen networks,13,18 which have a typical
average value of z E 3.4.48

We perform simulations of networks under simple shear by
incrementally increasing the shear strain g from 10�2 to 1 in
exponentially spaced steps, using generalized Lees-Edwards periodic
boundary conditions.49 For simplicity of notation when comparing
2D and 3D simulations, we denote x and z the directions of shear
and gradient, respectively, in both cases. At each strain value, the
network energy is minimized using the FIRE algorithm,50 and each
component of the stress tensor s is computed as

sab ¼
1

2V

X
hiji

fij;auij;b (2)

in which uij = uj� ui is the vector between nodes i and j and fij is the
force acting on node i due to node j.51 To symmetrize the normal

Fig. 2 (a) Sample of a reconstituted collagen network exhibiting clear
connective and geometric disorder, adapted from ref. 18. We investigate
the mechanics of bond-diluted athermal semiflexible fiber networks
including (b) phantom 2D triangular networks with added positional
disorder, (c) phantom FCC lattice-based networks, (d) random fiber
(Mikado) networks, (e) 2D bidisperse disk packing-derived networks and
(f) 3D bidisperse sphere packing-derived networks.
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stresses in the linear regime, we average the response of each
network sample under positive and negative shear strain.
Unless otherwise stated, the reported stress is averaged over
at least 10 samples.

For comparison, we also consider the limit of an isotropic
medium composed of filaments of length l0 = 1 with uniformly
distributed initial orientations, which are assumed to deform
affinely under simple shear. We compute the resulting stress
tensor as a function of strain for this system with two com-
plementary force extension relations: simple linear Hookean
springs, which support both compression and tension, and
‘‘rope’’-like springs that support only tension (see ESI†). For the
remainder of the paper we refer to the first isotropic model as
the spring model and the second as the rope model. Both
analytical models satisfy the Lodge–Meissner relation under
any applied strain.

Normal stresses and strain-stiffening

Without bending interactions, spring networks exhibit a finite
linear shear modulus G ¼ lim

g!0
K4 0 only when their connectivity

z, defined as the average number of connections at each node,
reaches a critical isostatic connectivity zc.36 While the precise
value of zc is sensitive to the heterogeneity of the network
structure, typical values are close to the constraint-counting value
ziso = 2d introduced by Maxwell.52 Under shear strain, spring
networks that are subisostatic, with z o zc, develop finite K E m at
a critical strain gc that depends on the network’s connectivity and
geometry, with gc - 0 as z - zc from below. At the critical strain,
such networks develop a system-spanning branched network of
primarily tensile force chains, oriented predominantly along
the principal extension axis, in order to support finite stress.
Associated with the development of this force chain network
are characteristic signatures of criticality including diverging
nonaffine fluctuations.18 In networks with finite ~k, K is finite
and proportional to ~k below the critical strain, and subisostatic
semiflexible polymer networks therefore undergo a transition
from a bending-dominated regime to a stretching-dominated
regime at the critical strain.18 In Fig. 3, we show K vs. g for
several values of z, demonstrating that gc increases with
decreasing z. For constant z, gc is very weakly dependent on ~k
in the limit of ~k! 0, and the networks exhibit a clear transition
from a bending dominated regime K / ~kð Þ for g o gc to a
stretching dominated regime (K p m) for g 4 gc (Fig. 3a inset).
This behavior is also clear from the proportion of the total
energy arising from bending interactions, Hb=H, as we show in
Fig. 3c: as ~k is decreased, the transition from the bending-
dominated to stretching-dominated regime at gc sharpens. One
can map the critical strain as a function of z to yield a phase
diagram for the mechanical behavior of subisostatic networks
as a function of strain and connectivity, as shown schematically
in Fig. 3b.18 The details of the phase boundary depends on the
underlying network geometry.

The normal stress components sii (where i = x, z) both
exhibit the same bending-dominated to stretching-dominated

transition at the z-dependent critical strain, with sii / ~k for
g o gc and sii p m for g 4 gc, as shown in Fig. 4a for phantom
triangular networks. As we show in Fig. 5, we observe essentially
the same behavior in all subisostatic network models studied
here, supporting the idea that the details of the network
structure18 and bending energy type35 have only minor effects
on the general strain-stiffening behavior of semiflexible fiber
networks. Instead, the governing variables are z and g. In ESI,†
we show that phantomized triangular networks exhibit the
same mechanical behavior with freely-hinging crosslinks as
with bond-bending interactions, with the only difference being
that bond-bending interactions leads to a higher apparent k
due to the additional angle constrains. We also observe that the
ratio of the axial normal stress component szz to the shear
stress sxz becomes maximal, and typically greater than 1, at gc,

Fig. 3 (a) Differential shear modulus K vs. strain g for phantomized
triangular networks with ~k ¼ 10�6, W = 120, dmax = 0.4, and varying
connectivity z. The vertical dotted line for each z value indicates the
critical strain gc, determined as the strain corresponding to the onset of
finite K in the low-~k limit. These curves illustrate that the critical strain
increases with decreasing z. The solid black line shows the computed K for

the affine isotropic network model with line density r ¼ 2
ffiffiffi
3
p

. Inset: K vs. g
for constant z = 3.6 and varying ~k. (b) Schematic mechanical phase
diagram indicating the increase in gc with decreasing z below zc = 2d.
(c) For the same networks, the ratio of bending energyHb to total energyH
illustrates the bending-to-stretching transition that occurs at the critical
strain and (inset) sharpens with decreasing ~k. Colors in both the main panel
and inset correspond to those in panel (a). Lines between points are
intended to serve as guides to the eye.

Fig. 4 (a) Normal stress components sxx (closed symbols) and szz (open
symbols) normalized by g2, for the same phantom triangular networks as in
Fig. 3, with ~k = 10�6 and varying z. Dotted lines indicate gc(z). (b) The
corresponding ratio of the axial normal stress szz to the shear stress sxz

shows a peak at the critical strain for each z value that (inset) sharpens with
decreasing ~k. Colors correspond to those in Fig. 3. The thick solid line
corresponds to the affine isotropic spring network model, and the dashed
solid line corresponds to the affine isotropic rope network model.
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as we show in Fig. 4b. This peak reflects the sharp transition
from the bending-dominated regime, in which szz p g2 and
sxz p g for small g, yielding szz/sxz p g, to the stretching-
dominated regime, in which sxz grows as a power-law with
respect to Dg and rapidly begins to dominate szz. Preliminary
observations of this phenomenon were made in prior work
using Mikado networks8 and in experiments on fibrin.6 We
observe, in all network models discussed here, that the peak
follows the critical strain as z is varied and grows to a z-dependent
asymptotic value as ~k decreases. A maximum in this ratio actually
does occur in the affine isotropic spring network limit due to the
gradual reorientation of fibers under increasing shear strain, but
the maximal value is smaller (B0.4) and the peak strain much
larger (g B 1) than we observe for our semiflexible network
models. The isotropic rope network model, in contrast, exhibits a
maximum with szz/sxz 4 1 at zero strain. In semiflexible net-
works with small ~k, it appears that the critical strain marks a
transition from the linear, bending-dominated regime in which
szz/sxz p g to a rope-like regime. This results from the fact that, at
and above the critical strain, tension forces vastly outweigh
compressional forces in networks with low ~k. In Fig. 4b, we show
that systems with low ~k exhibit a ratio szz/sxz which, above gc, is
quite close to the rope network limit, whereas for higher ~k
networks the ratio approaches the spring network limit. The
latter trend is expected, as increasing ~k increases the degree to
which the network’s fibers can support compression. Interest-
ingly, we observe that, near the critical strain, szz/sxz exceeds even
the rope values predicted for the affine isotropic rope network
limit, possibly due to the highly heterogeneous nature of the
stress-bearing network at the critical strain. Nevertheless, it is
apparent that a large ratio of the axial normal stress to the shear
stress is a signature of the development of a rope-like stress-bearing

structure at the critical strain. This is further supported by prior
experimental evidence that fibrin networks with stiffer filaments
exhibit a smaller peak in szz/sxz than more flexible ones at the
critical strain.6

Stress anisotropy

For typical isotropic elastic materials, the first normal stress
difference N1 = sxx � szz is positive, and for affinely deforming
isotropic elastic materials like rubber it is typically well approxi-
mated by the Lodge–Meissner relation N1 = sxzg. Negative
values of N1 are unusual, but have been observed in certain
materials including shear-thickening suspensions.28 However,
negative N1 has not to date been observed in a real elastic solid.
While the normal stresses we observe for all networks (Fig. 4
and 5) are similar in magnitude at and below the critical strain,
we observe that the behavior of the first normal stress difference
N1 depends strongly on the underlying network structure.

Under applied strain g, the periodic images of each node in
the network transform affinely according to the simple shear
deformation gradient L(g). This deformation gradient results in
maximal elongation along its principal extension axis with
orientation yP, with maximal compression along the perpendi-
cular axis, as shown schematically in Fig. 6c for a small strain.
We determine the principal strains and principal strain axes,
which rotate with applied strain, as a function of g in ESI.† For
g = 0, the principal extension axis is oriented yP = p/4 radians
above the x-axis in the x–z plane. For isotropic and affinely
deforming networks with only axial forces, such as the rope
and spring model, the principal stress axes exactly follow the
principal strain axes under any applied g, such that the Lodge–
Meissner relation is always satisfied. That the principal stress
axes follow the principal strain axes is not guaranteed in
disordered networks, as they deform nonaffinely and are not
perfectly isotropic.

In particular, lattice-based networks such as triangular and
FCC models exhibit significant angular anisotropy; in the unstrained
state, their bonds lie only along vectors corresponding to the
lattice directions, and imposed local geometric disorder does
little to mitigate this long-range anisotropy. We can explore the
effects of this anisotropy by applying an initial rotation of f
radians, relative to the x-axis in the x–z plane, to the lattice prior
to applying shear strain. Arbitrarily, we define the unrotated
(f = 0) phantom triangular lattice as having bonds initially
oriented at angles yb,0 A [0,p/3,2p/3] relative to the x-axis. Even
with significant random local geometric distortion dmax = 0.4,
the fibers remain on average oriented along these initial lattice
vectors. In general, tensile force chains develop in randomly
diluted spring networks at the critical strain and tend to be
oriented along the principal extension axis. As bonds in a
phantom triangular network do not have a uniform initial
angular distribution and are instead oriented primarily along
the initial lattice bond orientations for a given f, the tensile
force chains develop along the (slightly rotated) initial lattice
bond orientation that is most stretched at gc, i.e. whichever is
closest to the principal extension axis.

Fig. 5 Normal stress components sxx (closed symbols) and szz (open
symbols) normalized by g2 for (top left) Mikado networks with z = 3.3, (top
right) phantom FCC networks with z = 3.4, (bottom left) 2D packing-
derived networks with z = 3.3, and (bottom right) 3D packing-derived
networks with z = 4.8, all with varying ~k.
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For initially unrotated (f = 0) triangular lattice networks, the
dominant tensile force chains develop primarily along the bonds
that are initially oriented along the yb,0 = p/3 direction, as shown in
Fig. 6d, with softer branches oriented along the other directions.
As a result, the maximum principal stress is oriented close to the
yb,0 = p/3 direction, not parallel to the principal extension axis. The
initial lattice orientation determines which of the (rotated) initial
lattice bond orientation the tensile force chains propagate along at
gc, thus determining the relative orientation of the maximal
principal stress axis to the principal extension axis. When the
initial lattice is rotated by f = p/6, such that the initial undistorted
lattice bond vectors are oriented along yb,0 A [p/6,p/2,5p/6], the
dominant force chains instead propagate along the rotated lattice
vector corresponding to yb,0 = p/6, as shown in Fig. 6e.

But how does this affect N1? In the ~k ¼ 0 limit, in
which forces only occur parallel to bonds, the value of N1 is
entirely determined by the individual bond orientations, with
N1 /

P
b

fblb cosð2ybÞ where fb is the tension, lb is the length,

and yb A [�p/4,3p/4] is the angle of bond b relative to the x-axis
in the x–z plane. This range for yb is convenient, as bonds
under tension with yb 4p/4 exhibit negative N1, whereas bonds
under tension with yb o p/4 exhibit positive N1. A similar
expression was used in ref. 29 to describe relative contributions
to N1 based on force networks in non-Brownian suspensions.
With finite ~k, forces also occur perpendicular to bonds, leading
to a more complicated dependence of N1 on the network
configuration. Since the tensile force networks dominate for
relatively low-~k networks at and above the critical strain, it is
reasonable to estimate N1 for such networks in this regime only
in terms of stretching forces, i.e. as a simple function of the
bond orientations.

In our disordered network models, which deform non-
affinely and always possess some anisotropy, normalizing the
measured value of N1 by the Lodge–Meissner value (sxzg) yields
a quantitative measure of the degree to which the network
behaves as an affinely deforming isotropic material. Since sxzg
is always positive, this quantity also indicates when N1 is
negative. For the remainder of this work, we report the normalized
quantity N1/(sxzg). For unrotated (f = 0) phantom triangular lattice
networks, the dominant force chains at gc are tensile and oriented
with y4 p/4 for small gc, predicting that N1 will be negative in the
limit of low ~k. With increasing gc, i.e. decreasing z, the force chains
should develop with orientations closer to the principal strain axis,
so decreasing z should bring N1 closer to the Lodge–Meissner
value. In Fig. 7a, we plot N1/(sxzg) as a function of strain for
phantom triangular lattice-based networks with f = 0, small ~k, and
varying z, demonstrating that these exhibit a negative peak in N1 at
the z-dependent critical strain, corresponding to the highly
anisotropic force chains with y 4 p/4 shown in Fig. 6d. As
predicted, the magnitude of this peak decreases as z decreases

Fig. 6 (a) N1 normalized by the Lodge–Meissner relation N1 = sxzg for
undiluted triangular lattices (dashed lines) and phantomized triangular
networks with z = 3.6, and W = 120, and varying ~k, in which the lattice is
initially rotated by angle f = 0 and f = p/6. In the subisostatic lattice case,
the peak at the critical strain gc changes sign when the lattice is rotated by
f = np/6 with odd n, as shown in (b) for ~k = 10�6 over the full range of y. In
lattice-based networks such as these with long fibers along specific lattice
vectors, force chains preferentially develop at the critical strain along
whichever lattice vector is closest to the principal extension direction for
a given applied strain g (see ESI†). (c) The principal extension axis for the
simple shear deformation gradient L(g = 0.1) is shown in red, with the
(perpendicular) principal compression axis shown in blue. In black, we
show the corresponding strain ellipsoid, projected onto the x–z plane.
(d) The angular orientation of the dominant force chains relative to y = p/4
determines the sign of N1. For unrotated networks (f = 0) with the same
parameters as in (b), the most elongated fibers at the critical strain
gc E 0.1 are oriented with yb 4 p/4, resulting in negative N1. (e) When
these networks are rotated initially by f = p/6, the most elongated fibers at
the critical strain are instead oriented with yb o p/4, resulting in positive N1.

Fig. 7 First normal stress difference N1 � sxx � szz normalized by the
Lodge–Meissner relation (N1 = sxzg) in unrotated 2D distorted phantomized
triangular networks (f = 0, dmax = 0.4) as a function of g for (a) ~k ¼ 10�6 and
varied hzi and (b) hzi = 3.6 and varied ~k, with the Lodge–Meissner result
(N1/(sxzg) = 1) shown as a thick solid line. Deviation from the Lodge–
Meissner relation increases with hzi, and the ratio exhibits a downward peak
and maximal anomaly at the critical strain gc, which grows with decreasing
~k and shifts with gc for varying hzi. At high strain, ratios for all networks
(irrespective of hzi and ~k) converge to the affine result.
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and gc increases, as the applied strain causes the principal stress
axis to approach the principal strain axis. Nevertheless, even
relatively high gc values yield an anomalous downward peak in gc,
indicating that these networks become maximally anisotropic at
the critical strain. At large strains, of order 1 or greater, N1 E sxzg
for all networks, as the deformation becomes increasingly affine
above the critical strain and the principal stress axis approaches
the principal strain axis.

We further demonstrate in Fig. 7b that the peak is related to
the critical strain-stiffening transition by showing that, in
unrotated phantom triangular networks with constant z and
varying ~k, the peak becomes sharper in the ~k! 0 limit. With
increasing ~k, the deformation becomes increasingly affine, so
the peak disappears and N1 grows increasingly positive. With
~k!1, the disordered network’s response approaches that of
the corresponding affinely deforming undiluted triangular
lattice, which actually yields N1/(sxzg) 4 1 for f = 0 due to its
inherent angular anisotropy. Given the rotational symmetry of
the triangular lattice for rotations of np/3, we expect that,
beyond small differences due to random dilution, any angular
anisotropy-related mechanical behavior of the lattice should be
similar for initial rotations f = np/6 where n is even, whereas
the opposite behavior should occur for odd n. For intermediate
angles, we should observe a transition between these two cases.
In Fig. 6a, we show the response for the full undiluted triangular
lattice, as well as that of diluted phantom triangular networks
with varying ~k, with f = 0, in comparison to the corresponding
curves for the ‘‘opposite’’ initial orientation f = p/6. We see that,
for the full and diluted networks, N1/(sxzg) essentially flips about
the Lodge–Meissner value of 1 when the initial lattice is rotated
by p/6. That the peak for the low-~k lo case flips in sign is
supportive of the idea that the orientation of the dominant force
chains, shown in Fig. 6d and e, controls the sign and magnitude
of N1 relative to sxzg. In Fig. 6b, we show N1/(sxzg) for the
full range of f in the low-~k case, demonstrating the smooth
transition between the aforementioned extremes for rotations of
np/6. If an angular average is taken, the Lodge–Meissner relation
is satisfied. It is interesting to note that, even for the phantom
diluted triangular lattice, certain intermediate rotations should
approximately satisfy the Lodge–Meissner relation at the critical
strain as long as the dominant force chains, and thus the
principal stress axis, are parallel to the principal extension axis.
Phantom FCC networks, which also exhibit angular anisotropy,
show qualitatively similar behavior, with a downward peak in
N1/(sxzg) for f = 0.

For off-lattice networks with no long-range order, including
Mikado and 2D/3D PD networks, the force chains that develop
at the critical strain still occur with a directional bias towards
the principal extension axis, but the lack of an underlying
lattice structure means that they exhibit no orientational bias
above or below the principal extension axis. Nevertheless, the
highly heterogeneous and branched nature of these networks
means that even for relatively large system sizes, some samples
do exhibit deviation from the Lodge–Meissner relation at
the critical strain. In Fig. 8a, we show that N1/(sxzg) exhibits
anomalous behavior with a peak at the critical strain for certain

samples for small (W = 50, N = 2500 nodes) 2D packing-derived
networks, indicating that this effect can occur in off-lattice
networks. Averaging over an ensemble of initial network structures,
the Lodge–Meissner relation is approximately satisfied. We show
in Fig. 8b, that larger networks (W = 140, N = 19 600 nodes) still
exhibit anomalous peaks at the critical strain, but that these are
typically lower in magnitude than those observed in smaller
systems. The deviation from the LM relation in the bending-
dominated regime appears to decrease with increasing system
size as well. For a given network, the dominant force chains
arise along the network’s ‘‘shortest paths’’24 consisting of connected
bonds oriented close to the principal extension axis at a given strain,
which have some excess length for g o gc. The critical strain
corresponds to the strain at which, in the ~k ¼ 0 limit, one or more
of these shortest paths can no longer rearrange without the
stretching of their constituent bonds. Thus, the structure of the
force chain network and the resulting value of N1/(sxzg), is
determined at the critical strain by the orientations of these
(initially randomly oriented) paths.

While we do observe that individual samples typically closely
approximate the Lodge–Meissner relation, it is unsurprising
that finite-sized systems occasionally show anomalous behavior
at the critical strain, as a consequence of the finite chance of
some angular bias of the force chain network away from the
principal extension axis. In the thermodynamic limit, the
Lodge–Meissner relation should be satisfied even at the critical
strain for individual networks, as increasing the system size
should increase the likelihood that the system can ‘‘find’’
shortest paths close to the principal strain axis. In other words,
deviation from the Lodge–Meissner relation requires a preferential
orientation of the principal stress axis above (or below) the
principal extension axis, which can only occur due to some
underlying bond orientation bias in the initial network structure.
For off-lattice models like packing-derived networks with no long-
ranged structural anisotropy, such a preferential orientation is
not possible in the limit of large system sizes, so the Lodge–
Meissner relation is satisfied. We observe the same behavior for
3D PD networks and Mikado networks as in 2D PD networks.

Fig. 8 Off-lattice networks show signatures of anisotropy in N1 at the
critical strain, but these deviations appear to average out in the limit of
large system sizes or when averaged over many samples. For 2D packing-
derived networks with z = 3.3 and ~k ¼ 10�6, we observe a decrease in the
magnitude of the deviations of N1 from the Lodge–Meissner relation with
increasing system size.
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It is worth noting that in off-lattice networks, like in the lattice-
based networks, one can cause N1/(sxzg) to flip about the
Lodge–Meissner value by appropriately rotating the initial
structure, and averaging over all possible initial orientations
removes any deviation from Lodge–Meissner.

To emphasize the dependence of the value of N1 on the
highly heterogeneous force chain network structure at the
critical strain, we show examples of force chains for Mikado,
2D PD, and unrotated phantom triangular networks with ~k ¼ 0

at the critical strain in Fig. 9. Mikado and PD networks show
randomly branched force chains with a directional bias towards
the principal extension axis, whereas the unrotated phantom
triangular network shows the expected force chains oriented above
the principal extension axis (and above yb = p/4). Additionally, we
compute the distribution of contributions to N1 due to bonds
oriented with angle y = yb � p/4, normalized by sxzg, for each

network structure as a function of Dg = g � gc, also shown in
Fig. 9. Integrating these distributions over y yields N1/(sxzg) as a
function of strain. At large strains, the networks all show very
similar behavior, with primarily positive contributions to N1

coming from primarily tensile bonds oriented close to the
principal extension axis, below yb = p/4, and with the total
contribution satisfying the Lodge–Meissner relation.

At the critical strain, however, the value of N1/(sxzg) is
determined by the balance of very large positive and negative
contributions from bonds oriented above and below yb = p/4.
For the Mikado and PD networks shown, these positive and
negative contributions are similar in magnitude at gc, but for
the unrotated phantom triangular lattice, the negative contri-
bution at gc significantly outweighs the positive contribution,
yielding the observed negative peak in N1/(sxzg) vs. g. The
significant heterogeneity of the force chain network is evident
in noisy nature of these distributions at gc. We additionally plot,
as insets in Fig. 9, the corresponding bond force distributions
P( f/h f i) at gc, where f 4 0 corresponds to tension and the
average h f i is taken only over bonds under tension. Similar to
observations of compressive force distributions in granular
packings,19,53,54 frictional forces in shear-thickening suspensions,21

and tensile forces in polymer crazes,55 we observe that the large
( f 4 h f i) tensile forces in our networks are, at the point of
marginal stability i.e. gc, approximately exponentially distributed.
To emphasize this, we show that the large forces can be approxi-
mated by the distribution P( f/h f i) p exp(�b( f/h f i � 1)). We find
b = 0.5 appears to reasonably describe the distributions for the
networks shown here. We also note that the compressive forces
appear to exhibit an exponential tail as well, although they decay
faster than the tensile forces. In a network of rope-like bonds or
bucklable individual bonds with ~k ¼ 0, there would be no
compressive forces. These distributions emphasize that tensile
forces dominate at the critical strain.

Summary and discussion

In this work, we have shown the general scaling behavior of the
normal stresses in the vicinity of the strain-driven stiffening
transition for athermal semiflexible polymer networks, demon-
strating that both the axial component szz and azimuthal
component sxx are quadratic in strain and proportional to the
polymer bending rigidity ~k for g o gc but increase dramatically
at the critical strain, such that both become proportional to the
polymer stretching modulus m for g 4 gc. Additionally, we note
that the critical strain coincides with the development of a
heterogeneous network of primarily tensile force chains, similar to
the compressive force chains observed in granular packings and
frictional force chains observed in shear thickening suspensions.
Along with the development of this force chain network, we
observe a peak in the ratio of the axial normal stress to the
shear stress (previously observed in prior work6,8), which we
show is a signature of the critical strain that becomes sharper
with decreasing ~k. For networks with low ~k, we observe that this
ratio appears to behave like the corresponding ratio for the

Fig. 9 At the critical strain in the limit of ~k ¼ 0, a system-spanning net-
work of force chains develops that enables the network to bear finite
stress. The angular orientation of this force network’s constituent bonds
determines the sign of N1. Here, we show representative force chains for
central force ~k ¼ 0ð Þ networks at the critical strain for (a) a Mikado network
with z = 3.3, (c) a packing-derived network with W = 100 and z = 3.4, and
(e) a phantomized triangular network with z = 3.6. In panels (b), (d), and (f),
we show the corresponding distributions of N1(y), the contribution to N1

from bonds oriented with a given angle y relative to p/4, normalized by sxzg
for varying Dg = g � gc. The integral of N1(y) over y A [�p/2,p/2] yields N1.
Hence, the relative areas of the positive and negative portions of the curve
for a given g indicates the sign of N1. The dominant contributions to N1 are
from bonds under tension. Insets: At the critical strain, the probability
distribution of bond tension f, where fij = m(lij/lij,0 � 1), normalized by the
mean tensile force hfi = mean(f (f 4 0)), exhibits an exponential tail. The
black solid lines corresponds to P(f/hfi) p exp(�b(f/hfi � 1)), with b = 0.5.
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affine rope network model, highlighting the primarily tensile nature
of the stress-bearing force chain network. These observations
possibly explain prior evidence that more flexible fibrin networks
exhibit a sharper peak in szz/sxz than stiffer fibrin networks.6

Further, we observe that the highly anisotropic and hetero-
geneous structure of the force chain network that develops at
the critical strain results in deviation of the first normal stress
difference N1 = sxx � szz from the Lodge–Meissner relation
N1 = sxzg, particularly for networks with significant angular
anisotropy (i.e. lattice-based models). This deviation from the
Lodge–Meissner relation results from a difference in orientation
of the principal stress axis from the principal extension axis,
which in lattice-based models results from force chains at gc

developing primarily along whichever of the transformed initial
lattice vector directions is closest to the principal strain axis. For
lattice orientations in which the principal stress and strain axes
do not align, we observe a peak in N1/(sxzg) at the critical strain,
consistent with the observation that these force chains are most
anisotropic at the critical strain, and we show that appropriately
rotating the lattice changes the sign of the peak. These results
suggest that one can control the sign and magnitude of N1

by modifying the network structure, similar to recent work
showing that networks can be made auxetic by selectively
pruning bonds.56 We observe that similar but typically smaller
peaks in N1/(sxzg) at gc can also occur in off-lattice models, which
lack long-range order and develop more random, branched force
chain networks than lattice-based networks. While the force
chain networks in off-lattice models are, on average, oriented
along the principal strain axis, deviation from Lodge–Meissner is
observed for finite systems at the critical strain and results from
small imbalances between contributions to N1 from bonds
oriented on either side of the principal extension axis. Our
results suggest that, in the thermodynamic limit, semiflexible
networks with no long-range angular anisotropy (e.g. off-lattice
models with W - N) should satisfy the Lodge–Meissner
relation, even at the critical strain.

This suggests that any observed deviation from the Lodge–
Meissner relation in experimental measurements could serve as
an indication of anisotropy in the network structure. For
relatively isotropic biopolymer gels in which the sample size
is much larger than the mesh size, we expect N1 = sxzg, meaning
that N1, i.e. the measured normal stress on short timescales, can be
expected to be positive. This is in agreement with experimental
measurements of N1 measured for fibrin gels at high frequencies.14

We note that prior dynamic studies of spring networks have shown
that viscous damping reduces nonaffinity at high frequencies,57,58

which we expect to further reduce deviation from the Lodge–
Meissner relation in this limit.

Finally, we report force probability distributions for net-
works at the critical strain in the limit of ~k ¼ 0, showing that
the dominant forces at gc are tensile, with additional evidence
of an exponential tail in the large force probability distribution.
Similar force probability distributions have been measured for other
fragile or marginally stable systems, including compressive force
networks in granular packings at the jamming point,19,53,54 transient
frictional force networks in sheared granular suspensions,21

and force networks in polymer crazes.55 Future work will
be necessary to characterize these force networks and their
implications in the strain-driven stiffening transition.
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